用双棱镜干涉测光波波长分析报告
实验二 用双棱镜干涉测钠光波长(05)
实验二用双棱镜干涉测钠光波长[实验目的]1、观察双棱镜产生的双光束干涉现象,进一步理解产生干涉的条件;2、学会用双棱镜测定光波波长。
[实验仪器]双棱镜,可调狭缝,会聚透镜(f=20cm,Φ=35mm两片),测微目镜(JX8),光具座(JZ-2),滑块(5块)、滑块支架(5个)、白屏,钠光灯(Gp20Na)。
[实验原理]如果两列频率相同的光波沿着几乎相同的方向传播,并且这两列光波的位相差不随时间而变化,那么在两列光波相交的区域内,光强的分布不是均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉。
菲涅耳利用图(一)所示装置,获得了双光束的干涉现象。
图中双棱镜AB是一个分割波前的分束器,它的外形结构如图(二)所示,将一块平玻璃板的上表面加工成两楔形板,端面与棱脊垂直,楔角A较小(一般小于10)。
从单色光源M发出的光波经透镜L会聚于狭缝S,使S成为具有较大亮度的线状光源。
当狭缝S发出的光波投射到双棱镜AB上时,经折射后,其波前便分割成两部分,形成沿不同方向传播的两束相干柱波。
通过双棱镜观察这两束光,就好像它们是由虚光源S1和S2发出的一样,故在两束光相互交叠区域P1P2内产生干涉。
如果狭缝的宽度较小且双棱镜的棱脊和光源狭缝平行,便可在白屏P上观察到平行于狭缝的等间距干涉条纹。
设d '代表两虚光源S 1和S 2间的距离,d 为虚光源所在的平面(近似地在光源狭缝S 的平面内)至观察屏P 的距离,且d '<<d ,干涉条纹宽度为x ∆,则实验所用光波波长λ可由下式表示:x dd ∆='λ…………………………① 上式表明,只要测出d '、d 和x ∆,就可算出光波波长λ。
这是一种光波波长的绝对测量方法,通过使用简单的米尺和测微目镜,进行毫米量级的长度测量,便可推算出微米量级的光波波长。
由于干涉条纹宽度x ∆很小,必须使用测微目镜进行测量。
实验七 用双棱镜干涉测光波
分别测得两放大像的间距d1和两缩小像的间
距d2,则按下式即可求得两虚光源的间 距 d .多测几次 d ,取平均值:
d d1d2
(2)
(4)用所测得的
x 、d
、 d 值,代入式
d x ,求出光源的波长 . d
(5)计算波长测量值的标准不确定度
4.注意事项 (1)使用测微目镜时,首先要确定测微目镜读
2.试证明公式
d d1d2
再见
1.调节共轴 (1)按图所示次序,将单色光源M,会聚透 镜L,狭缝S,双棱镜AB与测微目镜P放置在 光具座上.用目视法粗略地调节它们中心等 高、共轴,棱脊和狭缝S的取向大体平行.
(2)点亮光源M,通过透镜L照亮狭缝S,用手
执白屏在双棱镜后面检查:经双棱镜折射后 的光束,是否有叠加区P1P2(应更亮些)? 叠 加区能否进入测微目镜? 当移动白屏时,叠 加区是否逐渐向左、右(或上、下)偏移? 根据观测到的现象,作出判断,进行必要 的调节使之共轴.
设两虚光源S1和S2之间的距离为 d ,虚光源
所在的平面(近似地在光源狭缝S的平面内)到 观察屏P的距离为d,且 d <<d,干涉条纹间 距为△x,则实验所用光源的1)
d和△x,就可用式(1)计 因此,只要测出 d 、
算出光波波长.
实验内容
图中AB是双棱镜,它的外形结构如右图所示,
将一块平玻璃板的一个表面加工成两楔形板, 端面与棱脊垂直,楔角 较小( 一般小于 1°).从单色光源发出的光经透镜L会聚于狭 缝S,使S成为具有较大亮度的线状光源.从 狭缝S发出的光,经双棱镜折射后,其波前被 分割成两部分,形成两束光,就好像它们是 由虚光源S1和S2发出的一样,满足相干光源 条件,因此在两束光的交叠区域P1P2内产生 干涉.当观察屏P离双棱镜足够远时,在屏上 可观察到平行于狭缝S的、明暗相间的、等间 距干涉条纹.
用双棱镜干涉测光波波长
用双棱镜干涉测光波波长
双棱镜干涉法是一种常用的测量光波波长的方法。
在这种方法中,我们使用一对排列
在一起的两个棱镜来分离出不同波长的光并进行干涉。
通过调节棱镜的角度和距离,我们
可以精确测量光波的波长。
在进行双棱镜干涉测量时,首先需要一台光源。
这个光源可以是白光或单色光。
为了
获得更加精确的结果,我们通常使用相干光源,如激光。
相干光源可以产生涡旋状干涉条纹,这对于测量光波的波长非常有用。
接下来,将光源照射在双棱镜的一侧。
这两个棱镜的相对角度和位置都非常重要。
我
们需要调整它们的角度和距离,使它们之间的光程差为整数倍的波长。
这样才能确保在干
涉的时候产生明显的干涉条纹。
一旦我们找到了正确的角度和距离,我们就可以开始观察干涉条纹了。
这些干涉条纹
是由两个光波相遇并干涉而产生的。
如果两个波长相同,干涉条纹会显现出一系列等距的
暗线和亮线。
然而,如果两个波长不同,干涉条纹会出现偏移,并且不再对齐。
这意味着
我们可以通过观察干涉条纹的形状和位置来测量光波的波长。
在实际测量中,我们通常使用一个显微镜来观察干涉条纹。
显微镜可以放大这些条纹,使得我们可以更加清楚地观察它们的形状和位置。
通过使用一些基本的几何和数学计算,
我们就可以从干涉条纹的位置和形状中得出光波的波长。
用双棱镜干涉测光波波长的实验报告
用双棱镜干涉测光波波长的实验报告【实验目的】1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解.2.学会用双棱镜测定钠光的波长.【实验仪器】光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.【实验原理】如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉.菲涅耳利用图1所示的装置,获得了双光束的干涉现象.图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源S1和S2发出的一样,满足相干光源条件,因此在两束光的交叠.区域P1P2内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗相间的、等间距干涉条纹.图1 图2 设两虚光源S1和S2之间的距离为d ',虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为d ,且d d <<',干涉条纹间距为x ∆,则实验所用光源的波长λ为 x d d ∆'=λ因此,只要测出d '、d 和x ∆,就可用公式计算出光波波长.【实验内容】1.调节共轴(1)按图1所示次序,将单色光源M ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.(2)点亮光源M ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区P1P2 (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?根据观测到的现象,作出判断,进行必要的调节使之共轴.2.调节干涉条纹(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜AB ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,S1、S2间距也将减小,这对d '的测量不利.)3.测量与计算(1)用测微目镜测量干涉条纹的间距x ∆.为了提高测量精度,可测出n 条(10~20条) 干涉条纹的间距x ,除以n ,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数.重复测量几次,求出x ∆. (2)用光具座支架中心间距测量狭缝至观察屏的距离d .由于狭缝平面与其支架中心不重合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差.测量几次,求出d .(3)用透镜两次成像法测两虚光源的间距d '.参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f d '>4,然后维持恒定.沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看到两虚光源S1和S2经透镜所成的实像1S '和2S ',其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距1d 和两缩小像的间距2d ,则按下式即可求得两虚光源的间距值d '. d '.多测几次,取平均21d d d ='图3 (4)用所测得的x ∆、d '、d 值,代入式(7-1),求出光源的波长λ.(5)计算波长测量值的标准不确定度.【注意事项】(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.(2)在测量d 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引人相应的修正(例如,GP 一78型光具座,狭缝平面位置的修正量为42.5mm ,MCU 一15型测微目镜分划板平面的修正量为27.0mm),否则将引起较大的系统误差.(3)测量d1、d2时,由于透镜像差的影响,将引入较大误差,可在透镜L '上加一直径约lcm 的圆孔光阑(用黑纸)以增加d1、d2测量的精确度.(可对比一下加或不加光阑的测量结果.)【思考】1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?2.试证明公式21d d d ='THANKS致力为企业和个人提供合同协议,策划案计划书,学习课件等等打造全网一站式需求欢迎您的下载,资料仅供参考。
实验十九用双棱镜测定光波波长一、实验目的要求
实验十九用双棱镜测定光波波长一、实验目的要求1.观察双棱镜产生的光的干涉现象,掌握获得双光束干涉的一种方法,进一步理解产生干涉的基本条件。
2.掌握在光具座上对光具组进行调整的技术。
.学会利用双棱镜粗略地测定光波的波长。
二、仪器用具双棱镜、可调狭缝、辅助透镜、测微目镜、光具座、单色光源、米尺三、实验原理两个独立的光源不能产生干涉,必需用光学的方法,将一个原始光源(振源)分成两个位相差不变的幅射中心,即造成“相干光源”。
单色光源M发出的光从S狭缝射出,经过双棱镜的折射产生两个虚像S1、S2它们是相干光源,故在两束光相互交叠的区域P1P2内,光强分布不均匀。
在某些地方表示为减弱,结果屏幕上形成明暗交替的等宽线形条纹。
设d为两虚光源S1和S2之间的距离,D为虚光源所在平面至观察屏幕P的距离,且d《D,干涉条纹宽度∆X,则实验所用光波滤入可由下式表示:上式表明只要测出d、D和∆X,就可以求出光波波长。
四、实验步骤1.将单色光源M,狭缝S,双棱镜B与测微目镜P按图三所示次序放置在光具座上,用目视法粗略地调整它们的中心高度,使其共轴。
2.点亮光源,使M发出的光照亮狭缝S,并使双棱镜底面与光束垂直,调节光源或狭缝,使狭缝射出的光能对称地照射在双棱镜钝角棱的两侧。
3.调节测微目镜,使从目镜中能观察到清晰的干涉条纹。
4.用测微目镜测量干涉条纹的宽度∆X,因为任意两纹之间距相等,可先使目镜叉丝对准某亮纹中心读出测量值,然后旋转测微螺旋,使叉丝移过3个条纹,再读出测量值,这两次读数之差,除以3,即为条纹宽度,重复测量2次,求取平均值。
5.用米尺测出由狭缝到测微目镜叉丝平面的距离D 。
6.用透镜两次成法测两虚光源之间距d 。
在测微目镜和狭缝固定的情况下(D>4f /)前后移动透镜,分别测得到两次清晰成像,测量此实像的间距d 1和d 2值,代人,求出d 值。
7.将所测得的∆X 、d 、D 代入求出光波波长。
实验记录:测量次数12X1和X2,测3个条纹X1X2X1X2∆X=(X2-X1)/3∆X D77.8cm d1和d2d1d2λ=波长标准值λ标=5893Å五、问题,思考题1:双棱镜是怎样实现双光束干涉的?是否在空间任何位置都能观察到双棱镜产生的干涉条纹?干涉条纹的宽度,数目曲哪些因素决定?2:分析本实验中产生误差的原因。
用双棱镜测定光波波长.
xk d D
当
(k 0, 1, 2,)
k
在
D x k k d
处产生亮条纹;
D 1 1 而当 (k ) 即 x k (k ) 产生暗条纹。 d 2 2 D 这样,两相邻亮条纹的距离为:x x k 1 x k d
如果测得D,d及便可由式求出 λ值。
二.如何测量测量D、d、Δx
用两次成像法测量D、d,如下图示意:
在实验光具座上测出透镜两次移动间距(Δ),同时 用测微目镜测量放大和缩小虚光源的间距(d’、d’’)
d dd
'
''
D 2 f 4 f 2 2
测量 Δx
直接用测微目镜测量多条干涉条纹间距nΔX 注意:用测微目镜测量时,要克服螺距差
四.实验仪器
干涉 滤波 片 可调 狭缝
双棱镜 凸透镜 测微 目镜
辅助屏
五.实验常见问题及处理
1.测量仪器没有调节好就开始测量数据。实验中通 过测微目镜来测量数据,首先要调节测微目镜的 可旋转目镜部分,将分划板上的叉丝调节到自己 认为最清晰,方可开始后面的测量。 2.用测微目镜测量数据,在具体的操作中转动读数 鼓轮时同样要克服螺距差。 3.在实验中往往出现干涉条纹不够清晰,而有些操 作者就开始测量。引起条纹不够清晰的原因很多: 1.)狭缝过宽,引起双缝干涉的条纹对比度降低 2.)狭缝没有与双棱镜的棱脊平行,等等。
三.元件共轴调节
实验装置应调节到下述状态: (1)光具座上各元件等高共轴。 (2)双棱镜的棱脊严格平行于狭缝,且狭缝 宽度适当,以获得清晰的干涉条纹。
具体调节方法如下: 1.调节单狭缝与双棱镜以及测微目镜共轴。(利用 白光干涉中心位置的移动调节) 2.调节透镜使其与上述系统共轴。(可参考透镜焦 距测量实验)
双棱镜测量波长误差分析
双棱镜测量波长误差分析
双棱镜测量波长误差分析是一种用于测量光波长的方法。
它基于光的干涉和衍射现象,利用双棱镜的干涉条纹来确定波长的准确值。
在这种测量中,波长误差是指实际测量得到的波长与实际波长之间的差异。
双棱镜测量波长误差的分析可以涉及以下几个方面:
1. 干涉条纹分析:通过观察干涉条纹的形状、密度和位置来确定波长误差。
干涉条纹的位置和密度与波长有关,通过与已知波长的光源进行比较,可以计算出实际波长与标准波长之间的差异。
2. 误差源分析:对于双棱镜测量波长的方法,存在一些可能引起误差的因素。
例如,双棱镜的折射率、棱镜的制作和对准误差、环境条件等都可能对测量结果产生影响。
通过分析这些误差源,可以定量评估它们对测量结果的影响,并提出相应的校正方法。
3. 数据处理与统计分析:进行双棱镜测量时,通常会进行多次测量以提高精度。
在数据处理过程中,可以使用统计方法对多次测量结果进行分析,计算平均值、标准偏差等统计指标,以评估测量的准确性和可靠性。
总之,双棱镜测量波长误差的分析涉及对干涉条纹的观察与分析、误差源的评估与校正、以及数据处理与统计分析等方面。
通过综合分析这些因素,可以得出准
确的波长测量结果,并评估其误差范围。
用双棱镜干涉测光波波长的实验报告
用双棱镜干涉测光波波长的实验报告实验报告:用双棱镜干涉测光波波长摘要:本实验通过使用双棱镜干涉仪测量光波的波长。
首先使用可见光源发出的光波通过一个狭缝进入光源之后,然后经过一片镜片透射并折射至一个反射镜上。
反射镜会将光波反射回来,经过同样的路径返回光源。
之后,光波会经过双棱镜,在双棱镜的相交面发生干涉,形成明暗相间的条纹。
通过测量条纹的间距,计算得到光波的波长。
最后,将测得的实验数据与理论计算进行对比,验证实验方法的准确性。
引言:干涉是一种波动现象,广泛应用于物理学和光学领域。
双棱镜干涉仪是一种重要的实验装置,用于测量光波的波长。
在本实验中,我们将使用双棱镜干涉仪测量光波波长。
通过实验测量得到的数据,可以验证光波的波动性,加深对干涉现象的理解。
实验原理:双棱镜干涉仪是一种基于干涉现象的实验仪器。
当光波通过双棱镜时,由于两个棱镜的角度不同,光束在接触面的交叉区域会发生干涉现象。
在干涉区域内,光波的相位差会导致明暗相间的干涉条纹出现。
当两束光波经过双棱镜后重新重叠时,如果它们的相位差是整数倍的2π,就会产生干涉增强,形成明纹;如果相位差是奇数倍的π,就会产生干涉抵消,形成暗纹。
两束光波的相位差与光波的波长和棱镜的几何参数有关。
通过测量干涉条纹的间距,就可以反推出光波的波长。
实验步骤:1.将可见光源放置在适当的位置,使得光线能够通过狭缝。
2.调节狭缝的宽度,使得透过狭缝的光线足够亮且窄。
3.将一片透明的玻璃片放置在光源上,将折射后的光线引导到反射镜上。
4.调节反射镜的角度,使得反射后的光线能够重新射回光源。
5.将双棱镜放置在光源后面,并调节双棱镜的间距和入射角度。
6.在干涉区域观察干涉条纹的形成,并使用目镜测量明纹和暗纹之间的距离。
7.重复实验,测量多组数据,计算光波的波长。
8.将实验数据与理论计算进行对比,验证实验方法的准确性。
数据记录和计算:根据测量得到的干涉条纹间距和棱镜的几何参数,我计算出了不同光波波长下的相位差。
双棱镜干涉测量光波波长实验报告
双棱镜干涉测量光波波长实验报告示例文章篇一:《双棱镜干涉测量光波波长实验报告》嘿,亲爱的小伙伴们!今天我要跟你们分享一个超级神奇的实验——双棱镜干涉测量光波波长!实验开始前,我满心期待,就像要去探索一个神秘的宝藏一样!老师把实验器材摆在桌上,那一堆东西看着就让人兴奋不已。
我和小伙伴小明、小红一组,我们仨围在实验桌前,眼睛都直勾勾地盯着那些器材。
老师先给我们讲解了原理,可我一开始听得云里雾里的,心里直犯嘀咕:“这能行吗?”不过,等老师亲自示范了一遍,我好像有点明白了。
这不就像我们一起跳绳,绳子甩起来形成的波浪一样嘛!我们开始动手啦!小明负责调整仪器的位置,那认真的模样,仿佛他是个专业的科学家。
我呢,负责记录数据,眼睛都不敢眨一下,生怕错过了什么重要的信息。
小红则在旁边给我们加油打气,还时不时地提醒我们要小心操作。
“哎呀,小明,你轻点儿,别把仪器碰坏啦!”我着急地喊道。
“放心吧,我心里有数!”小明自信地回答。
经过一番努力,我们终于看到了干涉条纹。
“哇塞,这也太漂亮了吧!”小红忍不住惊叹起来。
我们仔细地观察着条纹,测量着数据。
这过程可不轻松,一会儿这个数据不对,一会儿那个角度又偏了。
我都有点不耐烦了,“怎么这么麻烦呀!”但是,一想到马上就能得出结果,我们又鼓足了劲儿。
终于,所有的数据都测量好了,接下来就是计算波长啦。
这可真是个考验耐心和细心的活儿。
“哎呀,我算得脑袋都大了!”我抱怨着。
“别着急,咱们慢慢算,肯定能算对的。
”小明安慰我。
经过反复的计算和核对,我们得出了结果。
当看到那个数字的时候,我们高兴得差点跳起来。
这次实验可真是太有趣啦!它让我明白,科学可不是随便玩玩的,需要我们认真、耐心,还得团结协作。
难道这不是一次让人难忘的经历吗?难道我们从中学到的知识还不够多吗?我觉得这次实验就像一场冒险,充满了挑战和惊喜!我的观点就是:通过这次实验,我不仅学到了知识,还懂得了合作的重要性,以后我要更加努力地探索科学的奥秘!示例文章篇二:《双棱镜干涉测量光波波长实验报告》哇塞!今天我们在学校做了一个超级有趣的实验——双棱镜干涉测量光波波长!这可把我激动坏了!实验开始前,老师把我们分成了几个小组。
实验六 双棱镜干涉测波长
实验六双棱镜干涉测波长
实验目的:通过双棱镜的干涉现象测量光的波长。
实验器材:双棱镜、光源、望远镜、刻度尺。
实验原理:双棱镜的干涉现象是由于两个平行的表面分別作为反射和折射面。
当平行入射的平面波通过双棱镜时,会同时产生反射光和折射光。
这两束光经过不同路径的干涉形成干涉条纹。
通过测量干涉条纹的间距可以计算出光的波长。
实验步骤:
1. 将双棱镜放置在光源的前方,调整其角度使得反射光和折射光平行。
可通过调整光源角度和双棱镜与光源的距离来实现。
2. 将望远镜放置在双棱镜的后方,调整其位置使得通过望远镜可以清楚地看到干涉条纹。
3. 用刻度尺测量相邻两条干涉条纹之间的距离,记为d。
4. 根据双棱镜的参数(如入射角度、折射率等),以及干涉条纹的位置关系,使用干涉条纹的间距公式计算波长。
实验注意事项:
1. 在进行实验时,要保证光源的稳定性,避免干涉条纹受到外界干扰。
2. 看干涉条纹时,要调整仪器和眼睛的位置,使干涉条纹清晰可见。
3. 测量干涉条纹的间距时,要保证测量的准确性,可以多次测量取平均值。
4. 在进行计算时,要准确使用双棱镜的参数数据,避免计算误
差。
实验可能的误差来源:
1. 光源的稳定性不好,会导致干涉条纹的清晰度下降。
2. 实验环境的振动或温度变化,会对干涉条纹的位置产生影响。
3. 实验人员的操作误差,如调整双棱镜的角度、测量干涉条纹间距的准确性等。
用双棱镜测光波波长实验报告
广东第二师范学院学生实验报告比较两次成像中心点的高低,若大像的中心点比小像高,则说明透镜位置偏高,应下降,反之,则说明透镜位置偏低,应上升。
此即所谓“大像追小像”。
反复调节透镜的高低左右,直到大、小像中心点重合为止。
3)调双棱镜。
在狭缝与透镜之间放入双棱镜,止目测粗调二者等高。
这时屏上出现两条平行亮线(狭缝像),如两亮线一高一低,表示双棱镜棱脊与狭缝不平行,则要旋转双棱镜使两亮线等高(有的双棱镜固定不可调,则旋转狭缝);如两亮线一粗亮,一细暗,表示棱镜的棱脊未通过透镜光轴,则应平移双棱镜,使两亮线等宽等亮。
4)调测微目镜。
拿走观测屏,以测微目镜占领其位置。
调测微目镜高低左右,使之与透镜等高共轴,让狭缝像位于视场中央,在视场中央找到等高、平行、等亮度的狭缝像。
2、调出清晰的干涉条纹拿走凸透镜,在测微目镜的视场中寻找干涉条纹,此时只能看见一片黄光,这是因为狭缝过宽或双棱镜棱脊尚未与狭缝平行。
只要慢慢减小狭缝宽度,测微目镜的分划板上将出现一条竖直亮带(两边较暗);轻轻改变狭缝的取向,就可以在亮带区域出现清晰的干涉条纹。
以上两步操作一定要轻缓。
调出条纹后,改变测微目镜与单缝的距离,改变双棱镜与狭缝的间距,观察条纹的疏密变化规律国,并寻找最佳测量状态。
3、测量(1)测x。
将单缝、双棱镜、测微目镜一一锁定,然后用测微目镜测读并记录第1~6、7~12条亮纹的位置读数(光程差为5),反复测量5组数据。
测量中注意:调分划板上的竖线与与干涉条纹平行,测量时,鼓轮只能向一个方向旋转,防止产生回程差。
(2)测D。
在导轨上读出测微目镜与狭缝的位置读数,并记录数据,D=狭缝位置读数减去测微目镜位置读数,只测一次。
(注意测微目镜的修正值,实验室已给出)(3)测d。
两虚光源1S和2S的间距由间接测量求得,测量方法有两种,共轭法和放大法。
本实验采用放大法。
图4 放大法测d光路图如图4所示放开并移动测微目镜,(千成别动狭缝和双棱镜),重新将凸透镜置入测微目镜和双棱镜之间,改变透镜的位置,使本不可测量的虚光源间距d成实像在测微目镜叉丝平面P上。
双棱镜干涉测波长实验报告
双棱镜干涉测波长实验报告一、实验目的1、观察双棱镜干涉现象,加深对光的波动性的理解。
2、学会用双棱镜干涉法测量光波波长。
3、掌握光路的调整和测量数据的处理方法。
二、实验原理双棱镜干涉是一种分波阵面干涉。
当一束单色平行光垂直照射在双棱镜的折射棱上时,其折射光会在双棱镜后面的空间形成两束相干光。
这两束相干光在相遇区域发生干涉,形成明暗相间的干涉条纹。
根据干涉条纹的间距与光波波长、双棱镜的折射率、两相干光源的间距以及观察屏到双棱镜的距离等因素之间的关系,可以通过测量干涉条纹的间距和相关几何参数来计算光波波长。
假设两相干光源之间的距离为$d$,观察屏到双棱镜的距离为$D$,干涉条纹间距为$\Delta x$,则光波波长$\lambda$ 可以表示为:\\lambda =\frac{d\Delta x}{D}\三、实验仪器1、光具座及附件。
2、钠光灯。
3、双棱镜。
4、测微目镜。
5、凸透镜。
四、实验步骤1、调节光具座上各元件的等高共轴。
将钠光灯、双棱镜、凸透镜和测微目镜依次放置在光具座上,并使它们大致等高。
调整双棱镜的位置,使其折射棱与光具座平行。
通过调节各元件的俯仰和左右位置,使钠光灯发出的光经过双棱镜折射后,能够在测微目镜中观察到清晰的干涉条纹。
2、测量干涉条纹的间距。
转动测微目镜的鼓轮,使叉丝与干涉条纹平行。
从条纹的一端开始,依次测量若干条条纹的间距,并记录数据。
3、测量双棱镜到测微目镜的距离$D$。
用直尺测量双棱镜到测微目镜的距离,多次测量取平均值。
4、测量两相干光源的间距$d$。
取下双棱镜,在双棱镜原来的位置放置一狭缝,使其与钠光灯发出的光平行。
在狭缝后面放置凸透镜,并在凸透镜的焦平面上放置一白色光屏。
移动光屏,直到在光屏上观察到清晰的狭缝像。
此时,狭缝像的宽度即为两相干光源的间距$d$。
五、实验数据及处理1、干涉条纹间距的测量数据(单位:mm)|条纹序号| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |||||||||||||位置读数| 125 | 258 | 390 | 520 | 648 | 775 | 902 |1030 | 1155 | 1280 |根据上述数据,计算相邻条纹的间距:\\Delta x_1 =\frac{258 125}{2 1} = 133 \text{mm}\\\Delta x_2 =\frac{390 258}{3 2} = 132 \text{mm}\\\cdots\\\Delta x_9 =\frac{1280 1155}{10 9} = 125 \text{mm}\平均条纹间距:\\Delta x =\frac{133 + 132 +\cdots + 125}{9} = 130 \text{mm} = 130 \times 10^{-3} \text{m}\2、双棱镜到测微目镜的距离$D$ 的测量数据(单位:m)|测量次数| 1 | 2 | 3 |||||||距离读数| 065 | 068 | 066 |平均距离:\D =\frac{065 + 068 + 066}{3} = 066 \text{m}\3、两相干光源的间距$d$ 的测量数据(单位:mm)测量得到狭缝像的宽度$d = 025 \text{mm} = 025 \times 10^{-3} \text{m}$4、计算光波波长将上述测量数据代入公式$\lambda =\frac{d\Delta x}{D}$,可得:\\lambda =\frac{025 \times 10^{-3} \times 130 \times 10^{-3}}{066} \approx 50 \times 10^{-7} \text{m}\六、实验误差分析1、测量干涉条纹间距时,叉丝与条纹的平行度存在偏差,可能导致测量结果的误差。
双棱镜干涉的深入研究实验报告
双棱镜干涉的深入研究实验一、问题提出实验课上我们已经掌握了用双棱镜获得双光束干涉的方法,加深对干涉条件的理解,并且学会了如何用双棱镜测定钠光的波长。
本次设计性实验中我们将进一步掌握双棱镜的干涉原理及调节方法,测定两个虚光源之间的距离与狭缝-双棱镜间距之间的关系。
主要从以下问题探讨:(一)实验测量双棱镜的楔角,并比较角度不同干涉现象的差异;(二)用多种方法来测两个虚光源之间的距离,并比较优缺点;(三)测定两虚光源之间的距离与狭缝-双棱镜间距之间的关系曲线;(四)利用双棱镜干涉观察He-Ne激光的干涉条纹,并测量氦氖光的波长;(五)将钠光灯换成大灯泡,观察白光的干涉条纹。
二、实验原理(一)双棱镜楔角的测量利用分光计测量:将分光机调平处于使用状态,使望远镜光轴与双棱镜的一个面垂直,这时在望远镜的视野中能够清晰看见绿色小十字叉丝的像。
C双棱镜的外形图:A B一束沿AB面法线方向的平行光投射于望远镜中, 测量α时, 当望远镜对准AB面时, 由望远镜物镜的焦面上发出的光束射到AB面上,一部分反射,形成要测量的像,一部分透射进入棱镜后,分别在AC和BC面上反射回到望远镜中, 所以在测量中, 实际看到的是三个绿色小十字叉丝像。
AB面反射的像较亮,AC和BC 面反射的像较暗,望远镜叉丝对准较亮的十字叉丝像测量。
当望远镜转到AC和BC 面一侧时,在望远镜中实际看到4个十字像,中间2个像较暗,边上2个较亮,望远镜叉丝应对准A一侧的亮像测量[2]。
将待测双棱镜置于分光计的载物台上,固定望远镜子,点亮小灯照亮目镜中的叉丝,旋转分光计的载物台,使双棱镜的一个折射面对准望远镜,用自准直法调节望远镜的光轴与此折射面严格垂直,即使十字叉丝的反射像和调整叉丝完全重合。
记录刻度盘上两游标读数V1、V2;再转动游标盘联带载物平台,依同样方法使望远镜光轴垂直于棱镜第二个折射面,记录相应的游标读数V1',V2',由此得双棱镜的楔角α为:α=(|V1'-V1|+|V2'-V2|)/4(二)多种方法测两光源之间的间距1.二次成像法在“用双棱镜干涉测量光波的波长”时关键是测量两虚相干光源的间距d,目前使用的教科书中一般采用二次成像法测量两虚相干光源的间距,其实验装置和光路图如图1所示:图1中狭缝光源S发出的光波经双棱镜上下两部分折射后形成两虚相干光源S1和S2,d通过透镜L在两个不同位置的二次成像求得,即d=21dd,d1为两虚相干光源通过透镜所成的放大实像间的距离d2为两虚相干光源通过透镜所成的缩小实像间的距离[3]。
用菲涅耳双棱镜测波长
双棱镜形状
由两个相互平行的平面玻璃棱镜组成,中间有一条窄缝。
光线传播路径
当单色光正入射到双棱镜上时,光线被分成两束,分别经过两个棱 镜后发生折射和反射,再相遇时产生干涉。
干涉条纹特点
在双棱镜后方屏幕上出现明暗相间的干涉条纹,条纹间距与光波长 和双棱镜参数有关。
干涉条纹产生条件
01
02
03
04
光源要求
1
| 3 | 486.1 | 3.24 | 3.26 | 0.61 |
| 4 | 435.8 | 2.90 | 2.93 | 1.02 |
| 5 | 平均值 | 3.50 | 3.52 | 0.57 |
结果可视化图表呈现
【请在此处插入数据汇总表对应的柱 状图或折线图】
通过可视化图表,可以直观地看到不同波 长光源下测量值与理论值的差异,以及相 对误差的大小。从图表中可以看出,测量 值与理论值基本吻合,相对误差较小。
调整光路
确保光源、菲涅耳双棱镜和观察屏 之间的光路畅通,没有遮挡物。
记录干涉条纹并测量数据
打开光源
记录干涉条纹
打开光源,使光线正对菲涅耳双棱镜入射 ,同时观察观察屏上的干涉条纹。
使用相机或手机等设备记录观察屏上的干 涉条纹,确保照片清晰、准确。
测量数据
重复实验
使用尺子测量干涉条纹之间的距离,记录 测量数据。同时记录实验环境中的温度、 湿度等参数,以便后续数据处理和分析。
在实验过程中,需要严格控制实验条件,如光源 的稳定性、双棱镜的调节精度等。这些因素都会 对实验结果产生影响,需要在实验设计和操作过 程中予以充分考虑。
06Байду номын сангаас
结论与展望
实验结论总结
用菲涅尔双棱镜测量光波波长实验报告
用菲涅尔双棱镜测量光波波长实验报告一、实验目的1、掌握菲涅尔双棱镜干涉的原理和方法。
2、学会使用测量显微镜测量干涉条纹的间距。
3、测量光波的波长,并对实验结果进行误差分析。
二、实验原理菲涅尔双棱镜可以看作是由两块底面相接、顶角很小的直角棱镜合成。
当一束单色平行光垂直照射在双棱镜的表面时,经折射后形成两束相干光。
这两束光好像是从两个虚光源发出的一样,在它们相遇的区域产生干涉条纹。
设两虚光源之间的距离为 d,虚光源到屏的距离为 D,相邻两条干涉条纹的间距为Δx,则根据光的干涉理论,光波的波长λ可以通过以下公式计算:λ =Δxd / D三、实验仪器1、钠光灯:提供单色光源。
2、菲涅尔双棱镜。
3、测量显微镜:用于测量干涉条纹的间距。
4、光具座:用于固定和调节光学元件的位置。
四、实验步骤1、调节光路将钠光灯、菲涅尔双棱镜和测量显微镜依次放置在光具座上,使它们大致在同一水平线上。
调节钠光灯的位置,使其发出的光能够均匀照亮双棱镜。
调节双棱镜的位置,使其棱脊与光具座平行,并使干涉条纹清晰可见。
2、测量干涉条纹间距转动测量显微镜的测微鼓轮,使叉丝对准干涉条纹的中心。
沿一个方向移动测量显微镜,依次测量若干条干涉条纹的位置,并记录下来。
3、测量虚光源到屏的距离 D 和两虚光源之间的距离 d用米尺测量虚光源到屏的距离 D。
通过测量双棱镜的几何尺寸和它在光具座上的位置,计算出两虚光源之间的距离 d。
4、重复测量重复上述步骤,进行多次测量,以减小测量误差。
五、实验数据及处理1、测量干涉条纹间距的数据如下表所示:|条纹序号|位置(mm)||||| 1 | 1025 || 2 | 1150 || 3 | 1270 || 4 | 1395 || 5 | 1520 |相邻条纹间距的平均值:Δx =(1150 1025 + 1270 1150 + 1395 1270 + 1520 1395)/ 4= 125 mm2、虚光源到屏的距离 D = 50000 mm3、两虚光源之间的距离 d 的计算:双棱镜的折射率 n = 15,顶角α = 05°,双棱镜的厚度 t = 500 mm,双棱镜到测量显微镜的距离 L = 30000 mm。
双棱镜干涉测波长实验报告
双棱镜干涉测波长实验报告一、实验目的1、观察双棱镜干涉现象,掌握获得双棱镜干涉条纹的方法。
2、测量钠光的波长。
3、学会使用测微目镜测量干涉条纹间距。
二、实验原理双棱镜干涉是一种分波阵面干涉。
将单色光源(如钠光灯)发出的光通过狭缝 S 照亮双棱镜的棱脊,经双棱镜折射后,形成两束频率相同、振动方向相同、相位差恒定的相干光。
这两束光在空间相遇,产生干涉条纹。
设两相干光源 S1 和 S2 之间的距离为 d,屏幕到双棱镜的距离为 D,干涉条纹间距为Δx,光波波长为λ,则根据干涉条纹的明暗条件和几何关系,可以得到:\\lambda =\frac{d \times \Delta x}{D}\因此,只要测量出 d、D 和Δx,就可以计算出光波的波长λ。
三、实验仪器钠光灯、双棱镜、凸透镜、测微目镜、光具座、白屏等。
四、实验步骤1、仪器调节将钠光灯、双棱镜、凸透镜、测微目镜依次放置在光具座上,调整它们的高度和中心,使它们大致在同一光轴上。
使钠光灯通过狭缝 S 照亮双棱镜的棱脊,在白屏上观察到清晰的干涉条纹。
调节凸透镜的位置,使干涉条纹清晰、明亮、宽窄适中。
2、测量相关物理量用测微目镜测量干涉条纹间距Δx。
测量时,应沿同一方向移动测微目镜,依次测量多条干涉条纹的间距,然后取平均值。
测量双棱镜到测微目镜的距离 D。
可以通过在光具座上读取相应的刻度值来确定。
测量两相干光源 S1 和 S2 之间的距离 d。
可以通过小孔成像法或其他方法来测量。
3、数据处理与计算根据测量得到的数据,代入公式\(\lambda =\frac{d \times \Delta x}{D}\),计算出钠光的波长λ。
对测量数据进行误差分析,讨论实验结果的准确性和可靠性。
五、实验数据记录与处理1、测量干涉条纹间距Δx测量次数 1:Δx1 =______ mm测量次数 2:Δx2 =______ mm测量次数 3:Δx3 =______ mm测量次数 4:Δx4 =______ mm测量次数 5:Δx5 =______ mm平均值:\(\overline{\Delta x} =\frac{\Delta x1 +\Delta x2 +\Delta x3 +\Delta x4 +\Delta x5}{5}\)=______ mm2、测量双棱镜到测微目镜的距离 DD =______ mm3、测量两相干光源 S1 和 S2 之间的距离 dd =______ mm4、计算钠光的波长λ将测量数据代入公式\(\lambda =\frac{d \times \Delta x}{D}\),得到:\(\lambda =\frac{d \times \overline{\Delta x}}{D}\)=______ mm5、误差分析测量误差的主要来源包括干涉条纹间距的测量误差、双棱镜到测微目镜距离的测量误差以及两相干光源距离的测量误差等。
实验三、利用双棱镜干涉测钠光波长
实验五 利用双棱镜干涉测红光波长一、实验目的:1、观察双棱镜产生的双光束干涉现象,进一步理解产生干涉的条件2、学会使用双棱镜测定光波波长二、实验仪器:双棱镜,可调狭缝,辅助透镜(两片),测微目镜,光具座,白屏,单色光源三、实验原理:两列的光波如果频率相同,传播方向相同,位相差恒定,那么在两列光波相交的区域将形成明暗相间的干涉条纹。
利用双棱镜干涉测钠光波长如图所示从单色光源M 发出的光经过透镜L 会聚于狭缝S ,使S 成为具有较大亮度的线状光源。
当狭缝S 发出的光投射到双棱镜上时,经折射后,其波前便分割成两部分,形成沿不同方向传播的两束相干柱波。
通过双棱镜观察这两束光,就好像它们是由虚光源S 1和S 2发出的一样,故在两束光相互交叠区域P 1P 2内产生干涉。
干涉条纹间距x ∆和光波波长λ之间关系有下式表示: xDd∆=λ其中,d 为两虚光源S 1和S 2的距离;D 为狭缝S 到测微目镜的距离。
实验中,只要测出d 、D 和x ∆的值,就可以光波的波长λ。
四、实验步骤:1、参照原理图在光学平台上安置各仪器,调节共轴等高,使钠光通过透镜L 会聚在狭缝S 上。
双棱镜的棱脊与狭缝须平行地置于光轴上,以获得清晰的干涉条纹。
2、用测微目镜测量干涉条纹间距x ∆,并测出狭缝到目镜的距离D 。
3、保持狭缝和双棱镜的位置不动,用二次成像法测出虚光源的距离d 。
4、根据公式计算钠光波长。
五、实验数据及处理:表1 10条条纹间距(单位 mm)表2 狭缝到目镜的距离D (单位 cm)表3 虚光源的距离d (单位 mm)六、注意事项:使用测微目镜时,首先要确定测微目镜读数装置的分格精度;要注意防止回程误差;旋转读数鼓轮时动作要平稳、缓慢;测量装置要保持稳定。
x Dd ∆=λ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用双棱镜干涉测光波波长
【实验目的】
1.掌握用双棱镜获得双光束干涉的方法,加深对干涉条件的理解. 2.学会用双棱镜测定钠光的波长.
【仪器和用具】
光具座,单色光源(钠灯),可调狭缝,双棱镜,辅助透镜(两片),测微目镜,白屏.
【实验原理】
如果两列频率相同的光波沿着几乎相同的方向传播,并且它们的位相差不随时间而变化,那么在两列光波相交的区域,光强分布是不均匀的,而是在某些地方表现为加强,在另一些地方表现为减弱(甚至可能为零),这种现象称为光的干涉,
菲涅耳利用图1所示的装置,获得了双光束的干涉现象,图中AB 是双棱镜,它的外形结构如图2所示,将一块平玻璃板的一个表面加工成两楔形板,端面与棱脊垂直,楔角A 较小(一般小于10).从单色光源发出的光经透镜L 会聚于狭缝S ,使成S 为具有较大亮度的线状光源.从狭缝S 发出的光,经双棱镜折射后,其波前被分割成两部分,形成两束光,就好像它们是由虚光源1S 和2S 发出的一样,满足相干光源条件,因此在两束光的交叠区域
21P P 内产生干涉.当观察屏P 离双棱镜足够远时,在屏上可观察到平行于狭缝S 的、明暗
相间的、等间距干涉条纹.
图1双棱镜干涉实验光路 图2 双棱镜结构
设两虚光源1S 和2S 之间的距离为d ,虚光源所在的平面(近似地在光源狭缝S 的平面内)到观察屏P 的距离为D ,且D d <<,干涉条纹间距为x ∆,则实验所用光源的波长λ为
x D
d
∆=
λ (1) 因此,只要测出d 、D 和x ∆,就可用(1)式计算出光波波长.
【实验内容】
1.调节共轴
(1)按图1所示次序,将单色光源0S ,会聚透镜L ,狭缝S ,双棱镜AB 与测微目镜P 放置在光具座上.用目视法粗略地调节它们中心等高、共轴,棱脊和狭缝S 的取向大体平行.
(2)点亮光源0S ,通过透镜L 照亮狭缝S ,用手执白纸屏在双棱镜后面检查:经双棱镜折射后的光束,有否叠加区21P P (应更亮些)?叠加区能否进入测微目镜?当移动白屏时,叠加区是否逐渐向左、右(或上、下)偏移?
根据观测到的现象,作出判断,进行必要的调节使之共轴.
2.调节干涉条纹
(1)减小狭缝S 的宽度,绕系统的光轴缓慢地向左或右旋转双棱镜A B ,当双棱镜的棱脊与狭缝的取向严格平行时,从测微目镜中可观察到清晰的干涉条纹.
(2)在看到清晰的干涉条纹后,为便于测量,将双棱镜或测微目镜前后移动,使干涉条纹的宽度适当.同时只要不影响条纹的清晰度,可适当增加狭缝S 的缝宽,以保持干涉条纹有足够的亮度.(注:双棱镜和狭缝的距离不宜过小,因为减小它们的距离,1S 和2S 间距也将减小,这对d 的测量不利.)
3.测量与计算
(1)用测微目镜测量干涉条纹的间距如,为了提高测量精度,可测出n 条(10~20条)干涉条纹的间距x ,除以n ,即得x ∆.测量时,先使目镜叉丝对准某亮纹(或暗纹)的中心,然后旋转测微螺旋,使叉丝移过n 个条纹,读出两次读数,重复测量几次,求出x ∆.
(2)用光具座支架中心间距测量狭缝至观察屏的距离D.由于狭缝平面与其支架中心不重
合,且测微目镜的分划板(叉丝)平面也与其支架中心不重合,所以必须进行修正,以免导致测量结果的系统误差,测量几次,求出D .
(3)用透镜两次成像法测两虚光源的间距d .参见图3,保持狭缝S 与双棱镜AB 的位置不变,即与测量干涉条纹间距x ∆时的相同(问:为什么不许动?),在双棱镜与测微目镜之间放置一已知焦距为f '的会聚透镜L ',移动测微目镜使它到狭缝S 的距离f D '>'4,然后维持恒定,沿光具座前后移动透镜L ',就可以在L '的两个不同位置上从测微目镜中看
到两虚光源1S 和2S 经透镜所成的实像1
S '和2S ',其中一组为放大的实像,另一组为缩小的实像.分别测得两放大像的间距1d ,和两缩小像的间距2d ,则按下式即可求得两虚光源的间距d .多测几次,取平均值d .
21d d d =
(2)
图3 用透镜两次成像法测两虚光源的间距d
(4)用所测得的x ∆、D 、d 值,代入式(1),求出光源的波长λ.
(5)计算波长测量值的标准不确定度.
4.注意事项
(1)使用测微目镜时,首先要确定测微目镜读数装置的分格精度,要注意防止回程差,旋转读数鼓轮时动作要平稳、缓慢,测量装置要保持稳定.
(2)在测量D 值时,因为狭缝平面和测微目镜的分划板平面均不和光具座滑块的读数准线(支架中心)共面,必须引入相应的修正,否则将引起较大的系统误差.
(3)测量1d 、2d 时,由于透镜像差的影响,将引入较大误差,可在透镜L '上加一直径约lcm 的圆孔光阑(用黑纸)以增加1d 、2d 测量的精确度.(可对比一下加或不加光阑的测量结果.)
【思考题】
1.双棱镜和光源之间为什么要放一狭缝?为何缝要很窄且严格平行于双棱镜脊才可以得到清晰的干涉条纹?
2.试证明公式21d d d =
.
附:测量钠光波长数据记录与处理
D = (mm) x ∆= (mm)
x D d ∆=
λ=D
d d x 2
1∆
不确定度计算举例:
用双棱镜测量光源的波长(λ)实验,测量公式为:
D
n x d d 1
2
1∆=λ 式中1d 为两虚光源经透镜1L 所成二亮线(光源实像)的间距,2d 为透镜移至2L 二亮线的间距,D 为虚光源到其实像的距离。
实验时1d 、2d 、x ∆均由精密度为0.01mm 的测微目镜测量,D 由米尺测量。
测量例:1d =2.713mm, )(1d s =0.021mm 2d =0.711mm, )(2d s =0.002mm mm x 335.6=∆,)(x s ∆=0.010mm D=73.72cm n=20 计算出:
cm cm 510967.5)72.7320/(6335.00711.02713.0-⨯=⨯⨯⨯=λ 计算不确定度:
(1)1d 的标准不确定度)(1d u 来源于:
重复测量cm d u A 0021.0)(1=
从估计Δ等于仪器精度0.001cm,由仪器引人的不确定度)(1d u B
cm cm d u B 00058.03/001.0)(1==,
则=)(1d u cm cm /0022.000058.00021.022=+ (2)计算)(2d u
来源于:重复测量cm d u A 0002.0)(2=
仪器误差(同2d )cm d u B 00058.0)(2= 则cm cm d u 00061.000058.00002.0)(222=+= (3)计算)(x u ∆
来源于:重复测量cm x u A 0010.0)(=∆
仪器误差(同1d )cm x u B 00058.0)(=∆ 则cm cm x u 0012.000058.00010.0)(22=+=∆ (2)计算)(D u
来源仪器误差,估计cm cm D u cm B 058.03/1.0)(,1.0===∆ 计算
()()()()()⎥⎦
⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∂∂⎥⎦⎤⎢⎣⎡∆∆∂∂+++=
2211u 2
22
2D d u d d u d u D x u x λλ
λλλ)(λc u
cm
cm u c 52
1
22225
10037.0])72
.73058.0()6335.00012.0()0711.020061.0()2713.020022.0[(10967.5)(--⨯=⨯+⨯⨯=λ 结果cm 510)04.097.5(-⨯±=λ。