极坐标与参数方程数学讲义教师版

合集下载

第十章-极坐标和参数方程市公开课一等奖省赛课获奖PPT课件

第十章-极坐标和参数方程市公开课一等奖省赛课获奖PPT课件
解 如图10 -12所示,设M , 是直线上任意一点.连接OM ,
则OM =, AOM .又因为
OAM ,所以有cos a ,
2

a cos
• M ,
O

A a, 0
x
这就是所求直线的极坐标方程.
图10-12 例8图形
第23页
例9 设有一圆经过极点O,圆心C在极轴上,半径为a,求它 的极坐标方程.
第11页
例2 设点M的直角坐标为1,-1,求它的极坐标.
解 由公式10-2可得 :
12 12 2, tan 1 1.
1
因为点M 1, 1在第IV象限,所以 7 ,于是可得点M的
4
极坐标为
2,
7 4
.
第12页
二、曲线极坐标方程
1.曲线极坐标方程概念
在平面上的一条曲线, 在
直角坐标系中可以用含有 x 和 y 的方程来表示.同样,在极坐
x O
M0 0,0
图10-14 等速螺线极坐标系
第25页
极角为: t
由于 t
所以
0
令a ,得 :
0 a a, 0为常数,且a 0.
这就是等速螺线的极坐标方程.
如果0 0,即动点M由极点O开始运动,那么 a.这时,极 径与极角成正比.
下面我们来作等速螺线 a a 0的图像.
x
5 cos
3
5 2
,
y
5
sin
3Leabharlann 53 2.
第10页
于是得点M的直角坐标为
5 2
,
5
3 2
.我们也可以把点M的
直角坐标化为极坐标,由公式10 1变化可得 :

第36讲 极坐标与参数方程-教案

第36讲 极坐标与参数方程-教案

一.自我诊断 知己知彼1. 若圆M 的方程为,则圆M 的参数方程为 .【答案】【解析】由圆M 的方程224x y +=,可知圆心()0,0,半径为 2.所以圆M 的参数方程为:. .2.已知圆M :x 2+y 2-2x -4y +1=0,则圆心M 到直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)的距离为 .【答案】2【解析】由于圆M 的标准方程为:22(1)(2)4x y -+-=,所以圆心(1,2)M , 又因为直线43,31,x t y t =+⎧⎨=+⎩(t 为参数)消去参数t 得普通方程为3450x y --=,422=+y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x )(sin 2cos 2为参数ααα⎩⎨⎧==y x由点到直线的距离公式得所求距离2d ==;故答案为:2.3在极坐标系中,点(2,6π)到直线θρsin =2的距离等于________. 【答案】1【解析】在极坐标系中,点(2,6π1),直线θρsin =2对应直角坐标系中的方程为y =2,所以点到直线的距离为1. 4设曲线的参数方程为(是参数,),直线的极坐标方程为,若曲线与直线只有一个公共点,则实数的值是 .【答案】7【解析】曲线的普通方程为()()22116x a y -+-=,直线的普通方程3450x y +-=,直线l 与圆C相切,则圆心(),1a 到l 的距离345475a d d +-==⇒= 5.直角坐标系xOy 中,圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数),以原点为极点,x 轴的正半轴为极轴建立坐标系,则圆心C 的极坐标是 . 【答案】)6,2(π【解析】由圆C的参数方程是cos ,(1sin ,x y θθθ⎧=⎪⎨=+⎪⎩为参数)得⎩⎨⎧-=-=1s in 3c os y x θθ可得圆的标准方程为1)1()3(22=-+-y x ,圆心坐标为)1,3(,离圆心的距离33tan ,21)3(22==+=θρ,由题意6πθ=,则圆心C 的极坐标是)6,2(π.二.温故知新 夯实基础1.平面直角坐标系C 4cos 14sin x a y θθ=+⎧⎨=+⎩θ0>a l 3cos 4sin 5ρθρθ+=C l a C l设点P (x ,y )是平面直角坐标系中的任意一点,在变换φ:⎪⎩⎪⎨⎧==0>,0>,''λμλλy y x x 的作用下,点P (x ,y )对应到点P ′(x ′,y ′),称φ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换. 2.极坐标系(1)极坐标与极坐标系的概念在平面内取一个定点O ,自点O 引一条射线Ox ,同时确定一个长度单位和计算角度的正方向(通常取逆时针方向),这样就建立了一个极坐标系.点O 称为极点,射线Ox 称为极轴.平面内任一点M 的位置可以由线段OM 的长度ρ和从射线Ox 到射线OM 的角度θ来刻画(如图所示).这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.ρ称为点M 的极径,θ称为点M 的极角.一般认为ρ≥0.当极角θ的取值范围是[0,2π)时,平面上的点(除去极点)就与极坐标(ρ,θ) (ρ≠0)建立一一对应的关系.我们设定,极点的极坐标中,极径ρ=0,极角θ可取任意角.(2)极坐标与直角坐标的互化设M 为平面内的一点,它的直角坐标为(x ,y ),极坐标为(ρ,θ).由图可知下面关系式成立:⎩⎨⎧==θρθρsin cos y x 或⎪⎩⎪⎨⎧≠=+=0,tan 222x x yy x θρ,这就是极坐标与直角坐标的互化公式. 3.常见曲线的极坐标方程4.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式.一般地,可以通过消去参数从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎨⎧==)()(t g y t f x 就是曲线的参数方程.5.常见曲线的参数方程和普通方程三.典例剖析 举一反三考点一 坐标系(一)典例剖析例1在平面直角坐标系xOy 中,直线l 的参数方程为12,22x t y ⎧=-+⎪⎪⎨⎪=⎪⎩(t 为参数),又以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为2cos 24sin 30ρθρθ+-=.(1)求曲线C 的直角坐标方程;(2)设直线l 与曲线C 方程相交于A ,B 两点,求||AB .【答案】(1)曲线C 的直角坐标方程为22(2)1y x --=;(2)||AB = 【解析】(1)曲线C 的极坐标方程2cos 24sin 30ρθρθ+-=, 化为2222cossin 4sin 30ρθρθρθ-+-=,即22430x y y -+-=.∴曲线C 的直角坐标方程为22(2)1y x --=.(2)将直线l的参数方程12,22x t y ⎧=-+⎪⎪⎨⎪=+⎪⎩(t 为参数),代入曲线C 方程得24100t t +-=,设A ,B 对应的参数分别为1t ,2t ,则124t t +=-,1210t t =-,所以12||||AB t t =-= 【方法点拨】(1)由极坐标与直角坐标相互转化公式cos sin x y ρθρθ=⎧⎨=⎩,可求出曲线C 的直角坐标方程;(2)将直线l 的参数方程代入曲线C 的方程并整理可得关于t 的一元二次方程,利用韦达定理可得12t t +,12t t ,运用直线的参数方程的几何意义可知,12||||AB t t =-,代入即可得出所求的结果. (二)举一反三1. 已知圆C 的参数方程为为参数),直线的极坐标方程为,则直线与圆C的交点的直角坐标为 . 【答案】)1,1(±【解析】圆C 的普通方程为()2211x y +-=,直线的普通方程为1y =,所以交点为)1,1(± 2. 将曲线22132x y +=按ϕ:变换后的曲线的参数方程为( ) A. B. C.D.【答案】Dcos ,(1sin .x y ααα=⎧⎨=+⎩l sin 1ρθ=l l【解析】由变换ϕ:可得:,代入曲线22132x y +=可得: ()()2232132x y ''+=,即为: 22321,x y +=令(θ为参数)即可得出参数方程.故选:D. 3.【2017北京卷理11】在极坐标系中,点A 在圆04sin 4-cos 2-2=+θρθρρ上,点P 的坐标为(1,0),则|AP |的最小值为 . 【答案】1【解析】将极坐标方程转化成标准方程:()();12122=-+-y x 所以AP 的最小值为1.4.【2019年高考江苏卷数学】在极坐标系中,已知两点3,,42A B ππ⎛⎫⎫ ⎪⎪⎝⎭⎭,直线l 的方程为sin 34ρθπ⎛⎫+= ⎪⎝⎭.(1)求A ,B 两点间的距离;(2)求点B 到直线l 的距离.【答案】(1;(2)2.【解析】(1)设极点为O .在△OAB 中,A (3,4π),B ,2π),由余弦定理,得AB = (2)因为直线l 的方程为sin()34ρθπ+=,则直线l 过点)2π,倾斜角为34π.又)2B π,所以点B 到直线l 的距离为3sin()242ππ⨯-=. 考点二 参数方程(一)典例剖析例1已知曲线C 的极坐标方程式2cos ρθ=,以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线L的参数方程是12x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数). (1)求曲线C 的直角坐标方程和直线L 的普通方程;(2)设点(,0)P m ,若直线L 与曲线C 交于两点,A B ,且||||1PA PB ⋅=,求实数m 的值.【答案】(1)曲线C 的直角坐标方程为222x y x +=,直线L的普通方程为x m =+;(2)1m =± 【解析】(1)曲线C 的极坐标方程是2cos ρθ=,化为22cos ρρθ=,可得直角坐标方程:222x y x +=.直线L的参数方程是212x m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),消去参数t可得x m +. (2)把212x t m y t ⎧=+⎪⎪⎨⎪=⎪⎩,(t 为参数),代入方程:222x y x +=,化为:2220t t m m ++-=, 由0∆>,解得13m -<<.∴2122t t m m =-.∵12||||1PA PB t t ⋅==,∴221m m -=,解得1m =±0∆>.∴实数1m =±【方法点拨】(1)利用y x y x ==+=θρθρρsin ,cos ,222,即可将极坐标方程化为平面直角坐标系方程;消去参数t 即可将直线的参数方程化为普通方程;(2)将直线的参数方程代入曲线C 的普通方程得到一个含t 且关于x的一元二次方程2220t t m m ++-=,然后利用参数t 的几何意义知,12||||1PA PB t t ⋅==22m m =-,并由t 的范围(利用判别式大于零求范围)求出值域即可.例2. 在平面直角坐标系xOy 中,以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系.曲线C 的极坐标方程是4cos (0)2πρθθ=≤≤,直线l 的参数方程是3cos 6()sin 6x t t y t ππ⎧=-+⎪⎪⎨⎪=⎪⎩为参数. (1)求直线l 的直角坐标方程和曲线C 的参数方程; (2)求曲线C 上的动点M 到直线l 的距离的范围.【答案】(1)30x +=,22cos 2sin x y αα=+⎧⎨=⎩(α为参数,0απ≤≤);(2)17,22⎡⎤⎢⎥⎣⎦.【解析】(1)直线:3l x +=,即:30x -+=由24cos ρρθ=得:224x y x +=,即:22(2)4x y -+=0,sin 02y πθρθ≤≤∴=≥.故C 的参数方程为:22cos (0)2sin x y ααπα=+⎧≤≤⎨=⎩ (2)设点(22cos ,2sin )M αα+到直线30x +=的距离为dd ==54sin()1654sin()(0)226παπααπ--⎛⎫==--≤≤ ⎪⎝⎭51sin()166626ππππαα-≤-≤-≤-≤时,min max 117sin()1,,sin(),62622d d ππαα∴-==-=-=时时点M 到直线l 的距离的范围是17,22⎡⎤⎢⎥⎣⎦【方法点拨】(1)消去t 可得直线l 的直角坐标方程,利用cos x ρθ=,sin y ρθ=代入曲线C 的极坐标方程可得曲线C 的直角坐标方程,进而引入参数α可得曲线C 的参数方程;(2)先计算点M 到直线l 的距离,再利用三角函数的性质可得点M 到直线l 的距离的范围. (二)举一反三 1. 若P 为椭圆上的点,则的取值范围是 .【答案】[]2,2- 【解析】依题意可得sin m n θθ⎧=⎪⎨=⎪⎩, 1sin 2cos sin 2sin 223m n πθθθθθ⎛⎫⎛⎫∴+=+=+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭, R θ∈, []sin 1,13πθ⎛⎫∴+∈- ⎪⎝⎭, []2sin 2,23πθ⎛⎫∴+∈- ⎪⎝⎭.即[]2,2m n +∈-),(n m n m +2. 在直角坐标系xOy 中,曲线1C 的方程是5222=+y x ,2C 的参数方程是⎪⎩⎪⎨⎧-==ty t x 3(t 为参数),则1C 与2C 交点的直角坐标是 . 【答案】)1 , 3(-【解析】由⎪⎩⎪⎨⎧-==ty t x 3消去参数t ,得2C的普通方程为(0)y x x =≥,代入1C 方程5222=+y x 整理得:23x =,解得x =1y =-,因此交点为1)-.3. 参数方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)化为普通方程为 .【答案】212y x =-,[1,1]x ∈-【解析】由2cos 212sin θθ=-得212y x =-,又sin [1,1]θ∈-,所以[1,1]x ∈-,因此普通方程为212y x =-,[1,1]x ∈-4.(2019天津理12)设a ∈R ,直线20ax y -+=和圆22cos ,12sin x y θθ=+⎧⎨=+⎩(θ为参数)相切,则a 的值为 . 【答案】34【解析】消去参数在,整理圆的方程22(2)(1)4x y -+-=;带入点到直线的距离公式,考点三 综合问题(一)典例剖析例1在直角坐标系xOy 中,直线l 的参数方程为 为参数,0απ≤<),曲线C 的参数方程为 为参数),以坐标原点O 为极点, x 轴正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)设C 与l 交于,M N 两点(异于原点),求OM ON +的最大值. 【答案】(1)曲线C 的极坐标方程为24sin ρρθ=;(2)【解析】(1)曲线C 的普通方程为()2224x y +-=,化简得224x y y +=,则24sin ρρθ=,所以曲线C 的极坐标方程为24sin ρρθ=. (2)由直线l 的参数方程可知,直线l 必过点()0,2,也就是圆C 的圆心,则2MON π∠=,不妨设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则()1244424OM ON sin sin sin cos ππρρθθθθθ⎛⎫⎛⎫+=+=++=+=+ ⎪ ⎪⎝⎭⎝⎭,所以当4πθ=, OM ON +取得最大值为【方法点拨】(1)由题意可得曲线C 的普通方程为()2224x y +-=,将其转化为极坐标方程即24sin ρρθ=.(2)由参数方程可知直线l 过圆C 的圆心,则2MON π∠=,设()12,,,2MN πρθρθ⎛⎫+⎪⎝⎭,其中0,2πθ⎛⎫∈ ⎪⎝⎭,则4OM ON πθ⎛⎫+=+⎪⎝⎭,由三角函数的性质可得OM ON +取得最大值为.例2. 【2019年高考全国Ⅲ卷理数】如图,在极坐标系Ox 中,(2,0)A ,)4B π,)4C 3π,(2,)D π,弧AB ,BC ,CD 所在圆的圆心分别是(1,0),(1,)2π,(1,)π,曲线1M 是弧AB ,曲线2M 是弧BC ,曲线3M 是弧CD .(1)分别写出1M ,2M ,3M 的极坐标方程;(2)曲线M 由1M ,2M ,3M 构成,若点P 在M 上,且||OP =P 的极坐标.【答案】(1)1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤ ⎪⎝⎭.(2)π6⎫⎪⎭或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭.【解析】(1)由题设可得,弧,,AB BC CD 所在圆的极坐标方程分别为2cos ρθ=,2sin ρθ=,2cos ρθ=-.所以1M 的极坐标方程为π2cos 04ρθθ⎛⎫=≤≤⎪⎝⎭,2M 的极坐标方程为π3π2sin 44ρθθ⎛⎫=≤≤ ⎪⎝⎭,3M 的极坐标方程为3π2cos π4ρθθ⎛⎫=-≤≤⎪⎝⎭. (2)设(,)P ρθ,由题设及(1)知若π04θ≤≤,则2cos θ=,解得π6θ=; 若π3π44θ≤≤,则2sin θ=π3θ=或2π3θ=; 若3ππ4θ≤≤,则2cos θ-=5π6θ=. 综上,P的极坐标为π6⎫⎪⎭ 或π3⎫⎪⎭或2π3⎫⎪⎭或5π6⎫⎪⎭. 【方法点拨】此题考查了极坐标中过极点的圆的方程,思考量不高,运算量不大例 3. 在直角坐标系xoy 中,曲线1C 的参数方程为 ,( α为参数),以原点O 为极点, x 轴正半轴为极轴,建立极坐标系,曲线2C的极坐标方程为sin 4πρθ⎛⎫+= ⎪⎝⎭(1)求曲线1C 的普通方程与曲线2C 的直角坐标方程;(2)设P 为曲线1C 上的动点,求点P 到2C 上点的距离的最小值.【答案】(1)2213x y +=, 80x y +-=(2)【解析】(1)由曲线1C :得{ cos y sin αα==即:曲线1C 的普通方程为: 2213x y +=由曲线2C :sin 4πρθ⎛⎫+= ⎪⎝⎭()sin cos ρθθ+=即:曲线2C 的直角坐标方程为: 80x y +-=(2)由(1)知椭圆1C 与直线2C无公共点,椭圆上的点),sin Pαα到直线80x y +-=的距离为d ==所以当sin 13πα⎛⎫+= ⎪⎝⎭时, d的最小值为【方法点拨】(1)对于1C ,利用22cos sin 1αα+=,化简得2213x y +=,对于2C ,展开后利用极坐标与直角坐标转化公式,化简的80x y +-=.(2)直接利用点到直线距离公式,求出距离,并用辅助角公式化简,利用三角函数最值求得距离的最小值. (二)举一反三例 1. 已知在平面直角坐标系xOy 中,直线l 的参数方程是(t 是参数),以原点O 为极点,x 轴正半轴为极轴且取相同的单位长度建立极坐标系,曲线C的极坐标方程为ρθ=.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设(),M x y 为曲线C 上任意一点,求x y +的取值范围. 【答案】(1)260x y -+=,(222x y +=(2)2⎡-+⎣【解析】(1)由{26x t y t ==+,得26y x =+,故直线l 的普通方程为260x y -+=,由ρθ=,得2cos ρθ=,所以22x y +=,即(222x y +=,故曲线C的普通方程为(222x y -+=;(2)据题意设点)Mθθ,则2sin 4x y πθθθ⎛⎫+=+ ⎪⎝⎭,所以x y +的取值范围是2⎡-⎣.例2. 在直角坐标系xOy 中,曲线C 的参数方程为(α为参数),以平面直角坐标系的原点为极点, x 轴的正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程;(2)过原点O 的直线12,l l 分别与曲线C 交于除原点外的,A B 两点,若3AOB π=,求AOB 的面积的最大值.【答案】(1)4sin 3πρθ⎛⎫=+ ⎪⎝⎭;(2) .【解析】 (1)曲线C 的普通方程为(()2214x y -+-=,即2220x y y +--=,所以,曲线C 的极坐标方程为2cos 2sin 0ρθρθ--=,即4sin 3πρθ⎛⎫=+⎪⎝⎭. (2)不妨设()1,A ρθ, 2,3B πρθ⎛⎫+⎪⎝⎭,,33ππθ⎛⎫∈- ⎪⎝⎭.则14sin 3πρθ⎛⎫=+⎪⎝⎭,224sin 3πρθ⎛⎫=+⎪⎝⎭,AOB 的面积12112sinsin sin 232333S OA OB ππππρρθθθ⎛⎫⎛⎫=⋅==++= ⎪ ⎪⎝⎭⎝⎭所以,当0θ=时, AOB 的面积取最大值为例3. 在直角坐标系xOy 中,曲线C 的参数方程是 (α为参数),以该直角坐标系的原点O为极点, x 轴的正半轴为极轴建立极坐标系,直线l sin cos 0m θρθ-+=. (1)写出曲线C 的普通方程和直线l 的直角坐标方程;(2)设点(),0P m ,直线l 与曲线C 相交于,A B 两点,且1PA PB =,求实数m 的值.【答案】(1)曲线C 的普通方程为()2212x y -+=,直线l 的直角坐标方程为)3y x m =-;(2)1m =±0m =或2m =.【解析】(1)()2212x y ⇒-+=故曲线C 的普通方程为()2212x y -+=.直线l)3x m y x m -+⇒=-. (2)直线l的参数方程可以写为,{12x m y t =+=(t 为参数).设,A B 两点对应的参数分别为12,t t ,将直线l 的参数方程代入曲线C 的普通方程()2212x y -+=可以得到2221122m t t ⎛⎫⎛⎫+-+= ⎪ ⎪ ⎪⎝⎭⎝⎭)()21120m t m -+--=, 所以()212121PA PB t t m ==--= 2211m m ⇒--= 2220m m ⇒-==或220m m -=,解得1m =±0m =或2m =.四.分层训练 能力进阶【基础】1. 曲线⎩⎨⎧==θθsin 4cos 5y x (θ为参数)的焦距是 .【答案】6【解析】消参后化为:14522=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛y x ,整理为1162522=+y x ,所以焦距6162522=-=c . 2. 把下列参数方程化为普通方程,并说明它们各表示什么曲线:⑴⎩⎨⎧==ϕϕsin 4cos 5y x (ϕ为参数); ⑵⎩⎨⎧=-=t y tx 431(t 为参数)【答案】⑴1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆.⑵0434=-+y x ,它表示过(0,43)和(1, 0)的一条直线. 【解析】本题主要是考查参数方程化为普通方程,(1)对两个式子中右边的系数挪到左边,利用三角函数的平方关系式消去ϕ整理即得到;(2)可以代入消元或加减消元消去t 得普通方程.解:⑴.∵⎩⎨⎧==ϕϕsin 4cos 5y x ∴⎪⎩⎪⎨⎧==ϕϕsin 4cos 5y x两边平方相加,得ϕϕ2222s i n c o s 1625+=+y x 即1162522=+y x ∴曲线是长轴在x 轴上且为10,短轴为8,中心在原点的椭圆. ⑵.∵⎩⎨⎧=-=ty t x 431∴由4y t =代入t x 31-=,得 431yx ⋅-=∴0434=-+y x∴它表示过(0,43)和(1, 0)的一条直线. 3.【2019北京卷理3】已知直线l 的参数方程为)(4231为参数t ty t x ⎩⎨⎧+=+=,则点()0,1到直线l 的距离是A .51 B .52 C .54 D .56 【答案】D【解析】直线l 的参数方程为)(4231为参数t ty tx ⎩⎨⎧+=+=,消参数得,3234+=x y 即0234=+-y x ,则点()0,1到直线l 的距离是564320422=++-=d ,故选D4. 已知直线l 的方程为2)4sin(=+πθρ,曲线C 的方程为()为参数θθθ⎩⎨⎧==sin cos y x . (1)把直线l 和曲线C 的方程分别化为直角坐标方程和普通方程; (2)求曲线C 上的点到直线l 距离的最大值. 【答案】(1)2=+y x ,122=+y x ;(2)12+=l .【解析】(1)222cos 22sin =⎪⎪⎭⎫⎝⎛⋅+⋅θθρ,根据⎩⎨⎧==θρθρsin cos y x ,代入得:2=+y x 根据1cos sin 22=+θθ,消参后的方程是:122=+y x .(2)直线与圆相离,所以圆上的点到直线的最大距离是圆心到直线的距离加半径,即222==d ,那么最大距离就是12+=l5. 已知曲线C 的极坐标方程是ρ=4cosθ,以极点为平面直角坐标系的原点,极轴为χ轴的正半轴,建立平 面直角坐标系,直线l 的参数方程是⎪⎩⎪⎨⎧+==tm x t y 2222(t 是参数).(Ⅰ)将曲线C 的极坐标方程化为直角坐标方程,直线l 的参数方程化为普通方程; (Ⅱ)若直线l 与曲线C 相交于A 、B 两点,且|AB |=14,试求实数m 的值. 【答案】(Ⅰ)2240x y x +-=,y x m =-;(Ⅱ)1或3.【解析】(Ⅰ)曲线C 的极坐标方程是ρ=4cos θ化为直角坐标方程为:0422=-+x y x 直线l 的直角坐标方程为:m x y -=(5分)(Ⅱ)解法一:由(Ⅰ)知:圆心的坐标为(2,0),圆的半径R =2,圆心到直线l 的距离22)214(222=-=d ,∴ 1222202=-⇒=--m m ∴ 31==m m 或解法二:把22x t my t ⎧=+⎪⎪⎨⎪=⎪⎩(t 是参数)代人方程2x 042=-+x y得222)40t m t m m -+-=∵ m m t t m t t 42(222121-=--=+),∴ 21221214)(t t t t t t AB -+=-= ∴ []14)442(222=---=m m m ()∴ 31==m m 或【巩固】1.【2018北京卷理7】在平面直角坐标系中,记d 为点P (cosθ,sinθ)到直线x -my -2=0的距离.当θ,m 变化时,d 的最大值为 A .1 B .2C .3D .4【答案】C【解析】点P 的轨迹为x ²+y ²=1,则点P 到直线的距离可转化为圆上任意一点到直线的距离。

极坐标与参数方程

极坐标与参数方程

XXXX 教育学科教师辅导讲义讲义编号一、基础知识归纳总结:1.伸缩变换:设点P(x,y)是平面直角坐标系中的任意一点,在变换⎩⎨⎧>⋅='>⋅=').0(,y y 0),(x,x :μμλλϕ的作用下,点P(x,y)对应到点)y ,x (P ''',称ϕ为平面直角坐标系中的坐标伸缩变换,简称伸缩变换。

2.极坐标系的概念:在平面内取一个定点O,叫做极点;自极点O引一条射线Ox叫做极轴;再选定一个长度单位、一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系。

3.点M 的极坐标:设M 是平面内一点,极点O与点M 的距离OM 叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的∠XOM 叫做点M 的极角,记为θ。

有序数对),(θρ叫做点M 的极坐标,记为M ),(θρ. 极坐标),(θρ与)Z k )(2k ,(∈+πθρ表示同一个点。

极点O 的坐标为)R )(,0(∈θθ. 4.若0<ρ,则0>-ρ,规定点),(θρ-与点),(θρ关于极点对称,即),(θρ-与),(θπρ+表示同一点。

如果规定πθρ20,0≤≤>,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示;同时,极坐标),(θρ表示的点也是唯一确定的。

5.极坐标与直角坐标的互化:6。

圆的极坐标方程:在极坐标系中,以极点为圆心,r 为半径的圆的极坐标方程是 r =ρ;在极坐标系中,以 )0,a (C (a>0)为圆心, a 为半径的圆的极坐标方程是 θρ2acos =;在极坐标系中,以 )2,a (C π(a>0)为圆心,a 为半径的圆的极坐标方程是 θρ2asin =;7.在极坐标系中,)0(≥=ραθ表示以极点为起点的一条射线;)R (∈=ραθ表示过极点的一条直线.在极坐标系中,过点)0a )(0,a (A >,且垂直于极轴的直线l 的极坐标方程是a cos =θρ.8.参数方程的概念:在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数⎩⎨⎧==),t (g y ),t (f x 并且对于t 的每一个允许值,由这个方程所确定的点M(x,y)都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数。

极坐标和参数方程市公开课获奖课件省名师示范课获奖课件

极坐标和参数方程市公开课获奖课件省名师示范课获奖课件

y
直线 ρ(cosθ+ 3 sinθ)= 2 化为
普通方程 x 3 y 2 .圆上任一
O
x x 点 P( x,y) 到得距离为
d | x 3y2| . 2
思绪分析
例 6 在极坐标系中,设圆 C:ρ= 3 上的点到直线 l:ρ(cosθ+ 3 sinθ)= 2 的距离为 d,求 d 的最大值.
的点的坐标. 思 路:直线上每个点对应一个参数,求出
这个参数即可.
过程解析
解 ( 1) 因 P 为 椭 圆 x2 y2 1 上 任 意 点 , 故 可 设 4
P(2cosq ,sinq ) ,其中q R . 依题意,直线 l 的普通
方程为 x 2y 0 .因此点 P 到直线 l 的距离是
C
O
x
思绪分析
例 1 在极坐标系中,已知圆 C 的圆心坐标为 C (2,
π ),半径 R= 5 ,求圆 C 的极坐标方程. P
3
C
思路 1:运用直接法,寻求点 P 的极径r与 O
x
极角q的关系,即是圆的极坐标方程.
思路 2:化为直角坐标研究.
求解过程
解 设 P( ρ,θ )是圆 C 上的任意一点,则
基础知识
极坐标与直角坐标旳互化
x r cosq,
y
r
sin q .
r 2 x2 y2,
tan
q
y (x x
0).
一般,将直角坐标化为极坐标时,r 0,0 ≤q 2π.
经典例题
例 1 在极坐标系中,已知圆 C 的圆心坐标为 C (2, π ),半径 R= 5 ,求圆 C 的极坐标方程. 3
2.
过程解析
(2)设 P(x,y)为曲线 x2 y2 9 (0≤ x ≤3,0 ≤ y ≤3)

高中数学极坐标和参数方程讲义

高中数学极坐标和参数方程讲义

极坐标和参数方程讲义姓名: 学号:一、极坐标与普通方程互化条件:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρθ的象限由点(x,y)所在的象限确定.【典型范例】例题1. 点M 的极坐标分别是(2,)2π,(4,)π,2(6,)3π,3(2,)4π 换算成直角坐标是3. 点M 的直角坐标分别是(2,0),(0,2)-,(2,2)--,(如果0,02ρθπ≥≤<换算成极坐标是例题2.在极坐标系中,过圆4cos =ρθ的圆心,且垂直于极轴的直线的极坐标方程为 .变式1.在极坐标系中,圆心在()2,π且过极点的圆的方程为( )A.ρθ=22cosB.ρθ=-22cosC.ρθ=22sinD.ρθ=-22sin变式2.(广东文)已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__ ___.变式3. (广州一模)在极坐标系中,过点4π⎛⎫⎪⎝⎭作圆4sin ρθ=的切线,则切线的 极坐标方程是 .例题3.( 广东文)在极坐标系中,直线l 的方程为ρsin θ=3,则点(2,6π)到直线l 的距离为 .变式1.(韶关调研理) 设M、N分别是曲线2sin 0ρθ+=和s ()42in πρθ+=上的动点, 则M、N的最小距离是变式2.(深圳一模理)在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间的距离是 .二、常见的参数方程的概念:圆222r )b y ()a x (=-+-的参数方程可表示为)(.rsin b y ,rcos a x 为参数θθθ⎩⎨⎧+=+=.椭圆1b y a x 2222=+(a>b>0)的参数方程可表示为)(.bsin y ,acos x 为参数θθθ⎩⎨⎧==. 经过点)y ,x (M o o O ,倾斜角为α的直线l 的参数方程可表示为⎩⎨⎧+=+=.tsin y y ,tcos x x o o αα(t 为参数)。

参数方程与极坐标(教师版)

参数方程与极坐标(教师版)

1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点为极点,以x 轴正半轴为极轴,已知曲线C 1的极坐标方程为ρ=4cos θ,曲线C 2的参数方程为⎩⎨⎧=+=ααsin cos t t m x y (t 为参数,0≤α<π),射线θ=φ,θ=φ+4π,θ=φ﹣4π与曲线C 1交于(不包括极点O )三点A 、B 、C .(I )求证:|OB|+|OC|=2|OA|;(Ⅱ)当φ=12π时,B ,C 两点在曲线C 2上,求m 与α的值.1解:(Ⅰ)依题意,|OA|=4cos φ,|OB|=4cos (φ+4π),|OC|=4cos (φ﹣4π),…则|OB|+|OC|=4cos (φ+4π)+4cos (φ﹣4π)=22(cos φ﹣sin φ)+22(cos φ+sin φ)=42cos φ,=2|OA|.…(Ⅱ)当φ=12π时,B ,C 两点的极坐标分别为(2,3π),(23,﹣6π).化为直角坐标为B (1,3),C (3,﹣3).…C 2是经过点(m ,0),倾斜角为α的直线,又经过点B ,C 的直线方程为y=﹣(x ﹣2),故直线的斜率为﹣3,所以m=2,α=32π. 2.已知曲线C 1的参数方程是⎩⎨⎧==θθsin 2cos y x (θ为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=﹣2cos θ.(Ⅰ)写出C 1的极坐标方程和C 2的直角坐标方程;(Ⅱ)已知点M 1、M 2的极坐标分别是(1,π)、(2,2π),直线M 1M 2与曲线C 2相交于P 、Q 两点,射线OP 与曲线C 1相交于点A ,射线OQ 与曲线C 1相交于点B ,求22||1||1OB OA +的值2解:(Ⅰ)∵曲线C 1的参数方程是⎩⎨⎧==θθsin 2cos y x (θ为参数),化为普通方程是x 2+42y =1;化为极坐标方程是ρ2cos 2θ+4sin 22θρ=1;又∵曲线C 2的极坐标方程是ρ=﹣2cos θ,化为直角坐标方程是(x+1)2+y 2=1;(Ⅱ)∵点M 1、M 2的极坐标分别是(1,π)、(2,2π), ∴直角坐标系下点M 1(﹣1,0),M 2(0,2);∴直线M 1M 2与圆C 2相交于P 、Q 两点,所得线段PQ 是圆(x+1)2+y 2=1的直径;∴∠POQ=,∴OP ⊥OQ ,∴OA ⊥OB ;又A 、B 是椭圆x 2+=1上的两点,在极坐标系下,设A (ρ1,θ),B (ρ2,θ+),分别代入方程ρ2cos 2θ+4sin 22θρ=1中,有cos 2θ+4sin 221θρ=1,cos 2(θ+)+42sin 222)(πθρ+=1;解得=cos 2θ+,=sin 2θ+;∴+=cos 2θ++sin 2θ+=1+=;即22||1||1OB OA +=.a=﹣1,b=2.用必修2的知识解决。

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

新人教版高中数学选修4-4《极坐标与参数方程》优质教案

(3.5学案)第1讲 极坐标系与参数方程(大题)教学目标1.会将参数方程,极坐标方程化为普通方程2.理解极坐标方程中ρ,θ含义,参数方程中直线中的t 的含义,圆与椭圆中θ几何意义,及应用教学重点:ρ,θ应用及直线参数方程中t 应用椭圆中θ应用 教学难点:椭圆中θ的含义题型一:极坐标.参数方程与普通方程互化 1.直角坐标与极坐标的互化把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,且在两种坐标系中取相同的长度单位.如图,设M 是平面内的任意一点,它的直角坐标、极坐标分别为(x ,y)和(ρ,θ),则⎩⎨⎧x =ρcos θ,y =ρsin θ,⎩⎨⎧ρ2=x 2+y 2,tan θ=yx x ≠0.2.在与曲线的直角坐标方程进行互化时,一定要注意变量的范围,要注意转化的等价性.(1).直线的参数方程过定点M(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎨⎧x =x 0+tcos α,y =y 0+tsin α(t为参数).(2).圆的参数方程圆心为点M(x 0,y 0),半径为r 的圆的参数方程为⎩⎨⎧x =x 0+rcos θ,y =y 0+rsin θ(θ为参数).(3).圆锥曲线的参数方程(1)椭圆x 2a 2+y 2b 2=1(a>b>0)的参数方程为⎩⎨⎧x =acos θ,y =bsin θ(θ为参数).(2)抛物线y 2=2px(p>0)的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数).(4).(1)参数方程的实质是将曲线上每一点的横、纵坐标分别用同一个参数表示出来,所以有时处理曲线上与点的坐标有关的问题时,用参数方程求解非常方便;(2)充分利用直线、圆、椭圆等参数方程中参数的几何意义,在解题时能够事半功倍.例1、(1)方程表示的曲线是( )A. 双曲线B.双曲线的上支C.双曲线的下支D.圆 分析:把参数方程化为我们熟悉的普通方程,再去判断它表示的曲线类型是这类问题的破解策略.解析:注意到t与互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含的项,即有,又注意到,可见与以上参数方程等价的普通方程为.显然它表示焦点在轴上,以原点为中心的双曲线的上支,选B.点评:这是一类将参数方程化为普通方程的检验问题,转化的关键是要注意变量范围的一致性.(2)、设P 是椭圆上的一个动点,则的最大值是 ,最小值为 .分析:注意到变量的几何意义,故研究二元函数的最值时,可转化为几何问题.若设,则方程表示一组直线,(对于取不同的值,方程表示不同的直线),显然既满足,又满足,故点是方程组的公共解,依题意得直线与椭圆总有公共点,从而转化为研究消无后的一元二次方程的判别式问题.解析:令,对于既满足,又满足,故点是方程组的公共解,依题意得,由,解得:,所以的最大值为,最小值为.点评:对于以上的问题,有时由于研究二元函数有困难,也常采用消元,但由满足的方程来表示出或时会出现无理式,这对进一步求函数最值依然不够简洁,但若通过三角函数换元,则可实现这一途径.即,因此可通过转化为的一元函数.以上二个思路都叫“参数法”.(3)、极坐标方程表示的曲线是()A. 圆B. 椭圆C. 双曲线的一支D. 抛物线分析:这类问题需要将极坐标方程转化为普通方程进行判断.解析:由,化为直角坐标系方程为,化简得.显然该方程表示抛物线,故选D.点评:若直接由所给方程是很难断定它表示何种曲线,因此通常要把极坐标方程化为直角坐标方程,加以研究.(4)、极坐标方程转化成直角坐标方程为()A. B. C. D.分析:极坐标化为直解坐标只须结合转化公式进行化解.解析:,因此选C.点评:此题在转化过程中要注意不要失解,本题若成为填空题,则更要谨防漏解.通关练习一1. 已知点M的极坐标为,下列所给出的四个坐标中不能表示点M的坐标是()A. B. C. D.2.若直线的参数方程为,则直线的斜率为()A. B. C. D.3.下列在曲线上的点是()A. B. C. D.4.将参数方程化为普通方程为()A. B. C.D.5.参数方程为表示的曲线是()A.一条直线 B.两条直线 C.一条射线 D.两条射线6.直线和圆交于两点,则的中点坐标为() A. B. C. D.7.极坐标方程表示的曲线为()A.一条射线和一个圆 B.两条直线 C.一条直线和一个圆 D.一个圆8.直线的参数方程为,上的点对应的参数是,则点与之间的距离是()A. B. C. D.9. 圆心为C,半径为3的圆的极坐标方程为10 若A,B,则|AB|=__________,___________(其中O是极点)11. ,若A、B是C上关于坐标轴不对称的任意两点,AB 的垂直平分线交x轴于P(a,0),求a的取值范围.一、选择题:1.A 解析:能表示点M的坐标有3个,分别是B、C、D.2.D 解析:3.B 解析:转化为普通方程:,当时,4.C 解析:转化为普通方程:,但是5、D 解析:表示一条平行于轴的直线,而,所以表示两条射线6.D 解析:,得,因此中点为7.C 解析:,则或8、C 解析:距离为9、解析:如下图,设圆上任一点为P(),则10、解析:在极坐标系中画出点A、B,易得,11. 解析:,,,,题型二极坐标,参数方程综合应用例2 (2019·全国Ⅱ)在极坐标系中,O为极点,点M(ρ0,θ)(ρ>0)在曲线C:ρ=4sin θ上,直线l过点A(4,0)且与OM垂直,垂足为P.(1)当θ0=π3时,求ρ0及l 的极坐标方程; (2)当M 在C 上运动且P 在线段OM 上时,求P 点轨迹的极坐标方程. 解 (1)因为M(ρ0,θ0)在C 上,当θ0=π3时,ρ0=4sin π3=2 3. 由已知得|OP|=|OA|cosπ3=2. 设Q(ρ,θ)为l 上除P 的任意一点,连接OQ ,在Rt △OPQ 中,ρcos ⎝ ⎛⎭⎪⎫θ-π3=|OP|=2.经检验,点P ⎝ ⎛⎭⎪⎫2,π3在曲线ρcos ⎝ ⎛⎭⎪⎫θ-π3=2上.所以,l 的极坐标方程为ρcos ⎝⎛⎭⎪⎫θ-π3=2.(2)设P(ρ,θ),在Rt △OAP 中,|OP|=|OA|cos θ=4cos θ,即ρ=4cos θ.因为P 在线段OM 上,且AP ⊥OM ,故θ的取值范围是⎣⎢⎡⎦⎥⎤π4,π2.所以,P 点轨迹的极坐标方程为ρ=4cos θ,θ∈⎣⎢⎡⎦⎥⎤π4,π2.跟踪演练1 在平面直角坐标系xOy 中,已知直线l :x +3y =53,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=4sin θ.射线OP :θ=π6(ρ≥0)与圆C 的交点为O ,A ,与直线l 的交点为B ,求线段AB 的长.解 由题意知ρA =4sinπ6=2, ρB =532sin ⎝ ⎛⎭⎪⎫π6+π6=5,所以|AB|=|ρA -ρB |=3.例 3 (2019·六安质检)在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =2+2cos α,y =2sin α(α为参数),过点P(-2,0)作斜率为k 的直线l 与圆C交于A ,B 两点.(1)若圆心C 到直线l 的距离为455,求k 的值;(2)求线段AB 中点E 的轨迹方程.解 (1)由题意知,圆C 的普通方程为(x -2)2+y 2=4, 即圆C 的圆心为C(2,0),半径r =2.依题意可得过点P(-2,0)的直线l 的方程为y =k(x +2),即kx -y +2k =0, 设圆心C(2,0)到直线l 的距离为d , 则d =|2k +2k|1+k 2=|4k|1+k2=455, 解得k =±12.(2)设直线l 的参数方程为⎩⎨⎧x =-2+tcos θ,y =tsin θ(t 为参数),θ∈⎝ ⎛⎭⎪⎫-π6,π6,代入圆C :(x -2)2+y 2=4,得t 2-8tcos θ+12=0. 设A ,B ,E 对应的参数分别为t A ,t B ,t E , 则t E =t A +t B2, 所以t A +t B =8cos θ,t E =4cos θ. 又点E 的坐标满足⎩⎨⎧x =-2+t E cos θ,y =t E sin θ,所以点E 的轨迹的参数方程为⎩⎨⎧x =-2+4cos 2θ,y =4sin θcos θ,即⎩⎨⎧x =2cos 2θ,y =2sin 2θ,θ∈⎝ ⎛⎭⎪⎫-π6,π6,化为普通方程为x 2+y 2=4(1<x ≤2).例4在平面直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρcos θ-2ρsin θ+1=0,曲线C 的参数方程为⎩⎨⎧x =2cos α,y =3sin α(α为参数).(1)求曲线C 上的点到直线l 的距离的最大值;(2)直线l 与曲线C 交于A ,B 两点,已知点M(1,1),求|MA|·|MB|的值. 解 (1)设曲线C 上任意一点N(2cos α,3sin α), 直线l :x -2y +1=0,则点N 到直线l 的距离d =|2cos α-23sin α+1|5=⎪⎪⎪⎪⎪⎪4cos ⎝⎛⎭⎪⎫α+π3+15≤5,∴曲线C 上的点到直线l 的距离的最大值为 5. (2)设直线l 的倾斜角为θ, 则由(1)知tan θ=12,∴cos θ=255,sin θ=55. ∴直线l 的参数方程为⎩⎪⎨⎪⎧x =1+255t ,y =1+55t (t 为参数),曲线C :x 24+y 23=1,联立方程组,消元得165t 2+45t -5=0, 设方程两根为t 1,t 2,则t 1t 2=-2516, 由t 的几何意义,得|MA|·|MB|=-t 1t 2=2516. 通关练习二1.(2019·东莞调研)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),圆C 的标准方程为(x -3)2+(y -3)2=4.以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (1)求直线l 和圆C 的极坐标方程; (2)若射线θ=π3与l 的交点为M ,与圆C 的交点为A ,B ,且点M 恰好为线段AB 的中点,求a 的值.解(1)∵直线l 的参数方程为⎩⎨⎧x =34+3t ,y =a +3t(t 为参数),∴在直线l 的参数方程中消去t 可得直线l 的普通方程为x -y -34+a =0,将x =ρcos θ,y =ρsin θ代入直线l 的普通方程中, 得到直线l 的极坐标方程为ρcos θ-ρsin θ-34+a =0.∵圆C 的标准方程为(x -3)2+(y -3)2=4,∴圆C 的极坐标方程为ρ2-6ρcos θ-6ρsin θ+14=0.(2)在极坐标系中,由已知可设M ⎝ ⎛⎭⎪⎫ρ1,π3,A ⎝ ⎛⎭⎪⎫ρ2,π3,B ⎝⎛⎭⎪⎫ρ3,π3,联立⎩⎨⎧θ=π3,ρ2-6ρcos θ-6ρsin θ+14=0,得ρ2-(3+33)ρ+14=0, ∴ρ2+ρ3=3+3 3. ∵点M 恰好为AB 的中点, ∴ρ1=3+332,即M ⎝⎛⎭⎪⎫3+332,π3. 把M ⎝ ⎛⎭⎪⎫3+332,π3代入ρcos θ-ρsin θ-34+a =0,得3()1+32×1-32-34+a =0,解得a =94.2.在平面直角坐标系xOy 中,曲线C 1过点P(m,2),其参数方程为⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρcos 2θ+8cos θ-ρ=0. (1)求曲线C 1的普通方程和曲线C 2的直角坐标方程;(2)若已知曲线C 1和曲线C 2交于A ,B 两点,且|PA|=2|PB|,求实数m 的值. 解 (1)C 1的参数方程⎩⎨⎧x =m +t ,y =2-t(t 为参数,m ∈R ),消参得普通方程为x +y -m -2=0.C 2的极坐标方程化为ρ(2cos 2θ-1)+8cos θ-ρ=0,两边同乘ρ得2ρ2cos 2θ+8ρcos θ-2ρ2=0,即y 2=4x. 即C 2的直角坐标方程为y 2=4x.(2)将曲线C 1的参数方程标准化为⎩⎪⎨⎪⎧x =m -22t ,y =2+22t (t 为参数,m ∈R ),代入曲线C 2:y 2=4x , 得12t 2+42t +4-4m =0, 由Δ=(42)2-4×12×(4-4m)>0,得m>-3,设A ,B 对应的参数为t 1,t 2,由题意得|t 1|=2|t 2|,即t 1=2t 2或t 1=-2t 2,当t 1=2t 2时,⎩⎨⎧t 1=2t 2,t 1+t 2=-82,t 1·t 2=24-4m,解得m =-239,满足m>-3; 当t 1=-2t 2时,⎩⎨⎧t 1=-2t 2,t 1+t 2=-82,t 1·t 2=24-4m解得m =33,满足m>-3. 综上,m =-239或33. 3.(2019·衡水中学调研)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2+2cos φ,y =2sin φ(φ为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=4sin θ. (1)求C 1的普通方程和C 2的直角坐标方程;(2)已知直线C 3的极坐标方程为θ=α(0<α<π,ρ∈R ),A 是C 3与C 1的交点,B 是C 3与C 2的交点,且A ,B 均异于原点O ,|AB|=42,求α的值. 解 (1)由⎩⎨⎧x =2+2cos φ,y =2sin φ消去参数φ,得C 1的普通方程为(x -2)2+y 2=4.由ρ=4sin θ,得ρ2=4ρsin θ,又y =ρsin θ,x 2+y 2=ρ2, 所以C 2的直角坐标方程为x 2+(y -2)2=4. (2)由(1)知曲线C 1的普通方程为(x -2)2+y 2=4, 所以其极坐标方程为ρ=4cos θ.设点A ,B 的极坐标分别为(ρA ,α),(ρB ,α), 则ρA =4cos α,ρB =4sin α,所以|AB|=|ρA -ρB |=4|cos α-sin α| =42⎪⎪⎪⎪⎪⎪sin ⎝⎛⎭⎪⎫α-π4=42,所以sin ⎝ ⎛⎭⎪⎫α-π4=±1,即α-π4=k π+π2(k ∈Z ),解得α=k π+3π4(k ∈Z ),又0<α<π,所以α=3π4. 4.(2019·保山模拟)在平面直角坐标系xOy 中,以O 为极点,x 轴的正半轴为极轴建立极坐标系.⊙O 的极坐标方程为ρ=2,直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),直线l 与⊙O 交于A ,B 两个不同的点.(1)求倾斜角α的取值范围;(2)求线段AB 中点P 的轨迹的参数方程. 解 (1)直线l 的倾斜角为α,当α=π2时,直线l(即y 轴)与⊙O 交于A ,B 两个不同的点,符合题目要求;当α≠π2时,记k =tan α,直线l 的参数方程⎩⎨⎧x =tcos α,y =-2+tsin α 化为普通方程为kx -y -2=0,圆心O 到直线l 的距离d =21+k 2.因为直线l 与⊙O 交于不同的两点, 所以21+k2<2, 解得k>1或k<-1.当k<-1时,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π2,3π4;当k>1时,α的取值范围是⎝ ⎛⎭⎪⎫π4,π2,综上,直线l 的倾斜角α的取值范围是⎝ ⎛⎭⎪⎫π4,3π4.(2)⊙O 的极坐标方程为ρ=2,其直角坐标方程为x 2+y 2=2, 因直线l 的参数方程为⎩⎨⎧x =tcos α,y =-2+tsin α(t 为参数),代入x 2+y 2=2中得,t 2-4tsin α+2=0, 故可设A(t 1cos α,-2+t 1sin α),B(t 2cos α,-2+t 2sin α),注意到t 1 ,t 2为方程的根,故t 1+t 2=4sin α, 点P 的坐标为⎝⎛⎭⎪⎫t 1+t 22cos α,-2+t 1+t 22sin α, 即(sin 2α,-1-cos 2α), 所以点P 的轨迹的参数方程为 ⎩⎨⎧x =sin 2α,y =-1-cos 2α(α为参数).。

优质实用课件精选选修4-4极坐标与参数方程全套课件

优质实用课件精选选修4-4极坐标与参数方程全套课件

7、 , R
6
8、 sin 2 cos 1
4、 2sin 5、 2 cos 6、 2 2 cos 8 0
9、 sin( ) 2
42
10、 sin( ) 1
6
➢ 随堂演练----高考真题
【2018北京卷10】
在极坐标系中,直线cos sin a 与圆 2cos相切,则a _____.
当然,非标准形式下
x y
x0 y0
at 你能推的到吗? bt
(t1 t2 )2 4t1t2
| AB | a2 b2 (t1 t2 )2 a2 b2 (t1 t2 )2 4t1t2
三种坐标系下的弦长问题----各具优势与特点
直线为参数方程标准形式、曲线为普通方程
非标准形式下弦长公式| AB | a2 b2 (t1 t2 )2 4t1t2
cos s in
(为参
数),过点(0, 2)且倾斜角为的直线l与圆O交于A, B两点
(1)求的取值范围
(2)求AB中点P的轨迹的参数方程
近三年高考真题
【2017全国1卷22题】
在直角坐标系中,曲线C的参数方程为xy
3 c os s in
(为参
数),直线l的参数方程为xy
a 4t(t为参数) 1t
近三年高考真题
【2018全国1卷22题】
在直角坐标系中,曲线C1的方程为y k | x | 2.以坐标 原点为极点,x轴正半轴为极轴建立极坐标系,曲线C2
的极坐标方程为 2 2cos 3 0
(1)求C2的直角坐标方程 (2)若C1与C2有且仅有三个公共点,求C1的方程
近三年高考真题
【2018全国2卷22题】
选修Байду номын сангаас-4极坐标及参数方程

极坐标与参数方程ppt课件

极坐标与参数方程ppt课件
当 θ1=θ2,|AB|=/ρ1—-ρ2/
• 3.直线的极坐标方程:若直线过点M(ρ0,θ0),且极 轴到此直线的角为α,则它的方程为:
• ρsin(θ-α)=ρ0sin(θ0-α). • 几个特殊位置的直线的极坐标方程 • (1)直线过极点:θ=θ0和θ=π+θ0; • (2)直线过点M(a,0)且垂直于极轴:ρcosθ=a;
若 M1,M2 是 l 上的两点,其对应参数分别为 t1,t2,则 (1)M1,M2 两点的坐标分别是(x0+t1cos α,y0+t1sin α),(x0 +t2cos α,y0+t2sin α). (2)|M1M2|=|t1-t2|. (3)若线段 M1M2 的中点 M 所对应的参数为 t,则 t=t1+2 t2, 中点 M 到定点 M0 的距离|MM0|=|t|=t1+2 t2. (4)若 M0 为线段 M1M2 的中点,则 t1+t2=0.
[解] (1)直线 l 的普通方程为 xsin α-ycos α+cos α=0. 曲线 C 的极坐标方程为 ρcos2θ=4sin θ, 即 ρ2cos2θ=4ρsin θ,∵ρcos θ=x,ρsin θ=y, ∴曲线 C 的直角坐标方程为 x2=4y.
x=tcos α, (2)将 l: y=1+tsin α 代入曲线 C∶x2=4y 中, 得 t2cos2α-4tsin α-4=0.
意判断点P所在的象限(即角θ的终边的位置),以 便正确地求出角θ. • (2)注意“双坐标系”是直角坐标与极坐标互化的 前提.若要判断曲线的形状,通常是先将极坐标 方程化为直角坐标方程,再判断.
(3)极坐标系中两点间的距离公式:已知点 A(ρ1,θ1),
B(ρ2,θ2),那么|AB|= ρ12+ρ22-2ρ1ρ2cosθ1-θ2.

数学优质课件精选选修系列极坐标与参数方程课件

数学优质课件精选选修系列极坐标与参数方程课件

(t 为参数).
极坐标、参数方程的综合应用
利用极坐标、参数方程与普通方程间的转化,把 点、线和曲线等问题转化为熟知内容,进而解决 有关问题.
例3 (2011 年盐城市高三调研)已知直线 l 的参数方 程xy==1t +2t (t 为参数)和圆 C 的极坐标方程 ρ=
2 2sin(θ+π4). (1)将直线 l 的参数方程化为普通方程,圆 C 的极 坐标方程化为直角坐标方程; (2)判断直线 l 和圆 C 的位置关系.
参数),
所以曲线 C 的直线坐标方程为 y=12x2(x∈[-
2,2]),
联立解方程组得xy==00,,
或x=2 3, y=6.
根据 x 的范围应舍去x=2 3, y=6,
故 P 点的直角坐标为(0,0).
考点探究·挑战高考
考点突破 极坐极系与直角坐标系的互化
1.极坐标的四要素:(1)极点;(2)极轴;(3)长 度单位;(4)角度单位和它的正方向,四者缺一 不可.
y),极坐标是(ρ,θ),可以得出它们之间的
关系:x=_______,y=_______.又可得到关
系 ρcosθ
ρsinθ
• 式:ρ2=_______,tanθ= ___y_ (x≠0).
x2+y2
x
• 3.常见曲线的极坐标方程
• (1)直线的极坐标方程
• •
过 方 (2)点 程圆M为的(ρ_极ρs_0i_,n坐_(θ_θ标-_0)_方且α__)程倾=__斜ρ_0_角s_in_为(_θ_α0_-的__α直_)_线_.l的极坐标
第三节 坐标系与参数方程
双基研习·面对高考 第 三 节


考点探究·挑战高考

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

人教版选修4-4 极坐标与参数方程(精品课件)共24张PPT

三、极坐标的正式应用和扩展
◆1736年出版的《流数术和无穷级数》一书中,牛顿 第一个将极坐标系应用于表示平面上的任何一点。牛 顿在书中验证了极坐标和其他九种坐标系的转换关系。 ◆在1691年出版的《博学通报》一书中伯努利正式使 用定点和从定点引出的一条射线,定点称为极点,射 线称为极轴。平面内任何一点的坐标都通过该点与定 点的距离和与极轴的夹角来表示。伯努利通过极坐标 系对曲线的曲率半径进行了研究。
(2)点P(ρ,θ)与点(ρ,2kπ+θ)(k∈Z)
所表示的是同一个点,即角θ与2kπ+θ的终边是 相同的。 综上所述,在极坐标系中,点与其点的极 坐标之间不是一一对应而是一对多的对应
(ρ,θ),(ρ,2kπ+θ),(-ρ,(2k+1)π+θ)均 表示同一个点
3.极坐标和直角坐标的互化
y
(1)互化背景:把直角坐标系 的原点作为极点,x轴的正半轴 作为极轴,并在两种坐标系中取 相同的长度单位,如图所示:
极坐标系和参数方程虽为选修内容,高中学生也 应该重视对本专题的学习,既可以体会其中的数 学思想,也能提高对数学的认识,而且可以与已 学知识融会贯通
极坐标系
定义:平面内的一条有规 定有单位长度的射线0x,0 为极点,0x为极轴,选定 一个长度单位和角的正方 向(通常取逆时针方向), 这就构成了极坐标系。
关于教材编排
参数方程是选修4-4专题的一个重要内容。这一专 题包含、涉及了很多高中内容。利用高二学生已掌 握的直线、圆和圆锥曲线曲线方程为基础,鼓励学 生利用参数的思想对它们进行探究解析,以及能学 习掌握如何优化参数的选择推出已知曲线方程的参 数形式,能等价互化参数方程与普通方程;借助实 际生活例子或相应习题体会参数方程的优势,理解 学习参数方程的缘由。

极坐标与参数方程讲义(教师版

极坐标与参数方程讲义(教师版

欢迎阅读极坐标与参数方程一、极坐标知识点 1.极坐标系的概念 (1)极坐标系如图所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系.注:极坐标系以角这一平面图形为几何背景,而平面直角坐标系以互相垂直的两条数轴为几何背景;平面直角坐标系内的点与坐标能建立一一对应的关系,而极坐标系则不可.但极坐标系和平面直角坐标系都是平面坐标系.(2)极坐标设M 是平面内一点,极点O 与点M 的距离|OM|叫做点M 的极径,记为ρ;以极轴Ox 为始边,射线OM 为终边的角xOM ∠叫做点M 的极角,记为θ.有序数对(,)ρθ叫做点M 的极坐标,记作(,)M ρθ.一般地,不作特殊说明时,我们认为0,ρ≥θ可取任意实数.特别地,当点M 在极点时,它的极坐标为(0, θ)(θ∈R).和直角坐标不同,平面内一个点的极坐标有无数种表示.如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标(,)ρθ表示;同时,极坐标(,)ρθ表示的点也是唯一确定的.2.极坐标和直角坐标的互化(1)互化背景:把直角坐标系的原点作为极点,x 轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,如图所示:(2)互化公式:设M 是坐标平面内任意一点,它的直角坐标是(,)x y ,极坐标是(,)ρθ(0ρ≥),于是极坐标与直角坐标的互化公式如表:点M直角坐标(,)x y极坐标(,)ρθ互化公式在一般情况下,由tan θ确定角时,可根据点M 所在的象限最小正角. 3.常见圆与直线的极坐标方程 曲线 图形极坐标方程圆心在极点,半径为r 的圆圆心为(,0)r ,半径为r 的圆圆心为(,)2r π,半径为r 的圆过极点,倾斜角为α的直线(1)()()R R θαρθπαρ=∈=+∈或 (2)(0)(0)θαρθπαρ=≥=+≥和过点(,0)a ,与极轴垂直的直线过点(,)2a π,与极轴平行的直线注:由于平面上点的极坐标的表示形式不唯一,即(,),(,2),(,),(,),ρθρπθρπθρπθ+-+--+都表示同一点的坐标,这与点的直角坐标的唯一性明显不同.所以对于曲线上的点的极坐标的多种表示形式,只要求至少有一个能满足极坐标方程即可.例如对于极坐标方程,ρθ=点(,)44M ππ可以表示为5(,2)(,2),444444ππππππππ+-或或(-)等多种形式,其中,只有(,)44ππ的极坐标满足方程ρθ=. 二、考点阐述考点1、极坐标与直角坐标互化例题1、在极坐标中,求两点)4,2(),4,2(ππ-Q P 之间的距离以及过它们的直线的极坐标方程。

高三数学极坐标与参数方程一轮复习讲义

高三数学极坐标与参数方程一轮复习讲义

4
2
4
这就是点Q的轨迹方程.
化为直角坐标方程为(x 2 )2 ( y 2 )2 1 .
8
8 16
因此点Q的轨迹是以(1 ,3 )为圆心,1 为半径的圆.
44
4
7
直角坐标与极坐标互化要注意互化的前提 若要判断曲线的形状;可先将极坐标方程化为 直角坐标方程;再判断 在直角坐标系中;求曲线 的轨迹方程的方法有直译法;定义法;动点转移 法 在极坐标系中;求曲线的极坐标方程;这几种 方法仍然是适用的
专题八 自选模块
1. 极 坐 标 与 直 角 坐 标 的 互 化
1 互 化 的 前 提 :
①极点与直角坐标系的原点重合;
② 极 轴 与 x轴 的 正 方 向 重 合 ; ③两种坐标系中取相同的长度单位.
2互



x
y
cos sin
2 , t a n
x2 y2 y ,x
x
. 0
2 .1 圆 心 在 ( x 0, y 0 ), 半 径 为 r的 圆 的 参 数 方 程 为 :
5
1以 极 点 为 原 点 , 极 轴 为 x轴 的 正 半 轴 , 建 立 直 角
坐 标 系 , 则 点 A的 直 角 坐 标 为 ( 2,0 ), 直 线 l的 直 角 坐 标 方
程 为 x y 2 m 0 .因 为 A到 直 线 l的 距 离 d |
1 m 3, 所 以 m 2.
8
【变式训练】(2011 5月名校创新试卷)如图,在极坐标系中,
已知曲线C1:
2cos (0
2
),O1
1, 0,
C2:
4cos (0
2
),O2

参数方程、极坐标含教案

参数方程、极坐标含教案

参数方程、极坐标一、知识结构1.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是⎩⎨⎧+=+=a t y y at x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y atx x 00(t 为参数) ② 2.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)φ是动半径所在的直线与x 轴正向的夹角,φ∈[0,2π](见图)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆 12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) 3.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可. 点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.(见图) 极坐标和直角坐标的互化(1)互化的前提条件 ①极坐标系中的极点与直角坐标系中的原点重合;②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位.(2)互化公式 ⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρ 二、知识点(一)曲线的参数方程,参数方程与普通方程的互化 例 椭圆的两个焦点坐标是是参数)(sin 51cos 3Φ⎩⎨⎧Φ+-=Φ+=y x ( )A.(-3,5),(-3,-3)B.(3,3),(3,-5)C.(1,1),(-7,1)D.(7,-1),(-1,-1)例 在方程sin cos 2x y θθ=⎧⎨=⎩(θ为参数)所表示的曲线一个点的坐标是( )A.(2,-7)B.(31,32)C.(21,21) D.(1,0)(二)极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化 例 曲线的极坐标方程ρ=4sin θ化 成直角坐标方程为( )A.x 2+(y+2)2=4B.x 2+(y-2)2=4C.(x-2)2+y 2=4D.(x+2)2+y 2=4例 极坐标ρ=cos(θπ-4)表示的曲线是( )A.双曲线B.椭圆C.抛物线D.圆三、能力训练 (一)选择题1.极坐标方程ρcos θ=34表示( ) A.一条平行于x 轴的直线 B.一条垂直于x 轴的直线 C.一个圆 D.一条抛物线2.直线:3x-4y-9=0与圆:)(,sin 2cos 2为参数θθθ⎩⎨⎧==y x 的位置关系是( )A.相切B.相离C.直线过圆心D.相交但直线不过圆心 3.极坐标方程ρ=sin θ+2cos θ所表示的曲线是( ) BA.直线B.圆C.双曲线D.抛物线 4.已知圆的极坐标方程ρ=2sin(θ+6π),则圆心的极坐标和半径分别为( ) C A.(1,3π),r=2 B.(1,6π),r=1 C.(1, 3π),r=1 D.(1, -3π),r=25.若直线⎩⎨⎧=+=bty at x 4( (t 为参数)与圆x 2+y 2-4x+1=0相切,则直线的倾斜角为( )A.3π B.32πC.3π或32π D. 3π或35π6.点()3,1-P ,则它的极坐标是( ) A .⎪⎭⎫⎝⎛3,2π B .⎪⎭⎫ ⎝⎛34,2πC .⎪⎭⎫ ⎝⎛-3,2πD .⎪⎭⎫ ⎝⎛-34,2π7.极坐标方程⎪⎭⎫⎝⎛-=θπρ4cos 表示的曲线是( ) A .双曲线 B .椭圆 C .抛物线 D .圆 8.圆)sin (cos 2θθρ+=的圆心坐标是A .⎪⎭⎫ ⎝⎛4,1πB .⎪⎭⎫ ⎝⎛4,21πC .⎪⎭⎫ ⎝⎛4,2πD .⎪⎭⎫⎝⎛4,2π9.在极坐标系中,与圆θρsin 4=相切的一条直线方程为A .2sin =θρB .2cos =θρC .4cos =θρD .4cos -=θρ10、)0(4≤=ρπθ表示的图形是A .一条射线B .一条直线C .一条线段D .圆 11、直线αθ=与1)cos(=-αθρ的位置关系是A 、平行B 、垂直C 、相交不垂直D 、与有关,不确定(二)填空题12.直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+=ty t x 532543(t 为参数),过点(4,-1)且与l 平行的直线在y 轴上的截距为 ;13.直线⎩⎨⎧-=+-=ty tx 3231(t 为参数)的倾斜角为 ;直线上一点P(x ,y)与点M(-1,2)的距离为 .14、曲线的θθρcos 3sin -=直角坐标方程为_ 15、在极坐标系中,点P ⎪⎭⎫⎝⎛611,2π到直线1)6sin(=-πθρ的距离等于____________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013届选修4—4《极坐标与参数方程》复习讲义一、考纲要求1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程.2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程. 二、知识结构1.参数方程的概念在平面直角坐标系中,如果曲线上任意一点的坐标y x ,都是某个变数t 的函数⎩⎨⎧==),(),(t g y t f x 并且对于t 的每一个允许值,由这个方程所确定的点),(y x M 都在这条曲线上,那么这个方程就叫做这条曲线的参数方程,联系变数y x ,的变数t 叫做参变数,简称参数。

相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程。

常见的曲线的参数方程2.直线的参数方程(1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l 的参数方程是⎩⎨⎧+=+=at y y at x x sin cos 00 (t 为参数,其几何意义是.....PM ..的数量...) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α=ab的直线的参数方程是 ⎩⎨⎧+=+=bt y y at x x 00(t 为参数,1tan t α=) ② 3.圆锥曲线的参数方程(1)圆 圆心在(a,b),半径为r 的圆的参数方程是⎩⎨⎧+=+=ϕϕsin cos r b y r a x (φ是参数)(2)椭圆 椭圆12222=+by a x (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos b y a x (φ为参数)椭圆12222=+by a y (a >b >0)的参数方程是⎩⎨⎧==ϕϕsin cos a y b x (φ为参数) (3)抛物线 抛物线px y 22=的参数方程为()为参数t pt y pt x ⎩⎨⎧==2224.极坐标极坐标系 在平面内取一个定点O ,从O 引一条射线Ox ,选定一个单位长度以及计算角度的正 方向(通常取逆时针方向为正方向),这样就建立了一个极坐标系,O 点叫做极点,射线Ox 叫 做极轴.①极点;②极轴;③长度单位;④角度单位和它的正方向,构成了极坐标系的四要素,缺一不可.点的极坐标 设M 点是平面内任意一点,用ρ表示线段OM 的长度,θ表示射线Ox 到OM 的角度 ,那么ρ叫做M 点的极径,θ叫做M 点的极角,有序数对(ρ,θ)叫做M 点的极坐标.注意:①点),(θρP 与点),(1θρ-P 关于极点中心对称;②点),(θρP 与点),(2πθρ+-P 是同一个点;③如果规定0,02ρθπ>≤<,那么除极点外,平面内的点可用唯一的极坐标),(θρ表示(即一一对应的关系);同时,极坐标),(θρ表示的点也是唯一确定的。

④极坐标与直角坐标的不同是,直角坐标系中,点与坐标是一一对应的,而极坐标系中,点与坐标是一多对应的.即一个点的极坐标是不惟一的. P (ρ,θ)(极点除外)的全部坐标为(ρ,θ+πk 2)或(ρ-,θ+π)12(+k ),(∈k Z ).极点的极径为0,而极角任意取.圆的极坐标方程①以极点为圆心,a 为半径的圆的极坐标方程是 a ρ=;②以(,0)a )0(>a 为圆心, a 为半径的圆的极坐标方程是 θρcos 2a =; ③以(,)2a π)0(>a 为圆心,a 为半径的圆的极坐标方程是θρsin 2a =;直线的极坐标方程①过极点的直线的极坐标方程是)0(≥=ραθ和(0)θπαρ=+≥.②过点)0)(0,(>a a A ,且垂直于极轴的直线l 的极坐标方程是a =θρcos . 化为直角坐标方程为x a =. ③过点(,)2A a π且平行于极轴的直线l 的极坐标方程是sin a ρθ=. 化为直角坐标方程为y a =.极坐标和直角坐标的互化(1)互化的前提条件①极坐标系中的极点与直角坐标系中的原点重合; ②极轴与x 轴的正半轴重合③两种坐标系中取相同的长度单位. (2)互化公式....⎩⎨⎧=='sin cos θρθρy x ⎪⎩⎪⎨⎧≠=+=)0(222x x ytg y x θρθ的象限由点(x,y)所在的象限确定 三、课前预习1.直线12+=x y 的参数方程是( )A 、⎩⎨⎧+==1222t y t x (t 为参数) B 、⎩⎨⎧+=-=1412t y t x (t 为参数)C 、 ⎩⎨⎧-=-=121t y t x (t 为参数) D 、⎩⎨⎧+==1sin 2sin θθy x (t 为参数) 答案:C2.已知⎪⎭⎫ ⎝⎛-3,5πM ,下列所给出的不能表示点的坐标的是( )A 、⎪⎭⎫⎝⎛-3,5πB 、⎪⎭⎫ ⎝⎛34,5π C 、⎪⎭⎫ ⎝⎛-32,5π D 、⎪⎭⎫ ⎝⎛--35,5π答案:A3.在极坐标系中,圆ρ=-2sin θ的圆心的极坐标系是( )A 、(1,)2πB 、(1,)2π- C 、 (1,0) D 、(1,π)解:将极坐标方程化为普通方程得:0222=++y y x ,圆心的坐标为)1,0(-,其极坐标为)23,1(π,选B 4.点()3,1-P ,则它的极坐标是 ( )A 、⎪⎭⎫⎝⎛3,2πB 、⎪⎭⎫ ⎝⎛34,2π C 、⎪⎭⎫⎝⎛-3,2π D 、⎪⎭⎫ ⎝⎛-34,2π答案:C5.直角坐标系xoy 中,以原点为极点,x 轴的正半轴为极轴建极坐标系,设点A,B 分别在曲线13cos :sin x C y θθ=+⎧⎨=⎩ (θ为参数)和曲线2:1C ρ=上,则AB 的最小值为( )A 、1B 、2C 、3D 、4 答案:A6.参数方程为1()2x t t t y ⎧=+⎪⎨⎪=⎩为参数表示的曲线是( )A 、一条直线B 、两条直线C 、一条射线D 、两条射线 答案:D7.()124123x tt x ky k y t=-⎧+==⎨=+⎩若直线为参数与直线垂直,则常数( ) A 、-6 B 、16- C 、6 D 、16答案:A8.极坐标方程4cos ρθ=化为直角坐标方程是( )A 、22(2)4x y -+= B 、224x y += C 、22(2)4x y +-= D 、22(1)(1)4x y -+-= 答案:A9.曲线24sin()4x πρ=+与曲线12221222x ty t ⎧=-⎪⎪⎨⎪=+⎪⎩的位置关系是( ) A 、 相交过圆心 B 、相交 C 、相切 D 、相离答案:D10.曲线的参数方程为⎩⎨⎧-=+=12322t y t x (t 是参数),则曲线是( ) A 、线段 B 、双曲线的一支 C 、圆 D 、射线 答案:D11.在极坐标系中,圆2ρ=上的点到直线()6sin 3cos =+θθρ的距离的最小值是 . 答案:112.圆C :x =1+cos θy =sin θ⎧⎨⎩(θ为参数)的圆心到直线l :x =22+3ty =13t⎧-⎪⎨-⎪⎩(t 为参数)的距离为 。

答案:213.已知两曲线参数方程分别为5cos sin x y θθ⎧=⎪⎨=⎪⎩(0)θπ<≤和254x t y t⎧=⎪⎨⎪=⎩ (t ∈)R ,它们的交点坐标为___________. 答案:25(1,)5. 14.以直角坐标系的原点为极点,x 轴的正半轴为极轴,已知曲线1C 、2C 的极坐标方程分别为0,3πθθ==,曲线3C 的参数方程为2cos 2sin x y θθ=⎧⎨=⎩(θ为参数,且,22ππθ⎡⎤∈-⎢⎥⎣⎦),则曲线1C 、2C 、3C 所围成的封闭图形的面积是 .答案:23π 四、典例分析考向一 极坐标系,曲线的极坐标方程,极坐标和直角坐标的互化相关知识点:极点与原点重合,极轴与x 轴正半轴重合,长度单位相同.互化公式:⎩⎨⎧==θρθρsin cos y x 或 ⎪⎩⎪⎨⎧≠=+=)0(tan 222x x yy x θρ 【例1 】(1)点M 的极坐标分别是(2,)2π,(4,)π,2(6,)3π,3(2,)4π换算成直角坐标依次是 , , ,(2)点M 的直角坐标分别是(2,0),(0,2)-,(2,2)--,(3,1)-如果0,02ρθπ≥≤< 换算成极坐标依次是 , , ,【例2】在极坐标系中,过圆4cos =ρθ的圆心,且垂直于极轴的直线的极坐标方程为 .分析:由θρcos 4=得θρρcos 42=.所以x y x 422=+,22(2)4x y -+=圆心坐标(2,0)过圆心的直线的直角坐标方程为2=x .直线的极坐标方程为2cos =θρ。

【变式1】在极坐标系中,圆心在()2,π且过极点的圆的方程为( B ) A 、ρθ=22cos B 、ρθ=-22cos C 、ρθ=22sin D 、ρθ=-22sin分析:圆心在()2,π即指的是直角坐标系中的)02(,-圆的直角坐标方程:22(2)2x y ++=。

圆的极坐标方程为ρθ=-22cos【变式2】已知曲线21,C C 的极坐标方程分别为θρθρcos 4,3cos ==(20,0πθρ<≤≥),则曲线1C 与2C 交点的极坐标为__ ___.解:曲线21,C C 的直角坐标方程分别为4)2(,322=+-=y x x ,且0≥y ,两曲线交点的 直角坐标为(3,3). 所以,交点的极坐标为⎪⎭⎫⎝⎛6,32π 【变式3】在极坐标系中,已知点A (1,43π)和B )4,2(π,则A 、B 两点间的距离是 .解:如图所示,在△OAB 中,65367,5||,4||πππ=-=∠==AOB OB OA 5sin 21=∠=⇒∆AOB OB OA S AOB 评述:本题考查极坐标及三角形面积公式,数形结合是关键。

考向二 曲线的参数方程,参数方程与普通方程的互化 【例3】(1)曲线C :cos 1.sin 1x y θθ=-⎧⎨=+⎩(θ为参数)的普通方程为 ( C )A 、22(1)(1)1x y -++= B 、22(1)(1)1x y +++= C 、22(1)(1)1x y ++-=D 、22(1)(1)1x y -+-=(2)参数方程⎪⎪⎩⎪⎪⎨⎧-=+=t t y tt x 11表示的曲线是( )A 、椭圆B 、双曲线C 、抛物线 D 、圆 答案:B【变式1】已知抛物线C 的参数方程为28,8.x t y t ⎧=⎨=⎩(t 为参数)若斜率为1的直线经过抛物线C 的焦点,且与圆()2224(0)x y r r -+=>相切,则r =________。

答案:2解:抛物线的标准方程为x y 82=,它的焦点坐标是)0,2(F ,所以直线的方程是2-=x y ,圆心到直线的距离为2【变式2】若直线340x y m ++=与圆⎩⎨⎧+-=+=θθsin 2cos 1y x (θ为参数)没有公共点,则实数m 的取值范围是 (,0)(10,)-∞⋃+∞ .【变式3】直线2()1x tt y t=-+⎧⎨=-⎩为参数被圆22(3)(1)25x y -++=所截得的弦长为( ) A 、98 B 、1404C 、82D 、9343+分析:2101x tx y y t=-+⎧⇒++=⎨=-⎩,22(3)(1)25x y -++=得圆心到直线的距离311322d -+==,∴弦长=22282r d -= 【例4】已知点(,)P x y 是圆222x y y +=上的动点,求2x y +的取值范围。

相关文档
最新文档