高层建筑结构设计特点及体系分析
高层建筑的常见结构形式及特点
高层建筑的常见结构形式及特点高层建筑的结构体系主要有:框架结构、框架―剪力墙结构、剪力墙结构、、框支剪力墙结构、筒体结构等。
框架结构,是由纵梁、横梁和柱组成的结构,这种结构是梁和柱刚性连接而成骨架的结构。
框架结构的优点:强度高,自重轻,整体性和抗震性好,柱网布置灵活,便于获得较大的使用空间;施工简便,较经济;框架结构的弱点:抗侧移刚度小,侧移大;对支座不均匀沉降较敏感等。
根据分析,框架房屋高度增加时,侧向力作用急剧地增长,当建筑物达到一定高度时,侧向位移将很大,水平荷载产生的内力远远超过竖向荷载产生的内力。
一般适用于10层以下、以及10层左右的房屋结构。
框架―剪力墙结构,又称框剪结构,框架-剪力墙结构体系是指由框架和剪力墙共同作为竖向承重结构的多(高)层房屋结构体系。
它是在框架纵、横方向的适当位置,在柱与柱之间设置几道钢筋混凝土墙体(剪力墙)。
在这种结构中,框架与剪力墙协同受力,剪力墙承担绝大部分水平荷载,框架则以承担竖向荷载为主,这样,可以减少柱子的截面。
剪力墙在一定程度上限制了建筑平面布置的灵活性。
框架-剪力墙结构体系则充分发挥框架和剪力墙各自的特点,既能获得大空间的灵活空间,又具有较强的侧向刚度。
所以这种结构形式在房屋设计中比较常用。
这种体系一般用于办公楼、旅馆、住宅以及某些工艺用房。
框架一剪力墙结构,一般用于25层以下房屋结构。
剪力墙结构,是由纵向、横向的钢筋混凝土墙所组成的结构,即结构采用剪力墙的结构体系。
墙体除抵抗水平荷载和竖向荷载外,还对房屋起围护和分割作用。
剪力墙结构优点是整体性好,侧向刚度大,适宜做较高的高层建筑,水平力作用下侧移小,并且由于没有梁、柱等外露构件,可以不影响房屋的使用功能。
缺点是由于剪力墙位置的约束,使得建筑内部空间的划分比较狭小,不能提供大空间房屋,结构延性较差。
因此较适宜用于宾馆与住宅。
全剪力墙结构常用于25~30层结构。
筒体结构,是用钢筋混凝土墙围成侧向刚度很大的筒体的结构形式。
高层建筑钢结构的特点与技术工艺分析
高层建筑钢结构的特点与技术工艺分析高层建筑钢结构是指在建筑物中采用钢材作为骨架和主要承重结构的建筑形式。
相比传统的钢筋混凝土结构或砖木结构,高层建筑钢结构具有以下几个特点:1. 高强度:钢材具有较高的强度和刚性,可以承受较大的水平和竖向荷载,使得高层建筑可以更高、更轻、更薄、更美观。
2. 抗震性能好:钢结构能够较好地抵抗地震力和风力,具有较好的抗震性能。
3. 施工速度快:钢结构制作工艺更为成熟,可以预制构件,直接现场安装,节省了施工时间,提高了工作效率。
4. 可重复利用:钢材可回收再利用,降低了资源的浪费,有利于环境保护。
高层建筑钢结构的技术工艺主要包括以下几个方面:1. 设计和计算:高层建筑钢结构的设计和计算需要考虑建筑的承重、抗震、抗风、抗火等性能。
设计人员需要根据建筑的功能、使用要求和地理环境等因素进行结构的选择和计算。
2. 制作和加工:钢结构需要经过切割、冲孔、焊接等工艺进行制作和加工。
通常采用现场焊接、电弧焊接或氩弧焊接等技术,保证构件的质量和强度。
3. 预制和运输:钢结构构件可以在工厂预先制作好,然后运输到现场进行安装。
预制可以提高施工效率,确保构件的精度和质量。
4. 安装和连接:高层建筑钢结构的安装需要重型起重机和专业施工团队进行。
钢结构构件之间的连接通常采用螺栓连接、焊接连接或现浇节点等方式。
5. 补强和防腐:钢结构需要经过补强设计和防腐处理。
钢结构的连接节点和关键部位需要加固,增强结构的稳定性和抗震性能。
钢结构表面需要进行防腐处理,防止腐蚀和氧化。
高层建筑钢结构具有高强度、抗震性能好、施工速度快、可重复利用等特点。
其技术工艺包括设计和计算、制作和加工、预制和运输、安装和连接、补强和防腐等方面,需要专业的设计人员和施工团队进行。
高层建筑钢结构的应用有助于推动建筑行业的发展,提高建筑的质量和效益。
高层建筑结构设计特点
高层建筑结构设计特点摘要:结构的科学合理性关系到结构的安全性及造价,况且目前的结构形式多元化,给结构设计提出了更高的要求。
本文主要对三种结构体系的设计特点进行论述。
关键词:高层建筑;结构体系;特点前言有些地区由于经济条件限制,小高层及高层建筑的结构设计比较偏向于该地区的特征,因此在进行结构设计时,应充分考虑该地区的特点,满足本地市场的需求。
现在普遍采用的结构形式有框架结构,剪力墙结构,框架-剪力墙结构,三种结构形式有利也有弊。
一、结构形式的特点(一)框架结构体系框架结构体系是由楼板、梁、柱及基础四种承重构件组成。
由梁、柱、基础构成平面框架,它是主要承重结构,各平面框架再由连系梁连系起来,即形成一个空间结构体系,它是高层建筑中常用的结构形式之一。
框架结构的优点在于建筑平面布置灵活,可以用隔断墙分隔空间,住户装修时更改室内空间也容易。
最重要的是计算理论相对成熟,施工工艺也成熟,工程质量得到保证。
框架结构的设计要点:柱网布置要规整,尽可能对称;梁柱中心线宜重合,以避免偏心对节点核心区和柱子产生的不利影响;填充墙宜选用轻质墙体,宜减轻结构自重。
框架结构的合理层数一般是 6~15层,最经济的层数是 10层左右。
其缺陷在于结构抗侧力能力差,本身柔性较大等,风荷载作用下会产生较大的水平位移,在地震荷载作用下,非结构构件破坏比较严重。
层数多了还需要截面尺寸大的梁柱,减小了使用空间,造成材料浪费。
(二)剪力墙结构体系在高层建筑中为了提高房屋结构的抗侧力刚度,在其中设置的钢筋混凝土墙体称为“剪力墙”,剪力墙的主要作用在于提高整个房屋的抗剪强度和刚度,墙体同时也作为维护及房间分格构件。
剪力墙结构中,由钢筋混凝土墙体承受全部水平和竖向荷载,剪力墙沿横向纵向正交布置或沿多轴线斜交布置,它空间整体性好,承载力和侧向刚度大。
合理设计的延性剪力墙具有良好的抗震性能。
在历次地震中,剪力墙结构震害较少发生,而且程度也较轻微。
在高层住宅中采用剪力墙结构可以较好地适应墙体较多、房间面积不太大的特点,而且可以使房间不露梁柱,整齐美观,但住户不能随便按照自己使用要求更改室内布局。
高层建筑的常见结构体系
高层建筑的常见结构体系王轶杰11建筑2班2011331210224高层建筑常见结构体系有以下几种:纯框架体系、纯剪力墙体系、筒体体系、体系组合,其中体系组合又分以下几种:框支剪力墙体系、框架—剪力墙体系、框架—筒体体系、筒中筒体系、束筒体系。
纯框架体系:结构特点——整个结构的纵向和横向全部由框架单一构件组成的体系,框架既承担重力荷载,又承担水平荷载,在水平荷载作用下,该体系侧向刚度小、水平位移大。
适用范围——在高烈度地震区不宜采用,目前,主要用于10~12层左右的商场、办公楼等建筑。
实例分析:芝加哥百货公司大厦,采用的是框架结构,在平面布置上,通过合理的柱网分布,将平面布置灵活,而且提供了较大的内部空间,布置上受限制也就减少了。
纯剪力墙体系:结构特点——该体系中竖向承重结构全部由一系列横向和纵向的钢筋混凝土剪力墙所组成,剪力墙不仅承受重力荷载作用,而且还要承受风、地震等水平荷载的作用,该体系侧向刚度大、侧移小,属于刚性结构体系。
适用范围——理论上讲该体系可建造上百层的民用建筑,但从技术经济的角度来看,地震区的剪力墙体系一般控制在35层、总高110m为宜。
实例分析:广州白云宾馆,该建筑共33层,横向布置钢筋混凝土剪力墙,纵向走廊的两遍也为钢筋混凝土剪力墙,墙厚沿高度由下往上逐渐减小,混凝土强度等级也随高度而降低。
筒体体系:结构特点——由框架或剪力墙合成竖向井筒,并以各层楼板将井筒四壁相互连接起来,形成一个空间构件,可将受力构件集中,形成较大的室内空间。
适用范围——超高层建筑都用筒体结构。
实例分析:美洲银行中心,由密集立柱围合成的空腹式筒体,属于一个矩形内筒外框架,拥有筒体结构主要的特征,内部空间大,并且平面布局也能非常灵活。
体系组合中体系:框支剪力墙体系:结构特点——建筑上部采用剪力墙结构,下部分采用框架体系来满足建筑功能对空间使用的要求。
适用范围——适用于高层旅馆、高层综合楼实例分析:北京粮食公司高层商店住宅,在底层,则作为框支剪力墙,使标准层中间6道横向剪力墙不落地面做成框架,形成较大空间作为商店营业厅用。
高层建筑结构设计特点及其体系
高层建筑结构设计特点及其体系
高层建筑结构设计特点包括:
1、建筑结构受限材料:高层建筑结构设计要求使用较轻质而且具有高强度的受限材料,如钢筋混凝土,钢结构等;
2、建筑结构受限条件:高层建筑要满足建筑本身的结构受限条件,特别是地震动力和受力状况;
3、建筑结构受限原则:为了满足建筑的高层结构,应当采用多层次的技术原则,它们分别是力学原理、结构几何原则、计算机技术等;
4、建筑结构体系:建筑结构体系包括主体结构、防火与抗震结构、外墙框架结构等,要充分考虑建筑结构的加固,使结构具有良好的复合性和可靠性,并考虑外部负荷和抗火性能;
5、结构设计思路:在设计高层建筑结构时,应充分考虑建筑物的重量,以及土木与气象等外部负荷,并结合结构的受力特性和性能,制定结构的合理规范。
高层建筑结构设计特点简述
高层建筑结构设计特点简述0 前言随着我国经济的快速发展,高层建筑如雨后春笋,一栋栋拔地而起。
建筑的高层化和多样化发展,使得建筑结构设计方面的变化越来越多。
面对建筑类型、功能、数量的不断增加,高层建筑结构体系的多样化,高层建筑结构设计迎来了新新的机遇与挑战。
作者通过实践、总结,对高层建筑结构设计及结构体系,作出以下分析:1 高层建筑结构设计的特点1.1 决定因素是水平荷载对某一定高度楼房来说,其竖向荷载基本上是定值,但是其水平荷载随着结构动力特性的不同将有较大幅度变化,并不是定值。
由于楼房自重和建筑楼面的使用荷载在竖构件中所引起的弯矩和轴力的数值,与建筑高度成正比;而水平荷载对结构产生的倾覆力矩以及由此在竖构件中引起的轴力,却与楼房高度的平方成正比[1]。
1.2 重要设计指标是结构延性在地震作用下,高层建筑相比于低层建筑的结构变形会更大一些。
因此,为了使高层建筑结构具有较强的变形能力,避免高层建筑倒塌,一定要在其结构设计时采取相应的措施,确保高层建筑的结构具有足夠的延性。
1.3 控制指标为侧移在高层建筑结构设计中,结构侧移是关键的控制指标,这与低层建筑有很大的不同。
由于在水平荷载作用下,高层建筑结构的侧移变形与建筑高度的四次方成正比。
建筑高度越高,其结构的侧移变形将大大增加。
因此,必须在水平荷载作用下,将高层建筑结构的侧移控制在允许的限度范围内。
1.4 不能忽视轴向变形高层建筑的竖向荷载很大,其将会在柱中引起比较大的轴向变形,从而减小连续梁中间支座处的负弯矩值,增大跨中正弯矩和端支座负弯矩值。
此外,竖向荷载还会对预测构件的下料长度、构件剪力和侧移等产生影响。
2 高层建筑的结构体系现阶段高层建筑常采用的结构体系主要有剪力墙结构体系、框架一剪力墙体系以及简体体系三种,其优缺点见表1[2]。
表1 结构体系优缺点比较结构体系优缺点剪力墙结构体系侧向刚度比较优良,平面布置也很规整,对侧向风力和地震的抵抗能力较强,釆用此种结构可以建造高度远大于框架结构的建筑。
高层建筑钢筋混凝土的结构设计分析
高层建筑钢筋混凝土的结构设计分析随着城市化进程的不断加快,高层建筑已经成为城市发展的重要标志和特色之一。
高层建筑的结构设计不仅影响建筑的稳定性和安全性,还直接关系到建筑的经济性和实用性。
在高层建筑的结构设计中,钢筋混凝土结构因其优良的性能和适应性,已经成为了主流选择。
本文将就高层建筑钢筋混凝土的结构设计进行分析,并探讨其设计要点和特点。
一、高层建筑的结构特点1.1. 高层建筑的承载力要求高高层建筑一般具有较大的自重和风荷载,同时还需要承受地震和动荷载等多种外部力的作用。
高层建筑的结构设计要求具有较高的承载能力和抗震性能。
1.2. 高层建筑的结构形式多样为了满足不同的使用需求和设计要求,高层建筑的结构形式多样,包括框架结构、筒体结构、框筒结构、悬挑结构等。
不同的结构形式对于结构设计和构件设计都有不同的要求。
1.3. 高层建筑的变形和挠度要求严格高层建筑的变形和挠度控制直接关系到建筑的使用性能和外观效果。
结构设计需要根据建筑的使用功能和外观要求合理控制建筑的变形和挠度。
1.4. 高层建筑的材料和施工要求高高层建筑的结构设计对材料和施工质量有较高的要求,需要选择具有高强度和耐久性的材料,并严格控制施工工艺和质量。
二、钢筋混凝土结构设计要点2.1. 结构稳定性钢筋混凝土结构的稳定性是结构设计的首要考虑因素。
在高层建筑的结构设计中,需要采用适当的结构形式和构件布局,合理分配荷载,确保结构的稳定性和可靠性。
2.2. 抗震性能高层建筑通常处于地震频繁的地区,因此抗震性能是结构设计的重要考虑因素。
钢筋混凝土结构在设计中需要采用合理的抗震措施,包括设置剪力墙、增加节点刚度和采用横向抗力系统等,提高建筑的抗震性能。
3.1. 结构形式选择在高层建筑的结构设计中,需要根据建筑的使用功能和周边环境选择合适的结构形式。
一般情况下,高层建筑常采用框架结构或筒体结构,以满足较高的承载能力和抗震性能要求。
3.2. 支撑系统设计高层建筑的支撑系统设计是结构设计中的关键环节。
高层建筑的结构特点
高层建筑的结构特点一、高层建筑结构设计的特点高层建筑结构设计与低层、多层建筑结构相比较,结构专业在各专业中占有更重要的位置,不同结构体系的选择,直接关系到建筑平面的布置、立面体形、楼层高度、机电管道的设置、施工技术的要求、施工工期长短和投资造价的高低等。
其主要特点有:(一)水平力是设计主要因素在低层和多层房屋结构中,往往是以重力为代表的竖向荷载控制着结构设计。
而在高层建筑中,尽管竖向荷载仍对结构设计产生重要影响,但水平荷载却起着决定性作用。
因为建筑自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑高度的一次方成正比;而水平荷载对结构产生的倾覆力矩、以及由此在竖向构件中所引起的轴力,是与建筑高度的两次方成正比。
另一方面,对一定高度建筑来说,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随着结构动力性的不同而有较大的变化。
(二)侧移成为控指标与低层或多层建筑不同,结构侧移已成为高层结构设计中的关键因素。
随着建筑高度的增加,水平荷载下结构的侧向变形快速增大,与建筑高度H的4次方成正比(△=qH4/8EI)。
另外,高层建筑随着高度的增加、轻质高强材料的应用、新的建筑形式和结构体系的出现、侧向位移的快速增大,在设计中不仅要求结构具备足够的强度,还要求具备足够的抗推刚度,使结构在水平荷载下产生的侧移被控制在某一限度之内,否则会产生下述情况:1.因侧移产生较大的附加内力,尤其是竖向构件,当侧向位移增大时,偏心加剧,当产生的附加内力值超过一定数值时,将会导致房屋侧塌。
2.使居住人员感到不适或惊慌。
3.使填充墙或建筑装饰开裂或损坏,使机电设备管道损坏,使电梯轨道变型造成不能正常运转。
(三)抗震设计要求更高有抗震设防的高层建筑结构设计,除要考虑正常使用时的竖向荷载、风荷载外,还必须使结构具备良好的抗震性能,做到小震不坏、大震不倒。
(四)减轻高层建筑自重比多层建筑更为重要高层建筑减轻自重比多层建筑更有意义。
高层建筑结构特点分析
高层建筑结构特点分析随着城市化进程的加快,高层建筑在城市中的地位日益重要。
高层建筑的结构特点对于建筑的安全性、稳定性和经济性都有着重要的影响。
本文将对高层建筑的结构特点进行分析。
一、垂直承载结构高层建筑的垂直承载结构是其最基本的结构特点。
由于高层建筑的高度较大,需要能够承受垂直荷载的结构设计。
常见的垂直承载结构包括框架结构、剪力墙结构和框架-剪力墙结构等。
框架结构是最常见的高层建筑结构形式,通过柱和梁的组合来承受垂直荷载。
剪力墙结构则是通过设置剪力墙来承受垂直荷载,剪力墙可以是混凝土墙或者钢板墙。
框架-剪力墙结构则是将框架结构和剪力墙结构相结合,以提高结构的稳定性和承载能力。
二、水平承载结构除了垂直承载结构外,高层建筑还需要具备良好的水平承载结构。
由于高层建筑容易受到风荷载和地震荷载的影响,水平承载结构的设计至关重要。
常见的水平承载结构包括框架结构、剪力墙结构和筒体结构等。
框架结构通过设置水平框架来承受水平荷载,剪力墙结构则通过设置剪力墙来承受水平荷载。
筒体结构是一种特殊的结构形式,通过设置圆柱形或者多边形的筒体来承受水平荷载,筒体结构具有较好的抗风性能。
三、抗震设计高层建筑的抗震设计是其结构特点之一。
由于高层建筑容易受到地震荷载的影响,抗震设计的重要性不可忽视。
抗震设计包括抗震设防烈度的确定、结构的抗震性能要求的确定以及结构的抗震设计方法的选择等。
常见的抗震设计方法包括增加结构的刚度、增加结构的阻尼、设置剪力墙和减震装置等。
抗震设计的目标是使高层建筑在地震发生时能够保持稳定,减少破坏和损失。
四、节能设计高层建筑的节能设计是其结构特点之一。
由于高层建筑的能耗较大,节能设计对于提高建筑的经济性和可持续性至关重要。
节能设计包括建筑外墙的保温隔热、采光和通风系统的设计以及能源利用的优化等。
常见的节能设计措施包括使用高效的保温材料、设置双层玻璃窗、采用自然通风和太阳能利用等。
节能设计的目标是减少高层建筑的能耗,提高建筑的能源利用效率。
高层建筑结构特点分析
高层建筑结构特点分析近年来,随着城市化进程的加速和人口增长的不断扩张,高层建筑作为现代城市的地标和标志性建筑物,日益受到人们的关注和青睐。
高层建筑是指高度在150米以上的建筑物,其独特的结构特点不仅体现了现代建筑工程技术的高超水平,也对建筑结构设计提出了更高的挑战。
本文将就高层建筑结构的特点进行深入分析,探讨其在建筑工程领域的重要性和创新性。
1. 纵向承载系统高层建筑的纵向承载系统是保证建筑物稳定性和安全性的关键之一。
一般来说,高层建筑采用的主要纵向承载系统包括框架结构、墙支撑结构、框架-墙组合结构等。
框架结构主要由柱、梁和核心筒组成,能够有效抵抗水平荷载,保证建筑物的整体稳定性;墙支撑结构则通过设置墙体来承担荷载,提高了建筑物的整体刚度和稳定性;框架-墙组合结构则将框架结构和墙支撑结构相结合,兼具两者的优点,是目前应用较为广泛的高层建筑结构形式之一。
2. 横向承载系统除了纵向承载系统外,高层建筑还需要考虑横向承载系统的设计。
横向承载系统是指建筑物在受到侧向风荷载或地震荷载时,通过设置承载墙、剪力墙、钢框架等结构形式来抵抗横向力的作用,防止建筑物产生倾斜或倒塌。
合理设计和布置横向承载系统对于提高高层建筑的整体稳定性和抗震性至关重要。
3. 地基基础高层建筑的地基基础设计直接关系到建筑物的安全稳定。
由于高层建筑的重量和高度较大,地基基础需要具备足够的承载能力和抗震性,以确保建筑物不会发生沉降或倾斜等异常现象。
常见的高层建筑地基基础形式包括承台基础、桩基础、复合地基等,设计时需根据实际地质条件和建筑物特点综合考虑,确保地基基础能够满足建筑物的要求。
4. 空间结构形式高层建筑的空间结构形式多样,不同形式的空间结构会影响建筑物的外观、使用功能和内部空间布局。
常见的高层建筑空间结构形式包括塔式结构、板柱结构、空心管结构等,每种结构形式都有其独特的特点和适用范围。
设计师在选择空间结构形式时需要根据建筑物的功能需求、美观要求和经济性等因素进行综合考虑,确保最终的建筑物能够达到预期的效果。
阐述高层建筑结构的特点及常见问题
阐述高层建筑结构的特点及常见问题一、高层建筑结构的特点在高层建筑结构中,结构承受水平荷载和竖向荷载的共同作用,随着建筑物高宽比的增大、高度的增加,尽管竖向荷载对结构设计仍产生重要的影响,但水平荷载对结构产生的内力越来越大,成为结构设计时的主要控制因素,成为确定结构体系的关键性因素。
在水平荷载中,地震作用是动力作用,而风力作用则包含静力作用和动力作用,其静力部分称为稳定风,动力部分称为脉动风。
脉动风的作用会引起高层建筑的振动(简称风振),这在高层建筑结构抗风设计中必须加以考虑的。
在地震区,高层建筑基本上是受地震作用控制,所以计算地震对结构的作用是高层建筑设计的重要内容。
高层建筑结构的设计中,通常采用钢和钢筋混凝土两种材料。
二、高层建筑结构相关问题分析1、高层建筑结构设计中的消防结构设计高层建筑结构因其结构本身特点,决定了建筑结构在进行设计时具有一定的繁复性,而为了保证满足高层建筑结构复杂多样功能需求,需要在进行功能结构设计时,选用不同的建筑功能材料,其中所选用的材料多为可燃性材料,这一定程度上增加了火灾情况发生的可能性,且高层建筑之间空气流动性较强,风力大,一旦高层建筑发生火灾,极有可能在一定程度上造成火灾的扩张。
另外,高层建筑的层数越多,在进行建筑结构设计时,应将火灾线路设计成垂直形态,在这样的情况下,高层建筑人员在进行火灾疏散时可能会耗费更长时间。
在消防结构的设计中,对高层建筑进行排烟结构设计也是关于建筑结构相当重要的方面,在进行设计时,应注意将排烟结构进行合理设计,保证烟气正常排出,降低火灾发生时灾情的蔓延。
2、高层建筑结构设计中的抗风结构设计在高层建筑的设计中,其建筑的抗风性是相当重要的。
笔者认为实现抗风结构优化四个步骤:第一,进行基础设计,保证建筑结构的抗风结构,需要建筑结构具有一定的稳定性,在设计选材时,可选用级配高的砂石,保证建筑结构的填充材料密度,同时可有效防止水平方向上产生对结构倾覆性威胁;同时在结构底部进行设置时,使用抗拔锚杆,提高其应用功能,保证地基的稳固,对风力起到一定抵抗性;第二,设计耗能减振系统,在进行高层建筑结构设计时,可采用耗能减振系统,减少风荷载力对建筑物的作用力,系统的构成主要有楼板、梁柱、剪刀墙、耗能支撑等构成,减振系统的设置选材可使用具有较强粘弹性的阻尼材料,可有效提高减振系统的耗能减振作用;第三,高层建筑结构设计时,应对水平力、风荷载力以及可能发生的荷载力叠加问题进行有效解决。
建筑结构设计:高层建筑结构有哪些设计特点?
建筑结构设计:高层建筑结构有哪些设计特
点?
1)水平荷载成为决定性因素。
建筑物自重和楼面使用荷载在竖向构件中所引起的轴力和弯矩的数值,仅与建筑物高度成线性关系;而水平荷载对结构产生的倾覆力矩,以及由此在竖向构件中引起的轴力,是与建筑物高度的二次方成正比。
另外,对某一定高度建筑物而言,竖向荷载大体上是定值,而作为水平荷载的风荷载和地震作用,其数值是随结构动力特性的不同而有较大幅度的变化。
2)轴向变形不容忽视。
高层建筑中,竖向荷载数值很大,能够在柱中引起较大的轴向变形,从而会对连续梁弯矩产生影响,造成连续梁中间支座处的负弯矩值减小,跨中正弯矩和端支座负弯矩值增大;还会对预制构件的下料长度产生影响,要求根据轴向变形计算值,对下料长度进行调整;另外对构件剪力和侧移产生影响。
3)侧移成为控制指标。
与较低楼房不同,结构侧移已成为高楼结构设计中的关键因素。
随着楼房高度的增加,水平荷载下结
构的侧移变形迅速增大,因而结构在水平荷载作用下的侧移应被控制在某一限度之内。
4)结构延性是重要设计指标。
相对于较低楼房而言,高楼结构更柔一些,在地震作用下的变形更大一些。
为了使结构在进入塑性变形阶段后仍具有较强的变形能力,避免倒塌,特别需要在构造上采取恰当的措施,来保证结构具有足够的延性。
高层住宅结构设计
高层住宅结构设计随着城市化进程的加速,高层住宅在城市中如雨后春笋般涌现。
高层住宅的结构设计不仅关系到建筑物的安全性和稳定性,还影响着居住的舒适性和经济性。
本文将对高层住宅结构设计的相关内容进行探讨。
一、高层住宅结构设计的特点高层住宅由于其高度较高,竖向荷载和水平荷载都较大。
竖向荷载包括自重、活荷载等,水平荷载主要有风荷载和地震作用。
在设计时,需要充分考虑这些荷载的影响,确保结构具有足够的承载能力和抗侧移能力。
此外,高层住宅的结构体系较为复杂,常见的有框架结构、剪力墙结构、框架剪力墙结构等。
不同的结构体系在受力性能、建筑布局适应性、工程造价等方面各有优劣,需要根据具体项目的要求进行合理选择。
二、高层住宅结构设计的基本要求1、安全性安全性是高层住宅结构设计的首要原则。
结构应能够承受在正常使用期间可能出现的各种荷载,并在遇到极端情况(如强烈地震、大风等)时保持稳定,不发生倒塌或严重破坏,以保障居民的生命财产安全。
2、适用性高层住宅应满足居民在使用过程中的各种需求,如空间布局合理、采光通风良好、隔音隔热效果好等。
同时,结构的变形应控制在规范允许的范围内,避免出现过大的裂缝和不均匀沉降,影响建筑物的正常使用。
3、耐久性结构应具有足够的耐久性,能够在设计使用年限内保持其性能。
这需要合理选择结构材料,采取有效的防护措施,防止钢筋锈蚀、混凝土碳化等问题的发生。
三、高层住宅结构体系的选择1、框架结构框架结构由梁和柱组成框架共同抵抗水平和竖向荷载。
其优点是建筑平面布置灵活,可提供较大的室内空间;缺点是侧向刚度较小,在水平荷载作用下侧移较大,适用于层数较少的高层住宅。
2、剪力墙结构剪力墙结构通过钢筋混凝土墙体承受水平和竖向荷载。
其优点是侧向刚度大,侧移小,抗震性能好;缺点是建筑平面布置受到一定限制。
适用于对侧向刚度要求较高的高层住宅。
3、框架剪力墙结构框架剪力墙结构结合了框架结构和剪力墙结构的优点,通过框架和剪力墙共同抵抗水平和竖向荷载。
高层民用建筑剪力墙结构设计特点及其优化策略
高层民用建筑剪力墙结构设计特点及其优化策略随着城市化进程的加快和人口的不断增长,高层民用建筑的建设已经成为了城市发展的重要组成部分。
而在高层建筑的结构设计中,剪力墙结构因其较好的抗震性能和结构稳定性而备受青睐。
本文将从剪力墙结构的设计特点以及优化策略两个方面进行探讨,以期为高层民用建筑的结构设计提供一些参考和指导。
一、剪力墙结构的设计特点1. 抗震性能好剪力墙结构的一个显著特点就是其较好的抗震性能。
剪力墙结构可以有效地抵抗地震引起的水平荷载,从而保障建筑在地震发生时的整体稳定性。
这是因为在地震发生时,建筑结构会受到水平方向的作用力,而剪力墙结构的设置可以在一定程度上减小结构的位移,从而减轻地震对结构的影响,提高建筑的抗震性能。
2. 结构稳定性高剪力墙结构还具有较高的结构稳定性。
在高层建筑中,结构的稳定性是非常重要的,剪力墙结构通过在建筑不同部位设置剪力墙,可以有效地提高建筑的整体结构稳定性,减小结构的变形和振动,保障建筑在使用过程中的安全性和稳定性。
3. 建筑空间利用率高剪力墙结构的设计可以有效地提高建筑的空间利用率。
在建筑结构设计中,通常会考虑到建筑的空间利用率,尤其是在高层建筑中。
而剪力墙结构可以通过在建筑的外围或内部设置剪力墙来实现结构的稳定,而不需要增加大量的柱子或梁,从而提高了建筑的空间利用率。
4. 施工便利剪力墙结构的施工也相对便利。
剪力墙结构相对于其他结构形式来说,其施工过程更加简单,施工难度也较低,从而可以有效地节约施工时间和成本,提高施工效率。
二、剪力墙结构的优化策略1. 合理确定剪力墙布置位置在设计剪力墙结构时,需要合理确定剪力墙的布置位置。
通常剪力墙应该布置在建筑结构的承重墙或外围墙等位置,以确保结构的整体稳定性。
还需要考虑剪力墙的数量和间距,以及结构的布置方式,从而在保证结构稳定性的前提下提高建筑的空间利用率。
2. 采用新型材料和技术在剪力墙结构的设计中,可以考虑采用一些新型材料和技术来进一步优化结构设计。
高层建筑结构设计第2章 高层建筑结构体系和布置原则
4 变形缝的设置
在未采取措施的情况下,伸缩缝的间距不宜超出 表1—8的限制。当有充分依据、采取有效措施时, 表中的数值可以放宽。
高层建筑结构伸缩缝的最大间距 表1—8
注: ①框架—剪力墙的伸缩缝间距可根据结构具体布置取表中框架结构与 剪力墙结构之间的数值; ②当屋面无保温或隔热层措施、混凝土的收缩较大或室内结构因施工 外露时间较长时,伸缩缝间距应适当减少; ③位于气候干燥地区、夏季炎热且暴雨频繁地区的结构,伸缩缝的间 距宜适当减少。
多年的高层建筑结构设计和施工经验表明:高层建 筑结构宜调整平面形状、尺寸和结构布置,采取构造 和施工措施,尽量不设变形缝;当需要设缝时,则应 将高层建筑结构划分为独立的结构单元,并设置必要 的变形缝。
4 变形缝的设置
温度缝:防止结构因温度变化和混凝土干缩变形 产生裂缝(基础以上上部结构断开) 不设温度缝的措施: 1. 温度影响较大部位提高配筋率; 2. 加厚屋面隔热保温层,或架空通风屋面; 3. 顶层局部设温度缝后浇带;即高强度等级的混凝 土;主体混凝土浇注后两个月;贯通结构的横截 面;位置应为结构受力影响最小,且曲折延伸避 免全部钢筋同截面搭接 ;一般每隔30~40m设一 道,后浇带宽800~1000mm。
适用30层以上 。
长/宽<2,截面尺寸接近正方形、圆形、正多边 形较好。
4、筒体结构体系
(1)框筒结构:内筒承受 竖向荷载,外筒承受水平 荷载,柱距一般在3m以内, 框筒梁比较高,开洞面积 在60%以下 1931年102层帝国大厦: 钢框架-剪力墙体系,用 钢量2.06kN/m2 1972年110层世界贸易中心:筒中筒结构体系,用 钢量1.81kN/m2
1974年110层西尔斯大楼:钢成束筒结构体系,用 钢量1.61kN/m2
高层建筑结构设计的特点及注意事项
高层建筑结构设计的特点及注意事项
1.抗震设计:高层建筑的抗震设计是结构设计的重要内容,需要采用合理的结构体系和抗震构造设计,以确保建筑物在地震等自然灾害中的稳定性和安全性。
2. 稳定性设计:由于高层建筑的高度和结构复杂性,其结构稳定性设计需要考虑多种因素,如水平荷载、风荷载、自重等,以确保建筑物的整体稳定性。
3. 选材:高层建筑结构设计需要选用合适的材料,如钢材、混凝土等,以满足建筑物的强度和稳定性要求。
4. 细化设计:高层建筑结构设计需要进行细化的设计,包括材料的选用、构造的设计、节点的布置等,以确保建筑物在使用寿命内的稳定性和安全性。
5. 维护保养:高层建筑结构设计需要考虑维护保养的问题,以确保建筑物长期稳定和安全运行。
总之,高层建筑结构设计需要综合考虑多种因素,以确保建筑物的安全稳定和长期使用寿命。
- 1 -。
论述高层建筑结构设计的特点
论述高层建筑结构设计的特点我国的城市化进展让土地资源越来越紧张,如今城市人口不断增加更是加剧了土地资源的稀缺情况。
为了应对这种情况,就需要加大建筑的空间,增加建筑的楼层,更大程度开发建筑的居住率和使用率。
高层建筑与普通的中低层建筑相比,它的垂直高度大、楼层数多、结构更为复杂、设计需更加谨慎,高层建筑的设计特点需要与其设计结构和谐统一。
这就对设计人员的专业技能提出了更高的要求,设计人员应当将高层建筑的结构设计特点放在首位,在确保了高层建筑结构的稳定、安全、先进、适用后再考虑造型特点。
一、高层建筑的结构设计特点高层建筑和中低层建筑相比,最大的特点就是楼层高、楼层多,所以在设计高层建筑时必须将结构安全摆在首位。
结构设计的质量还会影响机电管道的设计、建筑的平面和三维立体的规划布置、房屋布线的设计、供水的方案、工程的时间和预算。
可以说是"牵一发而动全身",其影响面之广不用多言,下面详细说说高层建筑的结构设计特点:(一)水平结构特点:无论是高层建筑还是中低层建筑,水平力都是控制楼面和屋面纵向负载的力量,而水平结构还将承担起连接每个纵向结构的任务。
高层建筑的结构设计中,竖向轴力和弯矩数值都与建筑高度的一次方成正比,所以水平力随着楼层数目的增加,对纵向楼面和屋面的负载力量也要随之加大,水平结构所承载的任务也会加重。
要设计一个安全的高层建筑结构,水平结构的设计不能马虎。
(二)抗震性设计虽然我国处在地震带上的地区较少,不过天有不测风云,谁也不能预测自然的变化,所以现在的建筑设计中都会参杂着"避震设计",对于建筑高度较高,楼层数目较多的高层建筑来说,对避震设计提出了更高的要求。
在设计高层建筑结构时,需要在保证建筑结构安全良好的前提下,充分考虑纵向荷载和风荷载对抗震设计的影响。
(三)侧移数值高层建筑中的侧移数值会根据建筑高度的变化而变化,侧移的数值和建筑高层的四次方成正比,建筑高度不断增加会导致水平负载结构发生侧移变形的程度不断加大。
建筑结构体系及特点
建筑结构体系及特点建筑结构是指建筑物所采用的构造形式和设计理念。
不同的建筑结构体系决定了建筑物的承重能力、稳定性以及空间布局等方面的特点。
本文将介绍一些常见的建筑结构体系及其特点。
一、框架结构体系框架结构体系是最常见的建筑结构之一,其特点是承重构件呈框架形式,由柱、梁和框架组成。
这种结构体系适用于高层建筑和大跨度空间,如办公楼、宾馆、体育馆等。
框架结构具有高度的稳定性和承重能力,能够有效地分担和传导荷载,同时具备良好的空间布局和灵活性。
二、梁板结构体系梁板结构体系是一种常见的楼板承重形式,其特点是由梁和板组成的承重系统。
梁板结构广泛应用于住宅、商业建筑和工业厂房等。
梁板结构具有较好的刚性和承载能力,能够满足空间布局的需求,同时也便于施工和维修。
三、壳体结构体系壳体结构体系是指由曲面或曲面组合构成的承重结构形式,其特点是能够支撑大跨度的空间,具有优美的造型效果。
常见的壳体结构包括穹顶、拱顶等。
壳体结构具有较高的空间利用率和独特的视觉效果,但施工难度较大,需要较高的技术水平和成本。
四、索结构体系索结构体系是一种利用张力索来支撑建筑物的结构形式,其特点是轻质化和透明化。
索结构常见于大跨度的建筑,如体育场馆、机场航站楼等。
索结构具有较好的自重-承重比,能够创造宽敞通透的空间,并可以通过调整索的张力来调整建筑形态。
五、筒体结构体系筒体结构体系是以圆柱或扭曲形态为基础的建筑结构形式,其特点是造型独特且承重能力强。
常见的筒体结构包括塔楼、烟囱等。
筒体结构能够有效地承受径向和环向荷载,并且具有较好的抵抗风力和地震力的能力,是一种稳定可靠的结构形式。
总结起来,建筑结构体系决定了建筑物的性能和外观特点。
框架结构适用于高层建筑;梁板结构广泛应用于商业建筑;壳体结构能够创造独特的造型效果;索结构适用于大跨度建筑;筒体结构具有较好的承载能力和稳定性。
从这些常见的建筑结构体系中选择适合的形式,可以实现建筑物设计理念的体现,满足功能需求,并创造与众不同的建筑形态。
高层建筑结构设计特点探析
高层建筑结构设计特点探析一.高层建筑结构设计特点(一)水平荷载的作用首先说明,因为楼面荷载以及建筑自身的重量在构件上的弯矩、轴力,与建筑物的高的一次方是成正比的,同时,因为水平荷载对竖构建的轴力以及水平荷载自身产生的力矩,与建筑物高的二次方是成正比;其次要说明的是,当建筑物高度达到一定程度,竖方向的荷载就会维持基本不变,对于水平荷载,地震作用和风荷载的值不是恒定不变的,会因为不同的结构而产生很大程度的变化。
(二)重视轴向变形高层建筑物的竖向的荷载会给支撑柱产生一定的压力,会引起轴向变形,而且也会改变连续梁的弯矩,从而制作的负弯矩也就会降低,也会对准备安置构建的长度产生影响;另外也会影响构建侧移和构建剪力,如果这种和竖方向的变形相比,结果显然是偏于不安全的。
(三)侧移和结构延性跟多层建筑相比,高层建筑对于设计结构中的结构侧移非常重视,楼的层数越多,高度越高,相应的水平荷载产生的构建侧移也就越大,所以,我们控制数值在一定的合格的范围。
如果产生地震,高层建筑的变形也就更大,所以,我们要做到保证建筑物在经过了塑性变形之后没有完全丧失变形能力,从而来防止发生倒塌,所以就应该尽量对结构的延性进行提升。
二.高层建筑的结构分析(一)弹性假定高层建筑物经常用到的方法其中就有弹性计算法。
因为建筑物本身收到了风力和垂直荷载的作用,就会使得结构处于一种弹性工作状态,实际情况基本与这种情况类似。
一旦出现大风或者出现大震就会导致高层建筑物位移量增大,有可能导致建筑物本身出现裂缝,处于一种弹塑性工作状态,这种情况计算位移就不能运用弹性计算法,不然误差很大,这种情况,计算就需要运用弹塑性动力法,这样的计算结果才更接近结构的真实状态。
(二)小变形假定一般的计算方法经常采用这种假定,不过在计算的时候要考虑一下几何非线性问题的研究。
很多人认为,当顶点水平为何与楼房本身的高度比例一旦大于1/500,就要重视两者之间产生的影响。
(三)刚性楼板假定在进行高层建筑物的分析计算中,一般不考虑平面外的刚度,一般情况都是对平面内的楼板刚度假设很大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高层建筑结构设计特点及体系分析
发表时间:2016-07-08T16:27:19.500Z 来源:《基层建设》2016年6期作者:李晓瑞
[导读] 近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用。
广西南都建筑设计有限公司 530021
摘要:近年来,我国高层建筑设计及施工又有很大的发展,各种结构型式得到充分应用,高层建筑的体型和功能更加多样化,结构复杂程度增加。
基于此本文着重对高层建筑结构设计特点及体系进行了分析,旨在为提高高层建设工程质量提供参考。
关键词:高层建筑;结构设计;体系
前言
高层建筑结构的最主要特点是水平荷载为设计的主要因素,侧移限值为确定各抗侧力构件数量和截面尺寸的控制指标。
有些构件除必须考虑弯曲变形外,尚需考虑轴向变形和剪切变形的影响,地震区的高层建筑结构还需要控制结构和构件的延性指标。
目前国内高层建筑类型不断增多,发展较快,由此需要结合钢结构和混凝土结构的优点,承载力高、延性好、变形能力强等理论基础,对建筑结构设计进行研究。
1高层建筑结构设计特点分析
1.1重视侧向荷载对结构的影响
随着建筑高度的增大,侧向荷载对结构影响的增长速率大于竖向荷载的增长速率,到某一高度时,侧向荷载对结构的影响将超过竖向荷载。
从这开始,侧向荷载将成为确定高层建筑结构方案和影响土建造价的决定性因素。
为此,对侧向荷载的作用,该倍加关注。
1.2结构设计除需满足承载力以外,还需满足侧移要求
(1)侧移的限值
结构受侧向荷载后,结构将发生水平变位——侧移。
按侧移对结构的影响,可分为绝对侧移和层间侧移这两项。
这里,绝对侧移是指建筑结构相对于地面原点的水平变位大小;而层间侧移则是指两相邻楼层绝对侧移值之差(见图1)。
绝对侧移量过大,将会使结构产生P-效应,增大结构内力;有时甚至还会引起电梯运行困难,增加结构倾覆和失稳的危险性;同样,层间侧移过大,将会导致装修和非承重墙体的损伤[1]。
图1绝对侧移和层间侧移
(2)减少侧移的途径
一是减少风荷载或地震作用。
对不考虑地震作用的高层建筑,风荷载是侧向荷载中的主要荷载。
减少风荷载,就可减少侧移量。
圆形平面时的风荷载最小,约只为矩形平面时的60%;即使将房屋的已定平面形状略加修饰,使之更近于流线形时,则同样也可起到减少风压的效果。
二是选用合适的结构方案。
根据房屋的高度、高宽比、平面形状和它的体型,在选择结构方案时,将一并考虑控制侧移的这一因素。
因一旦选定了结构方案,实际上,这时结构的侧移也就确定了。
三是设置刚性层。
如我国某高层建筑 (地上37层、地下2层、高140m),钢筋混凝土框架一核芯筒结构,平面呈单轴对称的六边形,高宽比达5.2。
但由于在第20层和第35层处各设了一道刚性层,使结构的顶点侧移量、由原先的284mm降至250mm,减少了10%。
1.3注意减轻楼面自重,减少楼面的结构高度
楼面(包括楼板及楼面梁)自重将占结构竖向荷载的大部分,由于高层建筑的层数多,虽每层的竖向荷载减少有限,但积累后的值对下层的柱、墙和基础都会产生不小的影响。
在确保楼层净高不变的条件下,减少楼面的结构高度,就可减少每层的层高。
积累后,有时使房屋总高不变而增加楼层层数达1层或2层;或也可在楼层层数不变的条件下,减少房屋的总高。
这些都将产生十分可观的经济效益。
2高层建筑结构设计体系分析
2.1框架结构体系
对于水平荷载作用,常用的方法有以下几种:
1)反弯点法。
反弯点法的基本假设是把框架巾的横粱简化为刚性梁,因而框架节点不发生转角,只有侧移,同层各柱剪力与柱的移
侧刚度系数成正比,所以,反弯点法亦可称为剪力分配法。
反弯点法多用于初步设计。
2)广义反弯点法——D值法。
广义反弯点法在推导反弯点高度比和侧移刚度时要考虑节点转角的影响,修改后的侧移刚度改用D表示,故称为D值法。
用D值法计算结构内力、位移简单而精度较高,有相应的表格可以查用[2]。
3)无剪力分配法。
无剪力分配法的应用条件是刚架中除两端兀相对线位移的杆件外,其余杆件都是剪力静定的,它多用于单跨对称刚架,对于多跨符合倍数关系的刚架也可以用无剪力分配法。
做抗震设计时,不应采用部分由框架承重、部分由砌体墙承重的混合承重形式,因为框架和砌体墙是两种性能不同的结构,框架的抗侧刚度小变形大,而砌体墙的抗侧刚度大变形小,混合承重对结构的抗震产生不利的影响。
框架结构一般用于多层或低烈度区的高层建筑,因为层数高将导致梁柱截面过大和配筋增多,地震反应增大,故框架结构的建筑高度不超过60m。
2.2剪力墙结构体系
理论分析与实验研究表明,剪力墙的工作特点取决于开孔的大小。
并且相关规定也给出:当墙整体系数 >10,墙肢一般不会出现反弯点时,可按整体小开口墙算法计算;当 >10,较多墙肢出现反弯点时,按壁式框架法计算,当 <10,墙肢不(或很少)出现反弯点时,按多肢墙算法计算。
整体小开口剪力墙可按材料力学方法略加修正进行计算。
双肢(或多肢)剪力墙一般采用连续化方法,以沿竖向连续分布的连杆代替各层连梁的作用,用结构力学力法原理,以连梁跨中剪力为基本未知量,由切口处位移协调条件建立二阶常微分方程组。
2.3框架-剪力墙结构体系
框架-剪力墙结构计算方法通常采用连续化建立常微分方程的方法。
假设楼板在自身平而内的刚度无限大,房屋体型规整,剪力墙布置对称均匀,忽略水平力作用下房屋沿竖轴的扭转。
这时可将结构单元巾所有的剪力墙合并为总剪力墙,将所有框架合并为总框架,把框架视为剪力墙的“弹性地基”,按弹性地基梁的概念建立四阶微分方程求解。
相应的计算图表已编制完成,供初步设计时查用。
2.4底层大空间剪力墙结构体系
底层为部分框肢的剪力墙结构是为适应底层大开间要求而采用的一种结构形式,称为底层大空间剪力墙结构。
这种结构由于上部墙体与底层框架的性质不同,给计算带来一定的困难。
一般采用混合法求解,对上层剪力墙部分(包括壁式框架),仍可采用普通剪力墙计算中采用的假定,连梁用连续连杆代替,取连续连杆的剪力为基本未知量,在连续切口方向建立变形连续方程(方法方程);在底层框架部分采用了同层各节点水平位移相等、同层各节点转角相同的假定,取底层框架的节点位移为基本未知量,对框架节点的位移方向建立相应的平衡方程(位移法方程),用混合法求解,方法简单,精度较好。
2.5带加强层的高层建筑结构体系
筒中筒结构与框架一核心筒结构相比,前者由于外框筒是由密柱和深梁组成,有时不符合建筑立面处理和景观视线的要求,后者因外围框架由稀柱和浅梁组成,能给予建筑创作较多的选择和自由,并便于用户使用。
因此,从使用功能来看,框架一核心筒结构比筒中筒结构更受用户欢迎,其应用范围更为广泛。
然而,与筒中筒结构相比,框架一核心筒结构的侧向刚度比较小。
为了提高其侧向刚度,减小水平荷载作用下核心筒的弯矩和侧移,可沿框架一核心筒结构房屋的高度方向每隔20层左右,于设备层或结构转换层处由核心筒伸出纵、横向伸臂与结构的外围框架柱相连,并沿外围框架设置一层楼高的带状水平梁或桁架。
结语
通过本文分析,得出以下结论:
1)高层建筑的基本抗侧力单元有框架、剪力墙和筒体等,由它们可以组成多种结构体系。
结构设计时,应根据建筑物的使用功能、立面体型、高度、是否需要抗震设防以及施工条件等因素,选用合适的结构体系。
2)一般情况下,高层建筑结构宜选用框架结构、剪力墙结构、框架一剪力墙结构及筒体结构,这些结构具有竖向布置规则,传力途径简单,抗震性能好等优点。
3)高层建筑结构平面布置的基本原则是尽量避免结构扭转和局部应力集中,平面宜简单、规则、对称,刚心与质心或形心重合。
4)高层建筑结构竖向布置的基本原则是要求结构的侧向刚度和承载力自下而上逐渐减小,变化均匀、连续,不突变,避免出现柔软层或薄弱层。
参考文献:
[1]白洋,王宏.浅谈高层建筑的发展与特点[J].黑龙江科技信息.2014(14).
[2]肖峻.高层建筑结构分析与设计[J].中华建设.2013(12).
[3]周晓莉.浅谈高层建筑结构体系选型分析与结构设计[J].科技创新导报.2014(17). 作者简介:
李晓瑞(1983-),男,广西蒙山人,助理工程师,大学本科,从事结构设计工作。