时间序列作业ARMA模型--.

合集下载

时间序列arma模型建立的流程

时间序列arma模型建立的流程

时间序列arma模型建立的流程时间序列ARMA模型建立的流程1. 引言时间序列分析是一种对时间序列数据进行建模、预测和分析的统计方法。

ARMA模型是一种常用的时间序列模型,它可以描述时间序列数据中的自相关和移动平均关系。

本文将从数据准备、模型选择、参数估计和模型诊断等方面,介绍建立时间序列ARMA模型的完整流程。

2. 数据准备1.收集时间序列数据,确保数据具有一定的观测频率,并且包含足够的历史观测值。

2.对数据进行可视化分析,绘制时间序列图和自相关图,初步了解数据的趋势和周期性。

3. 模型选择1.确定时间序列数据是否平稳。

对于非平稳数据,需要进行差分运算,直到得到平稳的时间序列数据。

2.根据平稳时间序列数据的自相关和偏自相关图,选择合适的ARMA模型阶数。

通过观察自相关图的截尾性和偏自相关图的截尾性,确定ARMA(p, q)模型中的p和q。

4. 参数估计1.通过最大似然估计或最小二乘法,估计ARMA模型中的参数。

最大似然估计假定模型误差服从正态分布,而最小二乘法假定误差服从零均值正态分布。

2.通过估计的参数,建立ARMA模型。

5. 模型诊断1.对残差进行自相关和偏自相关分析,验证模型的残差序列是否为纯随机序列,即不存在自相关和异方差性。

2.对模型的残差序列进行Ljung-Box检验,验证残差的独立性。

3.对模型的残差序列进行正态性检验,验证模型的残差是否符合正态分布。

4.对模型的残差序列进行异方差性检验,验证模型的残差是否存在异方差现象。

6. 模型评估和预测1.使用信息准则(如AIC、BIC)评价模型的拟合程度。

较小的AIC和BIC值表示模型的拟合程度较好。

2.使用估计的ARMA模型对未来的数据进行预测,得到预测值和置信区间。

7. 结论建立时间序列ARMA模型的流程包括数据准备、模型选择、参数估计和模型诊断等环节。

通过该流程,我们能够对时间序列数据进行建模和预测,为相关领域的决策提供科学依据。

以上为时间序列ARMA模型建立的流程,希望对读者有所帮助。

时间序列中的ARMA模型

时间序列中的ARMA模型
件期望是相等旳,若设为u,则得到 :
c u=
1 (1 2 ... p)
旳无条
7
ARIMA模型旳概念
Yt-u=1(Yt-1-u)+ 2(Yt-2-u)+...+p(Yt-p-u)+vt
0=1 1+ 2 2+...+p p+ 2 1=1 0+ 2 1+...+ p p-1
……
p=1 p-1+ 2 p-2+...+ p 0
(1
2
1
1≤j≤22q ... q2 )
0 j>q
j>q时,ACF(j)=0,此现象为截尾,是MA(q)过程旳一种特征
如下图:
18
ARMA模型旳辨认
MA(2)过程
yt =0.5ut-1 0.3ut2 ut
19
ARMA模型旳辨认
⑵ AR(p)过程旳偏自有关函数
j p 时,偏自有关函数旳取值不为0 j>q 时,偏自有关函数旳取值为0 AR(p)过程旳偏自有关函数p阶截尾 如下图:
32
ARMA模型旳预测
二. 基于MA过程旳预测
过程 结论:
MA (2) 过程仅有2期旳记忆力
33
ARMA模型旳预测
三. 基于ARMA过程旳预测
结合对AR过程和MA过程进行预测 ARMA模型一般用于短期预测
34
五、实例:ARMA模型在金融数 据中旳应用
数据: 1991年1月到2023年1月旳我国货币供
3
ARIMA模型旳概念
2.MA(q)过程旳特征
1. E(Yt)=u
2.
var(Yt)
(1
2

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式

arma模型(自回归移动平均)数学公式ARMA模型是一种常用的时间序列分析方法,它结合了自回归(AR)和移动平均(MA)模型,用于描述时间序列数据的动态特征。

在ARMA模型中,每个观测值被认为是过去观测值的线性组合,其中包括自回归项和移动平均项。

ARMA模型的数学公式可以表示为:y_t = c + ϕ_1*y_(t-1) + ϕ_2*y_(t-2) + ... + ϕ_p*y_(t-p) + ε_t - θ_1*ε_(t-1) - θ_2*ε_(t-2) - ... - θ_q*ε_(t-q)其中,y_t表示时间序列的观测值,c为常数,ϕ_1, ϕ_2, ..., ϕ_p 为自回归系数,ε_t为满足白噪声条件的随机误差,θ_1, θ_2, ..., θ_q为移动平均系数。

ARMA模型的阶数分别为p和q,分别表示自回归项和移动平均项的阶数。

ARMA模型的核心思想是利用过去观测值的线性组合来预测未来观测值。

自回归项描述了当前观测值与过去观测值之间的线性关系,移动平均项描述了当前观测值与过去误差项之间的线性关系。

通过调整自回归系数和移动平均系数的取值,我们可以得到不同的ARMA模型,从而适应不同时间序列数据的特点。

ARMA模型的建立可以通过多种方法,其中一种常用的方法是最大似然估计。

该方法通过最大化观测数据出现的概率来确定模型的参数。

具体而言,我们需要估计自回归系数、移动平均系数和误差项的方差。

通过最大似然估计,我们可以得到最优的参数估计值,从而建立起准确的ARMA模型。

ARMA模型在时间序列分析中具有广泛的应用。

首先,ARMA模型可以用于时间序列数据的预测和预测不确定性的度量。

通过拟合ARMA模型,我们可以根据过去观测值来预测未来观测值,并得到相应的置信区间。

其次,ARMA模型可以用于时间序列数据的平滑和去除季节性因素。

通过去除ARMA模型的季节性分量,我们可以得到更平滑的时间序列数据,从而更好地分析其长期趋势。

ARMA模型

ARMA模型
随机项 ut 是相互独立的白噪声序列,且服从均值为0、
方差为 2 的正态分布.随机项与滞后变量不相关。
注2: 一般假定
X t 均值为0,否则令
X
t
Xt
1 时间序列分析模型【ARMA模型 】简介
记 Bk 为 k 步滞后算子, 即 Bk X t X tk , 则
模型【1】可表示为
Xt 1BXt 2B2 Xt pBp Xt ut
实际问题中, 常会遇到季节性和趋势性同时存在的情况, 这 时必须事先剔除序列趋势性再用上述方法识别序列的季节性, 否则季节性会被强趋势性所掩盖, 以至判断错误.
包含季节性的时间序列也不能直接建立ARMA模型, 需进 行季节差分消除序列的季节性, 差分步长应与季节周期一致.
1 时间序列分析模型【ARMA模型 】简介
式【5】称为( p, q)阶的自回归移动平均模型, 记为ARMA ( p, q)
注1: 实参数 1,2 , , p 称为自回归系数, 1,2 , ,q 为移动平均系数,
都是模型的待估参数
注2: 【1】和【3】是【5】的特殊情形 注3: 引入滞后算子,模型【5】可简记为
(B) Xt (B)ut
【6】
在实际中, 常见的时间序列多具有某种趋势, 但很多序列 通过差分可以平稳
判断时间序列的趋势是否消除, 只需考察经过差分后序列 的自相关系数
(3)季节性 时间序列的季节性是指在某一固定的时间间隔上, 序列重
复出现某种特性.比如地区降雨量、旅游收入和空调销售额等 时间序列都具有明显的季节变化. 一般地, 月度资料的时间序列, 其季节周期为12个月;
Xt 1 v1B v2B2
ut
vjB
j
ut
j0

时间序列上机实验ARMA模型的建立

时间序列上机实验ARMA模型的建立

实验一ARMA模型建模一、实验目的学会检验序列平稳性、随机性。

学会分析时序图与自相关图。

学会利用最小二乘法等方法对ARMA模型进行估计,以及掌握利用ARMA模型进行预测的方法。

学会运用Eviews软件进行ARMA模型的识别、诊断、估计和预测和相关具体操作。

二、基本概念宽平稳:序列的统计性质不随时间发生改变,只与时间间隔有关。

AR模型:AR模型也称为自回归模型。

它的预测方式是通过过去的观测值和现在的干扰值的线性组合预测,自回归模型的数学公式为:乂2『t2 川p y t p t式中:p为自回归模型的阶数i(i=1,2,,p)为模型的待定系数,t为误差,yt 为一个平稳时间序列。

MA模型:MA模型也称为滑动平均模型。

它的预测方式是通过过去的干扰值和现在的干扰值的线性组合预测。

滑动平均模型的数学公式为:y t t 1 t 1 2 t 2 川q t q式中:q为模型的阶数;j(j=1,2,,q)为模型的待定系数;t为误差;yt为平稳时间序列。

ARMA模型:自回归模型和滑动平均模型的组合,便构成了用于描述平稳随机过程的自回归滑动平均模型ARMA,数学公式为:y t 1 y t 1 2 y t 2 p y t p t 1 t 1 2 t 2 q t q三、实验内容(1)通过时序图判断序列平稳性;(2)根据相关图,初步确定移动平均阶数q 和自回归阶数p;(3)对时间序列进行建模四、实验要求学会通过各种手段检验序列的平稳性;学会根据自相关系数和偏自相关系数来初步判断ARMA模型的阶数p和q,学会利用最小二乘法等方法对ARMA 模型进行估计,学会利用信息准则对估计的ARMA 模型进行诊断,以及掌握利用ARMA 模型进行预测。

五、实验步骤1.模型识别(1)绘制时序图在Eviews 软件中,建立一个新的工作文件, 500个数据。

通过Eviews 生成随机序列“ e,再根据“ x=*x(-1)*x(-2)+e ”生成AR(2)模型序列“ x” 默认x(1)=1, x(2)=2,得到下列数据,由于篇幅有限。

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析

ARMAARIMA模型介绍及案例分析AR、MA和ARIMA是时间序列分析中常见的模型,用于分析和预测时间序列数据的特征和趋势。

下面将对这三种模型进行介绍,并提供一个案例分析来展示它们的应用。

自回归模型(AR)是一种基于过去的观测值来预测未来观测值的模型。

它基于一个假设:未来的观测值可以由过去的观测值的线性组合来表示。

AR模型的一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项。

AR模型的关键是确定自回归阶数p和自回归系数ϕ。

移动平均模型(MA)是一种基于过去的误差项来预测未来观测值的模型。

它基于一个假设:未来的观测值的误差项可以由过去的误差项的线性组合来表示。

MA模型的一般形式可以表示为:y_t=c+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

MA模型的关键是确定移动平均阶数q和移动平均系数θ。

自回归移动平均模型(ARIMA)结合了AR和MA模型的特点,同时考虑了时间序列数据的趋势性。

ARIMA模型一般形式可以表示为:y_t=c+ϕ_1*y_(t-1)+ϕ_2*y_(t-2)+...+ϕ_p*y_(t-p)+ε_t+θ_1*ε_(t-1)+θ_2*ε_(t-2)+...+θ_q*ε_(t-q)其中,y_t表示时间t的观测值,c是常数项,ϕ_1至ϕ_p是自回归系数,p是自回归阶数,ε_t是误差项,θ_1至θ_q是移动平均系数,q是移动平均阶数。

ARIMA模型的关键是确定自回归阶数p、移动平均阶数q和相关系数ϕ和θ。

下面举一个电力消耗预测的案例来展示AR、MA和ARIMA模型的应用:假设有一段时间内的电力消耗数据,我们想要用AR、MA和ARIMA模型来预测未来一段时间内的电力消耗。

ARMA模型时间序列分析法

ARMA模型时间序列分析法

ARMA模型时间序列分析法ARMA模型时间序列分析法简称为时序分析法,是一种利用参数模型对有序随机振动响应数据进行处理,从而进行模态参数识别的方法。

参数模型包括AR自回归模型、MA滑动平均模型和ARMA自回归滑动平均模型。

1969年AkaikeH首次利用自回归滑动平均ARMA模型进行了白噪声激励下的模态参数识别。

N个自由度的线性系统激励与响应之间的关系可用高阶微分方程来描述,在离散时间域内,该微分方程变成由一系列不同时刻的时间序列表示的差分方程,即ARMA时序模型方程:(1)式(1)表示响应数据序列与历史值的关系,其中等式的左边称为自回归差分多项式,即AR模型,右边称为滑动平均差分多项式,即MA模型。

2N为自回归模型和滑动均值模型的阶次,、分别表示待识别的自回归系数和滑动均值系数,表示白噪声激励。

当k=0时,设。

由于ARMA过程{}具有唯一的平稳解为(2)式中:为脉冲响应函数。

的相关函数为(3)是白噪声,故(4)式中:为白噪声方差。

将此结果代人式(3),即可得(5)因为线性系统的脉冲响应函数,是脉冲信号,激励该系统时的输出响应,故由ARMA过程定义的表达式为(6)利用式(5)和式(6),可以得出:(7)对于一个ARMA过程,当是大于其阶次2N时,参数=0。

故当l>2N时,式(7)恒等于零,于是有(8)或写成(9)设相关函数的长度为L,并令M=2N。

对应不同的l值,由代人以上公式可得一组方程:(10)将式(10)方程组写成矩阵形式,则有(11)或缩写为(12)式(12)为推广的Yule-walker方程。

一般情况下,由于L比2N大得多,采用伪逆法可求得方程组的最小二乘解,即(13)由此求得自回归系数。

滑动平均模型系数可通过以下非线性方程组来求解:(14)其中(15)式中:为响应序列的自协方差函数。

滑动平均模型MA系数的估算方法很多,主要的有基于Newton-Raphson算法的迭代最优化方法和基于最小二乘原理的次最优化方法。

中级计量经济学-考察时间序列自相关性的ARMA模型

中级计量经济学-考察时间序列自相关性的ARMA模型

rˆh l E rhl rh , rh1,
E c0 ahl 1ahl1 c0
eh l rhl rˆh l ahl 1ahl1
vareh l
1 12
2 a
总 结 : 对 于 MA(1) 模 型,超过1步的点预测 为rt的无条件均值,预 测误差的方差为rt的无 条件方差
,当l
1
0,当l 1
1,当l 0
1
1 12
,当l
1
MA2:l
0
1 12
2 2
0,02 当1l2122
2 2
,当l
2
总结:MA(q)的ACF会在滞后q期之后截尾,有限记 忆,利用此性质来确定MA模型的order
22
实际MA模型的应用
模型的选择 模型的估计 模型的检验 模型的预测 模型应用举例
6
AR(2)模型的性质(续)
ACF特征:l 1l1 2l2 l c1 x1l c2 x2l
如果 12 42 0 ,x1, x2 为实数,ACF为两个指数衰减的混合 如果 12 42 0 ,x1, x2 为虚数,ACF为逐渐衰弱的正弦余弦波
,表明商业周期的存在
7
AR(p)模型
23
MA模型的应用——模型选择
ACF与PACF
若ACF表现为一个衰减拖尾的形状(非截尾),基本 可以选择AR模型,再以截尾的PACF来确定order
若ACF在滞后期为q处截尾,即 q 0,但对于 l q则有l 0
则rt服从一个MA(q)模型
Information Criteria
24
表达式:
rt 0 1 rt1 p rt p at
11B pBp rt 0 at
特征方程

ARMA模型介绍

ARMA模型介绍

ARMA模型介绍ARMA模型(Autoregressive Moving Average model)是时间序列分析中常用的一种模型,用于描述和预测随时间变化的数据。

ARMA模型结合了自回归(AR)和移动平均(MA)两种模型的特点,可以较好地描述时间序列数据的变化趋势。

ARMA模型的核心思想是:当前时刻的观测值可以通过历史观测值和随机误差的线性组合来表示。

具体地说,AR部分考虑了当前时刻和过去几个时刻的观测值之间的关系,而MA部分则考虑了当前时刻和过去几个时刻的随机误差之间的关系。

在AR模型中,当前时刻的观测值与过去几个时刻的观测值之间存在线性关系。

AR模型的阶数(p)表示过去几个时刻的观测值被考虑进来。

对于AR(p)模型,数学表达式如下:yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et其中,yt表示当前时刻的观测值,c表示常数项,φ1, φ2, ... ,φp表示对应的回归系数,et表示当前时刻的随机误差。

在MA模型中,当前时刻的观测值与过去几个时刻的随机误差之间存在线性关系。

MA模型的阶数(q)表示过去几个时刻的随机误差被考虑进来。

对于MA(q)模型,数学表达式如下:yt = c + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-q其中,yt表示当前时刻的观测值,c表示常数项,θ1, θ2, ... ,θq表示对应的回归系数,et表示当前时刻的随机误差。

yt = c + φ1 * yt-1 + φ2 * yt-2 + ... + φp * yt-p + et + θ1 * et-1 + θ2 * et-2 + ... + θq * et-qARMA模型可以用于时间序列的拟合和预测。

通过将模型与已有数据进行拟合,可以得到模型的参数估计值。

然后,利用这些参数估计值,可以预测未来的观测值。

ARMA模型适用于没有明显趋势和季节性的时间序列数据。

平稳时间序列分析-ARMA模型

平稳时间序列分析-ARMA模型

1 0 1 2
所以,平稳AR(2)模型的协方差函数递推公式为
0
1 2 (1 2 )(1 1 2 )(1 1
2
)
2
1
1 0 1 2
k
1 k1 2 k2,k
2
4、自相关系数
(1)自相关系数的定义:
k
k 0
特别
0 1
(2)平稳AR(P)模型的自相关系数递推公式:
k 1k 1 2 k 2 p k p
例3.5:— (3)xt xt1 0.5xt2 t
自相关系数呈现出“伪周期”性
例3.5:— (4)xt xt1 0.5xt2 t
自相关系数不规则衰减
6、偏自相关函数
自相关函数ACF(k)给出了Xt与Xt-k的总体 相关性,但总体相关性可能掩盖了变量间完全 不同的相关关系。
例如,在AR(1) 中,Xt与Xt-2间有相关性可 能主要是由于它们各自与Xt-1间的相关性带来 的:
对于非中心化序列
xt 0 1xt1 2 xt2
p xt p t
作变换
1 1
0
p
yt xt
则原序列即化为中心化序列
yt 1 yt1 2 yt2 p yt p t
所以,以后我们重点讨论中心化时间序列。
AR模型的算子表示
令 (B) 11B 2B2 p B p
则 AR( p) 模型可表示为
平稳AR(1)模型的传递形式为
xt
t 1 1B
i0
(1B)i t
1i ti
i0
Green函数为 Gj 1 j , j 0,1,
平稳AR(1)模型的方差为
Var(xt )
G2jVar(t )
j0

ARMA模型

ARMA模型

ARMA模型ARMA模型概述ARMA 模型(Auto-Regressive and Moving Average Model)是研究时间序列的重要方法,由自回归模型(简称AR模型)与滑动平均模型(简称MA模型)为基础“混合”构成。

在市场研究中常用于长期追踪资料的研究,如:Panel研究中,用于消费行为模式变迁研究;在零售研究中,用于具有季节变动特征的销售量、市场规模的预测等。

ARMA模型三种基本形式[1]1.自回归模型(AR:Auto-regressive);自回归模型AR(p):如果时间序列y t满足其中εt是独立同分布的随机变量序列,且满足:E(εt) = 0则称时间序列为y t服从p阶的自回归模型。

或者记为φ(B)y t = εt。

自回归模型的平稳条件:滞后算子多项式的根均在单位圆外,即φ(B) = 0的根大于1。

2.移动平均模型(MA:Moving-Average)移动平均模型MA(q):如果时间序列y t满足则称时间序列为y t服从q阶移动平均模型;移动平均模型平稳条件:任何条件下都平稳。

3.混合模型(ARMA:Auto-regressive Moving-Average)ARMA(p,q)模型:如果时间序列y t满足:则称时间序列为y t服从(p,q)阶自回归滑动平均混合模型。

或者记为φ(B)y t = θ(B)εt 特殊情况:q=0,模型即为AR(p),p=0,模型即为MA(q),ARMA模型的基本原理将预测指标随时间推移而形成的数据序列看作是一个随机序列,这组随机变量所具有的依存关系体现着原始数据在时间上的延续性。

一方面,影响因素的影响,另一方面,又有自身变动规律,假定影响因素为x1,x2,…,xk,由回归分析,其中Y是预测对象的观测值,e为误差。

作为预测对象Yt受到自身变化的影响,其规律可由下式体现,误差项在不同时期具有依存关系,由下式表示,由此,获得ARMA模型表达式:。

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材

时间序列分析中的自回归移动平均模型研究论文素材自回归移动平均模型(ARMA)是一种常用的时间序列分析方法,被广泛应用于经济、金融和社会科学等领域。

本文旨在探讨ARMA模型的研究素材,包括相关理论、应用案例和计算方法等方面的内容。

以下是对ARMA模型的研究素材的详细讨论。

一、ARMA模型的理论基础ARMA模型是自回归模型(AR)和移动平均模型(MA)的结合,它基于两个主要的假设:一是时间序列的值与过去的值相关,即自回归项;二是时间序列的值与随机误差项相关,即移动平均项。

ARMA 模型的数学表达式可表示为:\[Y_t = c + \varphi_1Y_{t-1} + \varphi_2Y_{t-2} + \ldots +\varphi_pY_{t-p} + \varepsilon_t - \theta_1\varepsilon_{t-1} -\theta_2\varepsilon_{t-2} - \ldots - \theta_q\varepsilon_{t-q}\]其中,\(Y_t\)表示时间序列的值,\(c\)表示截距,\(\varphi_i\)和\(\theta_i\)表示自回归系数和移动平均系数,\(\varepsilon_t\)表示白噪声误差项。

二、ARMA模型的应用案例ARMA模型在实际应用中具有广泛的用途。

以下是一些典型的ARMA模型应用案例:1. 股票价格预测ARMA模型可以用于预测股票价格的走势。

通过对历史股票价格数据进行ARMA模型的参数估计,可以预测未来一段时间内的股票价格变化趋势,为投资者提供决策参考。

2. 经济数据分析ARMA模型可以用于分析经济数据的周期性和趋势性。

通过对经济指标的ARMA建模,可以揭示经济变量之间的关系,为宏观经济政策的制定提供依据。

3. 疫情传播模型ARMA模型可以用于建立疫情传播模型,对疫情的发展趋势进行预测。

通过对病例数、传染率等数据进行ARMA建模,可以评估疫情的爆发和扩散情况,为疫情防控提供科学依据。

时间序列ARMA模型

时间序列ARMA模型

ARMA (p,q )时间序列模型1、 ARMA 模型的构建:①AIC 定阶准则:选p , q,使得2^min()ln 2(1)AIC n p q εσ=+++ (1)其中:n 是样本容量;2^εσ是2εσ的估计,与p , q 有关。

若当^^,p p q q ==时, 式(1)达到最小值,则认为序列是ARMA (^,p ^q ) 当ARMA (^,p ^q )序列含有未知参数μ时,模型为()()(),t t B X B ϕμθε-= (2)这时应选取p,q ,使得2^min()ln 2(2)AIC n p q εσ=+++ (3)②ARMA 模型的参数估计一般使用MATLAB 工具箱给出相关参数估计。

方法有有炬估计、逆函数估计、最小二乘法、最大似然估计等。

③ARMA 模型的2χ检验若拟合模型的残差记为^t ε,即t ε的估计值。

记^^12^1,1,2,,,n k tt kt k n tt k L εεηε-+====∑∑ (4)则2χ检验统计量是221(2)Lk k n n n kηχ==+-∑(5)L 是^t ε自相关函数的拖尾数。

检验的假设是0:0,k H ρ=当k L ≤时; 1:H 对某些,0k k L ρ≤≠。

在0H 成立时,若样本容量n 充分大,2χ近似于2()L r χ-分布,其中r 是估计的模型参数个数。

2χ检验法:给定显著性水平α,查表的上α分位数2()L r αχ-,当22()L αχχ≥时拒绝0H ,认为t ε非白噪声,模型检验未通过;而当22()L r αχχ≤-时,接受0H ,认为t ε是白噪声,模型通过检验。

2、 ARMA (p,q )序列的预报时间序列的m 步预报,是根据1{,,}k k X X - 的取值对未来k+m 时刻的随机变量k m X +(m>0)做出估计。

估计量记作1,,k k X X - 的线性组合。

^^^^12()(1)(2)(),.k k k k p X m X m X m X m p m p ϕϕϕ=-+-++-> (6)计算递推式为:^1112^^212^^^^121^^^^12(1),(2)(1),()(1)(2)(1),()(1)(2)(),.k k k k p p k k k k p p k k k k k p p k k k k p X X X X X X X X X p X p X p X X X m X m X m X m p m p ϕϕϕϕϕϕϕϕϕϕϕϕϕ--+-+-=+++=+++=-+-+++=-+-++->(7)关于MA (q )序列{,0,1,2,}t X t =±± 的预报,有^()0,.k X m m q =>因此,只需讨论^(),1,2,,k X m m q = 。

平稳时间序列模型

平稳时间序列模型

作业一:时间时间序列模型主要包括自回归模型(Auto Regressive Model )简称AR 模型,移动平均模型(Moving Average Model )简称MA 模型,自回归移动平均模型(Auto Regressive Moving Average Model )简称ARMA 模型。

下面的t X 为零均值(即中心化处理的)平稳序列。

(1)一般自回归模型AR(n ) 假设时间序列t X 仅与n t t t X X X ---,,,21 有线性关系,而在n t t t X X X ---,,,21 已知条件下,t X 与),2,1( ++=-n n j X j t 无关,ta 是一个独立于n t t t X X X ---,,,21 的白噪声序列,),0(~2a t N a σ。

t n t n t t t a X X X X ++++=---ϕϕϕ 2211上式还可以表示为n t n t t t t X X X X a -------=ϕϕϕ 2211特点,)(AR n 系统的响应t X 具有n 阶动态性。

)(AR n 模型通过把t X 中的依赖于n t t t X X X ---,,,21 的部分消除掉之后,使得具有n 阶动态性的序列t X 转化为独立的序列t a 。

因此,拟合)(AR n 模型的过程也就是使相关序列独立化的过程。

)(AR n 系统的特征是系统在t 时刻的响应t X 仅与其以前时刻的响应n t t t X X X ---,,,21 有关,而与其以前时刻进入系统的扰动无关。

(2)移动平均模型)(MA m如果一个系统在t 时刻的响应t X ,与其以前时刻 ,2,1--t t 的响应 ,,21--t t X X 无关,而与其以前时刻m t t t ---,,2,1 进入系统的扰动m t t t a a a ---,,,21 存在着一定的相关关系,那么,这一类系统为)(MA m 系统。

时间序列作业ARMA模型--

时间序列作业ARMA模型--

一案例分析的目的本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。

二、实验数据数据来自中经网统计数据库2013-04 1.75 2013-05 1.62 2013-06 1.80 2013-07 1.99 2013-08 2.03 2013-09 1.92 2013-10 1.64数据来源:中经网数据库三、ARMA模型的平稳性首先绘制出N的折线图,如图从图中可以看出,N序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平稳的。

此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。

下面对N 的平稳性和季节季节性进行进一步检验。

四、单位根检验为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下:GENR LN = LOG(N)对数后的N趋势性也很强。

下面观察N 的自相关表,选择滞后期数为36,如下:从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。

进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。

五、季节性分析趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性:Genr = DLN = LN – LN (-1)观察DLN的自相关表,如下:DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分:GENR SDLN = DLN –DLN(-6)再做关于SDLN的自相关表,如下:SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。

ARMA模型解析

ARMA模型解析
注3:【2】满足平稳条件时, AR过程等价于无穷阶的MA 过程,即
X t 1 v1B v2 B
2
j ut v j B ut j 0
1 时间序列分析模型【ARMA模型 】简介
3、自回归移动平均【ARMA】模型 【B-J方法建模】
自回归移动平均序列
ARMA序列,它的阶要由从低阶到高阶逐步增加,再通过检验来确定. 但实际数据处理中,得到的样本自协方差函数和样本偏自相关函数只是
k
而只能是在某步之后围绕零值上下波动,故对于 k 和 kk 的截尾性 只能借助于统计手段进行检验和判定。
和 kk 的估计,要使它们在某一步之后全部为0几乎是不可能的,
H0 : pk , pk 0, k 1,
2 统计量 N pM
H1 : 存在某个 k ,使 kk
k p 1
0 ,且
2
pkM p
( ) 表示自由度为 M 的 分布 的上侧 分位数点 2 2 M ( ),则认为 对于给定的显著性水平 0 ,若 2 2 p ,可认为 样本不是来自AR( )模型 ; M ( )
【2】
( B) X t ut
AR(
的根均在单位圆外,即
p )过程平稳的条件是滞后多项式 ( B)
( B) 0 的根大于1
1 时间序列分析模型【ARMA模型 】简介
2、移动平均【MA】模型
移动平均序列 X t : 如果时间序列 X t 是它的当期和前期的随机误差 项的线性函数,即可表示为
时间序列的季节性是指在某一固定的时间间隔上,序列 重复出现某种特性.比如地区降雨量、旅游收入和空调销售额 等时间序列都具有明显的季节变化. 一般地,月度资料的时间序列,其季节周期为12个月;

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型

马尔可夫区制转移arma模型马尔可夫区制转移(ARMA)模型是一种经济和金融时间序列分析常用的模型。

它的基本思想是通过分析当前时间点和过去时间点的关系,来预测未来时间点的值。

ARMA模型的构建基于两个关键概念:自回归(AR)和移动平均(MA)。

马尔可夫区制转移(AR)模型通过分析过去时间点对当前时间点的影响来预测未来时间点。

它基于一个假设,即未来的值是过去值的线性组合。

如果我们用Y表示时间序列的观测值,AR模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t其中,Y_t是时间点t的观测值,c是常数,φ_1, φ_2, ...,φ_p是参数,p是模型的延迟数量,ε_t是误差项。

当p等于1时,AR模型称为AR(1)模型;当p等于2时,AR模型称为AR(2)模型,依此类推。

移动平均(MA)模型是用来描述观测值与白噪声误差项的线性组合之间的关系。

MA模型的基本假设是,当前时间点的观测值是过去时间点的误差项的线性组合。

如果我们用Y表示时间序列的观测值,MA模型可以表示为:Y_t = μ + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... +θ_q * ε_t-q其中,Y_t是时间点t的观测值,μ是均值,ε_t是误差项,θ_1, θ_2, ..., θ_q是参数,q是误差项的延迟数量。

当q等于1时,MA模型称为MA(1)模型;当q等于2时,MA模型称为MA(2)模型,依此类推。

ARMA模型将AR和MA模型结合起来。

ARMA(p, q)模型可以表示为:Y_t = c + φ_1 * Y_t-1 + φ_2 * Y_t-2 + ... + φ_p * Y_t-p + ε_t + θ_1 * ε_t-1 + θ_2 * ε_t-2 + ... + θ_q * ε_t-qARMA模型可以通过最小二乘法或极大似然法来估计参数。

ARMA模型

ARMA模型

ARMA模型1.简单介绍ARMA模型是一类常用的随机时间序列预测模型,是一种精度较高的时间序列短期预测方法,它的基本思想是:某些时间序列是依赖于时间t的一族随机变量,构成该时间序列的单个序列值虽然具有不确定性,但整个序列的变化却有一定规律性,可用数学模型近似描述。

2.分类ARMA模型具有三种基本类型:自回归(AR)模型,移动平均(MA)模型,自回归移动平均(ARMA)模型。

3.表达如果时间序列X t是它的前期值和随机项的线性函数,即表示为:X t=φ1X t−1+φ2X t−2+⋯+φp X t−p+εt就称为P阶自回归模型,记为AR(p)。

其中φi称为自回归系数,是待估参数。

随机项εt 是相互独立的白噪声序列,服从均值为0,方差为σ2的正态分布。

且一般假定X t的均值也为0。

AR模型的平稳性问题从数学表达式来看,我们首先记B k为k步滞后算子,即B k X t=X t−k。

则上述模型可写为:X t=φ1BX t+φ2B2X t+⋯+φP B p X t+εt我们令φ(B)=1−φ1B−φ2B2−⋯−φp B p,模型就被简化为φ(B)X t=εt。

AR(p)平稳的等价条件是φ(B)的根都小于1,另一方面,从自相关系数和偏自相关系数的曲线图也能看出该模型是否平稳,AR(p)模型平稳等价于自相关系数拖尾,偏自相关系数p步截尾。

而如果时间序列X t是它的当期和前期的随机误差项的线性函数,即X t=μ+εt−θ1εt−1−⋯−θqεt−q则称为q阶移动平均模型,记为MA(q)。

它是无条件平稳的,因为它的均值和方差均为常数,跟AR模型做同样的滞后和简化,如果θ(B)的根都小于1,则MA模型是可逆的。

另一个可逆的等价条件就是自相关函数q步截尾,偏自相关函数拖尾。

基于此,ARMA(p,q)模型的数学表达就呼之欲出了:X t=φ1X t−1+φ2X t−2+⋯+φp X t−p+εt−θ1εt−1−⋯−θqεt−q而ARMA(p,q)的平稳条件就是AR(p)的平稳条件,可逆条件就是MA(q)的可逆条件。

arma模型通俗理解

arma模型通俗理解

Arma模型通俗理解什么是ARMA模型?ARMA模型是时间序列分析中的一种建模方法,它是自回归移动平均模型(ARMA)的组合。

ARMA模型结合了自己的历史数据和随机误差来预测未来的数值。

AR和MA模型的概念在理解ARMA模型之前,我们需要先了解自回归(AR)和移动平均(MA)模型。

自回归(AR)模型自回归模型基于历史数据的线性组合来预测未来的数值。

它假设未来的值是过去值的加权和,其中权重由自回归系数确定。

自回归模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + ε(t),其中φ1, φ2, …, φp为自回归系数,ε(t)为误差项,c为常数。

移动平均(MA)模型移动平均模型基于随机误差的线性组合来预测未来的数值。

它假设未来的值是过去误差的加权和,其中权重由移动平均系数确定。

移动平均模型的公式为:x(t) = μ + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq * ε(t-q) + ε(t),其中θ1,θ2, …, θq为移动平均系数,ε(t)为误差项,μ为均值。

ARMA模型ARMA模型是自回归模型和移动平均模型的结合,它综合了过去的数值和随机误差来预测未来的数值。

ARMA模型可以表示为ARMA(p, q),其中p和q分别为自回归和移动平均阶数。

ARMA模型的公式为:x(t) = c + φ1 * x(t-1) + φ2 * x(t-2) + … + φp * x(t-p) + θ1 * ε(t-1) + θ2 * ε(t-2) + … + θq *ε(t-q) + ε(t),其中φ1, φ2,…, φp为自回归系数,θ1, θ2, …, θq 为移动平均系数,c为常数,ε(t)为误差项。

如何估计ARMA模型的参数?ARMA模型的参数估计可以通过最小二乘法或最大似然法进行。

通过这些方法,可以找到使得模型拟合数据最好的参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一案例分析的目的
本案例选取2001年1月,到2013年我国铁路运输客运量月度数据来构建ARMA模型,并利用该模型进行外推预测分析。

二、实验数据
数据来自中经网统计数据库
数据来源:中经网数据库三、ARMA 模型的平稳性
首先绘制出N 的折线图,如图
从图中可以看出,N 序列具有较强的非线性趋势性,因此从图形可以初步判断该序列是非平
稳的。

此外,N在每年同期出现相同的变动方式,表明N还存在季节性特征。

下面对N 的平稳性和季节季节性进行进一步检验。

四、单位根检验
为了减少N 的变动趋势以及异方差性,先对N进行对数处理,记为LN其曲线图如下: GENR LN = LOG(N
对数后的N趋势性也很强。

下面观察N 的自相关表,选择滞后期数为36,如下:
从上图可以看出,LN的PACF只在滞后一期是显著的ACF随着阶数的增加慢慢衰减至0,因此从偏/自相关系数可以看出该序列表现一定的平稳性。

进一步进行单位根检验,打开LN选择存在趋势性的形式,并根据AIC自动选择滞后阶数,单位根检验结果如下:
T统计值的值小于临界值,且相伴概率为0.0001,因此该序列不存在单位根,即该序列是平稳序列。

五、季节性分析
趋势性往往会掩盖季节性特征,从LN的图形可以看出,该序列具有较强的趋势性,为了分析季节性,可以对LN进行差分处理来分析季节性:
Genr = DLN = LN – LN (-1
观察DLN的自相关表,如下:
DLN在之后期为6、12、18、24、30、36处的自相关系数均显著异于0,因此,该序列是以周期6呈现季节性,而且季节自相关系数并没有衰减至0,因此,为了考虑这种季节性,进行季节性差分:
GENR SDLN = DLN –DLN(-6
再做关于SDLN的自相关表,如下:
SDLN在滞后期36之后的季节ACF和PACF已经衰减至0,下面对SDLN建立SARMA模型。

六、滞后阶数的初步确定
观察SDLN的自相关、偏自相关图,ACF 和PACF在滞后期1和滞后期6还有滞后期12异于0,其余均与0无异,因此,SARMA(p,q(k,ms中p和q均不超过1,k和m均不超过2.6考虑到高洁移动平均模型估计较为困难,而且自回归模型的检验可以表示无穷的移动平均过程,因此q尽可能取较小的取值。

本例拟选择
SARMA(1,0(1,06、SARMA(1,0(1,16、SARMA(1,0(1,26、SARMA(1,0(2,16、SARMA(1,1(1,06、SARMA(1,1(1,16、SARMA(1,1(1,26、SARMA(1,1(0,16八个模型来拟合SDLN。

七、ARMA模型的参数估计
1.分析SARMA(1,0(1,06分析该模型的估计以及残差的检验。

LS SDLN C AR(1 SAR(6
回归结果如表所示:
LS SDLN C AR(1 SAR(6 回归结果如表所示:
LS SDLN C AR(1 SAR(6 sar(6SAR(12 回归结果如表所示:
LS SDLN C AR(1 SAR(12 SAR(6 回归结果如表所示:
LS SDLN C AR(1 ma(1 SAR(6 回归结果如表所示:
时间序列 ARMA 模型作业分析 SARMA(1,1(1,16 分析该模型的估计以及残差的检验。

LS SDLN C AR(1 ma(1 SAR(6 sma(6 回归结果如表所示: 11/ 14
时间序列 ARMA 模型作业分析 SARMA(1,1(1,26 分析该模型的估计以及残差的检验。

LS SDLN C AR(1 ma(1 SAR(6 sma(12 回归结果如表所示: 12/ 14
时间序列 ARMA 模型作业分析 SARMA(1,1(2,16 分析该模型的估计以及残差的检验。

LS SDLN C AR(1 ma(1 SAR(12 sma(6 回归结果如表所示: 13/ 14
时间序列 ARMA 模型作业各个模型的 AIC、SC、残差检验结果汇总如下 AIC SARMA(1,0(1,06 SARMA(1,0(1,1 SARMA(1,0(1,2 SARMA(1,0(2,1 SARMA(1,1(1,0 SARMA(1,1(1,2 SARMA(1,1(2,1 6 6 6 6 SC -1.176719 -1.471805 -1.537164 -1.436507 -1.372916 -1.613982 -1.636773 -1.566339 平稳性是是是是是是是是可逆性是
是是是是是是是残差是否满足白噪声否否否否否是是是 -1.239755 -
1.555852 -1.579857 -1.541566 -1.456963 -1.719041 -1.762844 -1.696093
SARMA(1,1(1,16 6 6 综合来看选择 SARMA(1,1(1,26 对数据的拟合是最优的。

六、模型的预测在 SARMA(1,1(1,26 中选择动态估计,预测 2013.11 月的序列值,预测图如图:上图中左边是预测值与置信区间,右边是预测的误差。

Boot meansquared error 代表均方误差方,MAE 表示平均绝对误差, MAPE 表示平均绝对误差百分比。

Theil 不等系数中 bias proportion 表示偏误,即预测均值与真实均值的偏离程度; variance proportion 表示方误差,用来反映波动与真实波动之间的差异;covariance proportion 表示协方差误,反映残存非系统预测误差,该误差占比越大,预测效果越好。

本例中的协方差误(0.415544)要大于方差误(0.347297),因此预测效果较好。

14/ 14。

相关文档
最新文档