用zemax模拟单模光纤资料

合集下载

zemax单模光纤耦合设计

zemax单模光纤耦合设计

zemax单模光纤耦合设计Zemax是一种常用的光学设计软件,可以用于设计和优化光学系统。

在光纤通信中,光纤耦合是一个重要的问题,因为光纤耦合的效率直接影响到光信号传输的质量和距离。

本文将介绍如何使用Zemax 进行单模光纤耦合的设计。

单模光纤是一种能够传输单个模式光信号的光纤,具有较小的传输损耗和较高的带宽。

光纤耦合是将光信号从光源传输到光纤的过程,其目标是尽可能地将光信号聚焦在光纤的入口面上,使光信号能够有效地进入光纤。

在Zemax中进行光纤耦合设计,首先需要建立光学系统模型。

光学系统模型包括光源、透镜、光纤等元件。

其中,光源可以是LED、激光器等发光源,透镜用于调节光束的形状和聚焦效果,光纤是光信号传输的通道。

在建立光学系统模型后,需要定义光纤的入口面和出口面。

光纤的入口面是光纤与外界的接口,光信号需要从这里进入光纤。

出口面是光纤与接收器的接口,光信号需要从光纤传输到接收器上。

接下来,需要选择合适的透镜和光纤参数。

透镜的选择主要考虑透镜的焦距和孔径,以及透镜与光纤的距离。

光纤的参数包括芯径、包层折射率和长度等。

这些参数的选择将直接影响到光纤耦合的效率和质量。

在Zemax中,可以使用光线追迹和优化算法来模拟和优化光纤耦合。

光线追迹可以模拟光线在系统中的传播路径和光强分布,从而评估光纤耦合的效果。

优化算法可以根据设定的目标函数来优化系统的参数,以最大化光纤耦合的效率。

在进行光纤耦合设计时,需要注意以下几点。

首先,光纤的入口面和出口面应当对准光源和接收器。

其次,透镜和光纤的位置和参数应当合理选择,以使光线能够有效地聚焦在光纤的入口面上。

此外,还应当考虑光纤的对准误差和传输损耗等因素。

Zemax是一种强大的光学设计软件,可以用于单模光纤耦合的设计和优化。

通过合理选择透镜和光纤的参数,并使用光线追迹和优化算法,可以实现高效的光纤耦合。

光纤耦合的设计是光纤通信中的重要环节,对于提高光信号传输的质量和距离具有重要意义。

zemax教程详细 全面

zemax教程详细 全面
Sequential lens data-Surface data: • 面的序号; • 每个面的相关结构数据; • 光学系统的孔径; • 波长; • 视场。 进行优化时,还需要: • 变量; • 优化函数。 For NSC without port system,还需要: • 所有object的结构参数和位置参数; • 所有source和detector的特性参数和位置参数; • 波长。
The system aperture
• 它是很重要的一个参数,决定入瞳的大小,它决定光学系统在物 空间收集多少光线。
System aperture types
•Entrance Pupil Diameter(EPD):直接指定入瞳的大小; •Image Space F/#:无限共轭像空间近轴F数(f/D,只用于物距无穷远); •Object Space Numerical Aperture:物空间边缘光线的数值孔径nsinθ (物在有限远处,保持N.A.为常数);
ZEMAX Editors界面
有很多种: • Lens data editor: 基本的lens data,包括surface type, radius, thickness, glass,etc. • Merit function editor:优化时,定义和编辑merit function; • Multi-Configuration editor:为变焦镜头和其它多重结构系统定义多重 结构参数; • Tolerance Data editor:定义和编辑公差数据; • Extra Data editor:需要很多参数的surface data的扩展; • Non-sequential component editor:定义和编辑NSC sources, objects, detectors。

zemax光纤耦合效率

zemax光纤耦合效率

zemax光纤耦合效率摘要:1.Zemax 光纤耦合效率简介2.Zemax 光纤耦合效率的计算方法3.Zemax 光纤耦合效率的影响因素4.Zemax 光纤耦合效率的提高方法5.总结正文:【1.Zemax 光纤耦合效率简介】Zemax 光纤耦合效率是指在光学系统中,光纤与光源之间的能量传递效率。

在光纤通信、光纤传感和光纤激光等领域中,光纤耦合效率对于系统的性能具有重要意义。

Zemax 作为一款光学设计软件,可以方便地计算和优化光纤耦合效率,从而提高整个光学系统的性能。

【2.Zemax 光纤耦合效率的计算方法】Zemax 中,光纤耦合效率的计算采用耦合系数法。

具体步骤如下:1) 在Zemax 中创建一个光学系统,将光源、光纤和接收器等元件添加到系统中;2) 在光源和光纤之间设置一个耦合器,并设置适当的耦合系数;3) 运行光学仿真,得到光源输出光强的分布;4) 计算光纤中的光强分布;5) 根据光纤中的光强分布,计算光纤耦合效率。

【3.Zemax 光纤耦合效率的影响因素】Zemax 光纤耦合效率受多种因素影响,主要包括:1) 光源的类型和特性;2) 光纤的类型和特性;3) 耦合器的类型和特性;4) 光源与光纤之间的距离;5) 耦合系数的大小。

【4.Zemax 光纤耦合效率的提高方法】为了提高Zemax 光纤耦合效率,可以采取以下措施:1) 选择合适的光源和光纤类型,以提高它们的匹配度;2) 选择合适的耦合器类型,并设置适当的耦合系数;3) 优化光源与光纤之间的距离,以提高能量传递效率;4) 对光学系统进行优化,以降低系统中的损耗。

【5.总结】Zemax 光纤耦合效率是光学系统性能的关键指标之一。

通过合理的设计、优化和计算,可以有效提高光纤耦合效率,从而提升整个光学系统的性能。

ZEMAX实验指导书(初学的练习教程)

ZEMAX实验指导书(初学的练习教程)

实验一光学设计软件ZEMAX的安装和基本操作一、实验目的学习ZEMAX软件的安装过程,熟悉ZEMAX软件界面的组成及基本使用方法。

二、实验要求1、掌握ZEMAX软件的安装、启动与退出的方法。

2、掌握ZEMAX软件的用户界面。

3、掌握ZEMAX软件的基本使用方法。

4、学会使用ZEMAX的帮助系统。

三、实验内容1.通过桌面快捷图标或“开始—程序”菜单运行ZEMAX,熟悉ZEMAX的初始用户界面,如下图所示:图:ZEMAX用户界面2.浏览各个菜单项的内容,熟悉各常用功能、操作所在菜单,了解各常用菜单的作用。

3.学会从主菜单的编辑菜单下调出各种常见编辑窗口。

4.调用ZEMAX自带的例子(根目录下Samples文件夹),学会打开常用的分析功能项:草图(2D草图、3D草图、实体模型、渲染模型等)、特性曲线(像差曲线、光程差曲线)、点列图、调制传递函数等,学会由这些图进行简单的成像质量分析。

5.从主菜单中调用优化工具,简单掌握优化工具界面中的参量。

6.掌握镜头数据编辑窗口的作用以及窗口中各个行列代表的意思。

7.从主菜单-报告下形成各种形式的报告。

8.通过主菜单-帮助下的操作手册调用帮助文件,学会查找相关帮助信息。

四、实验仪器PC机实验二基于ZEMAX的简单透镜的优化设计一.实验目的学会用ZEMAX对简单单透镜和双透镜进行设计优化。

二.实验要求1.掌握新建透镜、插入新透镜的方法;2.学会输入波长和镜片数据;3.学会生成光线像差(ray aberration)特性曲线、光程差(OPD)曲线和点列图(Spotdiagram)、产生图层和视场曲率图;4.学会确定镜片厚度求解方法和变量,学会定义边缘厚度解和视场角,进行简单的优化。

三.实验内容(一). 用BK7玻璃设计一个焦距为100mm的F/4单透镜,要求在轴上可见光范围内。

1. 打开ZEMAX软件,点击新建,以抹去打开时默认显示的上一个设计结果,同时新建一个新的空白透镜。

LD光纤耦合模拟演示

LD光纤耦合模拟演示

LD耦合模拟演示 2019.6.12目录第一章绪论 (3)第二章半导体激光与光纤耦合的理论 (4)2.1 半导体激光器输出光束特性 (4)2.2 光纤的基本理论 (5)2.3 光纤耦合条件 (6)第三章 10WLD耦合模拟 (7)3.1 光路结构及器件参数 (7)3.2 耦合模拟 (7)3.3 光路优化 (9)第四章大功率LD耦合模拟 (10)4.1 光路结构 (10)4.2 耦合模拟 (11)第五章结论 (16)第一章绪论本文利用Zemax对10W与30W两种LD耦合方式进行了模拟,除对现有10WLD 耦合工作进行验证之外,也为30WLD的光纤耦合工作提供了设计指导。

第二章半导体激光与光纤耦合的理论2.1 半导体激光器输出光束特性温度对半导体输出功率的影响很大,温度越高,LD的输出功率越低。

这就使得LD的有源层非常薄,厚度大约只有1μm,宽度一般在几十到几百μm。

由于有源层非常狭窄,激光在传输的过程中就会发生衍射,光束会变得发散,如图1所示。

图表 1 半导体激光器出射光斑示意图半导体激光器的桶中功率(PIB)定义为:光强下降到最大光强的1/2处所对应的角度,即半亮全宽时的全角发散角。

垂直发散角用θ⊥表示,水平发散角用θ∥表示。

对于激光与光纤的耦合,发散角越小,调整的容忍度越大,越有利于高效率的耦合。

我们选择的LD芯片为Oclaro的SES12-915-02,其输出的中心波长为910nm,输出功率12W,θ⊥为58°,θ∥为10.5°。

2.2 光纤的基本理论图表 2 光纤的结构光纤的一般结构如图2所示,纤芯与包层为其结构主体。

最外的涂覆层用于保护光纤,纤芯的折射率为n1,包层折射率为n2,n1>n2,因此光束在纤芯与包层的交界面可以发生全反射而实现低损传播。

为了满足全反射的实现条件,对照射到光纤端面的角度有要求,通过推算不难得到以下的公式:(1.1)其中NA为光纤的数值孔径,n0为空气折射率,简单计算可以取1,φ0为入射光束与水平方向的夹角,大于此数值的光束由于不能发生全反射而无法耦合入光纤。

如何在Zemax下模拟单模光纤的光束耦合精品

如何在Zemax下模拟单模光纤的光束耦合精品

如何在Zemax下模拟单模光纤的光束耦合设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度0.9mm内部透过率>0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant)0数值孔径0.17附件中的文件single mode coupler.zmx是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

zemax边缘光纤高度解

zemax边缘光纤高度解

zemax边缘光纤高度解摘要:一、Zemax 边缘光纤高度解的背景与意义1.光纤通信技术的发展2.边缘光纤在通信网络中的重要性3.Zemax 在光纤研究领域的应用二、Zemax 边缘光纤高度解的原理与方法1.Zemax 软件的介绍2.边缘光纤高度解的数学模型3.Zemax 边缘光纤高度解的具体实现步骤三、Zemax 边缘光纤高度解的实验与应用1.实验设备与条件2.实验结果与分析3.Zemax 边缘光纤高度解在实际应用中的优势四、Zemax 边缘光纤高度解的发展前景与挑战1.技术发展的趋势2.当前研究的局限性3.未来研究的方向与展望正文:一、Zemax 边缘光纤高度解的背景与意义随着互联网技术的飞速发展,光纤通信技术在我国已得到广泛应用。

光纤具有传输速度快、抗干扰性强等优点,已经成为现代通信网络的核心技术。

在光纤通信系统中,边缘光纤的性能直接影响着整个网络的传输质量和稳定性。

因此,深入研究边缘光纤的特性,提高边缘光纤的性能,对于我国光纤通信技术的发展具有重要意义。

Zemax 是一款功能强大的光学设计软件,广泛应用于光学系统的设计、分析和优化。

近年来,Zemax 在光纤研究领域的应用逐渐得到重视。

本文将介绍Zemax 边缘光纤高度解的相关内容,探讨其在光纤通信技术中的重要作用。

二、Zemax 边缘光纤高度解的原理与方法Zemax 软件通过建立光学系统的数学模型,可以对系统的性能进行精确的分析和优化。

在边缘光纤高度解的问题中,Zemax 首先根据光纤的物理特性,建立边缘光纤的传输矩阵,然后通过数值计算和仿真,求解边缘光纤的高度解析问题。

具体来说,Zemax 边缘光纤高度解的过程可以分为以下几个步骤:1.建立边缘光纤的传输矩阵。

这一步需要根据光纤的物理特性,如折射率、传播速度等,计算出光纤的传输矩阵。

2.设定光学系统参数。

根据实际应用需求,设定光学系统的参数,如光源、光探测器、光纤等。

3.定义边界条件。

zemax使用说明-第三章?约定和定义-ZEMAX-光行天下论坛...

zemax使用说明-第三章?约定和定义-ZEMAX-光行天下论坛...

zemax使用说明-第三章?约定和定义-ZEMAX-光行天下论坛...zemax使用说明----第三章约定和定义第三章约定和定义介绍这一章对本手册的习惯用法和术语进行说明。

ZEMAX使用的大部分习惯用法和术语与光学行业都是一致的,但是还是有一些重要的不同点。

活动结构活动结构是指当前在镜头数据编辑器中显示的结构。

详见“多重结构”这一章。

角放大率像空间近轴主光线与物空间近轴主光线角度之比,角度的测量是以近轴入瞳和出瞳的位置为基准。

切迹切迹指系统入瞳处照明的均匀性。

默认情况下,入瞳处是照明均匀的。

然而,有时入瞳需要不均匀的照明。

为此,ZEMAX支持入瞳切迹,也就是入瞳振幅的变化。

有三种类型的切迹:均匀分布,高斯型分布和切线分布。

对每一种分布(均匀分布除外),切迹因素取决于入瞳处的振幅变化率。

在“系统菜单”这一章中有关于切迹类型和因子的讨论。

ZEMAX也支持用户定义切迹类型。

这可以用于任意表面。

表面的切迹不同于入瞳切迹,因为表面不需要放置在入瞳处。

对于表面切迹的更多信息,请参看“表面类型”这一章的“用户定义表面”这节。

后焦距ZEMAX对后焦距的定义是沿着Z轴的方向从最后一个玻璃面计算到与无限远物体共轭的近轴像面的距离。

如果没有玻璃面,后焦距就是从第一面到无限远物体共轭的近轴像面的距离。

基面基面(又称叫基点)指一些特殊的共轭位置,这些位置对应的物像平面具有特定的放大率。

基面包括主面,对应的物像面垂轴放大率为+1;负主面,垂轴放大率为-1;节平面,对应于角放大率为+1;负节平面,角放大率为-1;焦平面,象空间焦平面放大率为0,物空间焦平面放大率为无穷大。

除焦平面外,所有的基面都对应一对共轭面。

比如,像空间主面与物空间主面相共轭,等等。

如果透镜系统物空间和像空间介质的折射率相同,那么节面与主面重合。

ZEMAX列出了从象平面到不同象方位置的距离,同时也列出了从第一面到不同物方平面的距离。

主光线如果没有渐晕,也没有像差,主光线指以一定视场角入射的一束光线中,通过入瞳中央射到象平面的那一条。

ZEMAX光学设计:模拟单模光纤耦合

ZEMAX光学设计:模拟单模光纤耦合

ZEMAX光学设计:模拟单模光纤耦合设计指标:单模光纤的规格为纤芯直径为8.3um,数值孔径0.14,模场直径9.2±************;透镜的规格为:熔融石英(Silica),厚度0.9mm,直径0.24mm,曲率半径0.33mm,数值孔径0.17。

出射单模光纤到第一个透镜的初始距离为0.1mm,第二个透镜到耦合光纤的初始距离也是0.1mm;两个透镜之间的初始距离为2mm。

(该设计来自ZEMAX自带实例)设计仿真:(1)单模光纤耦合在系统通用对话框中设置孔径。

在孔径类型中选择“Float By Stop Size”,Apodization Type选择“Gaussian”,Apodization Factor为3.0,这样设置可以产生高斯分布的光束。

在视场设定对话框中设置1个视场,Field Type为“angle”,如下图:在波长设定对话框中,选择1.310um一个波长,如下图:LDE初始结构,如下图:此时,2D Layout,如下图:查看点列图:光纤在波长1.31um的模场直径为9.2±0.4um,因此可以按照下图所示来设置近轴高斯光束。

将Waist Size设置为0.0046,Surf 1 to Waist设置为-0.1,这样,此时的束腰位置就位于在输入光纤的位置。

查看Paraxial Gaussian Beam Data:上图中,像面(IMA)上的Size约为5.56um,而物面(OBJ)上的Size为4.6um,考虑到希望该系统的输入和输出是互易的,那么,我们可以通过优化光纤与透镜之间的距离来优化像面上的Size 到4.6um。

打开MFE,添加GBPS操作数,设置如下:GBPS操作数,在Wave定义的波长上,指定面后的光学空间中近轴高斯光束的尺寸。

将LDE中物面的厚度设置为变量,此时,第5面的厚度也会相应变化。

同时,将第2面的曲率半径也设置为变量,那第4面的曲率半径也会相应变化。

zemax边缘光纤高度解

zemax边缘光纤高度解

zemax边缘光纤高度解
(原创版)
目录
1. Zemax 边缘光纤高度解的概念
2. Zemax 边缘光纤高度解的计算方法
3. Zemax 边缘光纤高度解的实际应用
4. Zemax 边缘光纤高度解的优缺点
正文
一、Zemax 边缘光纤高度解的概念
Zemax 边缘光纤高度解是指在 Zemax 光学设计软件中,通过计算光纤的边缘高度,以解决光纤在光学系统中的成像问题。

在光学系统中,光纤的边缘高度对成像质量有着重要的影响,因此,通过 Zemax 边缘光纤高度解,可以有效地提高光学系统的成像质量。

二、Zemax 边缘光纤高度解的计算方法
在 Zemax 光学设计软件中,可以通过以下步骤计算光纤的边缘高度:
1. 首先,在软件中创建一个光学系统模型,并设定相关参数,如光源、光纤、成像设备等。

2. 然后,在软件中选择光纤,并设定光纤的相关参数,如光纤的类型、直径、折射率等。

3. 接下来,在软件中选择成像设备,并设定成像设备的相关参数,如成像设备的类型、焦距、视场角等。

4. 最后,在软件中选择“优化”功能,设定优化目标为“最小化光纤边缘高度”,并进行优化计算,得到光纤的边缘高度解。

三、Zemax 边缘光纤高度解的实际应用
Zemax 边缘光纤高度解在实际应用中,主要用于解决光纤在光学系统中的成像问题。

例如,在光纤通信系统中,通过 Zemax 边缘光纤高度解,可以提高光纤的传输效率;在光纤传感器系统中,通过 Zemax 边缘光纤高度解,可以提高光纤传感器的灵敏度和分辨率;在医学成像系统中,通过 Zemax 边缘光纤高度解,可以提高成像系统的成像质量。

[整理]zemax光纤耦合.

[整理]zemax光纤耦合.

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径 0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度 0.9mm内部透过率 >0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant) 0数值孔径 0.17附件中的文件single mode coupler.zmx 是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

第13讲单模光纤

第13讲单模光纤

第十三讲 单模光纤(3学时)参考书 廖延彪《光纤光学》1.单模光纤的特征参数(1) 数值孔径(Numerical Aperture ) 影响光纤的弯曲特性1212122211222122sin n n n n n n n n n NA c -≈-=∆∆=-==θ测试方法:远场扫描(2) MFD 数值孔径(Mode Field Diameter )采用高斯近似,光强下降为中心最大值1/e 2处直径 MFD 与波长有关,λ越大,MFD 越大。

λc 处,MFD 略大于几何芯径。

c4048.224048.2222210aNA NA an n ak V c πλλπ=<=-=工作波长应大于λc ,λc 一般略小于工作波长。

测试方法:波长扫描c2.单模光纤的损耗(attenuation ) 0.2dB/km吸收(本征吸收、红外吸收、紫外吸收、重金属吸收、OH -吸收)、瑞利散射(天空颜色)、波导缺欠等损耗的定义及计算:)(log10dB P P outin=α 3dB/50%;10dB/10%。

目前水平:0.2dB/km@1550nm 、0.3dB/km@1300nm 3.光纤的色散(dispersion ) 速度延迟,决定通信系统带宽 模色散多模光纤中最主要的色散 材料色散n=n(λ):λ增大,n 变小,速度增加。

波导色散β=β (λ):λ增大,β变小,速度变小。

材料色散和波导色散可以相互抵消,1.3μm 零色散(G652光纤)λτττ∆⋅⋅=+=L B w m 色散系数B 单位:ps/km.nm ,通常为2~20。

减小谱宽可以减小色散 色散位移技术,G655光纤,损耗小及利用EDFA 技术 偏振模色散(PMD ):由双折射引起特点:与光源谱宽无关,随机性。

单位:ps/km 1/2L B p ⋅=τ限制通信带宽的最后瓶颈,对目前2.5G 系统影响不大 4.光纤的带宽(Bandwidth )ττπ53.012ln 23≈⋅=dB BW 2.5G 、10G 、40G 、160G5. 单模光纤的连接:熔接:单模-多模(单向);单模-单模(双向),光纤熔接机 活动连接:FC/PC/APC 、SC 、ST 6. 单模光纤的偏振特性本征模:圆偏振模(HE 11及HE -11)和线偏振模HE 11x 及HE 11y ) 理想单模光纤具有线偏振及圆偏振的保持能力双折射(birefringence )及偏振串音 实际光纤由自身缺欠及外界影响,无法保持偏振态 低双折射光纤 尽量圆,各向同性(理想球)高双折射光纤(保偏光纤Polarization Maintaining ) 大的各向异性(自身双折射),远大于处界影响单偏振光纤 大的几何不对称,弯曲性能不同 偏振串音:代表保偏光纤的偏振保持能力。

在Zemax下模拟单模光纤的光束耦合

在Zemax下模拟单模光纤的光束耦合

在Zemax下模拟单模光纤的光束耦合文章来源: /index.php?doc-view-318设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径 0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度 0.9mm内部透过率 >0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant) 0数值孔径 0.17附件中的文件single mode coupler.zmx是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

《zemax教程》PPT课件

《zemax教程》PPT课件

光学系统仿真流程
建立光学系统模型
根据实际需求,选择合适的光学元件和参数 ,构建光学系统模型。
设置仿真参数
确定仿真波长、光源类型、探测器参数等, 以模拟实际光学系统的工作环境。
运行仿真
通过光线追迹算法计算光线在光学系统中的 传播路径和成像质量。
结果分析
对仿真结果进行分析,包括光斑形状、能量 分布、像差等,评估光学系统性能。
非球面设计流程
详细阐述非球面设计的步 骤,包括初始结构选择、 优化算法设置等。
非球面设计实例
通过具体案例展示如何在 zemax软件中进行非球面 设计,并分析设计结果。
多层膜系设计技术
多层膜系基本概念
解释多层膜系的构成、工作原理及在光学系统中的应用。
多层膜系设计方法
介绍多层膜系设计的常用方法,如等效折射率法、传输矩阵法等。
zemax软件应用领域
照明设计
灯具、光源、反射器等
成像系统
相机、望远镜、显微镜等
非成像系统
投影仪、激光器等
光纤通信系统
光纤、光缆、光器件等
zemax软件特点与优势
强大的光学设计能力
支持多种类型的光学系统设计,包括成像 和非成像系统,能够实现复杂的光学模拟 和分析。
友好的用户界面
界面简洁直观,易于上手,同时提供详细 的帮助文档和教程,方便用户学习和使用 。
处理
03
可在Matlab中调用Zemax进行光学仿真和优化
与专业光学设计软件集成方法
01
通过Zemax的OpticStudio API与其他光学设计软件进行 集成
02
可实现与其他光学设计软件的 数据交换和共享
03
可在其他光学设计软件中调用 Zemax进行联合设计和仿真

基于ZEMAX的多光束半导体激光器光纤耦合设计

基于ZEMAX的多光束半导体激光器光纤耦合设计

基于ZEMAX的多光束半导体激光器光纤耦合设计刘畅;别光【期刊名称】《长春理工大学学报(自然科学版)》【年(卷),期】2015(038)005【摘要】基于ZEMAX模拟了一组多光束半导体激光器的光纤耦合模块,采用14支波长为808 nm的输出功率为60 W的线列阵激光二极管作为耦合光源,采用偏振技术实现多光路的合束,最终耦合进入芯径400μm , NA为0.22的光纤中,最终输出功率超800 W ,耦合效率达97%,实现了高效耦合,并对光纤对接过程中的耦合效率进行了分析.%The paper simulate the actual situation of fiber coupling of multiple beam semiconductor based on ZEMAX, using fourteen pieces of mini-bar that its output power is 60W are arranged in two stack arrays as laser source by po-larization multiplexing. The beam could be coupled into the fiber of 400μm core diameter with 0.22 numerical aperture. The output power is more than 800W and the coupling efficiency is about 97%. It is analysed that the system coupling efficiency can be affected by alignment error of fiber and optical elements.【总页数】4页(P22-25)【作者】刘畅;别光【作者单位】长春中国光学科学技术馆,长春 130117;长春中国光学科学技术馆,长春 130117【正文语种】中文【中图分类】TN248【相关文献】1.基于ZEMAX高功率半导体激光器光纤耦合设计 [J], 周泽鹏;薄报学;高欣;王文;许留洋;王云华;周路2.基于ZEMAX的激光与多模光纤耦合系统设计 [J], 石科仁;朱长青3.基于 ZEMAX的半导体激光器匀光设计 [J], 黄珊;邓磊敏;杨焕;段军4.基于光束填充的多单管半导体激光器光纤耦合 [J], 杨逸飞;秦文斌;刘友强;赵帆;李景;赵明;兰天;王智勇5.基于Zemax半导体激光器与单模光纤耦合系统设计 [J], 王海林;张登印因版权原因,仅展示原文概要,查看原文内容请购买。

用zemax模拟单模光纤资料

用zemax模拟单模光纤资料

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度0.9mm内部透过率>0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant)0数值孔径0.17附件中的文件single mode coupler.zmx是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到 1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

ZEMAX使用说明书(中文)

ZEMAX使用说明书(中文)

目录第1章引言第2章用户界面第3章约定和定义第4章教程教程1:单透镜教程2:双透镜教程3:牛顿望远镜教程4:带有非球面矫正器的施密特—卡塞格林系统教程5:多重结构配置的激光束扩大器教程6:折叠反射镜面和坐标断点教程7:消色差单透镜第5章文件菜单 (7)第6章编辑菜单 (14)第7章系统菜单 (31)第8章分析菜单 (44)§8.1 导言 (44)§8.2 外形图 (44)§8.3 特性曲线 (51)§8.4 点列图 (54)§8.5 调制传递函数MTF (58)§8.5.1 调制传递函数 (58)§8.5.2 离焦的MTF (60)§8.5.3 MTF曲面 (60)§8.5.4 MTF和视场的关系 (61)§8.5.6 离焦的MTF (63)§8.6 点扩散函数(PSF) (64)§8.6.1 FFT点扩散函数 (64)§8.6.2 惠更斯点扩散函数 (67)§8.6.3 用FFT计算PSF横截面 (69)§8.7 波前 (70)§8.7.1 波前图 (70)§8.7.2 干涉图 (71)§8.8 均方根 (72)§8.8.1 作为视场函数的均方根 (72)§8.8.2 作为波长函数的RMS (73)§8.8.3 作为离焦量函数的均方根 (74)§8.9 包围圆能量 (75)§8.9.1 衍射法 (75)§8.9.2 几何法 (76)§8.9.3 线性/边缘响应 (77)§8.10 照度 (78)§8.10.1 相对照度 (78)§8.10.2 渐晕图 (79)§8.10.3 XY方向照度分布 (80)§8.10.4 二维面照度 (82)§8.11 像分析 (82)§8.11.1 几何像分析 (82)§8.11.2 衍射像分析 (87)§8.12 其他 (91)§8.12.1 场曲和畸变 (91)§8.12.2 网格畸变 (94)§8.12.3 光线痕迹图 (96)§8.12.4 万用图表 (97)§8.12.5 纵向像差 (98)§8.12.6 横向色差 (99)§8.12.7 Y-Y bar图 (99)§8.12.8 焦点色位移 (100)§8.12.10 波长和内透过率的关系 (101)§8.12.11 玻璃图 (101)§8.12.10 系统总结图 (101)§8.13 计算 (103)§8.13.1 光线追迹 (103)§8.13.2 塞得系数 (104)第九章工具菜单 (108)§9.1 优化 (108)§9.2 全局优化 (108)§9.3 锤形优化 (108)§9.4 消除所有变量 (108)§9.5 评价函数列表 (109)§9.6 公差 (109)§9.7 公差列表 (109)§9.8 公差汇总表 (109)§9.9 套样板 (109)§9.10 样板列表 (111)§9.11 玻璃库 (112)§9.12 镜头库 (112)§9.13 编辑镀膜文件 (114)§9.14 给所有的面添加膜层参数 (115)§9.15 镀膜列表 (115)§9.16 变换半口径为环形口径 (115)§9.17 变换半口径为浮动口径 (116)§9.18 将零件反向排列 (116)§9.19 镜头缩放 (116)§9.20 生成焦距 (117)§9.21 快速调焦 (117)§9.22 添另折叠反射镜 (117)§9.23 幻像发生器 (118)§9.24 系统复杂性测试 (120)§9.25 输出IGES文件 (120)第十章报告菜单 (124)§10.1 介绍 (124)§10.2 表面数据 (124)§10.3 系统数据 (125)§10.4 规格数据 (125)§10.5 Report Graphics 4/6 (126)第十一章宏指令菜单 (127)§11.1 编辑运行ZPL宏指令 (127)§11.2 更新宏指令列表 (127)§11.3 宏指令名 (127)第十二章扩展命令菜单 (128)§12.1 扩展命令 (128)§12.2 更新扩展命令列表 (128)§12.3 扩展命令名 (128)第十三章表面类型 (130)§13.1 简介 (130)§13.2 参数数据 (130)§13.3 特别数据 (131)§13.4 表面类型概要 (131)§13.4.1 用户自定义表面 (131)§13.4.2 内含表面 (132)§13.5 标准面 (136)§13.6 偶次非球面 (136)§13.7 奇次非球面 (137)§13.8 近轴表面 (138)§13.9 近轴X-Y表面 (138)§13.10 环形表面 (139)§13.11 双圆锥表面 (139)§13.12 环形光栅面 (140)§13.13 立方样条表面 (141)§13.14 Ⅰ型全息表面 (142)§13.15 Ⅱ型全息表面 (143)§13.16 坐标断点表面 (143)§13.17 多项式表面 (145)§13.18 菲涅耳表面 (145)§13.19 ABCD矩阵 (146)§13.20 另类面 (146)§13.21 衍射光栅表面 (147)§13.22 共轭面 (148)§13.23 倾斜表面 (149)§13.24 不规则表面 (149)§13.25 梯度折射率1表面 (150)§13.26 梯度折射率2表面 (152)§13.27 梯度折射率3表面 (152)§13.28 梯度折射率4表面 (153)§13.29 梯度折射率5表面 (154)§13.30 梯度折射率6表面 (155)§13.31 梯度折射率7表面 (156)§13.32 梯度折射率表面Gradium TM (157)§13.33 梯度折射率9表面 (160)§13.34 梯度折射率10表面 (161)§13.35泽尼克边缘矢高表面 (162)第十五章非序列元件 (162)第十七章优化 (228)第十八章全局优化 (290)第十九章公差规定 (298)第二十章多重结构 (338)第二十一章玻璃目录的使用 (345)第二十二章热分析 (363)第二十三章偏振分析 (373)第二十四章ZEMAX程序设计语言 (390)第二十五章ZEMAX扩展 (478)第五章文件菜单新建(New)目的:清除当前的镜头数据。

ZEMAX中文使用说明书pdf

ZEMAX中文使用说明书pdf
偏振光优化
ZEMAX的优化算法同样适用于偏振光系统 ,可以对系统进行优化以提高偏振性能。
32
激光束传播模拟技术
激光束建模
ZEMAX支持激光束的建模和分析,用户可以定义激光束 的波长、功率、光束质量等参数。
01
激光束追迹
通过激光束追迹功能,可以模拟激光束 在光学系统中的传播过程,并分析光束 形状、功率分布等特性。
合理选择优化算法
根据问题的特点选择合适的优化算法,如梯度 下降法、遗传算法等。
设置合适的优化参数
如迭代次数、收敛精度等,以保证优化效果的 同时减少计算时间。
2024/1/26
利用并行计算功能
ZEMAX支持并行计算,可充分利用计算机资源,加快优化速度。
17
03 光学系统设计基 础
2024/1/26
18
仿真分析
对优化后的光学系统进行仿真分析,评估其性能 是否满足要求。
加工与装配
根据设计结果,进行光学元件的加工和装配,完成光学 系统的制作。
21
04 ZEMAX在光学系 统设计中的应用
2024/1/26
22
建模与仿真方法
2024/1/26
几何光学建模
利用ZEMAX的几何光学建模功能,可以方便地构建复杂的光学系统模型。用户可以通过输入光学元件的参数,如曲 率半径、厚度、折射率等,来定义元件的光学属性。
实例二
某显微镜系统的性能评价。利用调制传递函数(MTF)对 该显微镜系统进行性能评价,发现其在高频部分的响应较 差,表明系统的分辨率不足。为了提高显微镜的分辨率, 可以对光学系统进行优化或者采用更高性能的探测器。
实例三
某摄影镜头的性能评价。通过对摄影镜头的点列图和光斑 图进行分析,发现其在某些焦距下存在较大的像散问题, 导致成像清晰度不佳。为了改善这一问题,可以对镜头结 构进行优化或者采用更先进的制造技术来提高镜头的成像 质量。

单模光纤实验报告

单模光纤实验报告

一、实验目的1. 了解单模光纤的基本特性和传输原理。

2. 掌握单模光纤的传输性能测试方法。

3. 分析影响单模光纤传输性能的因素。

二、实验原理单模光纤是一种只允许一个模式(即一个光波)传输的光纤,具有低损耗、高带宽、抗干扰等优点。

本实验主要测试单模光纤的传输性能,包括传输损耗、色散、非线性等参数。

三、实验仪器与设备1. 单模光纤跳线(2m)2. 光功率计3. 光源(激光器)4. 光纤连接器5. 光纤测试仪6. 光纤熔接机7. 光纤衰减器四、实验步骤1. 准备实验设备,确保设备连接正常。

2. 将光源、光纤跳线、光纤测试仪连接好,并进行校准。

3. 使用光纤熔接机将两根单模光纤连接起来,形成测试链路。

4. 在测试链路中插入光纤衰减器,调整衰减器至预定值。

5. 利用光功率计测量光源发出的光功率和接收到的光功率,计算传输损耗。

6. 测量不同波长下的传输损耗,分析光纤的色散特性。

7. 调整光源功率,观察非线性效应,分析光纤的非线性特性。

五、实验结果与分析1. 传输损耗根据实验数据,计算得到单模光纤的传输损耗为0.5dB/km。

结果表明,该单模光纤具有良好的传输性能,满足实际应用需求。

2. 色散特性实验中,分别测量了1550nm、1310nm和1260nm三个波长下的传输损耗。

结果表明,光纤在1550nm波长处的损耗最小,适合作为长距离通信的传输波长。

同时,随着波长的增加,光纤的传输损耗逐渐增大,说明光纤存在色散特性。

3. 非线性特性通过调整光源功率,观察非线性效应,发现当光源功率达到一定值时,传输损耗会急剧增大,说明光纤存在非线性效应。

在正常工作范围内,非线性效应对传输性能的影响较小。

六、实验结论1. 本实验成功测试了单模光纤的传输性能,验证了单模光纤具有良好的传输性能。

2. 通过实验,掌握了单模光纤的传输损耗、色散和非线性特性。

3. 为后续的单模光纤应用研究提供了实验依据。

七、实验注意事项1. 实验过程中,注意光纤连接器的清洁,避免污染影响实验结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设计前的准备Zemax公司感谢Suss MicroOptics SA公司的Reinhard Voelkel博士提供本文使用到的实验数据。

我们同时提供本文的的日文版本本文描述了一种商用的光纤耦合器,系统使用SUSS MicroOptics FC-Q-250微透镜阵列来耦合两根康宁(Corning)SMF-28e光纤。

如下图所示:供应商提供的上述元件的参数如下:单模光纤,康宁SMF-28e数值孔径0.14纤芯直径8.3μm模场直径@1.31μm 9.2±0.4μm微透镜阵列,SUSS MicroOptics SMO39920基片材料熔融石英基片厚度0.9mm内部透过率>0.99透镜直径240μm透镜节距250μm曲率半径330μm圆锥常数(Conic constant)0数值孔径0.17附件中的文件single mode coupler.zmx是整个系统的Zemax文件。

请注意一下几点:物面到透镜的距离和透镜到像面的距离设定为0.1mm,是因为这比较接近实际情况。

后面经过优化过程时候,这个尺寸还会发生变化;透镜到像面的距离使用了Pick-up solve,以确保和前面的物面到透镜的距离之间相等。

既然两组透镜和光纤之间是完全一致的(在制造公差之内),因而整个系统也就应该是空间反演对称和轴对称的(either way round);两个透镜之间的距离设定为2mm,因为这个是实验中使用的数据。

同样地,这个距离后面也将会被严格的优化;系统孔径光阑设定为根据光阑尺寸浮动(float by stop size),而光阑设定在第一个透镜的后表面。

这就意味着系统的孔径光阑由透镜的实际孔径决定。

因而光纤的模式在这个系统中传输的过程中,就有可能受限于透镜的实际孔径。

在这个例子中,光纤的模式要比透镜的实际孔径小很多。

当心“数值孔径”的多种不同定义。

它有可能指的是边缘光束倾角的正弦值,有可能是光强降低到 1/e2时的光束倾角的正弦值(我们将会看到Zemax会在不同的场合使用这两种定义),也有可能定义为光强降到1%峰值强度时光束倾角的正弦值,康宁便使用这种定义。

这些非常重要!孔径上定义了高斯切趾(Gaussian apodization),用来产生光束的高斯分布。

当前这只是一种近似,后面将会做进一步的精确的计算。

透镜孔径的大部分区域是衍射受限的光学质量的,并且被光纤模式照射到的区域是衍射受限的。

使用旁轴高斯光束计算旁轴高斯光束算法是最简单可以用来分析光纤耦合的分析方法。

不过,这种方法只能获得对系统性能初步的了解。

根据康宁的产品参数表,光纤在1.31μm波长下的模场直径为9.2±0.4μm。

因此,我们按照下图所示的情形设置旁轴高斯光束计算(Analysis>Physical Optics>Paraxial Gaussian Beam):图中光束的束腰直径Waist总是相对于表面1来计算的,在本例中它和物面出于同一个位置。

因此,高斯光束的束腰直径4.6μm就位于源光纤的位置。

光束然后传输经过光学系统。

从上图我们可以看出表面3上的1/e2光束直径是65μm,而表面4是70μm。

这些表面的实际的物理半口径为120μm。

也就是说大约两个光束直径以外的光将会被阻隔掉。

另外需要注意的是像面并非位于光束最佳聚焦聚焦点处:像面处光斑的大小为5.3μm,而其实根据系统的对称性的假定,高斯束腰直径应该是4.6μm。

我们将会优化表面1的厚度(同时也会通过Pick-up solve来控制表面5的厚度)来改进这些。

请注意表面5的厚度是通过Pick-up solve来控制的,因为我们希望系统倒过来使用时也能得到同样的耦合效果:我们使用了完全相同的两组光纤和透镜(在制造公差范围内),因而我们期望最好的系统是输入输出互易的。

Zemax中有一项优化操作数(operand)GBPS,指的是旁轴高斯光束尺寸,可以用来优化光纤和耦合镜头之间的距离。

根据系统的上述对称性,我们知道,高斯光束束腰的最佳尺寸是4.6μm,因此,优化函数就只有简单的一行,如下图:优化后给出的光纤到透镜之间的距离为0.117mm,下面是相应的旁轴高斯光束的数据:上述便是旁轴高斯光束计算所能给我们提供的信息。

相关的Zemax文件为optimization.zmx。

返回目录使用单模光纤耦合计算单模光纤耦合计算方法(位于Analysis>Calculations>Fiber Coupling Efficiency)提供了更加有力的用来分析具有高斯分布的光纤模式的能力。

它会执行两种计算:能量传输计算(energytransport calculation)和模式匹配计算(modematching calculation)。

系统效率(system efficiency:S)是用通过入瞳(entrance pupil)的所有光能量,并且考虑了渐晕(vignetting)和偏振光传输情况下,经过系统之后的能量的总和除以从光纤辐射的所有能量得到的:这里Fs(x,y)指的是源光纤的振幅函数,分子是仅在光学系统的入瞳处的积分,而t(x,y)是光学系统的振幅传输函数。

传输过程受到体吸收和光学镀膜(打开偏振传输的情况下)的影响。

光学系统中的像差所引起的位相差也会影响光纤的耦合效率。

当向接收光纤传输的汇聚波前的各个点上的模式完全和光纤的模式(包括振幅和位相)想匹配的时候,耦合效率达到最大。

它的数学描述是通过光纤和波前振幅之间的重叠积分(overlap integral)来定义的:这里Fr(x,y)用来描述接收光纤复振幅函数,W(x,y)是光学系统出瞳处的波前的复振幅函数,而符号 ' 代表了复数共轭操作。

注意这些函数都是复数形式的,因而这个表达式是相干重叠积分。

T的最大值为1.0,并且随着光纤的振幅和位相和波前振幅位相之间的失配的增加而降低。

Zemax会计算上述的S和T的值。

总的功率耦合效率也是从这些数据得来的。

Zemax也会计算理论上的最大耦合效率,这个计算是在胡略了像差但是考虑模式的渐晕、传输和其他振幅失配因素之后得来的。

在计算中,源光纤模式和接收光纤模式是通过高斯光束的数值孔径NA(定义为物方或者像方的介质折射率和光束上功率降到1/e2处的半张角的正弦的乘积)这个角度可以通过下面两种方法计算获得:通过高斯光束计算得来的发散角,使用模场直径来定义光束束腰直径(参见本文前面的计算);根据康宁产品参数表中提供的1%功率处的NA计算得到1/e2处的数值孔径。

通常,NA大约为0.09,因此耦合效率的计算设置如下图所示:得到的计算结果如下:我们也可以一行优化函数来优化系统的耦合效率,该操作数为FICL:经过几个优化循环之后,光纤到透镜的距离变成了0.11mm(而在旁轴高斯光束计算中为0.117),详细的结果如下:注意一下几点:系统耦合效率(system efficiency)并未显著改变,因为这主要是由表面的孔径和模式尺寸决定的,而轻微的离焦对其的影响并不大;接收端耦合效率(Receiver efficiency)得到了提升,因为重新聚焦使得源光纤模式在经过系统传输之后更好地和接收光纤的模式匹配;最大耦合效率(maximum efficiency)可以通过下述方法得到提升:增加非球面,增加额外的表面等等。

本例中,这个耦合效率基本达到了极限。

本节使用的zemax源文件为after FICL optimization.zmx返回目录使用物理光学计算(Using the phsical optics calculation)在单模光纤耦合计算的基础上运用物理光学传输算法可以极大的扩展这个方法的应用。

类似地,我们需要计算基于物理光学传输的重叠积分,这样做有一下几点好处:可以定义任何复杂模式,而不仅限于高斯模式;当接收光纤位置的时候,光纤耦合重叠积分可以在任何一个表面上计算,这包括当不仅限于代表光纤的表面;外部程序,比如光束传输(Beam Propagation和时域有限差分方法(Finite-Difference-Time Domain)代码,可以使用成.zbf文件格式或者生成DLL接口,用来计算光纤(或者任何集成光学元件)的模式结构,并且可以将其表达成和室的复杂振幅分布函数的形式。

关于这一点,可以参看这篇文章;由于传输受光阑限制或者远距离传输产生的衍射效应也可以得到准确的模拟。

POP计算可以通过以下窗口设置,点击Analysis>Physical Optics>Phusical Optics Propagation打开设置窗口:以上设置了表面1上的束腰半口径为4.6μm的高斯模式,并且经过系统传输至像面,在像面上我们使用完全相同的模式来计算重叠积分。

在光束的参数设置表中,我们词啊用了256×256的采样率,然后需要点击Auto按钮来设定合适的起始矩阵;物理光学窗口中关于光纤耦合的报告,可以参看下图中红色框选区域。

优化函数编辑器中的POPD操作数可以给出所有的物理光学数据,这通常是更有用一些。

具体的关于POPD操作数的叙述可以参考用户手册中的优化那一章。

POPD操作数直接调用先前保存的POP Analysis 窗口中的设置,因此,在优化之前先要去设置一下这些参数。

POPD数据(通过优化函数得到)描述Description数值Value0 Total FiberCoupling 0.9941 SystemEfficiency 0.9982 ReceiverEfficiency 0.99610 Pilot BeamWaist 4.57μm23 Effective BeamWidth 4.84μm26 M21.082位相是你需要关注的最有用的信息,因为Irradiance Profile几乎是理想的高斯形(M2为1.082)。

接收端的模式实际上在每个地方都几乎为零,因此位相也直接告诉我们模式失配的程度。

要显示位相信息,打开POP设置窗口的显示(Display)那一栏,按照下图所示的方式设置:注意位相图的抛物线和四次曲线的形状,这等价于聚焦和球差。

另外也要注意透镜边缘对位相曲线产生的影响。

根据系统的效率(System efficiency),我们知道由于透镜外相尺寸的限制,系统约有小于1%的能量损耗。

如果我们进一步对光纤耦合效率进行优化(记住光纤和透镜的距离是唯一的变量),我们可以得到少量的提升:光纤耦合效率并未得到显著提升,这是因为位相差产生的位置对应的能量非常低:{上图可以通过下述方法得到:从POP窗口中输出cross-section形式的irradiance图,然后克隆它(windows>clone),然后将克隆后的窗口设置成显示位相,而非光强,介质在windows菜单中选择overlay...将这两个曲线重叠成上图的样子。

相关文档
最新文档