赋范空间
应用数学基础第三章-赋范线性空间和有界线性算子详解
则 d 为 X 上的度量,但这种度量不满足
d(x,y) d(x, y)
1.2 收敛函数与连续映射
定义2:设 X 为赋范线性空间,{xn}n1 X
如果存在
x0 X ,使得
lim
n
xn
x0
0,
则称 {xn} 依范数收敛于 x0,记为
lim
n
xn
x0
这时也称 x0 为序列{xn}n1 的极限。
10 如果 ||•||1 和 ||•||2 等价,则{xn} 为 (X, ||•||1) 中的 Cauchy 序列 {xn} 为 (X, ||•||2) 中的 Cauchy 序列;
20 如果 ||•||1 与 ||•||2 等价,则 {xn} 依范数 ||•||1 收敛于x {xn} 依范数 ||•||2 收敛于 x;
由连续映射的定义易知:
(1) f 在点 x0 X 处连续 对 {xn} X ,如
果 xn x0 ,则 f (xn ) f (x0 ) ; (2) 范数 ||•||:X R 是连续映射;
(3) X 上线性运算(加法与数乘)也是连续映射;
(4) 内积空间中内积运算是连续映射。
1.3 Cauchy 序列与 Banach 空间
第三章
§1 赋范线性空间
1.1 定义及示例
定义1:设 X 是数域 K 上的线性空间,
如果存在映射 ||•||:X→R,并满足:
(1) 非负性:对 xX, ||x||0, 并且
||x||=0 x=0
(2) 齐次性:对 xX,K,||x||=||||x|| (3) 三角不等式:对 x,yX,||x+y|| ||x||+||y||
定义4
数值分析(03)赋范线性空间(1)
m ax x i
1 i n
s=0; for i=1:n if abs(x(i))>s,s=abs(x(i));end end
作业 1 用 for 语 句 、 if 语 句 编 写 计 算 矩 阵 1 范 数 A 1 的 程 序 。 2 用 for 语 句 、 if 语 句 编 写 计 算 矩 阵 范 数 A
对 1 5,解齐次方程组 ( 5 I A ) x 0,有
1 2 1
x1 x 3 x2 2 x3
0 2 0
1 1 2 0 0 1
0 1 0
1 2 0
T
基础解系为 1 (1, 2 ,1 )
n n n n n n
上的一个矩阵的范数,也记为 A .
大多数情况下 , 矩阵范数常与向量范数 混合在一起 使用 , 这就要求矩阵的范数和 向量的范数具有相容性 , 即 Ax A x
数值分析
数值分析
常用的矩阵范数有两种 : (1 ) Forbeniu s范 数 (即 矩 阵 的 欧 氏 范 数 ) A
T
x1 x 3
基础解系为 1 ( 0 ,1,0 ) , 2 ( 1,0 ,1 )
矩阵 A 属于 2 , 3 3的全部特征向量为 x
(2)
T
k 1 1 k 2 2 k 1 ( 0 ,1 , 0 ) k 2 ( 1 , 0 ,1 )
T
T
k 1 , k 2 不全为 0 .
( 2 ) A 的不同特征值的特征向 量是线性无关的 .
数值分析
; 值 征 特 零 无A 异 奇 非A 阵 矩
数值分析
(3)实 对 称 矩 阵 的 特 征 值 都 是 实 数 , 且 一 定 有 n个 线 性 无 关 的 特 征 向 量 . (4)实 对 称 矩 阵 属 于 不 同 特 征 值 的 特 征 向 量 一定是互相正交的.
第二章 赋范线性空间2
1)
M
0 f
为
X
的一个闭子空间;
2) 取 x0 ∈ X 使 f (x0 ) ≠ 0 , 则
X
=
M
0 f
+ {λ x0
|λ ∈ R};
3)
若
f (x0 ) = α
,
则
M
α f
=
x0
+
M
0 f
.
M
α f
i =1
||2 ,
所以
||
f
||≥
⎛ ⎜⎝
n
| αi
i =1
|2
⎞1/ ⎟⎠
2
.
∑ 这样就有 ||
f
||=
⎛ ⎜⎝
n
| αi
i =1
|2
⎞1/ ⎟⎠
2
.
f → (α1,α2 ,
,αn) .
n
∑ 反过来, 任取一个 (α1,α2 , ,αn ) ∈ R n ,对于 x = αiei ∈ Rn ,定义 i =1
例3 设用 l∞ 作为离散信号空间,取 h = (hi ) ∈ l1 为一个滤波器的单位脉冲响应,
∞
∑ y = Hx , yn = hi xn−i i = −∞
H : l∞ → l∞ 为一个有界(稳定)线性算子。事实上,
∞
∞
∞
∑ ∑ ∑ ||
y
||∞
=
max n
|
i = −∞
hi xn−i
|≤
|
i = −∞
||xn+1-xn|| ≤ α n||x1-x0|| 。
现代分析3-3赋范空间 (1)
因而
(t ) (1) 1
由此可得
t (0,)
t t (1 )
令
t (0,)
t
A ,代入上面不等式,那么 B
A A (1 ) B B
两边乘B,得到
A A (1 ) B 1 B
1 1 令 q 于是上式成为 p ,则
p 而不加以区别,设 f , g L [a, b] ,因为
f (t ) g (t ) (2 max f (t ) , g (t ) ) p
p
2 ( f (t ) g (t ) )
p
p
p
p p 所以, f (t ) g (t ) 是 L 上可积函数,即 f g L [a, b] ,至于 L [a, b]
p
k 1
1 2k
(12)
但是因为常数 1 Lq [a, b] ,由Holder不等式,成立
a
b
f nk f nk 1 dt f nk 1 _ f nk
p
(b a )
1 q
所以级数
f
k 1
a
n
b
nk
f nk 1 dt
(13)
n k 1
收敛,由级数形式的Levi定理,级数
证毕. 例5:空间 l
p
Lp [a, b] 空间一样,在空间中也有类似的Holder不等式 和Minkowski不等式:
k 1 k
n
k
) ,(k Holder 不等式) ( k ) (
p q k 1 k 1
n
1 p
n
1 q
赋范空间中最小范数问题的研究
赋范空间中最小范数问题的研究摘要:赋范空间中最小范数问题一直是数学界非常重要的问题之一。
本文主要介绍了最小范数问题在赋范空间中的相关研究。
首先,我们给出了赋范空间中最小范数问题的模型和解法。
其次,我们讨论了基于赋范空间的最小范数问题的解决方案,给出了一些具体的求解算法。
最后,我们分析了赋范空间中最小范数问题的应用,以及在此基础上对未来研究的展望。
关键词:赋范空间;最小范数问题;解法;求解算法1言赋范空间中的最小范数问题是数学的一个关键性研究领域,它与科学和工程的方方面面都有密切的联系。
赋范空间中最小范数问题的研究包括对模型的建立,解的求解,对解的分析,以及应用等多方面的内容。
因此,研究赋范空间中最小范数问题是极具学术价值和应用前景的。
2范空间中最小范数问题模型在赋范空间中,最小范数问题可以描述为:求$mathrm{V}$为实赋范空间,赋范$| cdot |$为$mathrm{V}$上定义的范数,存在$mathbf{u}_{1},mathbf{u}_{2},cdots,mathbf{u}_{n}inmathrm{V} $,满足如下的最小化问题:begin{equation}min_{mathbf{u}_{i}inmathrm{V}}sum_{i=1}^{n}|mathbf{u}_{i}|end{equation}其中,$mathbf{u}_{i}$是未知向量,$|mathbf{u}_{i}|$表示向量$mathbf{u}_{i}$的范数,$sum_{i=1}^{n}|mathbf{u}_{i}|$表示所有未知向量的范数之和。
3 主要解法以上问题可以采用迭代解法,其核心思想使用梯度下降法,使用参数更新方法和正则化项来实现最小化。
具体来说,首先使用极大似然法建立问题的模型,定义损失函数,并计算损失函数的梯度;然后使用梯度下降法对模型参数进行参数更新,即对每次迭代的参数进行梯度更新,使损失函数越来越小;最后在每次迭代中加入正则化项,有效地控制参数更新的步长,让目标函数变得更加稳定。
如何理解线性赋范空间、希尔伯特空间, 巴拿赫空间,拓扑空间
(1) 对 称 性 ;
(2) 对 第 一 变 元 的 线 性 性 ;
(3) 正 定 性 ;
则称(x, y) 为内积 所以内积又是比范数更加具体的东西,因为范数只是到0的距离的时候多了线性性。但是 内积是线性性的充分条件【A>B,B不能>A就称为A是B的充分条件;类似的,B>A,A不 能>B,则称A是B的必要条件】 举个栗子: 我们可以把内积定义为:(x, y) = ∑Ni=1xiyi 也可以定义为:(f, g) = ∫∞0 f(x)g(y)dx 所以:内积可导出范数 | | x | | 2 = (x, x); 在线性空间上定义内积;其空间称为内积空间; 内积可在空间中建立 欧几里得空间学,例如交角,垂直和投影等,故习惯上称其为欧几 里得空间。 所以,我们平日中生活的空间就是欧几里得空间 接下来,我们看几个听起来似乎很牛逼哄哄的东西
赋予范数或者距离的集合分别称为:赋范空间和度量空间 若在其上再加上线性结构称为:线性赋范空间和线性度量空间
那么,我们日常生活的空间可以称为赋范空间或者度量空间么? 答案是否定的因为这样的空间缺少角度的概念,从前面的定义中我们无法退出角度。所 以,我们才有了接下来的内容。
内积空间
赋范空间有向量的模长,即范数。但是还缺乏一个很重要的概念——两个向量的夹角,为 了克服这一缺陷,我们引入:内积 定义:
赋线空范性间空度,间量拓,空扑度间空量,间空希如间尔何,伯不线特被性空他赋间们范,吓空到巴间?拿,赫 函数空间
一、问题的提出
在微积分中可以定义极限和连续,依赖于距离 那么,什么是距离呢? 通俗的看法,大家都认为距离就是所谓的直线
但是,在这张图中,我们如何衡量两点之间的距离? 因为地球仪上不能画直线,所以这里的距离显然就不是直线了。我们只能沿着地球仪取曲 线作为距离 再来看一张图
第二章赋范线性空间黎永锦
第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能 发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L . (欧拉) (1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i ii zz 时引入记号||||z 来表示211)(∑∞=i i i z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义 2.1.1 设K 是实数域R 或复数域C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件:(1) 0||||≥x 且0||||=x 当且仅当0=x ; (2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;(3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例2.1.1 设s 数列全体,则明显地,s 为线性空间,对任意的s y x ∈,, 定义∑∞=-+-=1|)|1(!||),(i i i i i y x i y x y x d则∑∞=+=1|)|1(!||)0,(i i i x i x x d但)0,(|||)|||1(!||||)0,(1x d x i x x d i i i λλλλ≠+=∑∞=取)0,,0,1(0Λ=x ,210=λ,则 3121121)0,(00=+=x d λ 而412121)0,(||00=⨯=x d λ因此)0,(||)0,(0000x d x d λλ≠所以,)0,(0x d 不是s 上的范数.问题 2.1.1 对于线性空间X 上的度量d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理2.1.2 设X 是线性空间,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1) )0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例 2.1.3 对于}||,|){(11∞<∈=∑∞=i ii i xK x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例2.1.4 对于∞<≤p 1,}||,|){(1∞<∈=∑∞=i p ii i p xK x x l 在范数pi pi x x 11)||(||||∑∞==下是赋范线性空间.例2.1.5 }||sup ,|){(∞<∈=∞i i i x K x x l 在范数||sup ||||i x x =下是赋范线性空间. 例2.1.6 }0lim ,|){(0=∈=∞→i i i i x K x x c 在范数||sup ||||i x x =下是赋范线性空间.例 2.1.7 }],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义 2.1.2 设X 是赋范空间X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为0||||x x n −→−⋅在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球. 为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例2.1.8 在Euclid 空间2R 中,对于),(21x x x =可以定义几种不同的范数:||||||||211x x x += 2122212)|||(|||||x x x +=|}||,m ax {|||||213x x x =则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:}1|||||{11≤=x x B}1|||||{22≤=x x B}1|||||{33≤=x x B思考题 2.1.1 设||)||,(⋅X 是赋范线性空间,问开球),(0r x U 的闭包是否一定是闭),(0r x B ?思考题2.1.2 设||)||,(⋅X 是线性空间,问闭球),(0r x B 内部是否一定是开球),(0r x U ?在赋范线性空间中,加法与范数都是连续的.定理2.1.8 若||)||,(⋅X 是赋范空间00,y y x x n n →→,则00y x y x n n +→+. 证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理 2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →. 证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义2.1.3 设||)||,(⋅X 是赋范线性空间,若),(0||||,}{∞→→-⊂n m x x X x n m n 时, 必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义 2.1.4 设||)||,(⋅X 是赋范线性空间,若序列}{}{21n n x x x S +++=ΛΛ收敛于某个X x ∈时,则称级数∑∞=1n nx收敛,记为∑∞==1n nxx .定义2.1.5 设||)||,(⋅X 是赋范线性空间,若数列||}||||||||{||21n x x x +++ΛΛ收敛时, 则称级数∑∞=1n nx绝对收敛.在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理 2.1.10 设||)||,(⋅X 是赋范线性空间,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n nx绝对收敛,则由∞<∑∞=1||||n nx可知,对于n n x x x S +++=ΛΛ21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ΛΛ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即x xn n=∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对kk 21=ε,有 ΛΛ<<<<<+121k k n n n n , 使得),2,1(21||||1Λ=<-+k x x kn n k k因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义 2.1.6 设||)||,(⋅X 是赋范线性空间,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理 2.1.11 设||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义2.1.7 设X 是线性空间,p 为X 上的一个实值函数,且满足: (1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,; (3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例2.1.9 在∞l 中,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2ΛΛn x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义 2.1.8 设X 是线性空间,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性); (3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0, 即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例2.1.10 对于}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M , 则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x , 这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理 2.1.14 设||)||,(⋅X 是赋范线性空间,M 为X 的闭线性子空间,在M X /上定义范数}|||inf{||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有, )(||||~x p x =.当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性.定理2.1.15 设X 是Banach 空间,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义 2.2.1 设X 是线性空间,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理 2.2.1 设1||||⋅和2||||⋅是线性空间X 上的两个不同范数,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤. 若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n nn x x y =,则nx x y n n n 1||||||||||||211<=故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论 2.2.2 设1||||⋅与2||||⋅是线性空间X 上的两个不同范数,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有12211||||||||||||x C x x C ≤≤推论 2.2.3 设1||||⋅与2||||⋅是线性空间X 上的两个等价范数,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间.思考题 2.2.1 若1||||⋅与2||||⋅是线性空间X 上的两个不同范数,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义2.2.2 设X 是n 维线性空间,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21Λ为X 的一组线性无关组,则称n e e e ,,,21Λ为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn i i e x 1α定理 2.2.4 设||)||,(⋅X 是n 维线性空间n e e e ,,,21Λ是X 的Hamel 基,则存在常数1C 及02>C 使得2112221121)||(||||)||(∑∑==≤≤ni i ni i C x C αα对任意∑==nn i i e x 1α都成立.证明 对于任意ni K ∈=)(αα,定义函数||||)(1∑==nn i i e f αα则对任意n i K ∈=)(αα,ni K ∈=)(ββ,有21122112211211111)||()||||()||(|||||||||||||||||||||)()(|∑∑∑∑∑∑∑∑========-=-≤-≤-≤-=-n i iin i in i iini i i ini ni ii ii ni ii n n ii M ee e e e ef f βαβαβαβαβαβα这里2121)||||(∑==nn ieM ,因此f 是n K 到R 的连续函数.由于nK 的单位球面}1)||(|){(2112=∈=∑=ni in i K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得10}|)(inf{)(C S f f =∈=ααα 20}|)(sup{)(C S f f =∈=ααβ因此对任ni K ∈=)(αα,有S ni iK n∈=∑=2112)||(||||αααα故21)||||(C f C nK≤≤αα即211221121121)||(||||)||(∑∑==≤++≤ni i n n ni i C e e C ααααΛ下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i ie f αα,故01)0(=∑=nn i ie α由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理 2.2.5 设X 是有限维线性空间,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C , 02>C 使得12211||||||||||||x C x x C ≤≤定理 2.2.6 有限维的赋范线性空间一定是Banach 空间.证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21Λ有i ni m im e x ∑==1)(α,由2112221121)||(||||)||(∑∑==≤≤ni i ni i C x C αα可知}{)(m iα亦为Cauchy 列,故存在R i ∈α,使得i m i αα→)(,因而有)(i αα=,使得0)||(2112)(→-∑=ni i m iαα令i ni ie x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在nR 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理2.2.7 设||)||,(⋅X 是有限维的赋范线性空间,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21Λ为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i ni ie x ∑==1α定义nK 到X 的算子T :i ni i e T ∑==1)(αα则存在0,021>>C C ,使得2112221121)||(||)(||)||(∑∑==≤≤ni i i ni i C T C ααα从而T 是n K 到X 的连续算子,且是一一对应的. 由||)(||)||(21121ααT C ni i≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当 )(1M T -为n K 的紧集,从而M 是X 的紧集当且仅当M是有界闭集.问题2.2.1 若赋范线性空间||)||,(⋅X 的每个有界闭集都是紧集,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理 2.2.8 (Riesz 引理)设M 是赋范线性空间||)||,(⋅X 的闭真子空间,则对任意10<<ε,存在1,=∈εεx X x ,使得εε≥-x x对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得εdx y d ≤-≤||||00令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有||)||||(||||||1||||||||||||0000000000x x y x y x y x y x y x x x -+--=---=-ε由M x ∈0,M x ∈和M 是线性子空间,可知M x x y x ∈-+||||000因此d x x y x y ≥-+-||)||||(||0000故εεε=≥-≥-ddx y d x x ||||||||00由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理 2.2.9 赋范线性空间||)||,(⋅X 是有限维的当且仅当X 的闭单位球}1|||||{≤=x x B X 是紧的.证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x span M ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有21||||≥-n m x x 因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论2.2.10 赋范线性空间X 是有限维当且仅当X 的每个有界闭集是紧的.对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义 2.2.3 设]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件, Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 2.2.11 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集, 且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念, Schauder 基是-Fun in stetiger Theorie Zur Schauder J [..]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义 2.3.1 Banach 空间||)||,(⋅X 中的序列}{n x 称为X 的Schauder 基,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得nn n x x ∑∞==1α容易看到,有限维赋范线性空间一定具有Schauder 基.例2.3.1 在1l 中令),0,1,0,,0(ΛΛ=n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基. 具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义 2.3.2 ||)||,(⋅X 是赋范线性空间,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例2.3.2 由于有理数集Q 是可数集,且R Q =,因此R 是可分的.类似地,n R 也是可分的赋范空间.例2.3.3 对于p l p ,1+∞<≤都是可分的,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q Λ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21ΛΛε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例 2.3.4 由Weierstrass 逼近定理可知对任意],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理2.3.5 若||)||,(⋅X 赋范空间有Schauder 基,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题2.3.1 是否每个赋范空间都具有Schauder 基? 例2.3.6 赋范空间∞l 没有Schauder 基.由于∞l 不可分,因而一定没有Schauder 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令=)0(ix ⎪⎩⎪⎨⎧>≤+. 1|| 0;1|x | ,1)((i)i )(时当时当i i i i x ,x 则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且1||||sup ||||)0()()0()(10≥-≥-=-∞<≤m m m i m i i m x x x x x x所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题2.3.2 是否每个可分的赋范空间都具有Schauder 基?上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973), 309-317.]2.4 线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间. Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义 2.4.1 设||)||,(⋅X 是赋范线性空间,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有)()()(y f x f y x f βαβα+=+则称f 为X 的线性泛函.例2.4.1 在∞l 上,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理2.4.2 设f 是赋范线性空间||)||,(⋅X 上的线性泛函,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则00x x x x n →+-由f 在0x 点的连续性,因此)()(00x f x x x f n →+-所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题2.4.1 是否存在一个赋范线性空间X ,X 上任意线性泛函都连续?例2.4.3 n R 上任意线性泛函都是连续的.事实上令)0,0,1,0,0(ΛΛ=i e ,则任意nR x ∈,有∑==ni ii ex x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义 2.4.2 若X 上的线性泛函把X 的任意有界集都映为K 的有界集,则称f 为有界线性泛函,否则f 为无界线性泛函.定理 2.4.4 设f 为赋范线性空间||)||,(⋅X 上的线性泛函,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有M x f ≤|)(|故对任意X x ∈,有M x xf ≤|)||||(| 所以|||||)(|x M x f ≤例2.4.5 对)(|){(i i x x c =为收敛序列},范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此|||||lim ||)(|x x x f i i ≤=∞→所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理2.4.6 设X 是赋范线性空间,则X 上的线性泛函是连续的当且仅当f 是有界的. 证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得|||||)(|n n x n x f >令0,||||0==y x n x y n nn ,则01||||0→=-n y y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理 2.4.7 设X 是赋范线性空间,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使|||||)(|n n x n x f >令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于01|)(|||||||)(||||||0→<==-ny f y y f y z z n n n n n 因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义2.4.3 设f 为X 上的线性连续泛函,则称|||||)(|sup||||0x x f f x ≠= 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例 2.4.8 设f 为1l 的连续线性泛函,若取}{i e 为1l 上的Schauder 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i ie f xx f ,因而)||(|)(|sup |)(||||)(||)(|111∑∑∑∞=∞=∞=≤≤=i iii iii iix e f e f x e f x x f从而|)(|sup ||||i e f f ≤. 取1)0,0,1,0,0(l e i ∈=ΛΛ, 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间n R 上的矩量问题. Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果. Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理 2.4.9 设M 是实线性空间X 的线性子空间,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理 2.4.10 设M 是复线性空间X 的复线性子空间,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理 2.4.11 设M 是赋范线性空间X 的线性子空间,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得(1) **=M X f F |||||||| ;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数, *M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =, 对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由**==≥=≠∈≠∈≠∈M x M x x M x x X x X f x x f x x F x x F F |||||||||)(|sup |||||)(|sup |||||)(|sup||||0,0,0,可知**=M X f F ||||||||, 且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题2.4.2 在Banach Hahn -定理中,什么条件下保范延拓是唯一的?例2.4.12 在},|),{(2121R x x x x X ∈=上,定义范数||||||),(||||||2121x x x x x +==. 令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则|||||||)(|1y x y f ==故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函211)(x x x F +=212)(x x x F -=这里X x x x ∈=),(21 在M 上,都有)()(1y f y F = )()(2y f y F =对任意的M x y ∈=)0,(1成立. 在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理2.4.13 设||)||,(⋅X 是赋范空间,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g :td x g =)(则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x .对0'tx x x +=,不妨假设0≠t .由}||inf{||,|||)'(||)(|00M y x y d d t tx x g x g ∈-==+=可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故df x x f x f x f x f d n n |||||||||||||)()(||)(|000→-⋅≤-==因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论 2.4.14 设X 是赋范线性空间,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f .该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函.由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论 2.4.15 设X 是赋范线性空间,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题2.4.1 设X 是赋范线性空间,试证明对任意X x ∈0,有|)(|sup||||0,1||||0x f x Xf f *∈==证明 对任意*∈X f ,1||||=f ,有|||||||||||||)(|000x x f x f =≤因此|)(|sup||||0,1||||0x f x X f f *∈=≥另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =, 故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题 2.4.2 设||)||,(⋅X 是赋范空间,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得1||)1(||0000=-+y x αα由Banach Hahn -定理的推论,可知存在*∈X f , 1||||=f ,使得||)1(||))1((00000000y x y x f αααα-+=-+即1)()1()(0000=-+y f x f αα这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x X f f ,又由2|||||||||||0000=+≤+y x y x可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义 2.5.1 赋范空间X 称为严格凸的,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有1||2||<+yx严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例2.5.1 Banach 空间0c 不是严格凸的. 取000),0,0,1,0(),,0,1,1(c y x ∈==ΛΛ,则1||||||||00==y x ,且对),0,0,1,21(200Λ=+y x ,明显地有 1||2||00=+y x .类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例2.5.2 若1||||,1||||,,2==∈y x l y x 且y x ≠,则4||||2||||2)||2()||2()||()||(||||||||221212121222=+=+=-++=-++∑∑∑∑∞=∞=∞=∞=y x y x y x y x y x y x i i i i i i i i i i从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理2.5.3 若X 是严格凸赋范空间,则对任意非零线性泛函*∈X f , f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得||||)()(00f y f x f ==由于||||)]()([21)2(0000f y f x f y x f =+=+ 因此||2||||||)2(||||0000y x f y x f f +≤+= 从而1||2||0≥+y x 明显地,12||||||||||2||0000=+≤+y x y x .因此 1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理 2.5.4 若*X 是严格凸,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓.证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则1||2/)||||||||(||21≤+f Ff F 由于2|)()(|sup 2||sup ||2||21,1||||21,1||||21x F x F F F F F Mx x X x x +≥+=+∈=∈= ||||2|)()(|sup,1||||f x f x f M x x ≥+=∈=因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题2.5.1 若对X 的任意子空间M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义2.5.2 设X 是赋范线性空间X x X M ∈⊂,,若存在M y ∈0,使得||||inf ||||0y x y x My -=-∈则称0y 为M 中对x 的最佳逼近元.定理2.5.5 设M 为赋范线性空间X 上的有限维子空间,则对任意X x ∈,存在M y ∈0,使得||||inf ||||0y x y x My -=-∈证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得d y x n →-||||因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈.问题2.5.1 上述定理中的最佳逼近元是否一定唯一?例 2.5.6 在2R 中,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有1}1||,max{||||)0,()1,0(||||||110≥=-=-x x x x故1}|||inf{||),(00≥∈-=M x x x M x d对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf{||),(00=∈-=M x x x M x d . 但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理2.5.7 设X 是严格凸空间,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得||||inf ||||0y x y x My -=-∈证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得d y x d y x =-=-|||||,||||21则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性。
第二章-赋范线性空间
上的一一对应的有界线性算子,则逆算子T 1必存在,
且T 1 也是有界线性算子。
*(6)有限维赋范线性空间中一切线性算子均有界(故 连续)。
3)线性泛函举例
① 设 E 是赋范线性空间,则 E 的范数 x 定义了一个 泛函
f : x E x R1, 则 f 连续有界、但不是线性的泛函。其范数
(1)线性算子 T 若在一点 x0 D(T)连续在 D(T )上处
处连续
(2)线性算子 T 有界 T 连续
Tx
(3)线性算子 T 有界 T
sup
x0
x
存在 ( ) 。
*(4)共鸣定理: 设 E 为 Banach 空间,E1 为赋范线
性空间,Tn (E E1) ,则x E, Tnx 有界 Tn 有界 。
第2章 赋范线性空间
§2.1 定义和举例 §2.2 按范数收敛 §2.3 有限维赋范线性空间 §2.4 线性算子与线性泛函 §2.5 赋范线性空间中的各种收敛
在第 1 章,我们通过距离的概念引入了点列的极 限。点列的极限是微积分中数列极限在抽象空间中的推 广,然而它是只有距离结构、没有代数结构(代数运算) 的空间,在应用时受到许多限制。本章和下章介绍的赋 范线性空间及内积空间就是距离结构和代数结构相结 合的产物,它比距离空间有明显的优势。
若又由
xn
0
2
xn
0 ,即
1
x
2比
x 1更强,
则称范数 x 1与 x 2等价。
注:范数等价具有传递性
例如:可以证明 Rn 中三种范数
x、 1
x、 2
x 相互等价
赋范空间中最小范数问题的研究
赋范空间中最小范数问题的研究近年来,赋范空间中最小范数问题受到了越来越多的关注,它以其独特的解决方案在数学界引起了广泛的反响。
最小范数问题是数学中求解范数最小值的抽象问题,也可以作为抽象凸结构的最优化问题来求解。
本文就有关最小范数问题的研究进行综述,从三个方面对其进行分析:问题的定义、相关理论和应用情况。
首先,最小范数问题的定义和表述非常简单。
赋范空间中的最小范数问题需要求解一组线性等式约束条件下范数最小值的解,也就是说要找到一个具有最小范数的向量,使其能够满足线性等式约束条件。
范数是指一组函数值的大小,最小范数问题即是求这一组函数当中最小的一个值。
其次,解决最小范数问题的理论主要有四种:经典梯度法、共轭梯度法、可裁剪的拉格朗日函数法和随机搜索法。
这四种理论的基础是梯度和拉格朗日函数的定义。
经典梯度法是根据目标函数的梯度来寻找凸优化问题的最优解,共轭梯度法则是根据梯度的凸组合来实现良好的收敛性。
可裁剪的拉格朗日函数法是通过拉格朗日函数的参数化,进而将一个最小范数问题转变为一个二次规划问题。
最后,随机搜索法则通过将问题划分为一系列子问题,再通过随机搜索法进行求解,从而寻求全局最优解。
最后,最小范数问题的应用也很广泛。
可以将它应用于信号处理、机器学习、控制系统分析、形式推理、组合优化医疗诊断等领域。
同时,最小范数问题甚至可以用于处理图像恢复等图像处理问题,由此可见最小范数问题在现代科技中的重要性和广泛性。
本文对最小范数问题进行了分析综述,从定义、理论和应用三个方面来考察它。
总而言之,最小范数问题在数学界有着重要的地位,其解决方案可以把具有抽象凸结构的优化问题转化为求解最小范数的问题,应用也非常广泛。
未来,期待有更多的研究加深对最小范数问题的理解,让它对科学研究做出更大的贡献。
赋范线性空间黎永锦
第2章 赋范线性空间虽然不允许我们看透自然界本质的秘密,从而认识现象的真实原因,但仍可能发生这样的情形:一定的虚构假设足以解释许多现象.Eurler L .(欧拉)(1707-1783,瑞士数学家)Schmidt E .在1908 年讨论由复数列组成的空间}||:){(12∞<∑∞=i i i z z 时引入记号||||z 来表示211)(∑∞=i ii z z ,||||z 后来就称为z 的范数.赋范空间的公理出现在Riesz F .在 1918 年关于],[b a C 上关于紧算子的工作中,但赋范空间的定义是在 1920到1922年间由 Banach S .(1892—1945)、Hahn H .(1879—1934)、Helly E .(1884—1943)和 Wiener N .(1894—1964)给出的,其中以Banach S .的工作最具影响.2.1赋范空间的基本概念线性空间是Peano Giuseppe 在1888年出版的书Geometrical Calculus 中引进的.Banach S .在1922年的工作主要是建立具有范数的完备空间,以后为了纪念他称之为 Banach 空间.他定义的空间满足三组公理,第一组公理定义了线性空间,第二组定义了范数,第三组给出了空间的完备性.定义K R C ,X 是数域K 上的线性空间,若||||⋅是X 到R 的映射,且满足下列条件:(1) 0||||≥x 且0||||=x 当且仅当0=x ;(2) ||||||||||x x λλ=,对任意X x ∈和任意K ∈λ ;(3) ||||||||||||y x y x +≤+,对任意X y x ∈, .则称||||⋅为X 上的范数,而||||x 称为x 的范数,这时称||)||,(⋅X 为赋范线性空间.明显地,若||)||,(⋅X 为赋范线性空间,则对任意X y x ∈,,定义||||),(y x y x d -=时,),(d X 为度量空间,但对一般的度量空间),(d X ,当X 为线性空间时,若定义)0,(||||x d x =,则||||x 不一定就是X 上的范数.例s ,则明显地,s 为线性空间,对任意的s y x ∈,, 定义则但取)0,,0,1(0 =x ,210=λ,则 而因此所以,)0,(0x d 不是s 上的范数.问题X d , 它满足什么条件时,)0,(||||x d x =才能成为范数?定理X ,d 是X 上的度量,在X 上规定)0,(||||x d x =,则X 成为赋范线性空间的条件是:(1))0,(),(y x d y x d -=,对任意X y x ∈, ;(2) )0,(||)0,(x d x d λλ=,对任意X x ∈和任意K ∈λ.下面举出赋范线性空间的一些例子.例}||,|){(11∞<∈=∑∞=i i i i x K x x l ,∑∞==1||||||i i x x 是1l 的范数, 即||)||,(1⋅l 是赋范线性空间.例∞<≤p 1,}||,|){(1∞<∈=∑∞=i p i i i p x K x x l 在范数下是赋范线性空间.例}||sup ,|){(∞<∈=∞i i i x K x x l ||sup ||||i x x =例}0lim ,|){(0=∈=∞→i i i i x K x x c ||sup ||||i x x = 例2.1.7}],[)(|)({],[上的连续函数为b a t x t x b a C =,在范数|)(|sup ||||t x x =下是赋范线性空间.由于赋范线性空间在度量||||),(y x y x d -=下是度量空间,因此,在度量所引入的序列收敛,开(闭)集、稠密和紧集等概念都可以在赋范线性空间中使用.定义X X x X x n ∈⊂0,}{, 若n x 依度量||||),(y x y x d -=收敛于0x , 即0||||lim 0=-∞→x x n n ,则称n x 依范数||||⋅收敛于0x ,记为 在赋范线性空间中,仍然用}|||||{),(00r x x X x r x U <-∈=记以0x 为球心,r 为半径的开球,用}|||||{),(00r x x X x r x B ≤-∈=记以0x 为球心,r 为半径的闭球.为了方便,用}1|||||{=∈=x X x S X 记以0为球心,1为半径的闭单位球面. 用}1|||||{≤∈=x X x B X 记以0为球心,1为半径的闭单位球. 用}1|||||{<∈=x X x U X 记以0为球心,1为半径的开单位球.例Euclid 2R ,对于),(21x x x =可以定义几种不同的范数:则对1),0,0(0==r x , 闭球)1,(0x B 在不同范数下的形状为:思考题||)||,(⋅X ,问开球),(0r x U 的闭包是否一定是闭),(0r x B ?思考题||)||,(⋅X ,问闭球),(0r x B 内部是否一定是开球),(0r x U ?在赋范线性空间中,加法与范数都是连续的.定理||)||,(⋅X 00,y y x x n n →→,则00y x y x n n +→+.证明 由||||||||||)()(||0000y y x x y x y x n n n n -+-≤+-+可知定理成立. 定理2.1.9 若||)||,(⋅X 是赋范空间,0x x n →,则||||||||0x x n →.证明 由||||||||||||00x x x x n n +-≤和||||||||||||00n n x x x x +-≤,可知||||||||||||||00x x x x n n -≤-,因此||||||||0x x n →.定义||)||,(⋅X ,若),(0||||,}{∞→→-⊂n m x x X x n m n 时,必有X x ∈,使0||||→-x x n , 则称||)||,(⋅X 为完备的赋范线性空间.根据M.]1928,,,[Paris Villars Gauthier abstraits Espaces Frechet -的建议,完备的赋范线性空间称为Banach 空间.不难证明,∞∞<≤l p l c R p o n ),1(,,都是Banach 空间.在数学分析中,曾讨论过数项级数,函数项级数,类似地,在赋范线性空间中,也可定义无穷级数.定义||)||,(⋅X ,若序列}{}{21n n x x x S +++= 收敛于某个X x ∈时,则称级数∑∞=1n n x收敛,记为∑∞==1n n x x .定义||)||,(⋅X ,若数列||}||||||||{||21n x x x +++ 收敛时, 则称级数∑∞=1n n x 绝对收敛. 在数学分析中绝对收敛的级数一定是收敛的,但在赋范空间上却不一定成立,先来看看下面一个定理.定理||)||,(⋅X ,则||)||,(⋅X 是Banach 空间的充要条件为X 的每一绝对收敛级数都收敛.证明 设||)||,(⋅X 是Banach 空间,且∑∞=1n n x绝对收敛,则由∞<∑∞=1||||n n x 可知,对于n n x x x S +++= 21,有)(0||||||||||||||||11∞→→++≤++=-+++++n x x x x S S p n n p n n n p n ,因此n S 是X 的Cauchy 列,由||)||,(⋅X 的完备性可知,存在X x ∈使x S n n =∞→lim ,即 x xn n =∑∞=1反之,设X 的每一个绝对收敛级数都收敛,则对于X 的Cauchy 列n x ,对k k 21=ε,有 <<<<<+121k k n n n n , 使得因而+∞<-∑∞=+1||||1n n n k k x x.由假设可知+∞<-∑∞=+1)(1n n n k k x x收敛于某个X x ∈,即}{k n x 收敛x ,所以n x 必收敛于x ,从而||)||,(⋅X 完备.事实上,在实数空间R 中,正是由于R 的完备性才保证了绝对收敛级数一定是收敛的.定义||)||,(⋅X ,若X M ⊂是X 的线性子空间,则称||)||,(⋅M 为||)||,(⋅X 的子空间,若M 还是||)||,(⋅X 的闭集, 则称||)||,(⋅M 为||)||,(⋅X 的闭子空间.明显地,若||)||,(⋅X 是Banach 空间,M 为||)||,(⋅X 的闭子空间,则||)||,(⋅M 是Banach 空间,反之亦然.定理||)||,(⋅X Banach ,M 为||)||,(⋅X 的子空间,则||)||,(⋅M 是Banach 空间当且仅当M 是X 的闭集.证明 设||)||,(⋅X 是Banach 空间,当M x n ∈,且x x n →时,则}{n x 为M 的Cauchy 列,因而}{n x 收敛于 M 上的一点,故M x ∈,即M M ∈',所以M 是闭集.反之,设M x n ⊂}{为Cauchy 列,则}{n x 为 ||)||,(⋅X 的Cauchy 列,由于||)||,(⋅X 是Banach 空间,因此}{n x 是收敛列, 即存在X x ∈使x x n →,又由于M 是||)||,(⋅X 的闭子空间,因此M x ∈,即n x 在M 中收敛于x ,所以||)||,(⋅M 是Banach 空间.定义X ,p 为X 上的一个实值函数,且满足:(1) 0)0(=p ;(2) )()()(y p x p y x p +≤+,对任意X y x ∈,;(3) )(||)(x p x p λλ=,对任意X x ∈,任意K ∈λ.则称p 为X 上的半范数.明显地,X 上的范数一定是半范数,但对X 上的半范数p ,由于0)(=x p 时不一定有0=x ,因此半范数不一定是范数.例∞l ,定义||)(11x x p =,易证)(1x p 是∞l 中的半范数,但对于),,,,0(2 n x x x =,都有0)(1=x p ,因此p 不是∞l 的范数.有什么办法能使),(p X 中的问题转化为赋范空间中来解决呢?定义X ,M 是X 的线性子空间,若M x x ∈-21,则称1x 与2x 关于M 等价,记为)(~21M x x易知,等价具有下面的三个性质(1) x x ~(反射性);(2) y x ~推出 x y ~(对称性);(3) y x ~, z y ~ 推出z x ~(传递性).明显地,若M 是线性空间X 的线性子空间,记}),(~|{~M y M x y y x ∈=, 则~x 的全体在加法~~~y x y x +=+和数乘~~x x αα=下是线性空间,称为X 对模M 的商空间,记为M X /.在商空间M X /中,对M X =∈~0,0,即0是M X /的零元,而对M X /的每一元素~x ,~x 都是唯一确定的,并且对于加法和数乘都是唯一确定的.例}||sup |){(+∞<=∞i i x x l ,取}||sup ,0|){(1+∞<==i i x x x M ,则M 为∞l 的子空间,对M l y x /,∞∈,当~~y x =时有M y x ∈-,即011=-y x ,这时R M l ~/∞当||)||,(⋅X 为赋范线性空间,M 为X 的闭线性子空间时,在M X /商空间中还可以定义范数,使M X /成为赋范线性空间.定理||)||,(⋅X ,M 为X 的闭线性子空间,在M X /上定义范数}|||inf{||||||~~x y y x ∈=,则||)||,/(⋅M X 是赋范线性空间.利用上面的技巧,不难证明,当)(x p 为X 上的一个半范数时,取}|||inf{||||||},0)(|{~~x y y x x p x M ∈===,则||)||,/(⋅M X 是一个赋范线性空间,且对任意X x ∈有,)(||||~x p x =.当X 是空备赋范线性空间,M 为X 的闭子空间的,M X /还具有完备性.定理X Banach ,M 为X 的闭子空间,则M X /是Banach 空间.2.2 范数的等价性与有限维赋范空间在同一线性空间上,可以定义几种不同的范数,使之成为不同的赋泛线性空间,但有时X 上的几种不同范数诱导出的拓扑空间是一样的,有时却很不相同,这主要是X 上的序列依范数收敛的不同引起的.定义X ,1||||⋅和|2||||⋅是X 上的两个不同范数,若对X 中的序列}{n x ,当0||||10→-x x n 时,必有0||||20→-x x n ,则称范数1||||⋅比范数2||||⋅强,亦称2||||⋅比1||||⋅弱.若对X 中的序列}{n x ,0||||10→-x x n 当且仅当0||||20→-x x n 则称范数1||||⋅与2||||⋅等价.定理1||||⋅2||||⋅X ,则范数1||||⋅比2||||⋅强当且仅当存在常数0>C ,使得对任意X x ∈都有12||||||||x C x ≤.证明 若存在0>C ,使12||||||||x C x ≤,则明显地0||||1→-x x n 时,有0||||||||12→-≤-x x C x x n n ,因而1||||⋅比2||||⋅强.反过来,若范数1||||⋅比2||||⋅强,则必有0>C ,使12||||||||x C x ≤.若不然,则对任意自然数n ,存在X x n ∈,使12||||||||n n x n x >. 令2||||n n n x x y =,则 故0||0||1→-n y ,因而0||0||2→-n y ,但这与1||||||||||0||222==-n n n x x y 矛盾,所以必存在0>C ,使12||||||||x C x ≤,对任意X x ∈成立.推论1||||⋅2||||⋅X ,则范数1||||⋅与2||||⋅等价当且仅当存在常数0,021>>C C ,使得对任意X x ∈,有推论1||||⋅2||||⋅X ,则)||||,(1⋅X 是Banach 空间当且仅当)||||,(2⋅X 是Banach 空间. 思考题1||||⋅2||||⋅X ,且)||||,(1⋅X 和)||||,(2⋅X 都是Banach 空间,是否就一定有1||||⋅与2||||⋅等价呢?定义X n ,||||⋅是X 上的范数,则称||)||,(⋅X 为n 维赋范线性空间.有限维赋范线性空间是Minkowski 在1896年引入的,因此有限维赋范线性空间也称为Minkowski 空间.若||)||,(⋅X 为n 维线性空间,n e e e ,,,21 为X 的一组线性无关组,则称n e e e ,,,21 为||)||,(⋅X 的Hamel 基,此时对任意X x ∈,x 都可以唯一地表示成∑==nn ii e x 1α 定理||)||,(⋅X n n e e e ,,,21 X Hamel ,则存在常数1C 及02>C 使得对任意∑==nn ii e x 1α都成立. 证明 对于任意n i K ∈=)(αα,定义函数则对任意n i K ∈=)(αα,n i K ∈=)(ββ,有 这里2121)||||(∑==n n i eM ,因此f 是n K 到R 的连续函数.由于n K 的单位球面}1)||(|){(2112=∈=∑=n i i n i K S αα是紧集,因此f 在S 上达到上下确界,即存在S i i ∈==)(),()0(0)0(0ββαα,使得因此对任n i K ∈=)(αα,有故即下面证明01>C ,容易知道02>C 的证法是类似的.假设01=C ,则有0||||)(1)0(0==∑=nn i i e f αα,故由}{i e 是X 的Hamel 基可知,0)0(=i α,从而00=α,但这与S ∈0α矛盾.定理X ,1||||⋅与2||||⋅是X 上的两个范数,则存在常数01>C ,02>C 使得定理Banach证明 若}{m x 为n 维赋范线性空间||)||,(⋅X 的Cauchy 列,则对于X 的Hamel 基n e e e ,,,21 有i n i m im e x ∑==1)(α,由可知}{)(m iα亦为Cauchy 列,故存在R i ∈α,使得i m i αα→)(,因而有)(i αα=,使得 令i n i i e x ∑==1α,则0||||→-x x m ,因此}{m x 是收敛序列,所以X 是完备的.在n R 中,M 是列紧的当且仅当M 是有界闭集,在有限维赋范空间中是否成立呢?下面就来讨论有限维赋范线性空间||)||,(⋅X 中紧集与有界闭集的关系.定理||)||,(⋅X ,则X M ⊂是紧的当且仅当M 是有界闭集.证明 设n e e e ,,,21 为||)||,(⋅X 的Hamel 基,则对任意X x ∈,有i n i i e x ∑==1α 定义n K 到X 的算子T :则存在0,021>>C C ,使得从而T 是nK 到X 的连续算子,且是一一对应的.由||)(||)||(21121ααT C n i i ≤∑=可知1-T 是X 到n K 的连续算子, 因此T 是n K 到X 的拓扑同构.所以M 的紧集当且仅当)(1M T-为n K 的紧集,从而M 是X 的紧集当且仅当M 是有界闭集. 问题||)||,(⋅X ,则X 是否一定为有限维的赋范线性空间?为了回答上面的问题,先来讨论Riesz 引理,这是Riesz F .在1918年得到的一个很漂亮的结果.引理Riesz M ||)||,(⋅X ,则对任意 10<<ε,存在1,=∈εεx X x ,使得对任意M x ∈成立.证明 由于M 是X 的闭真子空间,因此≠M X \φ,故存在M X y \0∈,令}|||inf{||),(00M x x y M y d d ∈-==,则0>d .对任意10<<ε,由d 的定义可知,存在M x ∈0,使得 令||||0000x y x y x --=ε,则1||||=εx ,且对任意M x ∈,有 由M x ∈0,M x ∈和M 是线性子空间,可知因此故由Riesz 引理,容易得到有限维赋范线性空间特征的刻画.定理||)||,(⋅X X }1|||||{≤=x x B X证明 明显地,只须证明X B 是紧的时候,X 一定是有限维的.反证法,假设X B 是紧的,但X 不是有限维赋范线性空间,对于任意固定的,1X x ∈1||||1=x ,令}|{}{111K x x span M ∈==λλ,则1M 是一维闭真子空间,取21=ε,由Riesz 引理可知,存在1||||,22=∈x X x 且21||||2≥-x x 对任意1M x ∈成立,从而21||||12≥-x x . 同样地,令},{212x x span M =,则2M 是二维闭真空子空间,因而存在1||||,33=∈x X x ,使21||||3≥-x x 对任意2M x ∈成立,从而21||||13≥-x x 且21||||23≥-x x . 利用归纳法,可得一个序列X n B x ⊂}{,对任意n m ≠,有因而}{n x 不存在任何收敛子序列,但这与X B 是紧集矛盾,由反证法原理可知X 是有限维赋范线性空间.推论X X对于无穷维赋范线性空间X 的紧集的刻画,就比较困难.在]1,0[C 中,容易看出]1,0[}1|)(||)({C x f x f A ⊂≤=是]1,0[C 的有界闭集,但不是紧集.为了讨论]1,0[C 子集的紧性,需要等度连续的概念,它是由Ascoli 和Arzelà同时引入的.定义]1,0[C A ⊂,若对任意的0>ε,都存在0>δ,使得对任意的A f ∈,任意的]1,0[,∈y x ,δ<-||y x 时,一定有ε<-|)()(|y f x f ,则称A 是等度连续的.Ascoli 给出了]1,0[C A ⊂是紧的充分条件,Arzelà在1895年给出了]1,0[C A ⊂是紧的必要条件,并给出了清楚的表达.定理 (Arzel à-Ascoli 定理) 设]1,0[C A ⊂,则是紧的当且仅当A 是有界闭集,且A 是等度连续的.2.3 Schauder 基与可分性一个Banach 空间,如果想把它看作序列空间来处理,最好的办法是引入坐标系,常用的方法是引入基的概念,Schauder 基是-Fun in stetiger Theorie Zur Schauder J [. .]6547.)1927(26,,-pp t Zeitschrif che Mathematis men ktionalrau 引入的.定义Banach ||)||,(⋅X }{n x X Schauder ,若存在对于任意X x ∈,都存在唯一数列K a n ⊂}{,使得容易看到,有限维赋范线性空间一定具有Schauder 基.例1l ),0,1,0,,0( =n e ,则}{n e 为1l 的Schauder 基,明显地,在)01(,,0∞<<p l c c 中,}{n e 都是Schauder 基.Schauder J .在1928年还在]1,0[C 中构造一组基,因而]1,0[C 也具有Schauder 基.具有Schauder 基的Banach 空间具有许多较好的性质,它与Banach 空间的可分性有着密切联系.定义||)||,(⋅X ,若存在可数集X M ⊂,使得X M =,即可数集在X 中稠密,则称X 是可分的.若||)||,(⋅X 可分,则存在可数集X x n ⊂}{,使得对任意X x ∈及任意0>ε,都有某个}{n n x x ∈ε,满足εε<-||||x x n .例Q ,且R Q =,因此R 是可分的.类似地,n R 也是可分的赋范空间. 例p l p ,1+∞<≤,因为取时,使得存在N i N x M i >=,|){(},,0都是有理数时并且i i x N i x <=,则M 是可数集,并且p l M =.实际上,对任意p l x ∈,由+∞<∑∞=pi pi x 11)||(可知,对任意0>ε,存在N ,使得2||1pN i pix ε<∑∞+=, 取有理数N q q q ,,21,使2||1pNi pi i x q ε<-∑=,则M q q q x N ∈=)00,,,(21 ε,且εε<+-≤-∑∑∞+==pN i p iNi p i i xx q x x 111)||||(,因此p l M =,所以p l 是可分的.例],[b a C x ∈,必有多项式0→-x p n ,取M 为],[b a 上有理系数的多项式全体,则M 是可数集,且],[b a C M =,因而],[b a C 是可分的赋范线性空间.定理||)||,(⋅X Schauder ,则X 一定可分的. 证明 为了简明些,这里只证明||)||,(⋅X 为实的情形.设}{i e 为X 的Schauder 基,则任意X x ∈有∑∞==1i ii ea x ,这里R a i ∈.令},|{1Q q N n eq M i ni ii ∈∈=∑=,则M 是可数集,且对任意X x ∈及任意0>ε,存在M x ∈ε,使得εε<-x x ,因此X M =,所以M 为可分的赋范空间.对于复赋范空间||)||,(⋅X ,可令},,|)({1Q pq N n e ip q M iini iii∈∈+=∑=,证明是类似的.问题Schauder例∞l Schauder由于∞l 不可分,因而一定没有Schauder 基.事实上,假设∞l 可分,则存在∞∈=l x x m im )()(,使得}{m x X =.令则211||sup )0(=+≤i x ,即∞∈=l x x i)()0(0,并且所以}{m x 不存在任何收敛子列收敛于0x ,故}{0m x x ∉,从而}{m x X ≠,但这与假设}{m x l =∞矛盾,因此∞l 不可分.另外,还再进一考虑下面的问题:问题Schauder上面问题自从S. Banach 在1932年提出后,很多数学家为解决这一问题做了很多的努力,由于常见的可分Banach 空间,如10,l c 等都具有Schauder 基,因此大家都以为问题的答案是肯定的,但所有的努力都失败了,大家才倾向于问题的答案是否定的.Enflo P .在1972年举出了一个例子,它是可分的赋范空间,但不具有Schauder 基[A counterexample to the approximation problem in Banach spaces. Acta Math. 130(1973),309-317.]2.4线性连续泛函与Banach Hahn -定理Banach S .1929年引进共轭空间这一重要概念,这也就是赋范线性空间上的全体有界线性泛函组成的线性空间,在这个线性空间上取泛函在单位球面的上界为范数,则共轭空间是完备的赋范线性空间.Banach S .还证明了每一连续线性泛函是有界的,但最重要的是Banach S .和Hahn H .各自独立得到的一个定理,这就是泛函分析中最著名的基本定理,即Banach Hahn -定理,它保证了赋范线性空间上一定有足够多的连续线性泛函.泛函这名称属于Hadamard ,他是由于变分问题上的原因研究泛函.定义||)||,(⋅X ,f 为X 到K 的映射,且对于任意X y x ∈,及K ∈βα,,有 则称f 为X 的线性泛函.例∞l ,若定义1)(x x f =,则f 为∞l 上的线性泛函.由于线性泛函具有可加性,因此,线性泛函的连续性比较容易刻画.定理f ||)||,(⋅X ,且f 在某一点X x ∈0上连续,则f 在X 上每一点都连续.证明 对于任意X x ∈,若x x n →,则由f 在0x 点的连续性,因此所以)()(x f x f n →,即f 在x 点连续.这个定理说明,要验证泛函f 的连续性,只须验证f 在X 上某一点(例如零点)的连续性就行了.问题X ,X 上任意线性泛函都连续?例n R事实上令)0,0,1,0,0( =i e ,则任意nR x ∈,有∑==ni ii ex x 1,设0,→∈m nm x R x ,则∑==ni i m im e x x 1)(,且0)(→m ix 对任意i 都成立.因此)0(0)()()(1)(1)(f e f x e x f x f ni i m ini i m i m =→==∑∑==,所以f 在0点连续,从而f 在n R 上任意点都连续.定义X X K ,则称f 为有界线性泛函,否则f 为无界线性泛函.定理f ||)||,(⋅X ,则f 是有界的当且仅当存在0>M ,使|||||)(|x M x f ≤.证明 若存在0>M ,使得对任意|||||)(|,x M x f X x ≤∈,则对于X 中的任意有界集F ,有0>r ,使得对任意F x ∈,有r x ≤||||,因此,Mr x M x f ≤≤|||||)(|对所有F x ∈成立,所以)(F f 为K 的有界集,即f 为有界线性泛函.反之,若f 为有界线性泛函,则f 把X 的单位球面}1|||||{)(==x x X S 映为K 的有界集,因此存在0>M ,使得对一切1||||=x ,有 故对任意X x ∈,有 所以例)(|){(i i x x c =,范数||sup ||||i x x =,若定义f 为i i x x f ∞→=lim )(,则f 为c 上的线性泛函,由于||sup ||||i x x =,因此 所以f 为c 上的有界线性泛函.对于赋范线性空间的线性泛函而言,有界性与连续性是等价的,Banach S .在1929年证明了每一个连续可加泛函(线性连续泛函)都是有界的.定理X ,则X 上的线性泛函是连续的当且仅当f 是有界的.证明 若f 是有界的,则由上面定理可知存在0>M ,使得|||||)(|x M x f ≤,因此当x x n →时,有)()(x f x f n →,即f 为连续的.反之,假设f 为连续线性泛函,但f 是无界的,则对任意自然数n ,存在X x n ∈,使得 令0,||||0==y x n x y n nn ,则01||||0→=-n y y n ,由f 的连续性可知)()(0y f y f n →,但1||||)()(>=n n n x n x f y f ,0)(0=y f ,从而 1|)()(|0>-y f y f n ,但这与)()(0y f y f n →矛盾.所以f 为连续线性泛函时,f 一定是有界的.线性泛函的连续性还可以利用f 的零空间是闭集来刻画.定理X ,则X 上的线性泛函是连续的当且仅当}0)(|{)(==x f x f N 为X 的闭线性子空间.证明 明显地)(f N 为线性子空间,因此只须证)(f N 是闭的.若f 是连续线性泛函,则当x x f N x n n →∈),(时,必有)()(x f x f n →,因而0)(=x f ,即)(f N x ∈,所以)(f N 是闭子空间.反之,若)(f N 是闭的,但f 不是有界的,则对于任意正整数n ,有X x n ∈,使 令||||n nn x x y =,则1||||=n y ,且n y f n >|)(|. 取)(,)()(11011y f yz y f y y f y z n n n -=-=, 由于因而0z z n →,且0))()(()(11=-=y f yy f y f z f n n n ,即)(f N z n ∈,从而由)(f N 是闭集可知)(0f N z ∈,但这与1)(0-=z f 矛盾,因此当)(f N 是闭子空间时,f 一定是连续的. 从上面的讨论容易看出,X 上的全体连续线性泛函是一个线性空间,在这个线性空间上还可以定义其范数.定义f X ,则称 为f 的范数.明显地,若记X 上的全体线性连续泛函为*X ,则在范数||||f 下是一赋范空间,称之为X 的共轭空间.虽然Hahn H .在1927年就引起了共轭空间的概念,但Banach S .在1929年的工作更为完全些.容易看出,对于任意X f ∈,还有|)(|sup |)(|sup ||||1||||1||||x f x f f x x ≤===.但对于具体的赋范空间X ,要求出X 上的连续线性泛函的范数,有时是比较困难.例f 1l ,若取}{i e 为1l 上的Schauder 基,则对任意)(i x x =,有∑∞==1i ii ex x , 故∑∞==1)()(i i i e f x x f ,因而从而|)(|sup ||||i e f f ≤.取1)0,0,1,0,0(l e i ∈= , 则1||||=i e , 且|)(|||||||||||||i i e f e f f ≥=, 故|)(|sup ||||i e f f ≥,所以|)(|sup ||||i e f f =.设M 是赋范线性空间X 的子空间,f 为M 上的连续线性泛函,且存在0>C ,使得|||||)(|x C x f ≤对任意M x ∈成立,则f 是否可以延拓到整个范空间X 上?这一问题起源于n 维欧氏空间nR 上的矩量问题.Banach S . 在1920年提交的博士论文中,用几何语言将它推广到无限维空间.1922年,Hahn H .发表的论文也独立地得出类似结果.Hahn H . 在1927年将结果更一般化,在完备的赋范线性空间研究了这一问题,并证明了在X 上f 存在连续延拓F ,使得|||||)(|x C x F ≤对一切M x ∈成立,且对一切M x ∈,有)()(x f x F =. 1929年,Banach S .独立地发表了与Hahn H .相近的定理和证明,并把一定理推广为一般的情形,这就是下面的Banach Hahn -延拓定理.定理M X ,f 为M 上的实线性泛函,且存在X 上的半范数)(x p 使得)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.Bohnehbius F H ..与Sobczyk A . 在 1938 年还把Banach Hahn -定理推广到复线性空间.定理M X ,f 为M 上的线性泛函,p 是X 上半范数且满足)(|)(|x p x f ≤, 对任意M x ∈成立则存在f 在X 上的延拓F ,使得(1) )(|)(|x p x F ≤, 对任意X x ∈成立; (2) )()(x f x F =, 对任意M x ∈成立.利用线性空间的Banach Hahn -延拓定理,可以建立赋范线性空间上的保范延拓定理,它是Banach 空间理论的基本定理.定理M X ,f 为M 上的连续线性泛函,则存在X 上线性连续泛函F ,使得 (1)**=M X f F ||||||||;(2) )()(x f x F =, 对任意M x ∈成立.这里*X F ||||表示F 在*X 的范数,*M f ||||表示f 在*M 的范数.证明 由于f 为M 上的连续线性泛函,因此对任意M x ∈,有|||||||||)(|x f x f M *≤. 定义半范数||||||||)(x f x p M *=,则有)(|)(|x p x f ≤,对任意M x ∈.由线性空间的Banach Hahn -定理可知存在F ,使得)()(x f x F =,对任意M x ∈且)(|)(|x p x F ≤, 对任意X x ∈因此对于任意X x ∈,有|||||||||)(|x f x F M *≤,故F 为X 上的连续线性泛函,且**≤M X f F ||||||||.反过来,由可知**=M X f F ||||||||,且)()(x f x F =对任意M x ∈成立.在上面定理中,若X 是复赋范线性空间,则M 必须是复线性子空间.很有意思的是Bohnehbius F H ..和Sobczyk A .在1938年证明在任意无穷维复Banach 空间X 中,一定存在实线性子空间M ,在M 上有一复连续线性泛函不能保范延拓到X 上.问题Banach Hahn -,什么条件下保范延拓是唯一的?例},|),{(2121R x x x x X ∈=,定义范数||||||),(||||||2121x x x x x +==.令}|)0,{(11R x x M ∈=, 明显地,M 是赋线性空间X 的线性子空间,对M x y ∈=)0,(1,定义1)(x y f =,则故1||||≤*M f ,且对)0,1(0=x ,有1|)(|,1||||00==x f x ,因而1||||=*M f ,但对X 上的线性泛函这里X x x x ∈=),(21 在M 上,都有对任意的M x y ∈=)0,(1成立.在M 上有f F f F ==21,,且***==M X X f F F ||||||||||||21,因此21,F F 是f 的两个不同的保范延拓.定理||)||,(⋅X ,M 是X 的子空间,X x ∈0,),(0M x d d =0}|||inf{||0>∈-=M y y x ,则存在*∈X f ,使得(1)对任意0)(,=∈x f M x ; (2)d x f =)(0; (3)1||||=f .证明 令}}{{0x M span E ⋃=∆,则对任意E x ∈,x 有唯一的表达式0'tx x x +=,这里M x K t ∈∈',.在E 上定义泛函g : 则g 为E 上的线性泛函,且 (1)d x g =)(0;(2)对任意0)(,=∈x g M x . 对0'tx x x +=,不妨假设0≠t .由 可知||||||'||||'||||||'|||||||)(|000x tx x x tx t x t x t d t x g =+=+=--≤=. 因此g 是E 上的线性连续泛函,且1||||≤*M g .根据Banach Hahn -定理,有连续线性泛函*∈X f ,使得 (1)对任意)()(,x g x f E x =∈; (2)||||||||g f =.由0}|||inf{||0>∈-=M y y x d ,可知存在M x n ∈,使得d x x n →-||||0. 故因此1||||≥f ,所以1||||=f ,且对所有M x ∈,有0)(=x f .特别地,当}0{=M 时,对任意00≠x ,有||||),(00x M x d =,因此由上面定理可知下面推论成立.推论X ,则对任意0,00≠∈x X x ,有*∈X f ,使得||||)(00x x f =,且1||||=f . 该结论的重要意义在于它指出了任意赋范线性空间X 上都存在足够多的线性连续泛函. 由下面推论还可知道X 中两个元素y x ,,若对所有*∈X f ,都有)()(y f x f =,则一定有y x =.推论X ,X y x ∈,则y x ≠当且仅当对存在*∈X f 使得)()(y f x f ≠.证明 假设y x ≠,则对y x z -=,有0||||≠z ,因此Banach Hahn -定理的推论可知存在1||||=f ,使得0||||)(≠=z z f ,从而)()(y f x f ≠.例题X ,试证明对任意X x ∈0,有 证明 对任意*∈X f ,1||||=f ,有 因此另外, 但对0,00≠∈x X x ,存在*∈X f ,1||||=f ,使得 ||||)(00x x f =, 故|)(|sup||||0,1||||0x f x Xf f *∈=≤, 所以|)(|sup||||0,1||||0x f x Xf f *∈==.例题||)||,(⋅X ,若对于任意1||||,1||||,,==∈y x X y x 且y x ≠都有2||||<+y x ,试证明对于任意)1,0(∈α,有1||)1(||<-+y x αα.证明 反证法. 假设存在1||||||||00==y x 和)1,0(0∈α,使得 由Banach Hahn -定理的推论,可知存在*∈X f ,1||||=f ,使得 即这时一定有1)()(00==y f x f . 否则的话,若1)(0<x f 或1)(0<y f ,则1)1()()1()(000000=-+<-+ααααy f x f ,矛盾.因此2)(|)(|sup||||0000,1||||00=+≥+=+*∈=y x f y x f y x Xf f ,又由可知2||||00=+y x ,但这与2||||00<+y x 的题设矛盾,因此由反证法原理可知对于任意)1,0(∈α,有1||)1(||<-+y x αα.2.5 严格凸空间Clarkson A J ..在1936年引入了一致凸的Banach 空间的概念,证明了取值一致凸的Banach 空间的向量测度Nikodym Radon -的定理成立,从而开创了从单位球的几何结构来研究Banach 空间性质的方法.Clarkson A J ..和Gkrein M . 独立地引进了严格凸空间,严格凸空间在最佳逼近和不动点理论上有着广泛的应用.定义X ,若对任意1||||,1||||,,==∈y x X y x ,y x ≠,都有 严格凸的几何意义是指单位球面X S 上任意两点y x ,的中点2yx +一定在开单位球}1|||||{<=x x U X 内.例Banach 0c000),0,0,1,0(),,0,1,1(c y x ∈== ,则1||||||||00==y x ,且对),0,0,1,21(200 =+y x ,明显地有1||2||00=+y x . 类似地,易验证,Banach 空间 ∞l l c ,,1都不是严格凸空间.例1||||,1||||,,2==∈y x l y x y x ≠,则 从而4||||4||||22<--=+y x y x ,即1||2||<+yx . 所以2l 是严格凸的.类似地,容易证明Banach 空间)1(∞<<p l p 是严格凸的.定理X ,则对任意非零线性泛函*∈X f ,f 最多只能在X S 上的一点达到它的范数||||f .证明 反证法.假设存在1||||||||,0000==≠y x y x ,使得 由于 因此 从而 明显地,12||||||||||2||0000=+≤+y x y x .因此1||2||00=+y x ,但这与X 的严格凸假设矛盾,所以由反证法原理可知定理成立.设X 是赋范空间,M 是X 的子空间,对*∈X f , f 在X 上可能有不同的保范延拓,不过,*X 的严格凸性能保证保范延拓的唯一性.Taylor A .在1939年证明了以下结果-function linear of extension The Taylor A ,.[ ].547538),1959(5..,-J Math Duke als .定理*X ,M 是X 的子空间,则对任意*∈M f ,f 在X 上有唯一的保范延拓.证明 反证法. 假设对*∈M f ,f 在X 上有两个不同的保范延拓1F 及2F ,即对任意M x ∈,都有)()()(21x F x F x f ==,且||||||||21F F =,则由于 因此1||2/)||||||||(||21=+f Ff F ,但这与*X 是严格凸矛盾. 所以f 在X 上只有唯一的保范延拓.思考题X M ,任意的*∈M f ,f 在X 上都只有唯一的保范延拓,则*X 是否一定为严格凸的?严格凸性还保证了最佳逼近元的唯一性.定义X X x X M ∈⊂,,若存在M y ∈0,使得则称0y 为M 中对x 的最佳逼近元.定理M ,则对任意X x ∈,存在M y ∈0,使得证明 令||||inf y x d My -=∈,由下确界的定义,存在M y n ∈,使得 因而}{n y 是有界序列,即存在0>C ,使得C y n ≤||||,对任意n 成立.事实上,若}{n y 不是有界序列,则对任意N k ∈有}{n n y y k ∈,使得k y k n >||||,故)(||||||||||||||||∞→∞→-≥-≥-k x k x y y x k k n n .但这与d y x k n →-||||矛盾,所以}{n y 为有界序列.由于M 是有限维,且}{n y 为M 中有界序列,因此}{n y 存在收敛子列0y y k n →,且M y ∈0.故d y x y x k n k =-=-∞→||||lim ||||0,所以存在M y ∈0.且||||inf ||||0y x y x My -=-∈. 问题例2R ,取范数|}||,max{|||||21x x x =,}|)0,{(11R x x M ∈=,则M 为2R 的一维子空间,取20)1,0(R x ∈=,对于任意M x x ∈=)0,(1,有故对于)0,1(0=w ,有1||||00=-w x .因此1}|||inf{||),(00=∈-=M x x x M x d .但对于)0,0(=u 及)0,1(-=v ,都有1||||||||00=-=-v x u x ,因此0x 在M 的最佳逼 元不唯一.既然上述定理中的最佳逼近元不唯一,那么什么时候才能保证唯一呢?定理X ,M 为X 的有限维子空间,X x ∈,则在M 中存在唯一的最佳逼近元,即存在M y ∈0,使得证明 令||||inf y x d My -=∈,假设存在M y y ∈21,, 使得 则由M y y ∈+221,可知d y y x ≥+-||2||21. 由于d y x y x y y x =-+-≤+-||2||||2||||2||2121,从而d y y x =+-||2||21. 因此1||||,1||||21=-=-d y x d y x ,且1||2/)(||21=-+-dy x d y x .但这与X 的严格凸性矛盾,所以由反证法原理可知x 在M 中存在唯一的最佳逼近元.最后,值得注意的是,严格凸性不是拓扑性质,它与范数的选取有关.例2R ,如果取范数212221)|||(|||||x x x +=,则||)||,(2⋅R 是严格凸的,但对于另一个范数||||||||211x x x +=,)||||,(12⋅R 不是严格凸的,并且范数1||||⋅和||||⋅等价. Istratescu V .还将严格凸性推广到复严格凸性,复严格凸性在取值于复Banach 空间的解析函数理论中有着重要应用convex strictly complex On Istratescu I Istratescu V ,.,.[习题二2.1 在n R ,对任意n n R x x x ∈=},,{1 ,定义上n R 的几个实值函数,使得它们都是n R 范数.2.2 设X 为赋范线性空间,||||⋅为X 上的范数,定义试证明),(d X 为度量空间,且不存在X 上的范数1||||⋅,使得1||||),(y x y x d -=.2.3在]1,0[C 中,定义p p p dt t x x /110)|)(|(||||⎰=)1(∞<≤p ,试证明||||⋅是]1,0[C 的范数.2.4设M 是赋范空间X 的线性子空间,若M 是X 的开集,证明M X =.2.5试证明0c 是∞l 的闭线性子空间.2.6设X 是赋范线性空间,若λλλλ→∈∈n n n X x x K ,,,,且x x n →,试证明x x n n λλ→.2.7设X 是赋范线性空间,若y y x x n n →→,,试证明y x y x n n +→+.2.8 试证明n e 为)1(∞<<p l p 的Schauder 基.2.9 设)1,,1,1(0⋅⋅⋅=e ,试证明},,,,,{210⋅⋅⋅⋅⋅n e e e e 为c 的Schauder 基.2.10 在∞l 中,若M 是∞l 中只有有限个坐标不为零的数列全体,试证明M 是∞l 的线性子空间,但M 不是闭的.2.11 设1||||⋅和2||||⋅为线性空间X 上的两个等价范数,试证明)||||,(1⋅X 可分当且仅当 )||||,(2⋅X 可分.2.12 设R R f →:,满足)()()(y f x f y x f +=+对任意X y x ∈,成立,若f 在R 上连续,试证明f 是线性的.2.13设f 和g 为线性空间X 上的两个非零的线性泛函,试证明它们有相同的零空间当且仅当存在k ,使得kg f =.2.14设X 是有限维Banach 空间,ni i x 1}{=为X 的Schauder 基,试证明存在*∈X f i ,使得1)(=i i x f ,且0)(=j i x f ,对j i ≠成立.2.15设f 为赋范线性空间X 上的非零的线性泛函,试证明}1)(|{=∈=x f X x M 是X 的非空闭凸集.2.16设X 是赋范空间,M 为X 的闭线性子空间,M X x \0∈,试证明存在*∈X f ,使得),(1||||,1)(00M x d f x f ==,且0)(=x f ,对所有M x ∈成立. 2.17设X 是有限维空间,ni i x 1}{=为X 的Schauder 基,对任意∑==∈ni i i x x X x 1,α, 定义泛函i i x f α=)(,试证明*∈X f i .2.18设X 是严格凸空间,试证明对任意,0,0,,≠≠∈y x X y x 且||||||||||||y x y x +=+时,有0>λ 使得x y λ=.2.19试在1l 构造一个新范数1||||⋅,使得)||||,(11⋅l 是严格凸空间.2.20试证明1l 和∞l 都不是严格凸的赋范线性空间.2.21设*X 是严格凸的,试证明对于任意1||||,=∈x X x ,有且仅有唯一的1||||,=∈*x x f X f ,使得1)(=x f x .2.22举例说明在赋范线性空间中,绝对收敛的级数不一定是收敛级数.2.23设X F =,试证明对任意x X x ,∈都可以写成一个收敛级数∑∞=1i i x 的和,且每一项i x 都属于F .2.24 设是X 赋范线性空间,,,X x x n ∈x x n →,试证明对任意*∈X f ,有)||||()||||(x x f x x f n n →. 2.25 试证明赋范线性空间X 是完备的当且仅当度量空间),(d S 是完备的,这里单位球面}1|||||{=∈=x X x S ,度量||||),(y x y x d -=.2.26在]1,0[C 中,]},[),()(|)({b a C x b x a x t x M ∈==,试证明M 是]1,0[C 的完备线性子空间.2.27在]1,0[C 中,试证明]1,0[}1|)(||)({C t x t x A ⊂≤=是]1,0[C 的有界闭集,但不是等度连续的.2.28 在2R 中,取范数||||||||21x x x +=,}|)0,{(11R x x M ∈=,则M 为2R 的线性子空间,对20)1,0(R x ∈=,试求出M y ∈0,使得),(||||000M x d y x =-.巴拿赫Banach S .1892年3月30日生于波兰的一个叫Ostrowsko的小村庄,出身贫寒.Banach S .1916年结识SteinhausH .后,Steinhaus H .告诉Banach S .一个研究很久尚未解决的问题.几天后,Banach S .找到了答案,Banach S .就和Steinhaus H .一起写了论文,联名发表在Kraków 科学院会报上.Stefan Banach (1892-1945)1920年, Lomnicki 教授破格将Banach S .安排到Lvov 技术学院当他的助教.同年,Banach 提交了他的博士论文“关于抽象集合上的运算及其在积分方程上的应用”(Sur les opérations dans les ensembles abstraits etleur applicationaux équtions int égrales),并取得博士学位.该论文发表在1923年的《数学基础》)(ae Mathematic Fundamenta 第3卷上,大家都将它看为泛函分析学科形成的标志之一.1922年,Banach S .通过讲师资格考核,1924年任该大学教授.1929年,Banach S .和Steinhaus H .创办了泛函分析的刊物a Mathematic Studia .1932 年,Banach S .出版了《线性算子理论》Théorie des óperations linéaires,这本书汇集了Banach S .的研究成果,对推动泛函分析的发展起了重要作用.1936年,在Oslo 召开的国际数学家大会邀请Banach S .在全体大会上作报告.在波兰国内,Banach 被授予多种科学奖金,1939年被选任波兰数学Banach S .会主席.Banach S .的主要工作是引进线性赋范空间概念,证明了很多赋范空间基本定理,很多重要的定理现在都以他的名字命名,他证明的三个基本定理(Banach Hahn -线性泛函延拓定理,Steinhaus Banach -定理和闭图像定理)概括了许多经典的分析结果,在理论上和应用上。
赋范线性空间
(1) 线性性: ∀x = (x1, , xn ) , y = ( y1, , yn ) ∈ R , α, β ∈ R
T T n
1
T (α x + β y) = A(α x + β y) = α Ax + β Ay = αTx + βTy
∀x = ( x1 , , xn )T ∈ R n , Tx = Ax = ( z1 , , zm )T ∈ R m (2)有界性:
T 定义: E、 1 是赋范线性空间, : D(T ) ⊂ E → N (T ) ⊂ E1 。 设 E
(1)线性算子:若 ∀x, y ∈ D(T ), α ∈ K (数域) ,有
⎧T ( x + y ) = Tx + Ty ⎨ 即 T (α x + β y) = αTx + β Ty T (α x) = α Tx ⎩
3)范数的等价性 定义 设线性空间 E 中定义了两种范数 x 1和 x 2 如果由 xn 1 → 0 ⇒ xn 2 → 0 ,称 x 1比 x 2 更强; 若又由 xn 2 → 0 ⇒ xn 1 → 0 ,即 x 2 比 x 1更强, 则称范数 x 1与 x 2 等价。 注:范数等价具有传递性
例如:可以证明 Rn 中三种范数 x 1、 x 2 、 x ∞ 相互等价
m n
T 2
⎛ ⎞ = ∑ z = ∑ ⎜ ∑ aij x j ⎟ i =1 i =1 ⎝ j =1 ⎠
m 2 i
⎛ ⎞ ⎛ m n 2⎞ ≤ ∑ ⎜ ∑ aij x j ⎟ ≤ ⎜ ∑∑ aij ⎟ i =1 ⎝ j =1 ⎠ ⎝ i=1 j =1 ⎠
2
x2 = M x ∑ j
j =1
赋范空间及其性质
赋范空间及其性质赋范空间是数学分析中一个非常重要的概念,也是线性代数、拓扑学的重要内容之一。
本文将对赋范空间的概念、性质以及应用进行介绍。
一、赋范空间的概念赋范空间是一种向量空间,它在向量空间上还定义了一个范数,这个范数满足三条公理:1.非负性:对于 x∈X,有||x||≥0并且||x||=0当且仅当x=0;2.齐次性:对于 x∈X 和λ∈K(其中 K 是实数域或者复数域),有||λx||=|λ| ||x||;3.三角不等式:对于 x,y∈X,有||x+y||≤||x||+||y||。
赋范空间的一个重要特点是它是一个可度量的向量空间。
在赋范空间中,有一个用于度量向量长度的函数,这个函数可以用来衡量向量的大小和方向。
二、赋范空间的性质1. 赋范空间是一个度量空间。
2. 赋范空间的所有范数是等价的。
具体来说,如果∥⋅∥ 1 和∥⋅∥ 2 是同一向量空间 X 上的两个范数,则存在两个正数 A 和 B,对于所有 x∈X,有A∥x∥1≤∥x∥2≤B∥x∥1。
3. 赋范空间中的所有有界子集都是可列紧的。
这是紧性的一种形式,它告诉我们在赋范空间中的有界集合一定可以在有限的步骤内被完全覆盖。
4. 赋范空间中的任意 Cauchy 序列都收敛。
这个性质在分析中有重要的应用,因为它确保了我们在无穷维空间中仍然可以定义连续的函数。
5. 赋范空间中的每一闭凸子集是可分离的。
这个性质在拓扑学中有重要的应用,因为它告诉我们可以通过分别考虑凸集合来分析空间的性质。
三、赋范空间的应用赋范空间在分析学中有着广泛的应用。
例如,在微积分、偏微分方程、泛函分析、概率论等领域中,我们需要通过赋范空间来定义函数空间和算子空间。
此外,赋范空间还被广泛应用于类似于图像处理和模式识别等问题的机器学习和计算机视觉领域中。
总之,赋范空间是一种非常重要的数学概念,它在数学和其他领域中有着广泛的应用。
它的重要性在于,它通过引入范数将向量空间扩展为可度量的空间,从而使分析成为可能。
4.线性赋范空间
(2)kF,xV,‖kx‖=|k|‖x‖.
(3)x,yV,‖x+y‖≤‖x‖+‖y‖,
则称‖x‖(xV)为x的范数,V成为F上的线性
赋范空间.
2
设V是线性赋范空间。定义映射:
:VVR,(x,y)=‖x–y‖(x,y∈V)
容易验证:是V上的度量,从而{V,}是度量
空间,因而,V是(度量)拓扑空间。于是,
V上有开集 、闭集、极限点、导集、闭包、
收敛、连续、完备、紧致、列紧等概念。
完备的线性赋范空间称为Banach空间。
线性赋范空间V中序列{xn}称为范数收敛于xV,
如果
limxnx 0.
3
n
由于线性赋范空间V是线性空间,有加法和数乘
运算,故可讨论序列{xn}的级数及其收敛的概念。
称级数
xnx1x2xn
小值,设为f(0)(0S).
于是, S,有f()≥f(0).
12
下面证明: f(0)>0.显然,f(0)≥0.
只要证 f(0) 0.由于0S,故0不是零向量.
n
从而,
x e 0 0 . kk
k1
于是,
f(0)=‖x0‖0。
xX,且x,则x的坐标是Rn中非零向量。
1
所以,
Rn
n | k1
k
|22
14
•定理4.3 任何一个实数域R上的n维线性赋范 空间 X都与n维欧氏空间Rn线性同胚,即 存在线性双射T:XRn,且T与T–1连续。
证明:设{e1,e2, ,en}是X的一组基。xX有
n
x k ek k 1
其中=(1,2, ,n)T为x的坐标。
15
定义映射T:XRn: Tx=(1,2, ,n)T
第二章 赋范线性空间1
5
凸集在求解极值问题中是一个十分重要的条件。 命题:凸集的交是凸集;凸集的直和是凸集。
凸锥(convex core): C ⊂ X , C ≠ ∅ 。若对任意的 x1, x2 ∈ C ,θ1,θ2 > 0 ,有θ1x1 + θ2 x2 ∈ C ,则 称 C 为 X 的一个凸锥,例如 R+n = {x = (ξ1,",ξn ) ∈ Rn | ξi > 0, i = 1,", n}
则 F : C[a,b] → R 是连续(泛)函数。
证明:
三 完备性
设 X 为一个度量空间,如果 X 任意一个 Cauchy 序列在 X 中都有极限,则称 X 是完备的度量空
间。
例2.6 Rn 关于任何 p ≥ 1的距离都是完备的, n ≥ 1。
例2.7
C[a, b] 关于 d∞ 是完备的,而关于 d1 , d2 都不是完备的。
定义 ||
x
|| p
=
⎛ ⎜⎝
∞ i =1
| ξi
|p
⎞1/ ⎟⎠
p
。由
Minkowski
不等式可知, (l
则 称 X 为 一 个 赋 范 线 性 空 间 ( normalized linear space)或赋范空间,|| ||为 X 的范数(norm)。|| x || 称为向量 x 的范数。
范数实际上是向量“模”或“长度”的统一称谓。
例2.9 n 维欧氏(Euclid)空间 R n ( Cn )
∑ 对
证明:考虑 C[0,1] ,赋予距离 d1 。
3
⎧⎪0,
⎪
取
xn
(t
)
=
⎪⎨nt ⎪
−
1_赋范空间
则称实值函数 ( , ) 是线性空间V 上的一种内积. 并称线性空间V 关于实值函数 ( , ) 是内积空间.
2020年4月15日星期三
yfnie@
10
2.1 连续函数空间的内积
❖ 对于实数域上的线性空间C[a,b],定义实值函数
b
( f , g) a f (x)g(x)dx f , g C[a,b]
a
C[a, b]
也满足范数公理三条. 2
❖ 两种常用的连续函数赋范线性空间
(C[a,b], ) (C[a,b], )
2
❖ 赋范线性空间中距离的定义
f , g (V, ) d( f , g) f g
Remark :
f f 0 d( f ,0)
2020年4月15日星期三
yfnie@
2020年4月15日星期三
yfnie@
11
(续) ➢ 给线性空间C [a,b] 赋带权的内积 ( ,) :
❖ Remark:
b
( f , g)
f (x)g(x)(x)dx
a
➢ 上下文中关于内积的理解无歧义时, 可简记(,) 为(,)
➢ 在理论证明和公式推导过程中, 如没有明确权函数具 体形式, 则表示对任意权函数均成立.
f
g
2
b
(
a
f
(
x)
g
(
x))2
dx
2
2020年4月15日星期三
yfnie@
6
1.5 函数逼近问题
➢ 设 f (x) C [a,b] _____被逼近函数
➢ 为赋范线性空间 C[a,b], 的子集合
✓ 范数 可以是 或者 等
2
➢ 称问题: 求* (x ) , 使得 f * min f .
有限维赋范空间与无限维赋范空间之比较
⎛−⎞ ⎝ ⎠
−
数学学院 2010 级泛函分析论文
⎛ − ⎞ ⎜ ⎟ − − − x x f ⎜ − ⎟ = − ≥ α ,由此推出 x ≥ α x ,我们有 α x ≤ x ≤ β x 。 ⎜ ⎟ x ⎜ x ⎟ ⎝ ⎠
(X
,
• 1 ) 的完备性与考察 (X , ⋅ 2 )的完备性是一致的。据 Euclid 空间的完备性知有限维赋范
数学学院 2010 级泛函分析论文
空间都是 Banach 空间。 无限维赋范空间可能是不完备的。 事实上, 线性空间 l 0 − 只有有限项不为零的数列全体 按任何范数不完备。为此,命 X n = span e1, ⋯, en .在任何范数下, X n 是 l 0 的完备线性子 空间且无内点,因此 X n 是 l 0 的疏朗集。而 l 0 = ∪ X n n = 1,2,⋯ ,故 l 0 总是第一纲的。 定理 1 证明 任意 n 维赋范空间必与 R n 代数同构拓扑同胚
l 0 在 l ' 中稠密,因此 l 0 不是 l ' 的闭集。
4、 有界集的列紧性 有限维赋范空间的有界集都是列紧集而其有界闭集是紧集 (Heine-Borel 定理 )。无限 维赋范空间的单位球面 S 不是预紧集,因而不是列紧集也非紧集。为此取 x1 ∈ S 。因为
L1 = span{x1 }是 X 的真闭线性子空间,由 F.Riesz 引理,可取 x2 ∈ S 使 d (x2 , L1 ) ≻
1 1
n − ⎛ n 2 ⎞2 ⎛ 2 ⎞2 其中 β = x = ∑ ξ k ek ≤ ∑ ξ k ek ≤ ⎜ ∑ ξ k ⎟ ⎜ ∑ ek ⎟ = β x , k =1 k =1 ⎝ k =1 ⎠ ⎝ k =1 ⎠
[文学研究]赋范空间
备的,并称 X 为 Banach 空间 .
直接看出,收敛序列必 为 Cauchy 列;而 Banach 空间中的 Cauch y 列也是收 敛
序列 . 因此 可 以 说,Banach 空 间 正是 使 Cauchy 收 敛 原理 成 立 的 赋 范空 间 . 鉴 于 Cauch y 收 敛 原 理 在 经 典 分 析 中 的 重 要 性,不 难 理 解,在 泛 函 分 析 中 通 常 使 用
看起来,这似乎 是一缺点 . 实际上,这 正是赋 范空间概 念的优点:本质的 东西其 实 只是公理(N1)~ (N3 ),范数 ‖ x‖ 的具体界定正是要舍弃的 .
以下设 X 是一个给定的赋范空间 . 我们将大量借 用 通常 的 几何 术 语,以 加强 与
平常 Euclid 空间的类比 .例如,X 中的元称为点或
说 Y 是 X 的完备化 .
以 I 记 X 上的单位算子(或称恒等算子),即 I x = x ( x ∈ X).若 ‖·‖ 与
‖·‖′ 是 X 上的两个范数,而 I ∶ (X,‖·‖)→ (X,‖·‖′ )
为拓扑同构,这意味着存在 α,β > 0,使得 (对照(12))
第 一 章 Banach 空 间
用一种比拟的说法,可将泛 函分 析界定 为 “无限 维空 间上 的分析 学”;若更 特 殊点,就是 “Banach 空 间上 的分析 学”. 于此可 见,Banach 空间 对于 泛函分 析之 意 义,恰如 Euclid 空间对于经典分析 之意 义 . 因 此,关于 Banach 空间 基 本理 论的 初 步介绍,自然地 构成本 书的第一 章,读者不妨 将它与 数学分析 中的实 数理论相 对 照.
向量,向量 x 亦解图 1 - 1),而 ‖ x‖ 即 其“长度”. 三角 不等 式无
证明赋范线性空间是完备的
证明赋范线性空间是完备的以《证明赋范线性空间是完备的》为标题,本文将探讨赋范线性空间的完备性,在此之前,我们先概要线性空间的定义及其主要性质,以便我们更好地证明赋范线性空间的完备性。
首先,让我们来了解一下线性空间的定义及其主要性质。
线性空间是一个向量空间,它包含了零向量和所有可以由其他向量加减乘除定义出的向量。
满足下列性质的向量集称为向量空间,即:(1)量的加法满足结合律及交换律;(2)于任意标量k,有k(u+v)=ku+kv;(3)量的乘法满足结合律及交换律;(4)量的乘法满足分配律。
拥有上述性质的向量空间称为线性空间,它是一个自反的结构体。
因此,线性空间具有唯一的零元素,以及可以从一组向量中构造出一定数量的线性组合。
赋范线性空间是一种特殊的线性空间,它与普通线性空间的区别在于,赋范线性空间中的每个向量都具有相同的范数,即每个向量所具有的大小都是一致的。
现在,让我们开始证明赋范线性空间是完备的。
首先,让我们考虑一个赋范线性空间中的任意一个元素x。
由于x是一个赋范线性空间的元素,因此它的范数必须是一致的,即∥x∥=1。
因此,我们可以认为∥x∥=1是一个不变的值,即它的大小是确定的。
接下来,我们考虑一个赋范线性空间的任意两个元素x和y。
由于它们均具有相同的范数,即∥x∥=∥y∥=1,我们可以认为它们之间的距离是固定的,即∥xy∥=1。
这也意味着任何在该赋范线性空间中的两个元素之间的距离都是固定的,这是该赋范线性空间的一个重要性质。
因此,由以上所述,可以得出结论:一个赋范线性空间中的任意两个元素之间的距离都是固定的,即∥xy∥=1,因此该赋范线性空间是完备的。
综上所述,本文证明了,赋范线性空间是完备的,即任意两个向量之间的距离都是固定的,这是该空间的一个重要性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
•
从赋范空间完备观点来看,由于 C[a , b] 是在 L[a , b] 中稠密(当然稠密是按 L[a , b]中距 离来说的)的子空间,而 L[a , b] 是完备空间, b C [a , b ] || x ||1 | x(并不完备, t ) | dt 但 关于范数 a L[a , b] || ||1 C [a , b] 的完备化空 所以 不过是 按 间。
抽象化处理
• 给定赋范空间 X ,并给定 X 中的有穷个向 量 e1 , e2 ,..., en ,对求一组数 1 , 2 ,..., n , 使得
|| x k 1 k ek || min || x k 1 ak ek || n
n n aF
其中 a (a1 , a2 ,..., an ).
有
|| x y || 1 ( , 0, 1)
•
上给定 的一组线性无关向量,则 x X ,存在 唯一的一组最佳逼近系数 {1 , 2 ,..., n } 适合
|| x k 1 k ek || min || x k 1 ak ek || n
E E0
ess sup | f ( x ) |
xE
E0 E : mE0 0, s.t .,
|| f || sup | f ( x ) |
xE E0
Pr .
|| f ||
mE0 0, E0 E
inf
sup | f ( x ) |
E E0
n, En E : mEn 0, s.t .,
• L ( E ) 空间:E 上关于Lebesgue 测度的 p方可积函数空间。 1)按通常的线性运算成线性空间。 定义 1
p
|| f || ( | f ( x ) | dx )
p E
p
p
2)由Minkowski不等式知,L ( E )是 一个赋范空间。
E F , f (t ) • 设 (, F , ) 是一测度空间, 是 E 上的实值(或复值)函 数,p 0 ,设 f 是 E 上的可测函 p 数,且 | f | 在 E 上是可积的,这种 p f 函数 的全体记做 L ( E , F , ) , p 简记为 L ( E , ) 。
赋范线性空间 ( X ,|| ||) :
1) ||x || 0, 且 || x || 0 x 0
2) || x ||| | || x ||, R
3) ||x y |||| x || || y ||
令 ( x, y) || x y || , 则 满足距离的三个条件,从而赋范空 间按此距离成为距离空间,其距离 称为由范数诱导的距离. 定义 若 xn , x ( X ,|| ||) (n 1, 2,...) 满足 || x n x || 0(n ) 则称点列{ xn }依范数收敛于 x ,记作
i .e., {xn }是C auchy列
0, 2 x 1 但xn (t ) y(t ) 1, 1 x 2
y C[2, 2] (C[2, 2],|| || ) isn ' t a Banach space.
But C[a , b] with the norm || x || max | x( t ) |
sup | f ( x ) ||| f || 1 n xE En
令E0
n 1
En , mE0 0
|| f || sup | f ( x ) | sup | f ( x ) ||| f || 1 n xE E0 xE En
令n ,
|| f || sup | f ( x ) |
l 空间
p
• 记满足 n1 | xn | , p 1 的实(或 p 复)数列 x { xn } 全体为 l 。在 中规定: 1
p
|| x || p ( n1 | xn | )
p
p
由Minkowski不等式可以验证 || || p 是 l p 上的范数。
• 注:如果 0 p 1 ,Minkowski不等式 p p L 或 l 一般不成立,从而 || || p不是 上 1 p p 的范数。例如 2 ,在 l 中取 x (1,0,...,0), y=(0,1,0,...,0)
表明:具有相同维数的两个有穷维线性赋范空 间在代数上是同构的,在拓扑上是同胚的。
最佳逼近问题
• 逼近论的一个基本问题:给定了一组 函数 1 , 2 ,..., n 和一个函数 f , 用 1 , 2 ,..., n 的线性组合去逼近 f (按某种尺度),问是否有最佳的逼近 存在?例如 f 是 [0, 2 ]上的一个周期函 n p L 数,用 k 1 k k 去逼近 f ,求在 [0, 2 ] 意义下的最佳逼近.
p
L 空间
• f ( x ) 是可测集 E 上的可测函数。如 果 f ( x ) 和 E 上的一个有界函数几乎处 处相等,称 f ( x ) 是 E 上的本性有界可 测函数。 E 上的本性有界可测函数全 L 体记做 ( E )。定义:
|| f ||
mE0 0, E0 E
inf
sup | f ( x ) |
t[ a ,b ]
is a Banach space .
• 例 P[a , b]是[a , b]上一切多项式的全 体所成的线性空间,定义范数
|| x || max | x( t ) |, x P[a, b]
t[ a ,b ]
P[a , b]是赋范线性空间,但却 从而, P[a , b] 在完 是不完备的。另一方面, 备空间 C[a , b]内稠密。故 C[a , b] 完备 化空间是 P[a , b]。
lim xn x , or xn x( n )
n
•
C [a , b] 是区间 [a , b] 上[a, b] 时,规定 || f || max x[a ,b] | f ( x) |
C [a , b]按范数 || || 成为赋范线性空间.
xE E0
R
n
x ( x1 , x2 ,..., xn ) R
n 1 2 2 k
n
|| x ||1 ( k 1 x )
n
|| x ||2 k 1 | xk |
|| x ||3 max | xk |
1 k n
• || ||1 和 || ||2是 X 上的两个范数, 若 C1 , C2 0, s.t .,
2
2
1 0, -2 x 1 n xn ( t ) nx 1 n, 1- 1 x 1 n 1<x 2 1,
|| xn xm || | xn ( t ) xm ( t ) | dt
2
2
1|1 1 | 2 n m
( n1 | xn yn | ) 2
n 1
1 2 2
2
1 2 2 1 2 2
( | xn | ) ( | yn | )
1 因此 || || p ( p ) 不是范数。 2
n 1
l 空间
F 是 N 的子集 • 令 N 是自然数全体, 是 F上如下的测度:A F 全体, p ( A) A中元素的个数。 { xn } l 时, 时,把它看成函数 x(n) xn ,那 p 末 l 就可以看成 l p ( N , F , ) 。
C1 || x ||2 || x ||1 C2 || x ||2 , x X
则称 || ||1 是 || ||2 等价的。
• 有限维赋范空间(Minkowski空间) 在代数同构意义下,两个有穷维线性空 间等价的充要条件是它们有相同的维数。 两个有穷维线性空间,如果维数相同, 那么它们的拓扑之间有什么关系? 定理 设 X 有穷维线性空间, || ||1 与 || ||2 都 是 X 上的范数,则 || ||1 与 || ||2 是等价的。
•
度量空间的完备化(以及后来进一 步发展起来的具有一致结构的拓扑空 间的完备化),可以毫不夸张地说是整 个分析数学的一个重要而基本的思想 和方法。由有理数产生实数是这个思 想的最早的体现。由Riemann积分扩 充为Lebesgue积分,实质上与由连续 函数空间完备化为勒贝格可积函数空 间是一回事。
M span{e1 , e2 ,..., en },
( x , M ) inf || x y ||
yM
? x0 M , s.t .,
(x , x0 ) ( x , M )
• x 在 M 上的最佳逼近元?
严格凸
X 是严格凸的,若
x, y X , x y, || x |||| y || 1
n n aF
X是严格凸的,{e1 , e2 ,..., en } 是 X
Banach空间
• 完备的赋范空间称为Banach空间. • 任一度量空间存在完备化空间,且在 等距同构意义下是唯一的。
例
Q 不完备,R 是 Q 的完备化空间。
• 例(P75)
C[2, 2], || x ||1 | x( t ) | dt