函数周期性结论总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数周期性结论总结 IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】

函数周期性结论总结 ①f(x+a)=-f(x)T=2a

②f(x+a)=±)

(1x f T=2a ③f(x+a)=f(x+b)T=|a-b| 证明:令x=x-b 得f(x-b+a)=f(x-b+b)f(x-b+a)=f(x)根据公式f(x)=f(x+T)=f(x+nT)得T=-b+a 即a-b

④f(x)为偶函数,且关于直线x=a 对称,T=2a

证明:f(x+2a)=f(-x)=f(x)

证明:因为偶函数,所以f(-x)=f(x)因为关于x=a 对称

所以f(a+x)=f(a-x)(对称性质)设x=x+a 所以f(x+2a)=f(x)所以周期T=2a)

⑤f(x)为奇函数,且关于直线x=a 对称,T=4a

证明:f(x+2a)=f(-x)=-f(x)根据①可知T=2·2a=4a

证明:由于图像关于直线x=a 对称、所以f(a+x)=f(a-x)令x=x+a 得:f(x+2a)=f(-x)

又f(x)=-f(-x)故f(x)=-f(x+2a)代换x=x+2a 得:f(x+2a)=-f(x+4a)即得f(x)=f(x+4a)于是函数f(x)的周期为4a

⑥f(x)=f(x+a)+f(x-a)有三层函数,用递推的方法来证明。

f(x+a)=f(x+2a)+f(x)

f(x+2a)=-f(x-a)换元:令x-a=t 那么x=a+t

f(t+3a)=-f(t)根据①可知T=6a

⑦f(x)关于直线x=a,直线x=b 对称,T=2|a-b|

证明:f(a+x)=f(a-x)

假设a >b(当然假设a <b 也可以同理证明出)

T=2(a-b)

现在只需证明f(x+2a-2b)=f(x)即可

f(x+2a-2b)

=f[a+(x+a-2b)]

=f[a-(x+a-2b)]

=f(2b-x)

=f(x) ⑧f(x)的图像关于(a,0)(b,0)对称,T=2a-2b(a >b)

证明:根据奇函数对称中心可知:f(a+x)=-f(a-x)

f(b+x)=-f(b-x)f(2b-x)=-f(x )

f(x+2a-2b)

=f[a+(x+a-2b)]

=-f[a-(x+a-2b)]

=-f(2b-x)

=f(x)

关于直线x=a 对关于直线x=b 对称

相关文档
最新文档