填料塔设计详细计算过程
填料塔的设计
φ
F
泛点因子与液体喷淋密度有关,但为了工程计算方便, 泛点因子与液体喷淋密度有关,但为了工程计算方便,常采用与液 体喷淋密度无关的泛点填料因子的平均值,见数据表11。 体喷淋密度无关的泛点填料因子的平均值,见数据表 。
气相动能因子( 因子) 2) 气相动能因子(F因子)法
气相动能因子简称F因子,其定义为: 气相动能因子简称 因子,其定义为: 因子
(1)温度的确定 )温度的确定——溶解度 溶解度 (2)压力的确定 )压力的确定——溶解度和操作费 溶解度和操作费
二、填料类型的选用
(一)填料类型——散装填料和规整填料 填料类型 散装填料和规整填料
1、散装填料——拉西环、鲍尔环、阶梯环、弧鞍填料、矩 、散装填料 拉西环、 拉西环 鲍尔环、阶梯环、弧鞍填料、 鞍填料、环矩鞍填料等。 鞍填料、环矩鞍填料等。 2、规整填料 、规整填料——网波纹填料和板波纹填料 网波纹填料和板波纹填料
注意: 注意:
实际操作中采用的液体喷淋密度大于最小喷淋密度。若液体喷淋密度小于 实际操作中采用的液体喷淋密度大于最小喷淋密度。 最小喷淋密度,则需进行调整,重新计算塔径。 最小喷淋密度,则需进行调整,重新计算塔径。
(二)填料层高度计算及分段
1)传质单元数法 ) 1、填料层高度计算 、
Z = HOG ⋅ NOG
UV µV αt DV kG = 0.237 αt µV ρV DV RT
UL µL kL = 0.0095 αW kL ρL DL
2/3 −1/ 2
0.7
1/3
µL g ρL
Cs = u
ρ L − ρV
ρV
气相负荷因子法多用于规整填料空塔气速的确定。计算时, 气相负荷因子法多用于规整填料空塔气速的确定。计算时,先求出最大 气相负荷因子; 气相负荷因子;《常用规整填料的最大气相负荷因子可通过有关填料手册查 也可从图22曲线(适于波纹板填料)查得,如为其他填料,可以250Y 22曲线 知,也可从图22曲线(适于波纹板填料)查得,如为其他填料,可以250Y 型波纹板填料为基准,乘以修正系数C 见表12 后按下式计算: 12》 型波纹板填料为基准,乘以修正系数C,见表12》后按下式计算:
填料塔的计算.doc
一、设计方案的确定(一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下: 混合密度是:1013.865KG/M3 混合粘度0.001288 Pa ·s 暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为 M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm ==⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m •h) 查手册得CO2在空气中的扩散系数为 D V =1.8×10-5m 2/s=0.065m 2/h 由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s•⨯=⨯⨯=-ρ2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403 出塔气相摩尔比为Y2= 0.153403×0.05=0.00767 进塔惰性气相流量为V=992.1mol/s=275.58kmol/h该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即2121min /X m Y Y Y )V L(--=对于纯溶剂吸收过程,进塔液组成为X2=02121min /X m Y Y Y )V L(--==(0.153403-0.00767)/(0.1534/1.78)=1.78取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67 L=2.67×275.58=735.7986kmol/h ∵V(Y1-Y2)=L(X1-X2) ∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速 气相质量流量为 W V =13.74kg/s=49464kg/h 液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/h Eckert 通用关联图横坐标为0.011799查埃克特通用关联图得226.02.0=••L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φ s m g u LV F LF /552.21338.112602.99881.9226.0226.02.02.0=⨯⨯⨯⨯⨯==μϕρφρUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s 由=1.839191m圆整塔径,取D=1.9m 泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) =3.352964272/ 4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h 查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3 U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算
一、 设计方案的确定 (一) 操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃ 常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔 根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288 Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h 3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18 =20.347混合气体的平均密度ρvm = =⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m 3混合气体粘度近似取空气粘度,手册28℃空气粘度为μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa 相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)= 0.153403出塔气相摩尔比为Y2= 0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即 2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为 W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核 u=s m /12.26.0785.03600/15002=⨯ = 4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) = 4.724397=70.9%填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为 (L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积 a t =228 m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的计算范文
填料塔的计算范文料塔是一种常见的工程结构,用于储存和输送颗粒状物料。
其设计过程中需要进行一系列计算,以确保料塔具有足够的强度和稳定性,能够安全承载预计的荷载。
本文将介绍料塔的计算方法和步骤,并给出一个具体的例子,展示如何进行料塔的计算。
一、料塔的计算方法和步骤1.确定设计参数:包括预计储存物料的密度、颗粒大小和湿度;预计料塔高度和直径;料塔所处环境的温度、湿度和风速等。
2.计算所需容量:根据预计储存物料的总重量和密度,计算料塔的总容量。
3.确定料塔的结构形式:包括筒形、锥形、碗形等,根据具体情况选择合适的结构形式。
4.计算料塔的自重和荷载:根据料塔的几何形状和预计物料的重量,计算料塔的自重;同时考虑其他荷载,如风荷载、地震荷载等。
5.计算料塔的强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;同时根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.进行结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求;同时尽可能减小材料的使用量和成本。
二、料塔计算范例假设我们需要设计一个筒形料塔,用于储存密度为1.2t/m³的玉米,预计储存量为2000t,料塔的高度为20m,直径为8m。
现在我们按照上述步骤进行料塔的计算。
1.设计参数:玉米的密度为1.2t/m³,预计料塔高度为20m,直径为8m,环境温度为25℃,相对湿度为60%,风速为15m/s。
2.计算所需容量:预计储存量为2000t,根据玉米的密度计算料塔的总容量为2000t/1.2t/m³=1666.7m³。
3.结构形式:选择筒形料塔。
5.强度和稳定性:根据材料的弹性模量和抗压强度,计算料塔的强度;根据料塔的几何形状和与地面的接触方式,计算料塔的稳定性。
6.结构优化:根据计算结果,进行结构优化,满足强度和稳定性的要求,同时尽可能减小材料的使用量和成本。
三、结论料塔的计算是一个复杂而重要的工程问题,涉及材料力学、结构力学、流体力学等多个学科。
填料塔的计算
一、 设计方案的确定(一)操作条件的确定1.1吸收剂的选择1.2装置流程的确定1.3填料的类型与选择1.4操作温度与压力的确定45℃常压(二)填料吸收塔的工艺尺寸的计算2.1基础物性数据①液相物性数据对于低浓度吸收过程,溶液的物性数据可近似取质量分数为30%MEA 的物性数据7.熔根据上式计算如下:混合密度是:1013.865KG/M3混合粘度0.001288Pa ·s暂取CO2在水中的扩散系数表面张力б=72.6dyn/cm=940896kg/h3②气相物性数据混合气体的平均摩尔质量为M vm =y i M i =0.133*44+0.0381*64+0.7162*14+0.00005*96+0.1125*18=20.347 混合气体的平均密度ρvm ==⨯⨯=301314.805.333.101RT PMvm 101.6*20.347/(8.314*323)=0.769kg/m3 混合气体粘度近似取空气粘度,手册28℃空气粘度为 μV =1.78×10-5Pa ·s=0.064kg/(m?h)查手册得CO2在空气中的扩散系数为D V =1.8×10-5m 2/s=0.065m 2/h由文献时CO 2在MEA 中的亨利常数:在水中亨利系数E=2.6⨯105kPa相平衡常数为m=1.25596.101106.25=⨯=P E 溶解度系数为H=)/(1013.218106.22.997345kPa m kmol E M s ∙⨯=⨯⨯=-ρ 2.2物料衡算进塔气相摩尔比为Y1=0.133/(1-0.133)=0.153403出塔气相摩尔比为Y2=0.153403×0.05=0.00767进塔惰性气相流量为V=992.1mol/s=275.58kmol/h 该吸收过程为低浓度吸收,平衡关系为直线,最小液气比按下式计算,即2121min /X m Y Y Y )V L (--=对于纯溶剂吸收过程,进塔液组成为X2=0 2121min /X m Y Y Y )V L (--==(0.153403-0.00767)/(0.1534/1.78)=1.78 取操作液气比(?)为L/V=1.5L/V=1.5×1.78=2.67L=2.67×275.58=735.7986kmol/h∵V(Y1-Y2)=L(X1-X2)∴X1=0.054581①塔径计算采用Eckert 通用关联图计算泛点气速气相质量流量为W V =13.74kg/s=49464kg/h液相质量流量计算即W L =735.7986×(0.7*18+0.3*54)=21190.99968kg/hEckert 通用关联图横坐标为0.011799 查埃克特通用关联图得226.02.0=∙∙L LV F F g u μρρϕφ(查表相差不多) 查表(散装填料泛点填料因子平均值)得1260-=m F φUf=3.964272m/s取u=0.8u F =0.8×3.352=2.6816m/s由=1.839191m圆整塔径,取D=1.9m泛点率校核u=s m /12.26.0785.03600/15002=⨯=4.724397m/s 100522.212.2⨯=F u u ﹪=84.18%(在允许范围内) =4.724397=70.9% 填料规格校核:82425600>==d D =1900/25=76》8 液体喷淋密度校核,取最小润湿速率为(L W )min =0.08m 3/m ·h查塑料阶梯环特性数据表得:型号为DN25的阶梯环的比表面积a t =228m 2/m 3U min =(L W )min a t =0.08×228=18.24m 3/m 2·h U=min 251.76.0785.02.998/312121U 。
填料塔的设计
西北大学化工学院化工原理课程设计说明书设计名称: 填料吸收塔设备的设计 年级专业: 2008级化学工程与工艺 姓 名:指导老师:姚瑞清2011年1月10日目录一.设计任务-----------------------------------2 二.填料选择-----------------------------------3 三.计算所需物性参数---------------------------3 四.设计计算过程-------------------------------4 五.塔附件选择---------------------------------10 六.工艺流程说明-------------------------------15 七.心得体会-----------------------------------16 八.参考文献-----------------------------------18 九.工艺流程图---------------------------------19一. 设计任务原料气入塔温度为25℃,用清水吸收原料气体中的SO2气体,混合气体的处理量为2000m3/h,其中含有SO2的摩尔分数为0.07,SO2的吸收率为90%,气体入口温度为25℃.水入口温度为20℃。
已知:20℃时,E=3.55 10³kPa, L/G=1.5(L/G)min;操作压力:常压;操作温度:液体20℃; 气体:25℃;填料类型:乱堆塑料鲍尔环;要求设计填料吸收塔,求所需塔高,塔径,塔内件,塔接管尺寸,绘制流程图,吸收塔工艺条件图,设计过程评述。
二.填料选择该系统属于易分离系统,可采用散装填料,系统中含SO2有一定腐蚀性,故考虑选用Ф50mm塑料鲍尔环,由于系统对压降无特殊要求,考虑到不同尺寸鲍尔环的性能采用乱堆Ф50mm塑料鲍尔环。
鲍尔环特性:鲍尔环是在拉西环的基础上发展起来的,是近期具有代表性的一种填料。
填料塔计算和设计
填料塔计算和设计填料塔计算和设计Pleasure Group Office【T985AB-B866SYT-B182C-BS682T-STT18】填料塔设计2012-11-20一、填料塔结构填料塔是以塔内装有大量的填料为相间接触构件的气液传质设备。
填料塔的塔身是一直立式圆筒,底部装有填料支承板,填料以乱堆或整砌的方式放置在支承板上。
在填料的上方安装填料压板,以限制填料随上升气流的运动。
液体从塔顶加入,经液体分布器喷淋到填料上,并沿填料表面流下。
气体从塔底送入,经气体分布装置(小直径塔一般不设置)分布后,与液体呈逆流接触连续通过填料层空隙,在填料表面气液两相密切接触进行传质。
填料塔属于连续接触式的气液传质设备,正常操作状态下,气相为连续相,液相为分散相。
二、填料的类型及性能评价填料是填料塔的核心构件,它提供了气液两相接触传质的相界面,是决定填料塔性能的主要因素。
填料的种类很多,根据装填方式的不同,可分为散装填料和规整填料两大类。
散装填料根据结构特点不同,分为环形填料、鞍形填料、环鞍形填料等;规整填料按其几何结构可分为格栅填料、波纹填料、脉冲填料等,目前工业上使用最为广泛的是波纹填料,分为板波纹填料和网波纹填料;填料的几何特性是评价填料性能的基本参数,主要包括比表面积、空隙率、填料因子等。
1.比表面积:单位体积填料层的填料表面积,其值越大,所提供的气液传质面积越大,性能越优;2.空隙率:单位体积填料层的空隙体积;空隙率越大,气体通过的能力大且压降低;3.填料因子:填料的比表面积与空隙率三次方的比值,它表示填料的流体力学性能,其值越小,表面流体阻力越小。
三、填料塔设计基本步骤1.根据给定的设计条件,合理地选择填料;2.根据给定的设计任务,计算塔径、填料层高度等工艺尺寸;3.计算填料层的压降;4.进行填料塔的结构设计,结构设计包括塔体设计及塔内件设计两部分。
四、填料塔设计1.填料的选择填料应根据分离工艺要求进行选择,对填料的品种、规格和材质进行综合考虑。
填料塔计算公式
填料塔计算公式填料塔是化工、环保等领域中常用的气液传质设备,要想设计和操作好填料塔,掌握相关的计算公式那可是相当重要!先来说说填料塔的塔径计算公式。
这就好比给塔选一件合适的“衣服”,太大了浪费材料,太小了又影响工作效率。
塔径的计算主要考虑气体的体积流量、空塔气速等因素。
计算公式大致是:D = √(4Vs / πu),这里的 D 表示塔径,Vs 是气体体积流量,u 是空塔气速。
咱就拿一个实际例子来说吧,之前我在一个化工厂实习的时候,就碰到了填料塔塔径计算的问题。
当时厂里要对一个旧的填料塔进行改造,以提高生产效率。
我们首先得确定气体的流量,这可不是个简单的事儿,得通过各种测量仪表,像流量计啥的,获取准确的数据。
然后再根据工艺要求和经验,确定合适的空塔气速。
这个空塔气速的选择可不能马虎,选高了,气体阻力增大,能耗增加;选低了,塔的处理能力又不够。
我们那时候是反复讨论、计算,才最终确定了一个比较理想的塔径。
再来说说填料层高度的计算公式。
这就像是给塔盖房子,得盖多高才能让气液充分接触,完成传质任务呢?常用的计算公式有传质单元数法和等板高度法。
传质单元数法呢,需要先计算出传质单元数,然后乘以传质单元高度,就得到了填料层高度。
等板高度法呢,是先确定理论板数,再乘以等板高度。
我记得有一次,在设计一个新的填料塔时,为了确定填料层高度,我们可是费了好大的劲儿。
先是在实验室里做小试,模拟实际的操作条件,测量各种数据。
然后根据实验结果进行计算和分析,不断调整参数,优化设计方案。
那几天,我们办公室的灯常常亮到很晚,大家都在为了这个项目努力。
还有填料的压降计算也不能忽视。
压降大了,会增加能耗;压降小了,又可能影响传质效果。
总之,填料塔的计算公式虽然看起来有点复杂,但只要我们认真研究,结合实际情况,多做实验和计算,就一定能设计出性能优良的填料塔,为生产和环保事业做出贡献。
希望我讲的这些能让您对填料塔的计算公式有更清楚的了解,在实际应用中少走弯路,提高工作效率和质量!。
填料塔计算
Pa/m查关联图来自 Zu 22
查阻力系数表 Pa/m
ζ= 150 ΔP/Z = 205.60949 填料层高度计算 1)传质单元数 解析法/脱吸因数法 气相进塔摩尔比Y1= 1.20E-05 气相出塔摩尔比Y2= 2.00E-06 进塔液相摩尔比X2= 0 出塔液相摩尔比X1= 气相进塔摩尔流量V= 1056.5015 液相进塔摩尔流量L= 5600 解吸因数 S= 0.1426245 气相总传质单元数NOG= 1.9422387 液相总传质单元数NOL= 0.2770109 2)传质单元高度 气相空塔质量速度G= 1.7301998 液相空塔质量速度W= 5.7041132 雷诺准数ReL= 63.063717 弗鲁德准数FrL= 0.0003033 韦伯准数WeL= 0.005006 填料层有效面积α= 18.199032 实际雷诺数Re’L= 311.87013 施密特准数ScL= 575.62775 液膜吸收系数k L = 0.0004604 气相雷诺准数ReG= 1039.1591 气相施密特准数ScG= 0.8534942 气膜吸收系数k G = 2.713E-05 溶解度系数H= 0.7194662 KGα= 0.0004563 KYα= 0.0462335 传质单元高度HOG= 1.2931263 填料层高度Z= 2.51156
水的密度与液体密度之比 N/m 查表(附录) 2 273K/101325Pa m /s 273K/101325Pa m /s u F 液泛速度,一般为0.5-0.8 kN.m/kmol.K Pa 查表,注意单位换算为Pa m=E/P 亨利定律
2
气相中扩散系数D G = 1.99E-05
液泛速度计算 气相质量流量ωV= 8.4930986 液相质量流量ωL= 28 气相密度ρ V = 1.0919698 中间坐标参数X= Y= 2 Y/u F = 液泛速度 u F = 空塔速度u= 有效过流截面A= 按圆型填料塔计算 塔径D= 直径取整D= 塔截面积Ω= 实际空塔速度u= 塔径/填料径= 喷淋密度L'= 润湿速率L w = 0.1093809 0.14 1.19E-02 3.431576 2.0589456 3.7775538
填料塔的计算范文
填料塔的计算范文填料塔是一种常见的化工设备,广泛应用于石油、化工、制药、冶金等领域。
它既可以用于物理吸附、化学吸附和蒸馏等过程,也可以用于分离、净化、吸收和反应等操作。
填料塔的设计和计算是确保设备正常运行和达到预期效果的关键步骤,本文将介绍填料塔的计算方法和相关问题。
填料塔的设计和计算需要考虑以下几个方面:塔径的确定、填料高度的确定、液体负荷的确定、气液流量的确定和塔底液体的冷却。
首先,确定塔径是设计填料塔的第一步。
在一定程度上,填料塔的塔径决定了设备的规模和投资成本。
塔径的确定通常基于液相线速度和气相线速度的经验公式。
液相线速度一般在0.3-0.7m/s,而气相线速度一般在0.7-2.0m/s。
根据所需处理的物质性质和运行条件,选择合适的液相线速度和气相线速度,就可以计算出初步的塔径。
其次,确定填料高度是设计填料塔的重要步骤。
填料高度的选择取决于所需的传质效率和分离效果。
填料高度越高,传质效率和分离效果越好,但同时也增加了设备的投资成本。
填料高度的计算通常基于传质速率和质量传递系数的经验公式。
传质速率与填料高度成正比,而质量传递系数与填料表面积成正比。
通过确定所需的传质效率和分离效果,就可以计算得到合适的填料高度。
然后,确定液体负荷是设计填料塔的重要步骤。
液体负荷是指单位塔体积内液体的流量。
液体负荷的选择取决于填料的覆盖度和液相混合的要求。
覆盖度一般在50-80%之间,液相混合要求则根据工艺需求决定。
液体负荷的计算通常基于液体流量和填料容积的经验公式。
通过确定所需的覆盖度和液相混合要求,就可以计算得到合适的液体负荷。
接下来,确定气液流量是设计填料塔的重要步骤。
气液流量的选择取决于所需的气液接触时间和气液相对速度。
气液接触时间一般在0.1-10秒之间,气液相对速度则根据具体情况决定。
气液流量的计算通常基于气相流量和液相流量的经验公式。
通过确定所需的气液接触时间和气液相对速度,就可以计算得到合适的气液流量。
填料塔工艺设计尺寸的计算
第三节 填料塔工艺尺寸的计算填料塔工艺尺寸的计算包括塔径的计算、填料能高度的计算及分段3.1 塔径的计算1. 空塔气速的确定——泛点气速法对于散装填料,其泛点率的经验值u/u f =0.5~0.85贝恩(Bain )—霍根(Hougen )关联式 ,即:2213lg V F L L u a gρμερ⎡⎤⎛⎫⎛⎫⎢⎥⎪ ⎪⎝⎭⎝⎭⎣⎦=A-K 1418V L V L w w ρρ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭ (3-1) 即:112480.23100 1.18363202.59 1.1836lg[()1]0.0942 1.759.810.917998.24734.4998.2Fu ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以:2F u /9.81(100/0.9173)(1.1836/998.2)=0.246053756UF=3.974574742m/s其中:f u ——泛点气速,m/s;g ——重力加速度,9.81m/s 2 23t m /m α--填料总比表面积,33m /m ε--填料层空隙率33V 998.2/1.1836kg /m l kg m ρρ==液相密度。
气相密度W L =5358.89572㎏/h W V =7056.6kg/h A=0.0942; K=1.75; 取u=0.7 F u=2.78220m/s0.7631D === (3-2)圆整塔径后 D=0.8m 1. 泛点速率校核:260003.31740.7850.83600u ==⨯⨯ m/s3.31740.83463.9746F u u == 则Fuu 在允许X 围内 2. 根据填料规格校核:D/d=800/50=16根据表3-1符合 3. 液体喷淋密度的校核:(1) 填料塔的液体喷淋密度是指单位时间、单位塔截面上液体的喷淋量。
(2) 最小润湿速率是指在塔的截面上,单位长度的填料周边的最小液体体积流量。
对于直径不超过75mm 的散装填料,可取最小润湿速率()3min 0.08m /m h w L ⋅为。
第三章-吸收填料塔高度的计算
➢ 与并流相比,逆流操作时上升的气体将对借重力往下流 动的液体产生曳力,阻碍液体向下流动,因而限制了吸 收塔所允许的液体流率和气体流率,这是逆流操作不利 的一面。
逆流与并流操作线练习
Y3 X2
A
X1 Y1
C
Y1 C
Y2
D
B
Y3
L, X2 V, Y2
V, Y
V YL1X V1Y LX
YVLXY1VLX1 同理,若在任一截面与塔顶端面间作溶质 A的物料衡算,有
L, X V, Y1
L, X1
YVLXY2VLX2
上两式均称为吸收操作线方程,代表逆流操作时塔内任一截 面上的气、液两相组成 Y 和 X 之间的关系。 (L/V)称为吸收塔操作的液气比。
h X1 L dX
X2 kXaX*X
用其它组成表示法的传质速率方程,可推得以相应相组成 表示的填料层高度 Z 的计算式。
低浓度气体吸收填料层高度的计算
特点:低浓度气体吸收(y1<10%)因吸收量小,由此引起 的塔内温度和流动状况的改变相应也小,吸收过程可视为
等温过程,传质系数 kY、kX 、KY、KX 沿塔高变化小,可取
(2) 良好的选择性,即对待吸收组分的溶解度大,其余组分 溶解度小;
(3) 稳定不易挥发,以减少溶剂损失; (4) 粘度低,有利于气液接触与分散,提高吸收速率; (5) 无毒、腐蚀性小、不易燃、价廉等。
吸收剂用量的确定
吸收剂用量 L 或液气比 L/V 在吸收塔的设计计算 和塔的操作调节中是一个很重要的参数。
积 dF 溶质 A 的传递量为
Y+dY X+dX
填料塔设计
填料塔设计1000字填料塔(也称为吸附塔、萃取塔、蒸馏塔等)是化工工业中常见的塔式设备,用于分离和提取混合物中的组分。
填料塔设计的目标是实现有效的传质和反应,同时最小化能量消耗和成本开销。
本文将介绍填料塔设计的基本流程和注意事项。
一、设计流程1. 确定塔的物理性质和流量任何填料塔的设计首先需要确认其物理性质和流量。
这将决定了塔的大小、填料类型、流体速度等各种参数。
物理性质包括塔的直径、高度、壁厚等。
流量包括进料量、空气量、气体流量、液体流量等。
2. 选择填料填料是填料塔的核心组件,它可以有效增加反应表面积和物质传递速率。
填料的种类很多,包括塑料、金属、陶瓷、玻璃等材料。
常见的填料包括环形塔填料、球形塔填料、骨架填料等。
我们需要根据所需要处理的物质和填料性能来选取填料。
3. 确定反应机理填料塔的工作原理基于物质分离和反应过程。
在设计塔之前,需要加深对所需处理的物质的反应机理的了解,包括化学反应、传质、相变等。
这将有助于确定合适的填料、塔高度等参数。
4. 计算填料密度填料密度是液相和气相之间传质的决定性因素。
在设计填料塔时,我们需要对填料的密度进行计算。
这可以帮助我们确定塔的高度、填料体积等参数。
5. 选择塔板塔板是塔式设备中流体分离和传质的重要组成部分。
常用的塔板有单孔板、多孔板和节流板等。
选定塔板的种类和数量取决于所需处理的物质和塔的物理尺寸。
6. 确定工艺流程填料塔的设计需要确定完整的工艺流程。
我们需要确认现有流程的适用性,并着手设计流程概要、工艺流程图等。
7. 设计并检验填料塔完成上述步骤后,我们需要开始具体的设计工作。
填料塔设计需要考虑许多因素,包括结构强度、塔的散热、氢气脆化等。
我们需要对设计方案进行校验,以确保它符合现行规定和安全标准。
二、设计注意事项1. 确定填料尺寸填料尺寸直接影响到塔体积,进而影响到设备成本和能量消耗。
因此,我们需要选用最小的填料尺寸,以减小设备尺寸和成本。
2. 考虑气液流量比填料塔中的气液流量比会直接影响反应效率和传质速率。
化工工艺设计第6章填料精馏塔的工艺设计
似于网波纹填料,但抗堵能力比网波纹填料
强,并且价格较便宜。它按波峰高度分为: 4.5型、6.3型、10型;按比表面积分为: 250Y型、500X型,700Y型。
规整填料的性能曲线与气体动能因子F有关, F因子的表达式为:
F uG G
F V
3600 G
• 精馏段的平均液体量:
9000 9950
L 精 115.18kmol/h
2
9475kg/h
• 折合成精馏段平均液体负荷为:
l精
L
AT L
9475
1.32 804
8.88 m3/(m2
h)
4
对精馏段用线性插入法求出填料阻力为:
(⊿P/z)精 = 0.11kPa/m
F
4V
3600DT2
• 塔中:
4 12600 1.60
G 3600 1.32 2.7
F
4V
4 13930 1.77
3600DT2 G 3600 1.32 2.7
• 塔底:
F
4V
4 14810 1.89
3600DT2 G 3600 1.32 2.7
填料
Sulzer’s Mellapak (金属)
Sulzer’s Mellapak (塑料)
Koch-Sulzer(丝网)
型号 125Y 250Y 350Y 500Y
250Y
CY BX
填料因子/m-1 3.2801×10 3.2808×20 3.2808×23 3.2808×34
3.2808×22
3.2808×70 3.2808×21
填料塔设计与计算(正式版),环境工程原理设计
环境工程原理大作业填料吸收塔课程设计说明书学院名称:环境科学与工程学院专业:环境工程班级:环工0801姓名:黄浩段永鹏魏梦和祥任稳刚指导老师:***2011.1.2环境工程原理课程设计—填料吸收塔课程设计说明书目录(一)设计任务 (1)(二) 设计简要 (2)2.1 填料塔设计的一般原则 (2)2.2 设计题目 (2)2.3 工作原理 (2)(三) 设计方案 (2)3.1 填料塔简介 (2)3.2填料吸收塔的设计方案 (3).设计方案的思考 (3).设计方案的确定 (3).设计方案的特点 (3).工艺流程 (3)(四)填料的类型 (4)4.1概述 (4)4.2填料的性能参数 (4)4.3填料的使用范围 (4)4.4填料的应用 (5)4.5填料的选择 (5)(五)填料吸收塔工艺尺寸的计算 (6)5.1液相物性数据 (6)5.2气相物性数据 (7)5.3气、液相平衡数据 (8)5.4塔径计算 (8)5.5填料层高度计算 (8)(六)填料层压降的计算 (10)(七)填料吸收塔内件的类型与设计 (10)7.1 填料吸收塔内件的类型 (10)7.2 液体分布 (12)(八)设计一览表 (13)(九)对设计过程的评述 (13)(十)主要符号说明 (14)参考文献 (15)附录 (24)(一)设计任务设计一填料吸收塔,吸收矿石焙烧炉气中的SO2。
(二)设计简要(1)填料塔设计的一般原则填料塔设计一般遵循以下原则:②:塔径与填料直径之比一般应大于15:1,至少大于8:1;②:填料层的分段高度为:金属:6.0-7.5m,塑料:3.0-4.5;③:5-10倍塔径的填料高度需要设置液体在分布装置,但不能高于6m;④:填料塔操作气速在70%的液泛速度附近;⑤:由于风载荷和设备基础的原因,填料塔的极限高度约为50米。
(2)设计题目矿石焙烧炉送出的气体冷却到25℃后送入填料塔,用20℃清水洗涤除去其中的SO2,试设计一填料塔进行上述操作并画出设计方案工艺流程图。
填料塔持液量计算
填料塔持液量计算填料塔持液量计算是在化工工艺中常见的一种计算方法,它用于确定填料塔内液体的持液量,从而帮助工程师设计和优化工艺。
本文将从基本原理、计算方法和应用案例等方面进行介绍。
一、基本原理填料塔是一种常见的化工设备,广泛应用于各种物质的分离、萃取和反应过程中。
其基本构造是将填料装置在塔内,使流体与填料进行充分的接触和混合,从而实现传质、传热和反应等目的。
而填料塔持液量计算就是为了确定填料塔内液体的持液量,以保证塔内流体的稳定性和工艺效果的达到。
填料塔内的液体持液量是指填料塔内液体的体积或质量,通常用液体高度或液体重量来表示。
持液量的大小直接影响到填料塔的工作效果和设备的运行稳定性。
因此,准确计算填料塔持液量是设计和操作填料塔的重要前提之一。
二、计算方法填料塔持液量的计算方法有多种,常见的有重力平衡法和压力平衡法两种。
下面将分别介绍这两种方法。
1. 重力平衡法重力平衡法是通过平衡填料塔内液体的重力和塔内气体的向上流动所需的力来计算持液量。
根据阿基米德原理,塔内液体的重力可以用液体的体积和密度来表示。
而塔内气体的流动所需的力可以通过流体力学的基本原理来计算。
通过平衡这两个力,可以得到填料塔的持液量。
2. 压力平衡法压力平衡法是通过平衡填料塔内液体的静压力和塔内气体的动压力来计算持液量。
根据流体静力学的基本原理,液体静压力可以通过液体的密度、液体高度和重力加速度来计算。
而塔内气体的动压力可以通过气体的密度、气体流速和气体速度来计算。
通过平衡这两个压力,可以得到填料塔的持液量。
三、应用案例填料塔持液量计算在化工工艺中有着广泛的应用。
下面以一个分离过程为例,介绍填料塔持液量计算的应用过程。
假设有一个二元混合物,需要通过填料塔进行分离。
根据物质的性质和分离要求,确定了填料塔的高度、填料种类和操作条件等参数。
首先,根据工艺要求和设备的尺寸,确定了填料塔的直径和高度。
然后,根据填料种类和操作条件,选择了合适的填料,并计算了填料的体积和密度。
填料塔设计
填料塔的结构和计算摘要:塔设备是化工,石油化工和炼油行业最为常见的过程设备之一,他的作用是使气液在塔内进行充分的接触,达到传热和传质的目的。
塔设备在一定的条件下,将能达到气液共存状态的混合物实现分离,纯化的单元操作设备,广泛用于炼油,精细化工,环境工程,医药工程,食品工程和轻纺工程等行业和部门中。
其投资在工程设备总额中占有很大比重,一般约占20%~50%。
工业上为使气液充分接触以实现传质过程,既可采用板式塔,也可采用填料塔。
吸收塔的工艺计算,首先是在选定吸收剂的基础上确定吸收剂用量,继而计算塔的主要工艺尺寸,包括塔径和塔的有效段高度。
塔的有效段高度,对填料塔是指填料层高度关键词:吸收塔, 矩鞍填料;几何特性;流体力学;传质性能;传质单元高度1.1塔设备简介塔设备是化工,石油化工和炼油行业最为常见的过程设备之一,他的作用是使气液在塔内进行充分的接触,达到传热和传质的目的。
塔设备在一定的条件下,将能达到气液共存状态的混合物实现分离,纯化的单元操作设备,广泛用于炼油,精细化工,环境工程,医药工程,食品工程和轻纺工程等行业和部门中。
其投资在工程设备总额中占有很大比重,一般约占20%~50%。
填充塔的应用始于19世纪中叶,起初在空塔中填充碎石、砖块和焦炭等块状物,以增强气液两相间的传质。
1914年德国人F.拉西首先采用高度与直径相等的陶瓷环填料(现称拉西环)推动了填充塔的发展。
此后,多种新填料相继出现,填充塔的性能不断得到改善,近30年来,填充塔的研究及其应用取得巨大进展,不仅开发了数十种新型高效填料,还较好地解决了设备放大问题。
到60年代中期,直径数米乃至十几米的填充塔已不足为奇。
现在,填充塔已与板式塔并驾齐驱,成为广泛应用的传质设备。
塔设备的分类方法有多种,例如:按操作压力可分为:加压塔,常压塔,减压塔;按塔所能完成的单元过程分为:精馏塔,吸收塔,解压塔,萃取塔,反应塔和干燥塔等等,但是长期以来,最为常用的分类是按塔的内件结构分为板式塔和填料塔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
酸盐增加。吸入高浓度二氧化硫,可引起支气管炎、肺炎,严重时可发生肺水肿 及呼吸中枢麻痹。 二氧化硫进入呼吸道后,因其易溶于水,故大部分被阻滞在上呼吸道,在湿 润的粘膜上生成具有腐蚀性的亚硫酸、硫酸和硫酸盐,使刺激作用增强。上呼吸 道的平滑肌因有末梢神经感受器,遇刺激就会产生窄缩反应,使气管和支气管的 管腔缩小,气道阻力增加。上呼吸道对二氧化硫的这种阻留作用,在一定程度上 可减轻二氧化硫对肺部的刺激。 但进入血液的二氧化硫仍可通过血液循环抵达肺 部产生刺激作用。 二氧化硫进入血液可引起全身性毒作用,破坏酶的活性,影响糖及蛋白质 的代谢;对肝脏有一定损害。液态二氧化硫可使角膜蛋白质变性引起视力障碍。 二氧化硫与烟尘同时污染大气时,两者有协同作用。因烟尘中含有多种重金属及 其氧化物,能催化二氧化硫形成毒性更强的硫酸雾。因加剧其毒性作用。动物试 验证明,二氧化硫慢性中毒后,机体的免疫受到明显抑制。大量吸入可引起肺水 肿、喉水肿、声带痉挛而致窒息。 急性中毒:轻度中毒时,发生流泪、畏光、咳嗽,咽、喉灼痛等;严重中毒 可在数小时内发生肺水肿; 极高浓度吸入可引起反射性声门痉挛而致窒息。皮肤 或眼接触发生炎症或灼伤。 慢性影响:长期低浓度接触,可有头痛、头昏、乏力等全身症状以及慢性鼻 炎、咽喉炎、支气管炎、嗅觉及味觉减退等。少数工人有牙齿酸蚀症。 二氧化硫浓度为 10~15ppm 时, 呼吸道纤毛运动和粘膜的分泌功能均能受到 抑制。浓度达 20ppm 时,引起咳嗽并刺激眼睛。若每天吸入浓度为 100ppm 8 小 时,支气管和肺部出现明显的刺激症状,使肺组织受损。浓度达 400ppm 时可使 人产生呼吸困难。 二氧化硫与飘尘一起被吸入,飘尘气溶胶微粒可把二氧化硫带 到肺部使毒性增加 3~4 倍。若飘尘表面吸附金属微粒,在其催化作用下,使二 氧化硫氧化为硫酸雾, 其刺激作用比二氧化硫增强约 1 倍。长期生活在大气污染 的环境中,由于二氧化硫和飘尘的联合作用,可促使肺泡纤维增生。如果增生范 围波及广泛,形成纤维性病变,发展下去可使纤维断裂形成肺气肿。二氧化硫可 以加强致癌物苯并(α)芘的致癌作用。据动物试验,在二氧化硫和苯并(α)
液体表面张力 σ L = 73dyn / cm = 92.71× 10 4 kg / h 2
五、 设计要求
1、设计计算说明书一份 2、填料塔图(2 号图)一张
第二章 SO2 净化技术和设备 一、SO2 的来源、性质及其危害
二氧化硫的来源包括微生物活动,火山活动,森林火灾以及海水飞沫。主要 有自然来源和人为来源两大类: 自然来源主要是火山活动, 喷出的火山气体中含有大量的二氧化硫气体,地 质深处的天然硫元素在火山喷发过程中燃烧氧化为二氧化硫, 随火山灰一起喷射 到大气中。地球上 57%的二氧化硫来自自然界,沼泽、洼地、大陆架等处所排放 的硫化氢,进入大气,被空气中的氧氧化为二氧化硫。自然排放大约占大气中全 部二氧化硫的一半,通过自然循环过程,自然排放的硫基本上是平衡的。 人为来源则指在人类进行生产、生活活动中,使用含硫及其化合物的矿石进 行燃烧,以及硫矿石的冶炼和硫酸、磷肥纸浆的生产等产生的工业废气,从而使 其中一部分或全部的硫以二氧化硫的形式排放到大气中,形成二氧化硫污染。这 部分二氧化硫占地球上二氧化硫来源的 43%。随着化石燃料消费量的不断增加, 全世界认为排放的二氧化硫在不断在增加, 其中北半球排放的二氧化硫占人为排
5
过吸收去除其中的二氧化硫,湿法脱硫所用设备较简单,操作容易,脱硫效率较 高。但脱硫后烟气温度降低,于烟囱排烟扩散不利。由于使用不同的吸收剂可获 得不同的副产物而加以利用,因此湿法是全国研究最多的方法。 湿法脱硫效率较高,而且设备简单,操作运行方便,运行成本低,产生的副 产物如硫酸盐和压硫酸盐,可回收利用,作为工业原料。所以在本设计中选取湿 法脱硫。
1
四、气体及液体的物性数据 1、气体的物性:气体粘度 uG = 0.0652kg / ( m ⋅ h )
气体扩散系数 DG = 0.0393m2 / s 气体密度 ρG = 1.383kg / m3
2、液体的物性:液体粘度 µL=3.6 kg /(m·h); 液体扩散系数 DL=5.3×10-6m2/s; 密度ρL=998.2 kg /m3;
操作弹 浮阀, 泡罩等具有 性 液气比 L/V 的 范围 大的操作弹性
6
清洗的 方便性 对腐蚀 介质的 适应性 塔中持 液量 塔中换 热的可 能性 材料要 求 安装维 修 重量
清洗较方便 因结构复杂, 较难 用防腐蚀材料制 作, 但无溢流栅板 塔等可以 持液量大
清洗费时
易用防腐蚀材料制作
持液量小,尤其是高效丝网 填料有利于精密分离
4
芘的联合作用下, 动物肺癌的发病率高于单个因子的发病率,在短期内即可诱发 肺部扁平细胞癌。 二氧化硫对植物的危害: 大气中含二氧化硫过高,对叶子的危害首先是对叶肉的海绵状软组织部分, 其次是对栅栏细胞部分。侵蚀开始时,叶子出现水浸透现象,特别是介于叶边和 叶脉之间的部分损害尤为严重。干燥后,受影响的叶面部分呈白色或乳白色。 如果二氧化硫的浓度为(0.3-0.5)× 10 −6 ,并持续几天后,就会对敏感性 植物产生慢性损害。 二氧化硫直接进入气孔,叶肉中的植物细胞使其转化为亚硫 酸盐,再转化成硫酸盐。当过量的二氧化硫存在时,植物细胞就不能尽快地把亚 硫酸盐转化成硫酸盐,并开始破坏细胞结构。菠菜,莴苣和其他叶状蔬菜对二氧 化硫最为敏感。棉花和苜蓿也都很敏感。松针也受其影响,不论叶尖或是整片针 叶都会变成褐色,并且很脆弱。 二氧化硫对建筑物及其它的危害: 大气中的二氧化硫及其生成的酸雾、 酸滴等, 能使金属表面产生严重的腐蚀, 使纺织品、纸品、皮革制品等腐蚀破损,使金属涂料变质,降低其保护效果。造 成金属腐蚀最为有害的污染物一般是二氧化硫, 已观察到城市大气中金属的腐蚀 率约是农村环境中腐蚀率的 1.5-5 倍。 温度尤其是相对湿度皆显著影响着腐蚀速 度。含硫物质或硫酸会侵蚀多种建筑材料,如石灰石、大理石、花岗岩、水泥砂 浆等,这些建筑材料先形成较易溶解的硫酸盐,然后被雨水冲刷掉。尼龙织物, 尤其是尼龙管道等, 其老化显然是由二氧化硫或硫酸气溶胶造成的。长期的酸雨 作用还将对土壤和水质产生不可估量的损失, 对生态环境会产生严重的影响。
填料 操作的关键结构
7
力降低 填料支承 液体喷淋器 支承填料,并使气流分布均匀 使液体均匀地喷淋在填料上 防止气速过大, 在塔顶出塔的气 除雾器 体中带出大量液体 除雾效率高,压力降小 自由截面积大,应>=65%。强度大 喷洒均匀,防堵
五、工艺流程及工艺ຫໍສະໝຸດ 程图:气体从填料塔的下端由鼓风机 1 鼓入,吸收液由填料塔上端进入从塔底流 出,进行充分的接触、吸收。送入贮液槽 2 中加药、沉淀,然后被水泵打到进水 管, 循环进行吸收。 在进水管处装有转子流量计 4, 测量进液管中吸收液的流量。
三、吸收设备:板式塔与填料塔的比较
板式塔与填料塔的比较 塔型 项目 板式塔 Ф600 以下,安装 较困难 每块塔板的效率 填料塔 普通填料塔 Ф800 以下造价 一般较板式塔便宜,直径大 则昂贵 工业塔等板高度与板式塔 由于填料塔造价随体 积几乎正比的增大, 单位体积造价降低 备注
造价
大塔效率 差不多,但塔径增大效率下 分离效 较稳定, 率 比小塔效率有所 提高 生产能 力 压降 允许空塔速度较 高, 生产能力较大 压降较大 降,高效填料可以达到高的 分离效率,有利于塔高降低 允许空塔速度较高,生产能 力较小 压降小,尤其是丝网填料 操作弹性较小 填料塔采用鲍尔环等 操作弹性有了扩大 版式塔中,虽然 L 小, 液气比的适应范 围大 小的 L\V 时,分离效率差 仍能保持一定液层, 填料塔中喷淋密度太 小,就不能充分润湿
2
放总量的 90%。我国的能源主要依靠煤炭和石油,而我国的煤炭、石油一般含硫 量较高,因此,火力发电厂、钢铁厂、冶炼厂、化工厂和炼油厂排放出的大量二 氧化硫和二氧化碳是造成我国大气污染的主要原因。 由于我国部分地区燃用高硫 煤,燃煤设备未能采取脱硫措施,致使二氧化硫排放量不断增加,造成严重的环 境污染。 2、二氧化硫的性质 (1)物理性质: 二氧化硫又名亚硫酸酐,英文名称: sulfur dioxide 。无色气体,有强烈 刺激性气味。分子量 64.07 密度为 1.4337kg/m3 (标准状况下) ,密度比空气 大。溶解度:9.4g/mL(25℃) 熔点-76.1℃(200.75K) 沸点-10℃ (263K) 蒸汽压 338.32kPa(2538mmHg,21.11℃)易溶于水,在 338.32kPa 水中溶解度为 8.5% (25℃) ; 易容于甲醇和乙醇;容于硫酸、乙酸、氯仿和乙醚等。易液化(mp: -10℃) 。 (2)化学性质: 二氧化硫是一种酸性氧化物,它极易溶于水,其水溶液呈酸性,为亚硫酸水 溶液。实际上,二氧化硫水溶液中成分为 SO2·7H2O,仅含有微量的亚硫酸,但 是亚硫酸盐含有亚硫酸根离子。所谓的亚硫酸水溶液能被空气逐渐氧化成硫酸, 其浓度越低氧化越快,而且一经加热就会有自行氧化。 二氧化硫在完全燃烧干燥时几乎不与氧气发生反应, 当在有初生态氧的燃烧 环境下, 或者对二氧化硫与氧气的混合物进行放电, 则有氧化反应发生。 氧化性: SO2+2H2S=3S+2H2O ;还原性:能被 Cl2、Br2、I2、Fe3+、KMnO4、HNO3 等强氧化剂氧 化成高价态硫元素。 SO2+X2+2H2O=H2SO4+2HX 3 、二氧化硫的危害 二氧化硫对人体及动物健康的危害: 主要是对眼角膜和上呼吸道粘膜的强烈刺激作用。 其浓度与反应关系如下: 0.4 毫克/立方米时无不良反应;0.7 毫克/立方米时,普遍感到上呼吸道及眼睛 的刺激;2.6 毫克/立方米时,短时间作用即可反射性的引起器官、支气管平滑 肌收缩, 使呼吸道阻力增加。 一般认为空气中二氧化硫浓度达 1.5 毫克/立方米, 对人体健康即为有危害,长期接触主要引起鼻、咽、支气管,嗅觉障碍和尿中硫
二、净化技术
当前应用的脱硫方法,大致可分为两类,即干法脱硫和湿法脱硫。 干法脱硫:该法是用粉状、粒状吸收剂,吸附剂或催化剂去除废气中的二氧 化硫。干法的最大优点是治理中无废水、废酸排出,减少了二次污染;缺点是脱 硫效率低,设备庞大,操作要求高。 湿法脱硫: 该法是采用液体吸收剂如水或碱溶液洗涤含二氧化硫的烟气, 通