八年级数学提公因式法因式分解教案
初中数学因式分解教案5篇
初中数学因式分解教案5篇初中数学因式分解教案篇1知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
教学目标:理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式。
考查重难点与常见题型:考查因式分解能力,在中考试题中,因式分解出现的频率很高。
重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用。
习题类型以填空题为多,也有选择题和解答题。
教学过程:因式分解知识点多项式的因式分解,就是把一个多项式化为几个整式的积。
分解因式要进行到每一个因式都不能再分解为止。
分解因式的常用方法有:(1)提公因式法如多项式其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式。
(2)运用公式法,即用写出结果。
(3)十字相乘法对于二次项系数为l的二次三项式寻找满足ab=q,a+b=p的a,b,如有,则对于一般的二次三项式寻找满足a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行。
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号。
(5)求根公式法:如果有两个根X1,X2,那么1、教学实例:学案示例2、课堂练习:学案作业3、课堂:4、板书:5、课堂作业:学案作业6、教学反思:初中数学因式分解教案篇2教学目标1、知识与技能会应用平方差公式进行因式分解,发展学生推理能力。
2、过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性。
3、情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值。
重、难点与关键1、重点:利用平方差公式分解因式。
北师大版八年级数学下册《因式分解——提公因式法》教学PPT课件(3篇)
= −(4 ∙ 6 2 − 4 ∙ 3 + 4 ∙ 7)
= −4(6 2 − 3 + 7).
易错注意:1.公因式要提尽;
2.公因式是某项时剩余的系数1别忘;
错误
提公因式后括号里少了一项.
正确解:原式=3x·
x-6y·
x+1·x
=x(3x-6y+1)
请你判断小明的解法有误吗?
因式分解: - x2+xy-xz.
解:原式= - x(x+y-z).
错误
提出负号时括号里的项
没变号
正确解:原式= - (x2-xy+xz)
=- x(x-y+z)
探索新知
巩固练习 将下列各式分解因式
项式的各项变号;
2.公因式的系数是多项式各项__________________;
系数的最大公约数
相同的字母
3.字母取多项式各项中都含有的____________;
4.相同字母的指数取各项中最小的一个,即 最低次幂
_________.
合作探究
因式分解:a(x-3)+2b(x-3)
(1)多项式的公因式是什么?
B.6(p+q)2-2(p+q)=2(p+q)(3p+q-1)
C.3(y-x)2+2(x-y)=(y-x)(3y-3x+2)
D.3x(x+y)-(x+y)2=(x+y)(2x+y)
4.用提公因式法因式分解:
(1)6p(p+q)-4q(p+q);
解:6p(p+q)-4q(p+q)
=2(p+q)(3p-2q).
A.x4
B.x3+1
C.x4+1
D.x3-1
人教版八年级上册数学 14.3.1 提公因式法 优秀教案
14.3因式分解14.3.1提公因式法1.理解因式分解的概念,以及因式分解与整式乘法的关系.会用提取公因式的方法分解因式.(重点)2.会确定公因式以及提出公因式后的另外一个因式.(难点)一、情境导入1.多媒体展示,让学生完成.计算:(1)m(a+b+c);(2)(a+b)(a-b);(3)(a+b)2.学生通过回忆前面所学的解题方法,完成解题,并积极作答:(1)m(a+b+c)=ma+mb+mc;(2)(a+b)(a-b)=a2-b2;(3)(a+b)2=a2+2ab+b2.2.学生通过对比上题发现:(1)ma+mb+mc=m(a+b+c);(2)a2-b2=(a+b)(a-b);(3)a2+2ab+b2=(a+b)2.3.教师肯定学生的表现,说明其过程正好与整式的乘法相反,它是把一个多项式化为几个整式的积的形式,该过程叫做因式分解,这节课我们就来探讨它.二、合作探究探究点一:因式分解的概念下列从左到右的变形中是因式分解的有( )①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).A.1个 B.2个 C.3个 D.4个解析:①没把一个多项式转化成几个整式积的形式,故①不是因式分解;②把一个多项式转化成几个整式积的形式,故②是因式分解;③是整式的乘法,故③不是因式分解;④把一个多项式转化成几个整式积的形式,故④是因式分解;故选B.方法总结:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.探究点二:提公因式法分解因式【类型一】确定公因式多项式6ab c-3a bc+12a2b2中各项的公因式是( )A.abc B.3a2b2 C.3a2b2c D.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,∴公因式为3ab.故选D.方法总结:确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【类型二】用提公因式法因式分解因式分解:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解析:将原式各项提取公因式即可得到结果.解:(1)原式=4ab2(2a2+3bc);(2)原式=(2a-3)(b+c);(3)原式=(a+b)(a-b-1).方法总结:提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【类型三】利用因式分解简化运算计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.16,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.16+72×20.16+13×20.16-20.16×14=20.16×(29+72+13-14)=2016.方法总结:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.【类型四】利用因式分解整体代换求值已知a+b=7,ab=4,求a2b+ab2的值.解析:原式提取公因式变形后,将a+b与ab的值代入计算即可求出值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.方法总结:求代数式的值,有时要将已知条件看作一个整体代入求值.【类型五】因式分解与三角形知识的综合△ABC的三边长分别为a、b、c,且a+2ab=c+2bc,请判断△ABC是等边三角形、等腰三角形还是直角三角形?并说明理由.解析:对已知条件进行化简后得到a=c,根据等腰三角形的概念即可判定.解:整理a+2ab=c+2bc得,a+2ab-c-2bc=0,(a-c)+2b(a-c)=0,(a-c)(1+2b)=0,∴(a-c)=0或(1+2b)=0,即a=c或b=-12(舍去),∴△ABC是等腰三角形.方法总结:通过提公因式分解因式,找出三边的关系来判定三角形的形状.【类型六】运用因式分解探究规律阅读下列因式分解的过程,再回答所提出的问题:1+x+x(x+1)+x(x+1)2=(1+x)[1+x+x(x+1)]=(1+x)2(1+x)=(1+x)3.(1)上述因式分解的方法是____________,共应用了______次;(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,则需应用上述方法______次,结果是____________;(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).解析:(1)根据已知计算过程直接得出因式分解的方法即可;(2)根据已知分解因式的方法可以得出答案;(3)由(1)中计算发现规律进而得出答案.解:(1)因式分解的方法是提公因式法,共应用了2次;(2)分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)2015,需应用上述方法2015次,结果是(1+x)2015;(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.方法总结:解决此类问题需要认真阅读理解题意,根据已知得出分解因式的规律是解题关键.三、板书设计提公因式法1.因式分解的概念:把一个多项式化成几个整式的积的形式.2.因式分解与整式乘法是方向相反的变形.3.提取公因式的方法:把多项式各项的公因式提取出来,写成公因式与另一个因式乘积的形式.本节中要给学生留出自主的空间,然后引入稍有层次的例题,让学生进一步感受因式分解与整式的乘法是逆过程,从而可用整式的乘法检查错误.本节课在对例题的探究上,提倡引导学生合作交流,使学生发挥群体的力量,以此提高教学效果.。
初中数学 教案2:因式分解——提公因式法
乘法公式——提公因式法一、教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.树立学生“化零为整”的“化归”的数学思想,培养学生完整地、辩证地看问题的思想.4.树立学生全面分析问题、认识问题的思想,提高学生的观察能力、分析问题及逆向思想的能力.二、教学重点及难点1.教学重点:因式分解的概念及提公因式法.2.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.三、教学方法理论与实例相结合.四、教学手段设问式、启发式.五、教学过程(一)复习提问1.乘法对加法的分配律.2.添括号法则.(二)新课1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在代数里学习分式的时候,也常常要进行约分、通分,因此要常常把一个多项式化成几个整式的乘积.在中学里一元高次(二次以上)方程的求解正是根据在实数域上,实系数多项式总可以分解为一次或二次不可约多项式的乘积,那么相应的一元高次方程可以化为一次或二次方程求解.又如一元高次不等式的解法,也是基于一次、二次不等式的解法.将高次不等式化为一、二次不等式组解.因此从知识内容看,把一个多项式恒等变形成几个因式乘积是十分重要的.这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10 等等.再请学生观察它们有什么共同的特点?特点:左边,整式×整式;右边,是多项式.可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形.因式分解的特征是和差化积的形式,乘法的特征是积化和差的形式.例1 下列各式从左到右哪些是因式分解?(1)x2-xx(x-1) (√)(2)a(a-b)a2-ab (×)(3)(a+3)(a-3)a2-9 (×)(4)a2-2a+1=a(a-2)+1 (×)(5)x2-4x+4(x-2)2 (√)下面我们学习几种常见的因式分解方法.3.提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma+mb+mc 写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah(2a)(4)x2y+xy2(xy)(5)12xyz-9x2y2(3xy)例3 把8a3b2-12ab3c分解因式.分析:分两步:第一步,找出公因式;第二步,提公因式.先引导学生按确定公因式的方法找出多项式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).说明:(1)应特别强调确定公因式的两个条件以免漏取.(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.例4 把3x2-6xy+x 分解因式.分析:先引导学生找出公因式x,强调多项式中x=x·1.解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.课堂练习:把下列各式分解因式:(l)2πR+2πr;(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy.例5 把-4m3+16m2-26m分解因式.分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提“-”号时,注意添括号法则.解:-4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2m2-8m+13).说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.课堂练习:把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(三)小结1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.六、作业教材 1、2、3、4.七、板书设计提公因式法同步训练1.下列各式得公因式是a得是()A.ax+ay+5 B.3ma-6ma2 C.4a2+10ab D.a2-2a+ma2.-6xyz+3xy2-9x2y的公因式是()A.-3x B.3xz C.3yz D.-3xy3.把多项式(3a-4b)(7a-8b)+(11a-12b)(8b-7a)分解因式的结果是()A.8(7a-8b)(a-b)B.2(7a-8b)2 C.8(7a-8b)(b-a)D.-2(7a-8b)4.把(x-y)2-(y-x)分解因式为()A.(x-y)(x-y-1) B.(y-x)(x-y-1)C.(y-x)(y-x-1) D.(y-x)(y-x+1)5.下列各个分解因式中正确的是()A.10ab2c+6ac2+2ac=2ac(5b2+3c)B.(a-b)3-(b-a)2=(a-b)2(a-b+1)C.x(b+c-a)-y(a-b-c)-a+b-c=(b+c-a)(x+y-1)D.(a-2b)(3a+b)-5(2b-a)2=(a-2b)(11b-2a)6.观察下列各式①2a+b和a+b,②5m(a-b)和-a+b,③3(a+b)和-a-b,④x2-y2和x2和y2.其中有公因式的是()A.①② B.②③ C.③④ D.①④7.当n为_____时,(a-b)n=(b-a)n;当n为______时,(a-b)n=-(b-a)n.(其中n为正整数)8.多项式-ab(a-b)2+a(b-a)2-ac(a-b)2分解因式时,所提取的公因式应是_____.9.(a-b)2(x-y)-(b-a)(y-x)2=(a-b)(x-y)×________.10.多项式18x n+1-24x n的公因式是_______.11.把下列各式分解因式:(1)15×(a-b)2-3y(b-a)(2)(a-3)2-(2a-6)(3)-20a-15ax(4)(m+n)(p-q)-(m+n)(q+p)12.利用分解因式方法计算:(1)39×37-13×34(2)29×+72×+13×先化简,再求值:已知串联电路的电压U=IR1+IR2+IR3,当R1=,R2=,R3=,I=时,求U的值.14.已知a+b=-4,ab=2,求多项式4a2b+4ab2-4a-4b的值.参考答案1.D 2.D 3.C 4.C 5.D 6.B 7.偶数奇数 8.-a(a-b)29.(a-b+x-y) 10.6x n 3x-411.(1)3(a-b)(5ax-5bx+y);(2)(a-3)(a-5);(3)-5a(4+3x);(4)-2q(m +n)12.(1)原式=39×37-39×33=39(37-27)=390(2)原式=(29+72+13-14)=×100=1999=I(R1+R2+R3)=++=*50=11514.由4a2b+4ab2-4a-4b=4(a+b)(ab-1)=-16。
2022年人教版八年级数学上册第十四章整式的乘法与因式分解教案 提公因式法
第十四章整式的乘法与因式分解14.3 因式分解14.3.1 提公因式法一、教学目标【知识与技能】1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念;2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式.【过程与方法】经历从分解因数到分解因式的类比过程,感受因式分解在解决问题中的作用.【情感、态度与价值观】培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.二、课型新授课三、课时1课时四、教学重难点【教学重点】因式分解的概念;提公因式法分解因式.【教学难点】正确理解因式分解的概念,准确找出公因式.五、课前准备教师:课件、三角尺、直尺等.学生:直尺、练习本、铅笔、钢笔或圆珠笔.六、教学过程(一)导入新课我们知道,利用整式的乘法运算,可以将几个整式的积化为一个多项式的形式,反过来,能不能将一个多项式化成几个整式的积的形式呢?若能,这种变形叫做什么呢?(出示课件2)(二)探索新知1.创设情境,探究提公因式法分解因式教师问1:请同学们先完成下列计算,看谁算得又准又快.(1)20×(-3)2+60×(-3);(2)1012-992;(3)572+2×57×43+432.学生回答:如下:解:方法一:(1)20×(-3)2+60×(-3)=20×9-180=180-180=0;(2)1012-992=10201-9801=400;(3)572+2×57×43+432=3249+4902+1849=8151+1849=10000.方法二:(1)20×(-3)2+60×(-3)=-3×[20×(-3)+60]=1-3×[-60+60]=0;(2)1012-992=(101+99)(101-99)=200×2=400;(3)572+2×57×43+432=3(57+43)2=1002=10000.教师问2:上边两种方法,哪一种简单呢?学生回答:方法二简单.教师讲解:在上述运算中,大家或将数字分解成两个数的乘积,或者逆用乘法公式使运算变得简单易行,类似地,在式的变形中,有时也需要将一个多项式写成几个整式的乘积形成,这就是我们从今天开始要探究的内容——因式分解.(板书课题)教师问3:如图,一块菜地被分成三部分,你能用不同的方式表示这块草坪的面积吗?(出示课件4)学生回答:方法一:m(a+b+c);方法二:ma+mb+mc教师问4:m(a+b+c)=ma+mb+mc是整式的乘法,那么ma+mb+mc=m(a+b+c),你猜想是什么呢?学生回答:因式分解.教师问5:请同学们运用整式乘法法则或公式填空:(出示课件5)(1) m(a+b+c)= ____________________ ;(2) (x+1)(x–1)=___________________;(3) (a+b)2 = ______________________.学生回答:(1) m(a+b+c)= ma+mb+mc ;(2) (x+1)(x–1)=x2-1;(3) (a+b)2 = a2+2ab+b2.教师问6:根据等式的性质填空:(1) ma+mb+mc=( )( )(2) x2–1 =( )( )(3) a2 +2ab+b2 =( )2学生回答:(1) ma+mb+mc=( m)( a+b+c )(2) x2–1 =( x+1)( x-1)(3) a2 +2ab+b2 =( a+b)2教师问7:比一比,这些式子有什么共同点?学生讨论后回答:左边是多项式,右边是多相式的乘积.教师总结:(出示课件6)把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.教师问8:你认为因式分解与整式乘法有什么关系?(出示课件7)学生思考回答,师生共同解答如下:因式分解与整式乘法是互逆变形关系,整式乘法是一种运算,而因式分解是对多项式的一种变形,不是运算.教师问9:x2–1 = (x+1)(x–1)有何特征呢?学生回答:左边是多项式,右边是几个整式的乘积例1:下列从左到右的变形中是因式分解的有( )(出示课件8)①x2–y2–1=(x+y)(x–y)–1;②x3+x=x(x2+1);③(x–y)2=x2–2xy+y2;④x2–9y2=(x+3y)(x–3y).A.1个B.2个C.3个D.4个因式分解是积的形式,①是和的形式,所以不是因式分解,②是因式分解,③是整式的乘法,④是因式分解.故选B.答案:B.总结点拨:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.教师问10:再观察下面问题中的第(1)题和第(3)题,你能发现什么特点?(1)x2+x=________;(2)x2-1=________;(3)am+bm+cm=________.学生独立思考后回答:发现(1)中各项都有一个相同的因式x,(3)中各项都有一个相同的因式m.教师问11:观察下列多项式,它们有那些相同的因式?(出示课件10)pa+pb+pc,x2+x学生回答:前者的相同因式为p,后者的相同因式为x。
人教版数学八年级上册15.4.1《提公因式法因式分解》说课稿
人教版数学八年级上册15.4.1《提公因式法因式分解》说课稿一. 教材分析《提公因式法因式分解》是人教版数学八年级上册第15章第4节的一个内容。
这一节主要介绍了提公因式法在因式分解中的应用。
在此之前,学生已经学习了平方差公式和完全平方公式的因式分解,提公因式法是这两种方法之外的一种重要因式分解方法。
本节内容的学习,不仅丰富学生的因式分解方法,也为后续学习分式分解、二次方程的解法等知识打下基础。
二. 学情分析八年级的学生已经具备了一定的数学基础,对因式分解的概念和方法有一定的了解。
但是,对于提公因式法这种方法的理解和应用还不够深入。
因此,在教学过程中,需要引导学生从已知的知识出发,探索和理解提公因式法的原理和应用。
三. 说教学目标1.知识与技能目标:使学生理解提公因式法的原理,能够运用提公因式法进行因式分解。
2.过程与方法目标:通过自主学习、合作交流的方式,培养学生探索和解决问题的能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的耐心和自信心。
四. 说教学重难点1.教学重点:提公因式法的原理和应用。
2.教学难点:如何引导学生从已知的知识出发,探索和理解提公因式法。
五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师引导的教学方法。
2.教学手段:利用多媒体课件,进行直观演示和讲解。
六. 说教学过程1.导入:回顾平方差公式和完全平方公式的因式分解,引出提公因式法。
2.自主学习:学生自主探索提公因式法的原理和应用。
3.合作交流:学生分组讨论,分享自己的理解和发现。
4.教师讲解:针对学生的疑问和困难,进行讲解和引导。
5.练习巩固:学生进行相关的练习,巩固所学知识。
6.课堂小结:教师引导学生总结本节课的学习内容。
七. 说板书设计板书设计如下:提公因式法因式分解1.原理:找出多项式的公因式,提取公因式后,得到因式分解的结果。
a.找出多项式的公因式b.提取公因式c.验证因式分解的结果八. 说教学评价教学评价主要从学生的学习效果和课堂表现两个方面进行。
14.3 因式分解【教案】八年级上册数学
14.3.1提公因式法课时目标1.了解因式分解的意义,以及它与整式乘法的关系,掌握因式分解的概念,体会数学知识的内在含义与价值.2.能确定多项式各项的公因式,会用提公因式法把多项式分解因式,培养学生有条理的思考和运算能力.3.会利用因式分解进行简便计算,体会因式分解的价值,培养学生的创新意识.学习重点运用提公因式法分解因式.学习难点正确理解因式分解的概念,准确找出公因式.课时活动设计回顾引入1.回顾整式乘法完成填空:(1)m(a+b+c)=ma+mb+mc.(2)(x+1)(x-1)=x2-1.(3)(a+b)2=a2+2ab+b2.2.根据等式性质填空:(1)ma+mb+mc=m(a+b+c).(2)x2-1=(x+1)(x-1).(3)a2+2ab+b2=(a+b)2.设计意图:引导学生回顾旧知识,激活学生已有的知识体系,为学习新知识打下基础.探究新知探究1因式分解问题:回顾引入中第2组式子有什么共同特点?学生回答:将一个多项式化成多个整式相乘.教师引导并给出因式分解的概念:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.p(a+b+c)pa+pb+pc通过观察,你发现因式分解和整式乘法有什么关系?学生发现:因式分解与整式乘法的互逆性.探究2提公因式法问题1:观察下列多项式有哪些相同因式?学生观察发现前者的相同因式为p,后者的相同因式为x.总结如下:多项式中各项都含有的相同因式,叫做这个多项式的公因式.师生活动:教师板书:pa+pb+pc=p(a+b+c).引导学生用文字进行总结:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.问题2:找出3x2-6xy的公因式,并思考如何确定一个多项式的公因式?师生活动:学生先独立思考,然后小组交流得出结论:公因式为3x.教师引导学生用文字总结如何确定一个多项式的公因式:1.定字母:字母取多项式各项中都含有的相同的字母;2.定系数:公因式的系数是多项式各项系数的最大公约数;3.定指数:相同字母的指数取各项中最小的一个,即字母的最低次数.设计意图:通过具体问题的解决,让学生在观察、思考和操作的过程中,了解因式分解的概念,培养学生类比的思想方法和运算能力;学生从系数、字母、指数多个角度思考问题,培养学生思维的全面性和开阔性,养成积极思考的学习态度和创新意识.典例精讲例1把下列各式分解因式:(1)8a3b2+12ab3c;(2)2a(b+c)-3(b+c);(3)(a+b)(a-b)-a-b.解:(1)8a3b2+12ab3c=4ab2·2a2+4ab2·3bc=4ab2(2a2+3bc).(2)2a(b+c)-3(b+c)=(b+c)(2a-3).(3)(a+b)(a-b)-a-b=(a+b)(a-b)-(a+b)=(a+b)(a-b-1).技巧:1.整体思想找公因式;2.整项被提取后,1不能丢;3.可以用整式乘法验证.例2以下因式分解是否正确?如果错误,请指出原因并改正.(1)把12x2y+18xy2分解因式.解:原式=3xy(4x+6y).解:不正确.正解:原式=6xy(2x+3y).注意:公因式要提尽.(2)把3x2-6xy+x分解因式.解:原式=x(3x-6y).解:不正确.正解:原式=3xx-6yx+1·x=x(3x-6y+1).注意:某项提出莫漏1.(3)把-x2+xy-xz分解因式.解:原式=-x(x+y-z).解:不正确.正解:原式=-(x2-xy+xz)=-x(x-y+z).注意:首项有负常提负.例3计算:(1)39×37-13×91;(2)29×20.16+72×20.16+13×20.16-20.16×14.解:(1)原式=3×13×37-13×91=13×(3×37-91)=13×20=260.(2)原式=20.16×(29+72+13-14)=2 016.例4已知a+b=7,ab=4,求a2b+ab2的值.解:∵a+b=7,ab=4,∴原式=ab(a+b)=4×7=28.设计意图:通过例题,让学生寻求不同的解题方法,体会在计算求值时,若式子各项都含有公因式,用提公因式的方法可使运算简便,感悟学习因式分解的作用,培养学生转化意识、整体思想,进一步训练运算能力.巩固训练1.多项式15m3n2+5m2n-20m2n3的公因式是(C)A.5mnB.5m2n2C.5m2nD.5mn22.把多项式(x+2)(x-2)+(x-2)提取公因式(x-2)后,余下的部分是(D)A.x+1B.2xC.x+2D.x+33.简便计算:2 0132+2 013-2 0142.解:原式=2 013×(2 013+1)-2 0142=2 013×2 014-2 0142=2 014×(2 013-2 014)=-2 014.设计意图:巩固训练共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.整式乘法和因式分解的关系是方向相反的变形,因式分解的目的是把一个多项式化成了几个整式的积的形式.2.找公因式的方法三定:定系数;定字母;定指数.3.提公因式的因式分解的步骤第一步找公因式,第二步提公因式.4.提公因式的技巧或注意问题1.要提尽;2.不漏项;3.提负数要注意变号.5.本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第115页练习第1,2,3题.2.作业.教学反思14.3.2公式法第1课时运用平方差公式因式分解课时目标1.探索并运用平方差公式进行因式分解,体会转化思想和逆向思维.2.能综合运用提公因式法和平方差公式对多项式进行因式分解,培养运算能力和应用意识.3.培养良好的推理能力,体会“化归”与“整体”的思想方法,形成灵活的应用能力.学习重点掌握平方差公式的特点,运用平方差公式进行因式分解.学习难点灵活应用平方差公式因式分解.课时活动设计回顾引入之前学习了平方差公式,今天先回顾一下.计算:(1)(x+2)(x-2);(2)(x-1)(x+1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x-2)=x2-4.(2)(x-1)(x+1)=x2-1.设计意图:从结构上认识本节课所研究的多项式的结构特点,引出课题,培养学生观察问题的能力和模型观念.探究新知问题:多项式a2-b2有什么特点?你能将它分解因式吗?学生观察得出结论:a2-b2=(a+b)(a-b)是a,b两数的平方差的形式.追问1:你能根据符号语言写出文字语言吗?师生活动:教师引导学生结合整式乘法归纳出因式分解平方差公式的文字语言:两个数的平方差,等于这两个数的和与这两个数的差的积.追问2:如图,在边长为a米的正方形上剪掉一个边长为b米的小正方形,将剩余部分拼成一个长方形,根据此图形变换,你能验证刚才的公式吗?师生活动:教师首先引导学生利用面积验证平方差公式,提问两名同学分别列出左右两个图形涂色区域的面积.左:涂色区域的面积=a2-b2;右:涂色区域的面积=(a+b)(a-b).根据左右涂色区域的面积相等得到:a2-b2=(a+b)(a-b).设计意图:通过利用拼图求面积验证平方差公式,培养学生多角度思考问题的习惯和图形语言、符号语言、文字语言的相互转化能力.典例精讲例1分解因式:(1)4x2-9;(2)(x+p)2-(x+q)2.解:(1)原式=(2x)2-32=(2x+3)(2x-3).(2)原式=[(x+p)+(x+q)]·[(x+p)-(x+q)].例2分解因式:(1)x4-y4;(2)a3b-ab.解:(1)原式=(x2)2-(y2)2=(x2+y2)(x2-y2)=(x2+y2)(x+y)(x-y).(2)原式=ab(a2-1)=ab(a+1)(a-1).例3已知x2-y2=-2,x+y=1,求x-y,x,y的值.解:∵x2-y2=(x+y)(x-y)=-2,∵x+y=1,①∴x-y=-2.②联立①②,组成二元一次方程组{x+y=1, x-y=−2,解得{x =−12,y =32. 例4 计算下列各题:(1)1012-992; (2)53.52×4-46.52×4. 解:(1)原式=(101+99)×(101-99)=200×2=400. (2)原式=4×(53.52-46.52) =4×(53.5+46.5)(53.5-46.5) =4×100×7=2 800.例5 求证:当n 为整数时,多项式(2n +1)2-(2n -1)2一定能被8整除. 证明:原式=(2n +1+2n -1)(2n +1-2n +1)=4n ·2=8n , ∵n 为整数,∴8n 能被8整除.即多项式(2n +1)2-(2n -1)2一定能被8整除.设计意图:进一步通过例题强调平方差公式和因式分解的两种方法的综合应用,让学生体会若用平方差公式分解后的结果中有公因式,一定要再用提公因式法继续分解,分解到不能再分解为止,体会“一提二套三彻底”,培养学生归纳抽象能力和数学思想方法的掌握.巩固训练1.下列多项式中能用平方差公式分解因式的是( D )A.a 2+(-b )2B.5m 2-20mnC.-x 2-y 2D.-x 2+9 2.把下列各式分解因式: (1)16a 2-9b 2= (4a +3b )(4a -3b ) ; (2)(a +b )2-(a -b )2= 4ab ; (3)2x 2-8= 2(x +2)(x -2) ; (4)-a 4+16= (4+a 2)(2+a )(2-a ) .3.如图,在边长为6.8 cm 正方形钢板上,挖去4个边长为1.6 cm 的小正方形,求剩余部分的面积.解:根据题意,得6.82-4×1.62=6.82-(2×1.6)2=6.82-3.22=(6.8+3.2)(6.8-3.2)=10×3.6=36(cm2).答:剩余部分的面积为36 cm2.设计意图:共设计3个题目,针对所学知识点对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结1.因式分解有哪些方法?2.能用平方差公式因式分解的结构特点是什么?3.平方差公式因式分解的步骤及注意问题有什么?4.本节用到什么研究问题的方法?5.根据本节的研究思路思考因式分解还有什么方法?设计意图:以提问的方式引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页习题14.3第2,5(4)题.2.作业.教学反思第2课时运用完全平方公式因式分解课时目标1.理解完全平方公式的结构特点,培养模型观念.2.经历探索利用完全平方公式进行因式分解的过程,感受逆向思维的意义,掌握因式分解的基本步骤.3.在运用完全平方公式法进行因式分解的同时,培养学生的观察、比较和判断能力以及运算能力.学习重点掌握完全平方公式的结构特点,运用完全平方公式进行因式分解.学习难点理解完全平方公式的结构特征,灵活运用完全平方公式进行因式分解.课时活动设计回顾引入之前学习了完全平方公式,今天先来回顾一下.计算:(1)(x+2)(x+2);(2)(x-1)(x-1).选两名学生黑板上板书计算过程:解:(1)(x+2)(x+2)=x2+4x+4.(2)(x-1)(x-1)=x2-2x+1.设计意图:通过复习旧知,巩固因式分解和整式乘法的关系,为探究新知做准备,回顾完全平方公式,注重知识间的联系和知识体系的渗透,培养知识的迁移能力.探究新知问题1:观察多项式a2+2ab+b2,a2-2ab+b2,并回答下列各题.(1)每个多项式有几项?解:三项.(2)每个多项式的第一项和第三项有什么特征?解:都是一个数的平方.(3)中间项和第一项,第三项有什么关系?解:中间项是正负这两个数的积的2倍.追问:你能用符号语言和文字语言表述完全平方式吗?师生活动:选两名学生在黑板上板书整式乘法的完全平方公式.(a+b)2=a2+2ab+b2;(a-b)2=a2-2ab+b2.等号两边互换位置,就得到:a2+2ab+b2=(a+b)2;a2-2ab+b2=(a-b)2.教师引导学生用文字表述完全平方式:两个数的平方和加上(或减去)这两个数的积的2倍,等于这两个数的和(或差)的平方.问题2:你能把下面4个图形拼成一个正方形,并根据拼成的图形的面积写出等量关系吗?学生动手操作,通过拼图前后图形面积相等写出等量关系a2+2ab+b2=(a+b)2.设计意图:学生在归纳出完全平方式的结构特征后,尝试用符号语言和文字语言表述完全平方式,最后通过动手操作,以拼图的形式再次验证完全平方式,同时在探究过程中感受到学习数学的乐趣.典例精讲例1分解因式:(1)16x2+24x+9;(2)-x2+4xy-4y2.解:(1)原式=(4x)2+2·4x·3+32=(4x+3)2.(2)原式=-(x2-4xy+4y2)=-(x-2y)2.例2把下列各式分解因式:(1)3ax2+6axy+3ay2;(2)(a2+4)2-16a2.解:(1)原式=3a(x2+2xy+y2)=3a(x+y)2.(2)原式=(a2+4)2-(4a)2=(a2+4+4a)(a2+4-4a)=(a+2)2(a-2)2.例3计算:(1)1002-2×100×99+992;(2)342+34×32+162;(3)7652×17-2352×17.解:(1)原式=(100-99)2=1.(2)原式=(34+16)2=2 500.(3)原式=17×(7652-2352)=17×(765+235)(765-235)=17×1 000×530=9 010 000.例4已知a2+b2+2a-4b+5=0,求2a2+4b-3的值.解:由已知可得(a2+2a+1)+(b2-4b+4)=0,即(a+1)2+(b-2)2=0,解得a=-1,b=2.∴2a2+4b-3=2×(-1)2+4×2-3=7.设计意图:通过多种方法的综合应用,感受因式分解给计算带来的便捷,选题层次分明考察各有侧重点,让学生体会“数式同性”,掌握研究方法和知识的迁移性,形成体系,培养数感和运算能力.巩固训练1.下列四个多项式中,能因式分解的是(B)A.a2+1B.a2-6a+9C.x2+5yD.x2-5y2.把多项式4x2y-4xy2-x3分解因式的结果是(B)A.4xy(x-y)-x3B.-x(x-2y)2C.x(4xy-4y2-x2)D.-x(-4xy+4y2+x2)3.把下列多项式因式分解.(1)4(2a+b)2-4(2a+b)+1;(2)y2+2y+1-x2.解:(1)原式=[2(2a+b)]2-2·2(2a+b)·1+12=(4a+2b-1)2.(2)原式=(y+1)2-x2=(y+1+x)(y+1-x).设计意图:共设计3个题目,针对所学内容对本节所学知识再巩固,检验学生的学习效果,准确地进行教学评价,帮助教师发现问题和进行教学改进.课堂小结(1)因式分解有哪些方法?(2)能用完全平方公式因式分解的结构特点是什么?(3)因式分解的步骤及注意问题有什么?(4)本节用到什么研究问题的方法?设计意图:引导学生从知识内容和学习过程两个方面总结自己的收获,把握本节课的核心,梳理本节课内容,回顾由具体到抽象的过程,总结方法,建立知识体系,体会类比、转化方法在研究数学问题中的重要作用,促进学生数学思维品质的优化.课堂8分钟.1.教材第119页练习第1,2题.2.作业.教学反思。
人教版八年级数学上册14.3.1《提公因式法》教学设计
人教版八年级数学上册14.3.1《提公因式法》教学设计一. 教材分析《提公因式法》是人民教育出版社八年级数学上册第14章第3节的内容,本节课主要让学生掌握提公因式法分解因式的技巧,并能灵活运用解决实际问题。
教材通过引入实例,引导学生发现并总结提公因式法的原理,进而运用到因式分解中。
本节课的内容是学生学习因式分解的重要环节,对于提高学生的数学思维能力和解决实际问题能力具有重要意义。
二. 学情分析学生在学习本节课之前,已经掌握了整式的乘法、完全平方公式和平方差公式等基础知识。
但由于提公因式法的抽象性较强,学生可能难以理解其本质和应用。
此外,学生在学习过程中可能存在对公式死记硬背的现象,缺乏对公式的灵活运用能力。
因此,在教学过程中,需要关注学生的认知基础,引导学生发现提公因式法的规律,培养学生的数学思维能力。
三. 教学目标1.知识与技能目标:让学生掌握提公因式法,能够运用提公因式法分解因式。
2.过程与方法目标:通过观察、分析、归纳等方法,引导学生发现提公因式法的原理,培养学生的数学思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:提公因式法的原理和运用。
2.难点:如何引导学生发现提公因式法的规律,以及如何灵活运用提公因式法解决实际问题。
五. 教学方法1.启发式教学:通过设置疑问,引导学生主动思考,发现提公因式法的规律。
2.案例教学:通过分析具体实例,使学生理解并掌握提公因式法的应用。
3.小组合作学习:引导学生分组讨论,培养学生的团队合作精神。
六. 教学准备1.教学课件:制作课件,展示提公因式法的原理和应用。
2.实例:准备一些具有代表性的例子,用于讲解和练习。
3.练习题:准备一些练习题,巩固学生对提公因式法的掌握。
七. 教学过程1.导入(5分钟)利用实例引入提公因式法,引导学生思考如何简化表达式。
例如,给出表达式 (x^2 - 4x + 4),让学生尝试分解。
人教版初中数学八年级上册14.3.1提取公因式法(教案)
(五)总结回顾(用时5分钟)
今天的学习,我们了解了提取公因式法的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对提取公因式的理解和运用。我希望大家能够掌握这些知识点,并在解决数学问题时灵活运用。最后,如果有任Байду номын сангаас疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生逻辑推理能力,通过提取公因式法的学习,使学生能够理解和掌握因式分解的基本思想,提高解决数学问题的逻辑思维水平;
2.培养学生数学抽象能力,让学生在识别和提取公因式的过程中,把握数学对象的本质属性,形成数学抽象的素养;
3.培养学生数学建模能力,使学生能够将提取公因式法应用于解决实际问题,建立数学模型,提高解决实际问题的能力;
在学生小组讨论环节,我注意到有些学生不太愿意发表自己的观点。为了鼓励他们积极参与,我打算在接下来的课程中,多设置一些简单易懂的问题,让学生们更容易开口表达自己的看法。
-在提取公因式时,学生可能会忽略常数项的公因式,或者对含有变量的公因式提取不准确;
-学生在运用提取公因式法进行因式分解时,可能会出现分解不彻底或者错误分解的情况。
举例:针对难点,举例\(4x^3 - 8x^2 + 4x\)的公因式提取,学生可能会只提取\(4x\)作为公因式,而忽略\(4\)也是每一项的公因数。通过此类例题,引导学生注意常数项和变量项的共同公因式。同时,讲解如何检查提取公因式后的结果是否正确,如通过展开验证或利用分配律检验。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解提取公因式法的基本概念。提取公因式法是一种因式分解的方法,它通过找出多项式中的公共因子,简化多项式的表达形式。这种方法在解决数学问题和简化计算中非常重要。
《因式分解提公因式法》教案
3 《因式分解提公因式法》教案教学目标:1.知识与技能:把一个多项式化成几个整式的积的形式,?这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式. 2•过程与方法:分解因式的结果只能是几个整式的乘积形式,而且要分解到不能再分 解为止,相同因式要写成幕的形式.3 •情感态度与价值观:运用提公因式法分解因式的关键是确定多项式各项的公因式, 公因式是指各项系数的最大公约数、各项共有字母的最低次幕的乘积.?公因式可以是单项式也可以是多项式. 一创设情境,导入新课1如图,我们学校篮球场的面积是 ma+mb+mc,长为a+b+c,宽为多少呢?这个问题实际上就是求 (am+bm+cm)十(a+b+c)= _______为了解决这个问题请你先思考:2如图,某建筑商买了一块宽为m 的矩形地皮,被分成了三块矩形宽度分别是 a,b,c,这块地皮的面积是多少? 提问:把ma+mb+mc 写成m(a+b+c)叫什么运算?怎样分解因式?这节课我们来学习第一个方法——提公因式法二合作交流,探究新知1公因式的概念(1) 式子:am,bm,cm,是由哪些因式组成的?指出:其中m 是他们的公共的因式,叫公因式(2) 你能指出下面多项式中各项的公因式吗?(1) ⑵ 24xy+16;旷(3) 36^?用 + 4 帥矿(4)- +18xy- 15y 2提公因式法重、难点:重点:用提公因式法分解因式。
式中的公因式。
教学过程难点:确定多项 a+b+cam+bm-i-cm把 ma+mb+mc 分解成:ma+mb+mc=m (a+b+c ),用到什么依据?这种因式分解有什么特 点?用到了乘法分配律,特点:把各项的公因式提出放到括号外面,叫提公因式法。
强调:(1)公因式确定后,另一个因式怎么确定?(2)某一项全部提出后,还有因数“ 1例2把 因式分解。
强调:(1)首项系数是负数时,取其绝对值找最大公因数。
(2)首项为负时,最好提出负号。
提公因式法因式分解教案
义务教育课程标准实验教科书人教版《数学》·八年级上册§14.3.1提公因式法因式分解 教案一、 教学目标(一)知识与技能1.了解因式分解的概念,理解因式分解与整式乘法的区别.2.会寻找公因式,能正确应用提公因式法因式分解.(二)过程与方法1.经历由单项式与多项式的乘法运算过渡到因式分解的过程,并在此过程中,通过观察、对比等手段,发现因式分解与整式乘法的区别,体会类比思想,培养观察能力.2.寻找确定多项式各项的公因式的一般方法,培养总结归纳能力.(三)情感、态度与价值观1.通过观察、对比等手段,培养善于类比能力,发展数学探究能力.2.通过有一定梯度的变式训练,锻炼克服困难的意志,发展合作交流的良好品质.二、教学重难点(一)教学重点因式分解的概念及用提公因式法提公因式.(二)教学难点1.因式分解与整式乘法的区别与联系.2.正确找出多项式各项的公因式.三、教辅手段板书四、教学过程(一)创设情境问题1:已知3,5=-=b a x 求22bx ax -的值.【师】开动脑筋,看谁算的快!【生】用3+=b a 代入,7533)3(22222222==-+=-+=-x bx bx x bx x b bx ax【师】这个方法可以,用代入法,直接在原式上进行运算,还有其他方法吗?【生】可以先进行变形,再代入算值75)(222=-=-b a x bx ax【设计意图】为了使运算简便和准确,先把多项式进行变形再代入求值,这样的题学生容易接受.引导学生口答后,进一步激励学生思考,学生尝试独立解决问题,并交流分享.【师】对,为了计算的方便,像第二种方法这样先把左边多项式进行变形,化成几个整式的积的形式,这就是我们今天要讲的因式分解.【设计意图】让学生提前感知多项式因式分解的本质是一种式的恒等变形,从而让学生对因式分解的概念和方法有一个整体的认识,也渗透着数学中的类比思想.引导学生思考,引入本节课题.(二)探究新知问题2:运用已学过的知识填空:(1) =+)1(x x(2) =-+)1)(1(x x(3) =+2)(b a【设计意图】回顾整式乘法的内容,引入因式分解【师】等号左边的两个多项式作什么运算?【生】乘法.【师】等号右边是一个什么式?【生】多项式.【师】这是把几个整式的积化成多项式的运算,是我们之前学习的整式乘法的内容.问题3:下列式子的右边的空你会填吗?(1)=+x x 2(2)=-12x(3)=++222b ab a【师】等号左边是什么式?【生】多项式.【师】等号右边的两个多项式作什么运算呢?【生】乘法.【师】这是把多项式化成几个整式的积的形式,这就是因式分解的过程.【设计意图】经历将已有知识的逆向思考与对比,帮助学生建构知识,给出因式分解的概念.理解新知识的形成过程,帮助学生获得观察类比、归纳概括的数学活动经验,进一步发展联想、逆向思维.(三)归纳概念我们把一个多项式化成了几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式.整式的积多项式整式的积多项式整式乘法因式分解−−−−←−−−→−(四)辨析概念问题4:下列各式从左到右是否为因式分解?(1))1(2-=-m m m m(2)xy x y x x -=-2)((3)1)2(122+-=+-a a a a(4)22)2(44-=+-x x x(5)11025)15(22+-=-a a a(6))2)(2(42-+=-m m m(7))(c b a m mc mb ma ++=++【师】小组之间互相讨论下,是因式分解吗?【设计意图】组织学生观察交流问题,培养学生清晰有条理地表达自己的思考过程的能力和科学意识.【师】接下来我们一起来判断下,很明显,(1)、(4)、(6)、(7)是因式分解,(2)、(5)是整式乘法,(3)呢?是因式分解吗?【生】不是,因为等式的右边也是多项式.【设计意图】强化因式分解的概念,把学生推到思维的前沿,自由发表见解,积累数学活动经验,建构新的知识结构.【师】大家注意观察一下(1)和(7),它在做因式分解的过程中有什么共同点?【设计意图】引入提公因式法.(五)探索公因式问题5:观察多项式mc mb ma ++的各项具有怎样共同点?【设计意图】引导学生观察特征,建立公因式和提公因式的概念,让学生体验过程.【生】都有一个m .【师】可以把m 提出来,)(c b a m mc mb ma ++=++,这样就完成了因式分解,这种方法我们称为“提公因式法”,等号右边的两个因式,其中一个是公因式,另一个因式是如何确定的?你能对ay ax 2+进行类似的变形吗?【设计意图】从而提出公因式法分解因式,让学生探索数学知识,获得数学结论,并进行问题解决.(六)归纳方法我们看多项式pc pb pa ++,它的各项都有一个公共的因式p ,我们把因式p 叫做这个多项式各项的公因式,可得)(c b a p pc pb pa ++=++,这样就把多项式pc pb pa ++分解成两个因式乘积的形式,其中一个因式是各项的公因式p ,另一个因式c b a ++是pc pb pa ++除以p 所得的商.一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.(七)巩固新知问题6:指出下列各多项式的公因式并进行因式分解(1)=++a ay ax(2)=+22104ab b a(3)c ab b a 323128+(4)=+-+)(3)(2c b c b a(5)=---)(3)(2y z b z y a【师】(3)中,)32(412822323bc a ab c ab b a +=+,提出公因式24ab ,另一个因式是否还有公因式?怎么检验?【生】对bc a 322+看能不能进行因式分解.【师】(5)和(6),有公因式吗?【生】有,整个c b +,)32)(()(3)(2-+=+-+a c b c b c b a【师】(6),互为绝对值和)()(y z z y --,可以)32)(()(3)(2))((3)(2)(3)(2b a z y z y b z y a z y b z y a y z b z y a +-=-+-=----=--- 【师】怎么检查因式分解是否正确呢?【生】对等式右边做整式乘法,核对一下看是否正确.【设计意图】提公因式分解因式方法的具体化,学会确定公因式,明确公因式不仅是单项式,还可以是多项式,隐含换元的思想,掌握方法,巩固提公因式法.(八)课堂小结通过本节课的学习你有哪些收获?【设计意图】复习巩固,学以致用.(九)作业布置习题14.3 第1题、第4题的(1).。
初二数学因式分解教案优秀10篇
初二数学因式分解教案优秀10篇因式分解教案篇一教学目标:1、知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2、过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3、情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
【说明】(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc=m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-1),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x); (2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1); (4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a化成-(a-b),然后再提取公因式。
八年级数学上册14.3因式分解14.3.1提公因式法教案新人教版(new)
课题:14.3。
1提公因式法教学目标:了解因式分解、公因式的概念,会用提取公因式法分解因式.重点:会用提取公因式法分解因式.难点:如何确定公因式以及提出公因式后的另外一个因式.教学流程:一、知识回顾1。
说一说单项式乘以多项式的计算法则?答案:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
2.填空(1)(1)______;(2)(1)(1)______.x x x x +=+-=答案:2x x +;21x -二、探究问题1:请把下列多项式写成整式的乘积的形式:22(1)________;(2)1___________.x x x +=-=答案:(1)x x +;(1)(1)x x +-归纳:把一个多项式化成几个整式的积的形式,像这样的式子变形叫做这个多项式的因式分解,也叫做把这个多项式分解因式。
追问:因式分解与整式乘法有什么关系?答案:因式分解与整式乘法是互逆变形关系练习:下列变形中,属于因式分解的是:(1)+=+a b c ab ac (); (2)322+2-3=+2-3x x x x (); (3)22-=+-.a b a b a b ()() 答案:×;×;√问题2:观察下面多项式,各项之间有何共同特点?232;;2.x x a a c c y z m n c ++++答案:有公共的因式,即公因式练习:说一说下列各多项式的公因式.3222;22;36.ab ac x x ab a b +++ 答案:a ;2x 2;3ab归纳:找公因式的方法:一看系数(最大公约数);二看字母(相同字母);三看指数(最低指数)问题3:你能试着将多项式 pa +pb +pc 因式分解吗?答案:pa +pb +pc = p (a +b +c )归纳:一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式.这种分解因式的方法叫做提公因式法.练习:1.下列式子变形是因式分解的是( )A .x 2-5x +6=x (x -5)+6B .x 2-5x +6=(x -2)(x -3)C .(x -2)(x -3)=x 2-5x +6D .x 2-5x +6=(x +2)(x +3)答案:B2.多项式3a 2b -9a 3b 3-12a 2b 2c 各项的公因式是________.答案:3a 2b3.把下列各式分解因式.323(1)8+12;a b ab c (2)2+-3+a b c b c ()(). 解:323(1)8+12a b ab c222=2+434ab ab a bc ⋅⋅22=2+3 .4a b a c b ()(2)2+-3+a b c b c ()()=+2-3 .b c a ()()强调:公因式可以是单项式,也可以是多项式.三、应用提高利用因式分解计算:(1)错误!×15-错误!×15-错误!×15;(2)9992+999.6112(1)151515777611215()77715(1)15⨯-⨯-⨯=⨯--=⨯-=-解: 2(2)999999999(9991)9991000999000+=⨯+=⨯= 四、体验收获今天我们学习了哪些知识?1。
《因式分解--提公因式法》教案
《15.4.1因式分解——提公因式法》教案广西桂平市社步一中黄郁贞一、教学目标㈠、知识与技能:(1)使学生了解因式分解的意义,理解因式分解的概念。
(2)认识因式分解与整式乘法的相互关系——互逆关系,并能运用这种关系寻求因式分解的方法。
㈡、过程与方法:(1)由学生自主探索解题途径,在此过程中,通过观察、类比等手段,寻求因式分解与因数分解之间的关系,培养学生的观察能力,进一步发展学生的类比思想。
(2)由整式乘法的逆运算过渡到因式分解,发展学生的逆向思维能力。
(3)通过对分解因式与整式的乘法的观察与比较,培养学生的分析问题能力与综合应用能力。
㈢、情感态度与价值观:让学生初步感受对立统一的辨证观点以及实事求是的科学态度。
二、教学重点和难点重点:因式分解的概念及提公因式法。
难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系。
-1)=个整式的五、学生学习活动评价设计在本节教学设计中,对学生的评价方式:自评、互评、教师评价等。
通过多样化的评价方式,激励、促进学生积极参与自主学习、实验探究、讨论交流中,并学会和同伴合作的良好学习习惯。
例如:1.个人回答问题次数:正确次数:改正人:2.小组自评实验结论:活动1:正确、不完善、错误;(在所属情况下面打对勾)活动2:正确、不完善、错误。
活动……3.例题完成情况:小组内互评并把同伴错误之处改正过来。
4.课堂完成情况练习:小组内互评并把同伴错误之处改正过来。
六、教学反思㈠、教材分析本节课选自人教版数学八年级上册第十五章第四节第一个内容(P165-167)。
因式分解是进行代数恒等变形的重要手段之一,它在以后的代数学习中有着重要的应用,如:多项式除法的简便运算,分式的运算,解方程(组)以及二次函数的恒等变形等,因此学好因式分解对于代数知识的后继学习具有相当重要的意义。
本节主要让学生经历从分解因数到分解因式的过程,让学生体会数学思想——类比思想,让学生了解分解因式与整式的乘法运算之间的互逆关系,感受分解因式在解决相关问题中的作用。
《因式分解——提公因式法》参考教案
12.5因式分解 公开课教案华东师大版初中八上12.5.1因式分解—提公因式法一、教学目标(一)知识与技能明确因式分解与整式乘法的关系;理解将因式分解的结果用整式乘法来验证因式分解的准确性; 掌握因式分解、公因式的概念。
让学生在探索中实行新旧知识的比较,理解领悟因式分解,得到因式分解的基本方法——提公因式法。
(三)情感态度与价值观培养学生灵活使用新旧知识的水平,学会举一反三。
二、教学重难点教学重点:找公因式,能用提公因式法分解因式。
教学难点:理解因式分解与整式乘法的相互关系及灵活使用提公因式法分解因式。
三、教学方法讲授法、讨论法、练习法四、教学过程(一)复习回顾:1、 整式乘法有几种形式?(1) 单项式乘以单项式(2) 单项式乘以多项式:mc mb ma c b a m ++=++)((3) 多项式乘以多项式:22))((b a b a b a -=-+(二)探索新知,讲授新课1、请把以下多项式写成整式的乘积形式。
(1))()(c b a m mc mb ma ++⋅=++(2)))((22b a b a b a -+=-学生议一议:由))((b a b a -+得到22b a -的过程是什么运算?由22b a -得到))((b a b a -+的变形与它有什么不同?2、概括,归纳得出什么是因式分解?把一个多项式化为几个整式的乘积形式,这就是因式分解。
3、做一做:判断以下各式哪些是整式乘法?哪些是因式分解?(1) ()()y x y x y x -+=-33922;因式分解(2) ()xy x y x x 6103522-=-;整式乘法(3) ()ab b a b a 10255222-+=-;整式乘法 (4) ()R R R R +=+222πππ ;因式分解想一想:因式分解与整式乘法有什么关系?因式分解与整式乘法的关系:))((b a b a -+ 22b a -结论:因式分解与整式乘法互为逆运算。
4.2 提公因式法 第1课时 北师大版数学八年级下册教案
4.2提公因式法(第1课时公因式是单项式的因式分解)教学目标1.学会确定多项式中各项的公因式,会用提公因式法进行因式分解.2.通过与因数分解的类比,感悟数学中数与式的共同点,体验数学的类比思想.教学重点难点重点:理解公因式的意义.难点:会用提公因式法因式分解.教学过程复习巩固1.因式分解:把一个多项式化成几个整式的积的形式,这种变形叫做因式分解.因式分解也可称为分解因式.2. 因式分解与整式乘法的关系:因式分解与整式乘法是相反方向的变形,二者是一个式子的不同表现形式.因式分解是两个或几个因式积的表现形式,整式乘法是多项式的表现形式.导入新课活动1(学生交流,教师点评)【问题1】观察下列各算式有什么共同的特点?(1)5×3+5×(-6)+5×2;(2)2πR+2πr;(3)ma+mb;(4)cx-c y+cz.公共特点:各式中的各项都含有一个公共的因数或因式.教师:多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb-b呢?学生:都含有相同的因式依次为b, x,b.探究新知探究点一公因式的定义把多项式各项都含有的相同的因式,叫做这个多项式的各项的公因式.活动2(学生交流,教师点评)【问题2】(师生互动)教师:尝试将这几个多项式分别写成几个因式的乘积.学生:ab+bc=b(a+c),3x2+x=x(3x+1),mb2+nb-b=b(mb+n-1).【思考】如何找3x 2– 6 xy的公因式分析:系数:3,6的最大公约数是3.字母:相同的字母x.指数:相同字母x的最低次幂.解:3x 2– 6 xy的公因式是3x.探究点二确定公因式的方法活动3(学生交流,教师点评)确定多项式中各项的公因式,可概括为三“定”:(1)定系数,即确定各项系数的最大公约数;(2)定字母,即确定各项的相同字母因式(或相同多项式因式);(3)定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂.【例1】多项式6ab2c-3a2bc+12a2b2中各项的公因式是()A.abcB.3a2b2C.3a2b2cD.3ab解析:系数的最大公约数是3,相同字母的最低指数次幂是ab,可知公因式为3ab.故选D.答案:D【即学即练】多项式6ab2-8a4b3c中各项的公因式是_________.答案:2ab2探究点三提公因式法活动4(学生交流,教师点评)【例2】因式分解:(1)8a3b2+12ab3c;(2)-24x3-12x2+28x .分析:将原式各项提取公因式即可得到结果.解:(1) 8a3b2+12ab3c=4ab2(2a2+3bc).(2)-24x3-12x2+28x=-(24x³+12x²-28x)=-(4x·6x²+4x·3x-4x·7)=-4x(6x²+3x-7).【题后总结】(学生总结,老师点评)提公因式法的基本步骤:(1)找出公因式;(2)提公因式并确定另一个因式.【总结】提公因式法:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.【思考】提公因式法因式分解的步骤?(小组交流,教师点评)【总结】第一步,找出公因式;第二步,提取公因式,即用公因式去除这个多项式,所得的商式作为另一个因式,将多项式化为两个因式的积.【即学即练】计算:(1)39×37-13×91;(2)29×20.15+72×20.15+13×20.15-20.15×14.分析:(1)首先提取公因式13,进而求出即可;(2)首先提取公因式20.15,进而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.【方法总结】在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.课堂练习1.多项式−9x2y+3xy2−6xyz各项的公因式是()A.−3xyB.3yzC.3xzD.−3x2.多项式mx+n可分解为m(x−y),则n表示的整式为()A.mB.myC.−yD.−my3.将3x(a−b)−9y(a−b)因式分解,应提的公因式是()A.3x−9yB.3x+9yC.a−bD.3(a−b)4.(−2)2 017+(−2)2 018的值为()A.2B.−2C.−22 017D.22 0175.将多项式−6a3b2−3a2b2+12a2b3因式分解时,应提取的公因式是()A.−3a2b2B.−3abC.−3a2bD.−3a3b3参考答案:1.A解析:因为−9x2y=−3xy·3x,3xy2=−3xy·(−y),−6xyz=−3xy·2z,所以多项式−9x2y+3xy2−6xyz各项的公因式为−3xy.2.D解析:∵m(x−y)=mx−my,∴n=−my.故选D.3.D解析:各项系数的最大公约数是3,相同的因式是a−b,所以应提的公因式是3(a−b).4.D解析:(−2)2 017+(−2)2 018=(−2)2 017×(1−2)=22 017.故选D.5. A解析:各项系数的最大公约数是−3,相同字母的最低指数次幂是a2b2,所以应提取的公因式是−3a2b2.故选A.课堂小结(学生总结,老师点评)一、公因式把多项式各项都含有的相同的因式,叫做这个多项式的各项的公因式.二、确定公因式的方法三、提公因式法的定义:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种因式分解的方法叫做提公因式法.布置作业教材第96页习题4.2板书设计2提公因式法第1课时公因式是单项式的因式分解一、公因式的定义【问题1】观察下列各算式有什么共同的特点?(1)5×3+5×(-6)+5×2;(2)2πR+2πr;(3)ma+mb;(4)cx-c y+cz.例1多项式6ab2c-3a2bc+12a2b2中各项的公因式是() A.abc B.3a2b2 C.3a2b2c D.3ab例2因式分解:(1)8a3b2+12ab3c;(2)-24x3-12x2+28x .二、提公因式法1.定义2.步骤。
《因式分解提公因式法》教案
《因式分解-提公因式法》教案第一章:教学目标1.1 知识与技能:学生能理解因式分解的概念及其意义。
学生能掌握提公因式法的基本步骤。
学生能运用提公因式法对简单多项式进行因式分解。
1.2 过程与方法:学生通过观察和分析实例,探索提公因式法的步骤和规律。
学生通过练习题,提高运用提公因式法进行因式分解的能力。
1.3 情感态度与价值观:学生培养对数学的兴趣和自信心,感受数学的实用性。
学生学会合作和交流,培养解决问题的能力。
第二章:教学内容2.1 课题:因式分解-提公因式法2.2 教学重点与难点:重点:掌握提公因式法的基本步骤。
难点:灵活运用提公因式法进行因式分解。
2.3 教学准备:教师准备PPT演示文稿和练习题。
学生准备笔记本和文具。
2.4 教学过程:引入:通过实例引入因式分解的概念,引导学生思考如何将多项式分解成几个整式的乘积。
讲解:讲解提公因式法的基本步骤,通过示例演示如何提取公因式。
练习:学生通过练习题,运用提公因式法进行因式分解,教师给予指导和反馈。
第三章:教学活动3.1 课堂讲解:教师通过PPT演示文稿,讲解提公因式法的基本步骤和注意事项。
教师通过举例说明如何提取公因式,并引导学生思考和发现规律。
3.2 课堂练习:教师给出一些简单多项式,学生分组进行讨论和练习,尝试运用提公因式法进行因式分解。
教师选取部分学生的答案进行讲解和点评,指出其中的错误和不足之处。
3.3 课后作业:教师布置一些练习题,要求学生独立完成,巩固提公因式法的应用。
第四章:教学评价4.1 课堂参与度:观察学生在课堂讲解和练习中的参与程度,了解他们对提公因式法的理解和掌握程度。
4.2 练习题完成情况:检查学生课后作业的完成情况,评估他们对提公因式法的应用能力。
4.3 学生反馈:收集学生的反馈意见,了解他们对提公因式法的掌握情况和教学效果。
第五章:教学拓展5.1 拓展练习:给出一些较复杂的多项式,学生尝试运用提公因式法进行因式分解,提高他们的解题能力。
人教版八年级上册14.3.1提公因式法教案设计
课题:14.3因式分解第1课时教学内容提公因式法教学目标知识与技能:1.使学生了解因式分解的概念以及因式分解与整式乘法的关系.2.了解公因式的概念和提取公因式的方法.3.会用提取公因式的方法分解因式.过程与方法:1.通过学习提取公因式法提取公因式,掌握寻找公因式的方法和提取公因式的方法.2.理解因式分解的最后结果,每个因式要分解到不能再分解为止.情感、态度与价值观:在探索提公因式法分解因式的过程中,学会逆向思维,渗透化归的思想方法.教学重点会用提取公因式法分解因式.教学难点如何确定公因式以及提取公因式后的另外一个因式.教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入新兴一中决定购买m台电脑和m套桌子,现在知道每台电脑的单价为a元,每套桌子的单价为b元,那么怎样表示该校购买电脑和桌子总共需要的资金呢?答案一:购买一台电脑和一套桌子需(a+b)元,购买m台电脑和m套桌子共需m(a+b)元.答案二:购买m台电脑需ma元,购买m套桌子需mb元,则购m台电脑和m套桌子共需(ma+mb)元.从这两种方法中,我们发现了什么?ma+mb=m(a+b).二、新课探究我们知道,利用整式的乘法运算,有时可以将几个整式的乘积化为一个多项式的形式,反过来,在式的变形中,有时需要将一个多项式写成几个整式的乘积的形式.1、请把下列多项式写成整式的积的形式:(1)x2+x=(2)x2-1= .通过情境导入,让学生掌握数学来源于生活的道理,从而激发学生的学习热情,自然地转入到从观察ma+mb=m(a+b)这个式子的特点入手,以此引出因式分解的定义.(1)x2+x=x(x+1);(2)x2-1=(x+1)(x-1).下面请同学们观察上述两个式子和ma+mb=m(a+b),这些式子的共同特点是什么?学生通过观察得出:等式左边是多项式,右边都是乘积的形式.上述式子,左边是一个多项式,右边是两个因式的乘积,这种从左到右的变形,我们叫因式分解.2、因式分解:把一个多项式化成几个整式的积的形式,叫做因式分解,也叫做把这个多项式分解因式.正确理解因式分解要注意以下三点:(1)因式分解的对象是多项式,不是单项式,也不是以后我们要学习的分式.(2)因式分解的结果是整式的乘积的形式.(3)不能走回头路,如x2-1=(x+1)(x-1)=x2-1,本来已经完成了对x2-1的因式分解,但习惯性地按整式乘法算出x2-1 的结果,就画蛇添足了.练习:下列从左到右的变形中,哪些是分解因式?哪些不是分解因式?为什么?(1)12ab= 3a·4b;(2)(x+3)(x-3)=x2 -9;(3)4x2 -8x-1=4x(x-2)-1;(4)2ax-2ay=2a(x-y);(5)a2-4ab+4b2 =(a-2b)2.总结:(1)分解因式是多项式的恒等变形,也就是分解因式的结果的积等于多项式.(2)分解因式的结果必须是整式的积的形式,每个因式必须是整式且每个因式的次数都不高于原来多项式的次数.因式分解时,左边必须是多项式,右边是几个因式的乘积,且又是左、右两边恒等,那么分解因式与整式乘法有什么关系?(板书)分解因式与整式乘法的关系如果把整式乘法看作一个变形过程,那么多项式的分解因式就是整式乘法的逆过程;如果把多项式的分解因式看作一个变形过程,那么整式乘法又是多项式的分解因式的逆过程.因此,多项式的分解因式与整式乘法互为逆过程,ma+mb m(a+b)3、提公因式法我们知道,由单项式乘多项式可知m(a+b+c) =ma+mb+mc,而反过来ma+mb+mc一定等于m(a+b+c),这种变形我们知道就是因式分解.在ma+mb+mc=m(a+b+c)中,m又被称作什么呢?学生可能发现“m”存在于多项式的每一项中,在学生充分观察、讨论基础上,教师给予点拨.公因式:多项式中各项都含有的相同因式.练习:下列说法中正确的是()A.多项式mx2-mx+2中各项的公因式为mB.多项式7a3 +15b无公因式C.1+x3中各项公因式为x2D.多项式10x2y3-5y3+15xyz的公因式是5y2让学生由公因式定义出发,去分析、比较确定答案,并引导学生总结在理解公因式定义时应注意什么.注意:(1)多项式的每一项都含有,体现“公”字.(2)各项所含有的相同的因式.确定公因式的方法:(1)取多项式各项系数的最大公约数为公因式的系数;(2)取各项都含有的相同字母或相同因式的最低次幂作为公因式的因式.如:求多项式4x2y3 z-12x3y4的公因式.如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫提公因式法.注意:(1)提公因式法的关键是确定公因式,但提出公因式后,还应准确地确定另一个因式.(2)提公因式的依据是逆用乘法分配律.(3)提公因式时要防止出现以下错误:①漏项;②变错符号.三、知识运用例1、把8a3b2+12ab3c分解因式.〔解析〕先要求学生思考这个问题的最后结果应是怎样的,然后仿照教材进行分析,注意讲清确定公因式的具体步骤,从数、字母和字母的次数三个方面进行分析;分解因式完成后要分析公因式和另一个因式之间的关系,并思考:如果提出公因式4ab,另一个因式是否还有公因式?从而把提公因式的“提”的具体含义深刻化,这是提公因式法的正确性的重要保证.例2、把2a(b+c)-3(b+c)因式分解.〔解析〕可引导学生对该多项式的每项因式的特点进行仔细观察,从而发现把b+c看作一个“整体”时公因式就是b+c,再用提公因式法进行分解.例3、计算:0.84×12+12×0.6-0.44×12.〔解析〕让学生观察并分析怎样计算更简单. 例3是因式分解在计算中的四、课堂练习P115 1、2、3题五、课堂小结1.因式分解(1)定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.等式特点:左边:多项式;右边:整式×整式,整式乘整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.(2)因式分解:pa+pb+pc=p(a+b+c).①(3)整式乘法:p(a+b+c)=pa+pb+pc.②(4)联系:都是由几个相同的整式组成的等式.(5)区别:这几个相同的整式所在的位置不同,①式是因式分解,②式是整式乘法,两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.2.公因式(1)多项式pa+pb+pc中,各项都含有一个公共的因式p,因式p叫做这个多项式各项的公因式.(2)注意:公因式是每一项都含有的因式,是单项式或多项式.(3)公因式的确定方法:各项系数的最大公因数和相同字母的最低次幂的积.3.提公因式定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.由定义可知,提公因式法的关键是如何正确地寻找公因式. 应用,学习例3使学生对因式分解的重要性有新的认识.布置作业P119 1题板书设计提公因式法一、新课引入三、知识运用五、课堂小结二、新课探究四、课堂练习六、作业课题:14.3因式分解第2课时教学内容公式法—平方差公式教学目标知识与技能:1.能说出平方差公式的特点.2.能比较熟练地应用平方差公式进行因式分解.过程与方法:1.在运用平方差公式进行因式分解的同时培养学生的观察、比较和判断能力以及运算能力,用不同的方法分解因式可以提高综合运用知识的能力.2.进一步体会“整体”思想,培养“换元”的意识.情感、态度与价值观:培养学生的观察、联想能力,进一步了解换元的思想方法.教学重点应用平方差公式分解因式.教学难点灵活应用平方差公式和提公因式法分解因式,并理解因式分解的要求. 教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入1、你能叙述多项式因式分解的定义吗?2、运用提公因式法分解因式的步骤是什么?3、你能将a2-b2分解因式吗?你是如何思考的?通过复习引入新课,让学生体会知识间的必然联系,认识到了除了用提公因式法进行因式分解,还有其他的因式分解的方法.二、新课讲解1、问题1.多项式的因式分解其实是整式乘法的逆用,也就是把一个多项式化成了几个整式的积的形式.问题2.提公因式法的第一步是观察多项式各项是否有公因式,如果没有公因式,就不能使用提公因式法对该多项式进行因式分解.问题3.对不能使用提公因式法分解因式的多项式,不能说不能进行因式分解.要将a2 -b2进行因式分解,可以发现它没有公因式,不能用提公因式法分解因式,但我们还可以发现这个多项式是两个式的平方差形式,所以用平方差公式可以写成如下形式:a2 -b2=(a+b)(a-b).这种分解因式的方法称为运用公式法.今天我们就来多项式的乘法公式的逆向应用,就是多项式的因式分解公式,如果被分解的多项式符合公式的条件,就可以直接写出因式分解的结学习利用平方差公式分解因式.观察平方差公式: a2 -b2=(a+b)(a-b)的项、指数、符号有什么特点?归纳总结:(1)左边是二项式,每项都是平方的形式,两项的符号相反;(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差;(3)在乘法公式中,“平方差”是计算结果,而在因式分解中,“平方差”是分解因式的多项式,由此可知如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.2、把一个多项式分解因式,一般可按下列步骤进行:(1)如果多项式的各项有公因式,那么先提取公因式.(2)如果多项式的各项没有公因式(或已提取公因式),那么可尝试用公式法来分解.(3)分解因式必须进行到每一个因式都不能再分解为止.3、填空:(1)4a2=( )2;(2)b2=( )2;(3)a4=( )2;(4)121a2b2=( )2;(5)x4=( )2;(6)x4y6=( )2.三、知识运用例1、分解因式.(1) 4x2 -9;(2)(x+p)2-(x+q)2.可以通过多媒体课件演示(1)中的2x,(2)中的x+p相当于平方差公式中的a;(1)中的3,(2)中的x+q相当于平方差公式中的b,进而说明公式中的a与b可以表示一个数,也可以表示一个单项式,甚至是多项式,渗透换元思想.解:(1)4x2 -9=(2x)2-32=(2x+3)(2x-3).(2)(x+p)2-(x+q)2=[(x+p)+(x+q)][(x+p)-(x+q)]=(2x+p+q)(p-q).例2、分解因式.(1)x4-y4;(2)a3b-ab.〔解析〕(1)x4-y4可以写成(x2)2 -(y2)2的形式,这样就可以利用平方差公式进行因式分解了.但分解到(x2+y2)(x2-y2)后,部分学生不会继续分解因式,针对这种情况,可以回顾因式分解定义后,让学生理解因式分解的要求是果,由问题3学生比较容易想到前面所学的平方差公式.填空题的作用在于训练学生迅速地把一个单项式写成平方的形式.也可以对积的乘方、幂的乘方运算法则给予一定时间复习,避免出现4a2=(4a)2这一类错误.必须进行到多项式的每一个因式都不能再分解为止.(2)不能直接利用平方差公式分解因式,但通过观察可以发现a3b-ab有公因式ab,应先提出公因式,再进一步分解.注意:(1)多项式分解因式的结果要化简;(2)在化简过程中要正确应用去括号法则,并注意合并同类项;(3)分解因式,必须进行到每一个因式都不能再分解为止.四、课堂练习 P117 练习1、2题五、课堂小结1.公式:a2-b2=(a+b)(a-b).2.法则:两个数的平方差,等于这两个数的和与这两个数的差的积.3.注意:(1)左边是二项式,每项都是平方的形式,两项的符号相反;(2)右边是两个多项式的积,一个因式是两数的和,另一个因式是这两数的差;(3)在乘法公式中,“平方差”是计算结果,而在因式分解中,“平方差”是要分解因式的多项式;(4)平方差公式的使用条件:如果多项式是两数差的形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.布置作业P119 2题板书设计公式法—平方差公式一、新课引入三、知识运用五、课堂小结二、新课讲解四、课堂练习六、作业课题:14.3因式分解第3课时教学内容公式法—完全平方公式教学目标知识与技能:1.经历用公式法分解因式的探索过程.2.能比较熟练地运用完全平方公式分解因式.3.会用提公因式法、完全平方公式法分解因式,并能说出提公因式法在这类因式分解中的作用.过程与方法:1.通过综合运用提公因式、完全平方公式分解因式,进一步培养学生的观察和联想能力.2.通过知识结构图培养学生归纳总结的能力.情感、态度与价值观:1.体验数学活动充满着探索性.2.在数学学习过程中获得成功的体验和喜悦,树立学习的自信心.教学重点用完全平方公式分解因式.教学难点灵活应用公式分解因式.教学方法讲练结合.教学准备多媒体课件.教学过程设计设计意图教学过程一、新课引入【问题】把下列各式分解因式.(1)a2 +2ab+b2;(2)a2-2ab+b2.能不能用语言叙述呢?两个数的平方和,加上(或减去)这两数的积的2倍,等于这两个数的和(或差)的平方.其实就是完全平方公式的符号表示,即:a2 +2ab+b2=(a+b)2,a2-2ab+b2 =(a-b)2.把整式乘法的完全平方公式反过来写,即因式分解的完全平方公式.二、新课讲解1、下列各式是不是完全平方式?(1)a2 -4a+4; (2)x2 +4x+4y2;(3)4a2 +2ab+b2;(4)a2 -ab+b2;引导学生对比两个公式,类比平方差公式,得出用完全平方公式因式分解的方法.出示习题,并放手让学生讨论,达到熟悉公式结构特征的目(5)x2 -6x-9; (6)a2+a+0.25.[方法总结]完全平方公式的特点是左边是一个二次三项式,其中有两个数的平方和与这两个数的积的2倍或这两个数的积的2倍的相反数,符合这些特征,就可以化成右边的两数和(或差)的平方形式.完全平方公式适合分解三项的多项式,要掌握这一公式的形式和特点.运用公式法分解因式的关键是弄清各公式的形式和结构,选择适当的公式进行因式分解,公式中的字母可以是任何数、单项式或多项式.对照a2±2ab+b2=(a±b)2填空.1.x2+4x+4=( )2+2( )( )+( )2=( + )2.2.m2-6m+9=( )2- 2( )( )+( )2=( - )2.注意:公式中的a,b可以表示单项式甚至是多项式.三、例题讲解例1、分解因式(1)16x2+24x+9;(2)-x2+4xy-4y2.〔解析〕(1)分析:在(1)中,16x2=(4x)2,9=32,24x=2·4x·3,所以16x2 +24x+9是一个完全平方式,即:16x2+24x+9=(4x)2+2·4x·3+32+ +a2+ 2·a·b+ b2(2)分析:在(2)中两个平方项前有负号,所以应考虑用添括号法则将负号提出,然后再考虑完全平方公式,因为4y2 =(2y)2,4xy=2·x·2y.所以:-x2+4xy-4y2=-(x2-4xy+4y2)=-[x2-2·x·2y+(2y)2]- +a2- 2·a·b+ b2例2、分解因式(1) 3ax2 +6axy+3ay2;(2)(a+b)2 -12(a+b)+36.〔解析〕(1)中有公因式3a,应先提出公因式,再进一步分解;(2)中,将a+b看作一个整体,设a+b=m,则原式化为完全平方式m2 -12m+36.解:(1)3ax2 +6axy+3ay2=3a(x2+2xy+y2)=3a(x+y)2. 的.通过这几个判断题可以让学生明确只要给出的多项式符合完全平方公式的结构特征,就可以运用公式进行分解.(2)(a+b)2 -12(a+b)+36=(a+b)2-2·(a+b)·6+62=(a+b-6)2.可以看出,如果把乘法公式的等号两边互换位置,就可以得到用于分解因式的公式,用来把某些具有特殊形式的多项式分解因式,这种分解因式的方法叫做公式法.四、课堂练习 P119 练习 1、2题五、课堂小结1.(a±b)2=a2±2ab+b2与a2±2ab+b2=(a±b)2都叫做完全平方公式,前者是用来进行多项式的乘法运算,后者是用来进行因式分解.2.应用a2±2ab+b2=(a±b)2分解因式时要抓住公式特点:公式左边是一个二次三项式,右边是二项式的平方,当左边是两数的平方和加上这两数的积的2倍时,右边就是这两个数的和的平方的形式,当左边是两个数平方的和与这两个数积的2倍的差时,右边就是这两个数的差的平方的形式,仅一个符号不同.3.要注意平方差公式的综合应用,分解到每一个因式都不能再分解为止.对于因式分解与整式乘法的关系布置作业P119习题 3题板书设计公式法—完全平方公式一、新课引入三、例题讲解五、课堂小结二、新课讲解四、课堂练习六、作业。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
你能说说你算得快的原因吗
【教师活动】
(1)出示问题1,引领学生交流解法:
解法一:S=15×10+22×10+13×10=150+220+130=500
解法二:S=15×10+22×10+13×10=10(15+22+13)=10×50=500
从上面的解答过程看,解法一是按运算顺序:先算乘,再算和进行的,解法二是先逆用分配律算和,再计算一次乘,由此可知解法二要简单一些。这个事实说明,有时我们需要将多项式化为积的形式。
《15.4.1提公因式法因式分解》教学设计及评析
教材
义务教育课程标准实验教科书(人教版)《数学》八年级上册
设计理念
本节课的设计从学生的认知基础和认知规律出发,教给学生探求知识的方法,教会学生获取知识的本领,通过“提公因式法因式分解”的学习让学生经历主动参与,积极探求,创造性的发现数学知识的过程,教学设计以思维为中心,观察为主线,问题为载体,能力为目标,将教学过程设计为有一定梯次的递进式活动序列。
教学重点
因式分解的概念及用提公因式法提公因式。
教学难点
1、分解因式与整式乘法的区别和联系。2、正确找出多项式各项的公因式。
教学方法
“尝试指导,效果回授”教学法
学法指导
发现法、练习法、合作学习。
教学资源
借助PPT软件展示引例及变式训练题组,增大课堂容量,吸引学生眼球,最大限度地激发学生的学习兴趣,优化课堂结构,提高课堂教学效率。
教学评价
1、评价量规:随堂提问、练习反馈、作业反馈
2、评价策略:坚持“及时评价与激励评价相结合,定量化评价与定性化评价相统一”的原则,最大限度地做到面向全体学生,充分关注学生的个性差异,将学生自评、生生互评和教师概括引领、激励测进式点评有机结合,既有即兴评价,又有概要性评价;既有学生的自评,又有师生、生生之间的互评,力求在评价中帮助学生认识自我、建立自信,使其逐步养成独立思考、自主探索、合作交流的学习习惯。
(3)寻找出确定多项式各项的公因式的一般方法,培养学生的初步归纳能力。
情感态度与价值观
通过引例问题情境的创设,诱发学生的求知欲,进一步认识数学与生活的密切联系;通过观察、对比等手段,培养学生善于类比归纳,发展学生的数学探究能力,通过有一定梯次的变式训练,锻炼其克服困难的意志,发展学生合作交流的良好品质。
活动三 变式训练,巩固新知
通过有梯次的三个训练题组,巩固提公因式的方法,达到举一反三,触类旁通。
活动四 全课小结,内化新知
将知识归类细化,纳入已有的知识体系。
活动五 推荐作业,延展新知
分类推荐、分层要求,将探究兴趣由课内延伸到课外;及时捕捉学生学习状况,适时进行有效诊断评价、反馈补救、长善救失。
教学程序
ma+mb+mc或m(a+b+c),可以用等号来连接:
ma+mb+mc=m(a+b+c)
从上面的等式中,大家注意观察等式左边的每一项有什么特点各项之间有什么联系等式右边有什么特点
(2)出示问题2(1),引导学生口答(1)后,进一步激励学生思考(2)(3),提名回答。
(3)以“算得快的原因——把多项式化成了几个整式的积的形式”为线索提出问题:怎样把一个多项式化成了几个整式的积的形式”,过渡到下一活动。
知识分析
提公因式法因式分解是义务教育课程标准实验教科书(人教版)《数学》八年级上册第十五章第四单元第一节内容,是在学生已经学习了整式乘法运算的基础上引入的,本教科书安排了多项式因式分解比较基本的知识和方法,它包括因式分解的有关概念,整式乘法与因式分解的区别与联系,因式分解的两种基本方法,即提公因式法和公式法,共3课时,其中提公因式法1课时,公式法2课时。因式分解是解析式的一种恒等变形,学习分解因式一是为解高次方程作准备,二是学习对于代数式变形的能力,从中体会分解的思想、逆向思考的作用。它不仅是现阶段学生学习的重点内容,而且也是学生后续学习的重要基础。本教材是在学生学习了整式运算的基础上提出来的,事实上,它是整式乘法的逆向运用,与整式乘法运算有密切的联系.分解因式的变形不仅体现了一种“化归”的思想,而且也是解决后续——分式化简、解方程、恒等变形等学习的基础,为数学交流提供了有效的途径.分解因式在整个教材中起到了承上启下的作用综上所述,本节课无论是在知识传承,还是在对学生数学思维训练、能力培养上都有举足轻重的作用。
问题与情境
师生互动
媒体使用与教学评价
活动一创设情境,导入新课
问题1:
一块场地由三个矩形组成,这些矩形的长分别为15m,22m,13m,宽都是10m,求这块场地的面积.
若将刚才的问题一般化,即三个矩形的长分别为a、b、c,宽都是m,则这块场地的面积是多少
问题2:开动脑筋,看谁有好方法算得快
(1)已知:x=5,a-b=3,求ax2-bx2的值。
学情分析
教学对象是八年级学生,在学习本节前,学生已经掌握了整式乘法运算,对乘法分配律有了一定的认识;虽然对整式的运算比较熟悉,对互逆过程也有一定的感知,但因式分解一直是初中数学教学的一个难点,原因在于分解因式的方法很多,变化技巧较高,且没有一种一般有效的方法。教学中要注意把握教学要求,防止随意拓宽内容和加深题目的难度。教科书对于因式分解这部分内容要求仅限于因式分解的两种基本方法,即提公因式法和公式法,教学中则应让学生牢固地掌握。
学
习
目
标Hale Waihona Puke 知识与技能理解因式分解与整式乘法的区别;懂得寻找公因式,正确运用提公因式法因式分解
过程与方法
(1)由学生自主探索解题途径,在此过程中,通过观察、对比等手段,发现因式分解与整式乘法的区别,确定多项式各项的公因式的方法,加强学生的直觉思维,渗透化归的思想方法,培养学生的观察能力;
(2)由乘法分配律的逆运算过渡到因数分解,再由单项式与多项式的乘法运算过渡到因式分解,进一步发展学生的类比思想;
教
学
流
程
活动流程
活动内容及目的
活动一 创设情境,导入新课
以寻求快速计算方法为背景创设问题情境,激发其求知欲。
活动二 诱导尝试,探究新知
1、回顾整式乘法并尝试探究把多项式化成几个整式的积,引领学生探究比较其联系与区别、归纳因式分解概念,通过识别理解概念。
2、通过探究ma+mb+mc 这个多项 式的特征,建立公因式和提取公因式概念,并学习找公因式和提取公因式的方法。