《有理数的乘法》课件ppt
合集下载
有理数的乘法 课件(共21张PPT)人教版初中数学七年级上册
探究3
(3)如果蜗牛在直线l上以每分钟2 cm的速度向
右爬行,3分钟前它在什么位置?
2
-6
-4
-2
0
2l
位置结果:3分钟前在l上点O 左 边 6 cm处
算式表示:(+2)×(-3)=(-6).
探究4
(4)如果蜗牛在直线l上以每分钟2 cm的速度向 左爬行,3分钟前它在什么位置?
2
-2
0
2
4
6l
位置结果:3钟分前在l上点O右 边 6 cm处
• (3)几个数相乘时,如果有一个因数是0,则积为 0。
• (4)乘积是1的两个有理数互为倒数。
作业
• 课本51页习题2.10第一题
正
7.8×(-8.1)×0×(-19.6)
零
几个有理数相乘,因数都不为 0 时,积的符号怎 样确定? 有一因数为 0 时,积是多少?
归纳总结
1.几个不等于零的数相乘,积的符号由负因数的个数 决定: a.当负因数有_奇__数__个时,积为负; 奇负偶正 b.当负因数有_偶__数__个时,积为正. 2.几个数相乘,如果其中有因数为0,__积__等__于__0_
练一练
1的倒数为 1
-1的倒数为 -1
0.2的倒数为 5
-0.2的倒数为 -5
2 的倒数为 3
3
2
2 的倒数为 3
3 2
0有没有倒数 零没有倒数
1
思考:a的倒数是 对吗?
a
(a≠0时,a的倒数是1 ) a
例3 已知a与b互为相反数,c与d互为倒数,m的 绝对值为6,求 a b -cd+|m|的值.
2.2.1 有理数的乘法
学习目标
1.掌握有理数的乘法法则并能进行熟练地运算. (重点)
2.2.1.1有理数乘法法则 课件(共55张PPT) 七年级数学上册
要点归纳: 几个不等于零的数相乘,积的符号由 _负__因__数__的__个__数__决定. 当负因数有_奇__数__个时,积为负;
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
} 当负因数有_偶__数__个时,积为正. 奇负偶正
几个数相乘,如果其中有因数为0,_积__等__于__0__
新知探究
3.倒数
计算并观察结果有何特点?
(1)1 ×2; 2
总结归纳
有理数乘法法则 两数相乘,同号得正,异号得负,并把绝对值相
乘.任何数与0相乘,都得0.
如, 所以
(-5)×(-3),………………同号两数相乘 (-5)×(-3)=+( ),………………得正 5×3=15, ……………… 把绝对值相乘 (-5)X(-3)=15.
一断 二定 三算
讨论: (1)若a<0,b>0,则ab< 0 ; (2)若a<0,b<0,则ab > 0 ; (3)若ab>0,则a、b应满足什么条件?a、b同号 (4)若ab<0,则a、b应满足什么条件?a、b异号
分层练习-拓展
21. 我们学习了有理数的加法法则与有理数的乘法法则.在学 习此内容时,掌握了法则,同时也学会了分类思考. (1)若 ab =6,则 a + b 的结果可能是 ①② ;(填序号) ①正数;②负数;③0. 点拨:因为 ab =6,所以 a , b 同号.当 a , b 同为正 数时, a + b >0;当 a , b 同为负数时, a + b <0.
15.如图是一个简单的数值运算程序,当输入 x 的值为 1 时,则输出的数值
为2 .
输 入 x → ×-1 → +3 → 输 出
分层练习-巩固
16.计算: (1)214×(-197);
解:原式=-4;
(2)135×(-343);
有理数的乘法ppt课件
= (-2) × 7
7 × (-2)
(-4) × (-3) = 12 (-3) × (-4) = 12
(-2) × 7 = -14
7 × (-2) = -14
两数相乘,同号得 正,异号得负,且 积的绝对值等于乘 数的绝对值的积.
你能得出 什么结论?
一般地,有理数乘法中,两个数相乘,交换因数的
位置,积相等.
负因数个数为偶 数,积为正,再 把绝对值相乘
练习 1 五个有理数的积是负数,这五个数中负因数个数是( A )
A.1
B.3
C.5
D.以上都有可能
解析:∵五个有理数的积为负数,∴负因数的个数为奇数. 故负因数的个数为 1 个或 3 个或 5 个.故选 D.
练习
2
在计算
1 12
1 36
1 6
(36)
练习 3 计算:(1) 34
(3) 4 0 5
(2) 1 2
(4)(18)
1 6
解:(1) 34 12
(3) 4 0 0 5
(2) (1)(2) 2
(4) (18) ( 1) 18 1 3
6
6
有理数乘法的运算步骤:
第一步:先观察是否有0因数; 第二步:确定积的符号; 第三步:确定积的绝对值.
例
计算:(1)
(3) 5 ( 9) ( 1) 65 4
解: (1) (3) 5 ( 9) ( 1)
65 4
=
3
5 6
9 5
1 4
= 9 8
负因数个数为奇 数,积为负,再
把绝对值相乘
(2) (5) 6 ( 4) 1 54
解:(2) (5) 6 ( 4) 1
54
1.4.1 有理数的乘法 (共12张ppt)
8
LOGO
小结:
同学们,想一想我们今天有什么收获?
9
布置作业:
LOGO
• 交本作业:课本P37习题1.4第1、2题。 • 家庭作业:配套练习练习十二。
LO当GO堂达标
1.计算题
11
LOGO
谢谢观赏
祝同学们学习进步!
①正数乘正数,积为_正__数_;正数乘负数,积为_负__数_; 负数乘正数,积为_负__数_;负数乘负数,积为_正__数_; 乘积的绝对值等于__各_乘__数__绝__对__值_的__积___。
②根据①总结出有理数乘法法则。 两数相乘, 同号得正,异号 得负,并把绝对值相
乘。任何数与 0 相乘,都得 0 。 ③乘积是1的两个数互为 倒数 。
LOGO
1.4.1有理数的乘法
回顾复习
LOGO
• 有理数的加法法则 • 有理数的减法法则 • 两个有理数相加的步骤:
先确定符号, 再计算绝对值
学习目标:
LOGO
• 理解并记忆有理数的乘法法则
• 能够熟练运用乘法法则进行有理数的 乘法计算
L自OG学O 指 导
请同学们用5分钟时间认真看课本P.28—30的 内容.完成下列问题:
4
跟踪训练
1. 计算下列各式:
5
LOGOቤተ መጻሕፍቲ ባይዱ
2. 用正负数表示气温的变化量,上升为 正,下降为负。登山队攀登一座山峰,每 登高1km气温的变化量为—6℃,攀登 3km后,气温有什么变化?
LOGO
3. 写出下列各数的倒数:
1,-1,
5,-5 ,
LOG教O 师强调: 两个有理数相乘时要注意: 先确定符号,再计算绝对值 正数的倒数是正数,负数的倒数 是负数,0没有倒数。
LOGO
小结:
同学们,想一想我们今天有什么收获?
9
布置作业:
LOGO
• 交本作业:课本P37习题1.4第1、2题。 • 家庭作业:配套练习练习十二。
LO当GO堂达标
1.计算题
11
LOGO
谢谢观赏
祝同学们学习进步!
①正数乘正数,积为_正__数_;正数乘负数,积为_负__数_; 负数乘正数,积为_负__数_;负数乘负数,积为_正__数_; 乘积的绝对值等于__各_乘__数__绝__对__值_的__积___。
②根据①总结出有理数乘法法则。 两数相乘, 同号得正,异号 得负,并把绝对值相
乘。任何数与 0 相乘,都得 0 。 ③乘积是1的两个数互为 倒数 。
LOGO
1.4.1有理数的乘法
回顾复习
LOGO
• 有理数的加法法则 • 有理数的减法法则 • 两个有理数相加的步骤:
先确定符号, 再计算绝对值
学习目标:
LOGO
• 理解并记忆有理数的乘法法则
• 能够熟练运用乘法法则进行有理数的 乘法计算
L自OG学O 指 导
请同学们用5分钟时间认真看课本P.28—30的 内容.完成下列问题:
4
跟踪训练
1. 计算下列各式:
5
LOGOቤተ መጻሕፍቲ ባይዱ
2. 用正负数表示气温的变化量,上升为 正,下降为负。登山队攀登一座山峰,每 登高1km气温的变化量为—6℃,攀登 3km后,气温有什么变化?
LOGO
3. 写出下列各数的倒数:
1,-1,
5,-5 ,
LOG教O 师强调: 两个有理数相乘时要注意: 先确定符号,再计算绝对值 正数的倒数是正数,负数的倒数 是负数,0没有倒数。
2024新人编版七年级数学上册《第二章2.2.1有理数的乘法第1课时》教学课件
54 6
多个有理数相乘
时若存在带分数, 要先将其画成假分 数,然后再进行计 算.
巩固练习
计算:
(1)(−4)×5×(−0.25);
(2)
(
3 5
)
(
5) 6
(2).
解:(1)(−4)×5 ×(−0.25)
(2)
(
3 5
)
(
5 6
)(Βιβλιοθήκη )= [−(4×5)]×(−0.25)
[( 3 5)] (2)
探究新知
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知:
1.正数乘正数积为_正_数;负数乘负数积为_正_数; (同号得正)
2.负数乘正数积为_负_数;正数乘负数积为_负_数; (异号得负)
探究新知
相反数 是自己
探究新知
求一个数的倒数的方法:
1. 求一个不为0的整数的倒数,就是将该整数作分母,1作分子; 2. 求一个真分数的倒数,就是将这个真分数的分母和分子交换位置; 3. 求一个带分数的倒数,先将该数化成假分数,再将其分子和分母的
位置进行互换; 4. 求一个小数的倒数,先将该小数化为分数,再求其倒数 .
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后,甲、乙水库水位的总变化量各是多少?
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
探究新知
知识点 1 有理数的乘法法则 探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的
多个有理数相乘
时若存在带分数, 要先将其画成假分 数,然后再进行计 算.
巩固练习
计算:
(1)(−4)×5×(−0.25);
(2)
(
3 5
)
(
5) 6
(2).
解:(1)(−4)×5 ×(−0.25)
(2)
(
3 5
)
(
5 6
)(Βιβλιοθήκη )= [−(4×5)]×(−0.25)
[( 3 5)] (2)
探究新知
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知:
1.正数乘正数积为_正_数;负数乘负数积为_正_数; (同号得正)
2.负数乘正数积为_负_数;正数乘负数积为_负_数; (异号得负)
探究新知
相反数 是自己
探究新知
求一个数的倒数的方法:
1. 求一个不为0的整数的倒数,就是将该整数作分母,1作分子; 2. 求一个真分数的倒数,就是将这个真分数的分母和分子交换位置; 3. 求一个带分数的倒数,先将该数化成假分数,再将其分子和分母的
位置进行互换; 4. 求一个小数的倒数,先将该小数化为分数,再求其倒数 .
甲水库的水位每天升高3厘米,乙水库的水位每天下 降3厘米,4天后,甲、乙水库水位的总变化量各是多少?
第四天 第三天 第二天 第一天
第一天 第二天 第三天 第四天
甲水库
乙水库
探究新知
知识点 1 有理数的乘法法则 探究:如图,一只蜗牛沿直线 l爬行,它现在的位置在l上的
有理数的乘除法课件
05
有理数乘除法的混合运算
混合运算的顺序
先乘方,再乘除,最 后加减
如果有括号,先算括 号里面的,再算括号 外面的
同级运算按从左到右 的顺序进行
混合运算的实际应用
用于解决实际问题和数学问题 如计算物理量、解决数学证明等
有助于培养学生的计算能力和解决问题的能力
06
有理数乘除法在生活中的 应用
在购物中的应用
THANK YOU
感谢观看
有理数的乘除法 课 件
• 有理数乘除法概述 • 整数乘除法的计算方法 • 分数乘除法的计算方法 • 小数乘除法的计算方法 • 有理数乘除法的混合运算 • 有理数乘除法在生活中的应用
01
有理数乘除法概述
有理数乘除法的定 义
有理数乘法
对于任意两个有理数a和b(a≠0) ,它们的乘积记作a×b,称为乘法。
进行计算。
有理数乘除法的基本法 则
01
02
03
04
两数相乘,同号得正,异号得 负,并把绝对值相乘。
两数相除,同号得正,异号得 负,并把绝对值相除。
零乘以任何数都得零,零除以 任何非零数都得零。
多个有理数相乘或相除时,应 注意符号和顺序。
02
整数乘除法的计算方法
整数乘法的计算方法
总结词
整数乘法是一种基于乘法运算法则, 通过将两个或多个整数相乘得到积的 运算方法。
要点一
总结词
有理数乘除法在购物中应用广泛,方便消费者进行计算。
要点二
详细描述
在购物过程中,消费者需要使用有理数乘除法来计算商品 总价、折扣以及找零等。比如,购买两件商品,每件价格 为20元,使用有理数乘法可以快速计算出总价为40元。在 折扣方面,如两件商品打8折,可以使用有理数乘法计算折 扣后的价格。找零时,消费者可以根据总价和支付金额使 用有理数除法计算出找零金额。
有理数的乘法ppt
有理数的乘法1. 什么是有理数有理数是指可以表示为两个整数的比的数,包括正整数、负整数、零和分数。
有理数可以用有限的小数、循环小数或纯循环小数表示。
常见的有理数包括: - 正整数:1,2,3… - 负整数:-1,-2,-3… - 零:0 - 分数:1/2,3/4,-2/3…2. 有理数的乘法规则有理数的乘法遵循以下规则:规则1:正数乘以正数,积为正数例如:2 *3 = 6规则2:负数乘以负数,积为正数例如:-2 * -3 = 6规则3:正数乘以负数,积为负数例如:2 * -3 = -6规则4:零乘以任何数,积为零例如:0 * 3 = 0规则5:任何数乘以零,积为零例如:3 * 0 = 0规则6:有理数相乘,乘积的绝对值等于对应因子的绝对值的乘积例如:|-2| * |-3| = 2 * 3 = 6规则7:有理数相乘,乘积的符号由乘法因子的符号决定例如:-2 * 3 = -63. 有理数乘法的例题例题1:计算乘积2 *3 = ?解答:根据规则1,正数乘以正数,积为正数,所以:2 * 3 = 6例题2:计算乘积-4 * -5 = ?解答:根据规则2,负数乘以负数,积为正数,所以:-4 * -5 = 20例题3:计算乘积-6 * 2 = ?解答:根据规则3,正数乘以负数,积为负数,所以:-6 * 2 = -12例题4:计算乘积0 * 7 = ?解答:根据规则5,任何数乘以零,积为零,所以:0 * 7 = 0结论有理数的乘法遵循一定的规则,根据乘法因子的正负性可以确定乘积的正负性,同时乘积的绝对值等于对应因子的绝对值的乘积。
通过掌握这些规则,我们可以准确计算有理数的乘法。
有理数的乘法人教版七年级数学上册PPT精品课件
解:由题意得,a+b=0,cd=1,|m|=6, m=±6. 所以原式=m×0-1+6=5. 故m(a+b)-cd+|m| 的值为5.
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
三级拓展延伸练
15. 在整数集合{-3,-2,-1,0,1,2,3,4,5,
6}中选取两个整数填入“□×□=6”的□内
使等式成立,则选取并填入的方法有( C )
A. 2种
•
9.能准确 、有感 情的朗 读诗歌 ,领会 丰富的 内涵, 体会诗 作蕴涵 的思想 感情。
第一章 有理数
第13课 有理数的乘法(1)
新课学习
知识点1.有理数的乘法法则 1. 有理数的乘法法则
(1)两数相乘,同号为正,异号为负,并把绝 对值相乘.
(2)任何数与0相乘,都得0. 口诀:负负得正.
2. (例1)计算: (1) 8×(-4)=___-_3_2______; (2)(-7)×2=____-_1_4_____; (3)(-3)×(-12)=____3_6____; (4)(-4)×0=_____0_______.
•
7.文学本身就是将自己生命的感动凝 固成文 字,去 唤醒那 沉睡的 情感, 饥渴的 灵魂, 也许已 是跨越 千年, 但那人 间的真 情却亘 古不变 ,故事 仿佛就 在昨日 一般亲 切,光 芒没有 丝毫的 暗淡减 损。
•
8.只要我们用心去聆听,用情去触摸 ,你终 会感受 到生命 的鲜活 ,人性 的光辉 ,智慧 的温暖 。
B. 4种
C. 6种
D. 8种
16. 定义一种正整数的“H运算”是:①当它是奇
数时,则该数乘以3加13;②当它是偶数时, 则取该数的一半,一直取到结果为奇数停止.
如:数3经过1次“H运算”的结果是22,经过 2次“H运算”的结果为11,经过3次“H运算” 的结果为46.那么28经过2 020次“H运算”得
人教版初一数学 2.2.1 有理数的乘法 第1课时PPT课件
巩固练习
说出下列各数的倒数.
1, –1, 1 , – 1 , 5, –5, 0.75, –2 1 .
33
3
1, –1, 3, –3,
1, 5
-1, 5
4 , - 3.
3
7
当堂训练
基础巩固题
1. 2的倒数是( B )
A.2
B. 1
2
C.– 1
2
2. –2×(–5)的值是( D )
A.–7
B.7
C.–10
负
4. (–2)×(–3)×(–4)×(–5) 正
5. 7.8×(–8.1)×0×(–19.6) 零
探究新知
【思考】几个有理数相乘,因数都不为 0 时,积的符号怎样确定?
有一个因数为 0 时,积是多少?
探究新知
归纳总结
几个不等于零的数相乘,积的符号由_负__因__数__的__个__数__决定.
} 当负因数有_奇__数__个时,积为负; 奇负偶正
D.–2 D.10
当堂训练
3. 若a、b互为相反数,若x、y互为倒数,则a–xy+b= –1 . 4. 相反数等于它本身的数是 0 ;
倒数等于它本身的数是 1,–1 ; 绝对值等于它本身的数是 非负数 .
当堂训练 能力提升题
计算: (1) (125) 2 (8) 2000
(2)
( 2)( 7)( 6 ) 3 3 5 14 2
(+2)×(+3)= +6 (–2)×(+3)= –6 2×0=0
(–2)×(–3)= +6 (+2)×(–3)= –6 (–2)×0=0
根据上面结果可知: 3.乘积的绝对值等于各乘数绝对值的_积_;
《有理数的乘法》有理数及其运算PPT教学课件(第1课时)
个的倒数,也称这两个有理数互为倒数.
思考:数a(a≠ 0)的倒数是什么? 1
1
× )
3
2
探索新知
1.倒数成对出现;
2. 0没有倒数,因为0不能作分母;
3.求倒数时只交换分子、分母的位置,不改变正负;
4.倒数等于本身的数只有1和−1;
5.带分数、大于1的小数求倒数时一般化为假分数再
求倒数;
6.若ab=1,则a、b互为倒数,若a,b互为倒数,则ab=1.
= −20
(2)(−5) ×(−7)
解:原式= +(5 ×7)
= 35
(3) (−2022) ×0
解:原式= 0
先确定积的符号,再确定积的绝对值
2
探索新知
例1 计算
(3)
3
(− )
8
8
×(− )
3
3
+(
8
解:原式=
=1
8
× )
3
(4)
1
(−3) ×(− )
3
解:原式= +(3
=1
两个有理数乘积为1,则称其中一个是另一
4
解:原式= 0
10
×8×(− )
3
3
+(
5
解:原式=
= 16
10
×8× )
3
3
巩固新知
计算
课本P51随堂练习
3
巩固新知
高分P35
6.【例3】(创新题)若a,b互为相反数,c,d互为倒数,
m的绝对值是1,求(a+b)cd-2 022m的值.
解:因为a,b互为相反数,c,d互为倒数,m的绝对值
是1,
思考:数a(a≠ 0)的倒数是什么? 1
1
× )
3
2
探索新知
1.倒数成对出现;
2. 0没有倒数,因为0不能作分母;
3.求倒数时只交换分子、分母的位置,不改变正负;
4.倒数等于本身的数只有1和−1;
5.带分数、大于1的小数求倒数时一般化为假分数再
求倒数;
6.若ab=1,则a、b互为倒数,若a,b互为倒数,则ab=1.
= −20
(2)(−5) ×(−7)
解:原式= +(5 ×7)
= 35
(3) (−2022) ×0
解:原式= 0
先确定积的符号,再确定积的绝对值
2
探索新知
例1 计算
(3)
3
(− )
8
8
×(− )
3
3
+(
8
解:原式=
=1
8
× )
3
(4)
1
(−3) ×(− )
3
解:原式= +(3
=1
两个有理数乘积为1,则称其中一个是另一
4
解:原式= 0
10
×8×(− )
3
3
+(
5
解:原式=
= 16
10
×8× )
3
3
巩固新知
计算
课本P51随堂练习
3
巩固新知
高分P35
6.【例3】(创新题)若a,b互为相反数,c,d互为倒数,
m的绝对值是1,求(a+b)cd-2 022m的值.
解:因为a,b互为相反数,c,d互为倒数,m的绝对值
是1,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
科学课件:/kejian/kexue/ 物理课件:/kejian/wuli/
化学课件:/kejian/huaxue/ 生物课件:/kejian/shengwu/
地理ishi/
=
6
-6 -4
-2 0 2
2(3) = 6
-6 -4
-2 0 2
=+(4×7)
=28 (4)
(3)
(
第三步
1
是
);
绝对值相乘。
3
(3 1) 13
=1
练一练: (1) 6( 9)= 54 (2) ( 6)( 9)=54
(3) ( 6)9 = 54 (4) ( 6)1 (5=) 6 (6)(1) =6 (6) 6(1) = 6
(7) ( 6)0 =0 (8) 0(6) =0
感谢您的阅读! 为了便于学习和使用,本文 档下载后内容可随意修改调 整及打印,欢迎下载!
( 2) ( 3) = 6
-2 0
2 46
0(3) =0 (4) 0 =0
23=6
(–2)3= – 6
2(–3)= – 6 (–2)(–3)=6
两数相乘,同号得 正 ,异号得负 ,绝对 值相乘; 0 乘 任何数得 0 。
相信自己 !
有理数乘法法则
两数相乘,同号得正,异号得负,绝对值相乘 任何数与 0 相乘,积仍为 0.
PPT素材:/sucai/ PPT图表:/tubiao/ PPT教程: /powerpoint/ 范文下载:/fanwen/ 教案下载:/jiaoan/
PPT课件:/kejian/
语文课件:/kejian/yuwen/ 数学课件:/kejian/shuxue/
英语课件:/kejian/yingyu/ 美术课件:/kejian/meishu/
(9) (6) 0.25=1.5
(10) (0.5)(8) =4
总结:
一个数乘以1都等于它本身; 一个数乘以-1都等于它的 相反数.
?动动脑:你会计算几个有理数的乘法吗?
2 ×3×4× (-5)=______-_1_2_0_______
2 ×3×(-4)×(-5)=
120
2 ×(-3) ×(-4) ×(-5)=_____- _1_2_0_________
(-2) ×(-3) ×(-4) ×(-5)=______1_2_0_________
几个不是0的数相乘,负因数的个数是偶数 时,积是 正数; 负因数的个数是奇数 时,积是 负数 .
例三 计算:
(1)(-5)×8×(- 7)×(- 0.25) (2) 7.8×(-8.1)×0×(- 19.6)
解: (1)原式= -(5×8×7×0.25)
= - 70 (2)原式 = 7.8×8.1×0×19.6
=0 小发现:
几个数相乘,如果其中有因数为0,积等于__0____。
计算 (1) 7/10 ×(-3/14) (2) 5/4 ×(-1.2)×(-1/9) (3)(-0.12)×1/12×(-100) (4)(-3/7)×(-1/2)×(-8/15)
例题解析
• 例1 计算:
•
(1) (−4)×5 (2) (−4)×(−7)
•
(3) ( 3) ( 8()4) (3) ( 1)
83
3
求解中的第一步是
确定类型
第二步
解:(1) (−4)×5 = −(4×5) =−20
(3) ( 3)( 8);
83 (3 8)
83
=1
(2) (−4)×(−7) 是确定积的符;号
有理数的乘法
4 7 =28 3 0 =0 5 2 7 =70 6 9 0 4 =0 (-3)2=? (-3)(-2)=?
23= 6
-2 0
2 46
(
2)3 PPT模板:/moban/
PPT背景:/beijing/ PPT下载:/xiazai/ 资料下载:/ziliao/ 试卷下载:/shiti/ PPT论坛: