2013年江苏高考数学试题及答案解析版1_(word版)

合集下载

2013年江苏省高考数学试卷加详细解析

2013年江苏省高考数学试卷加详细解析

2013年江苏省高考数学试卷一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为_________.2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为_________.3.(5分)(2013•江苏)双曲线的两条渐近线方程为_________.4.(5分)(2013•江苏)集合{﹣1,0,1}共有_________个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是_________.,结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为_________.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为_________.8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F ﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2=_________.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是_________.10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为_________.11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为_________.12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d 1,F到l的距离为d2,若d2=,则椭圆C的离心率为_________.13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为_________.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n 的值为_________.二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC 匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.数学Ⅱ(附加题)21.[选做题]本题包括A 、B 、C 、D 四小题,请选定其中两题,并在相应的答题区域内作答.....................若多做,则按作答的前两题评分.解答时应写出文字说明、证明过程或演算步骤.A .[选修4 - 1:几何证明选讲](本小题满分10分)如图,AB 和BC 分别与圆O相切于点D 、C ,AC 经过圆心O ,且BC=2OC 。

江苏高考数学试题及答案(含理科附加题)WORD版

江苏高考数学试题及答案(含理科附加题)WORD版

2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ注意事项:考生在答题前请认真阅读本注意事项及各题答题要求1.本试卷共4页,均为非选择题(第1题-第20题,共20题)。

本卷满分为160分。

考试时间为120分钟。

考试结束后,请将本试卷和答题卡一并交回。

2.答题前请务必将自己的姓名、准考证号用0.5毫米黑色墨水签字笔填写在试卷及答题卡的规定位置。

3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符。

4.作答试题,必须用0.5毫米黑色墨水签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

5.如需作图,须用2B 铅笔绘,写清楚,线条,符号等须加黑加粗。

参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上.........。

1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。

答案:π2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。

答案:53、双曲线221169x y -=的两条渐近线的方程为 ▲ 。

答案:34y x =±4、集合{-1,0,1}共有 ▲ 个子集。

答案:85、右图是一个算法的流程图,则输出的n 的值是 ▲ 。

答案:36、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。

答案:27、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。

答案:20638、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F-ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V = ▲ 。

2013年江苏省高考数学试卷及答案

2013年江苏省高考数学试卷及答案

2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 . 4.集合}1,0,1{-共有 个子集.5.右图是一个算法的流程图,则输出的n 的值是 . 6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:运动员 第一次第二次 第三次 第四次 第五次 甲 87 91 90 89 93 乙8990918892则成绩较为稳定(方差较小)的那位运动员成绩的方差为 . 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .yx Oy =2x —1y =—12 xABC1ADE F1B1C2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案y x lB FOcb a 10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .13.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点, 若点A P ,之间的最短距离为22,则满足条件的实数a 的所有值为 . 14.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的 最大正整数n 的值为 .二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;xyy =xy =x 2—4 xP (5,5)Q (﹣5, ﹣5)2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案(2)设)1,0(=c ,若c b a =+,求βα,的值.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l . 设圆C 的半径为1,圆心在l 上.(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.A B CSG F E xy A lO2013年普通高等学校统一考试试题(江苏卷)数学试卷及参考答案18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

2013江苏省高考数学真题含答案清晰版

2013江苏省高考数学真题含答案清晰版

2013高考数学试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应位置上。

DE AB AC λλ=+(λ、11、已知()f x 是定义在R12n n a a a a ++>的最大正整数内作答,解答时应写出文字说明、证明或演.(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααββ==(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。

16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。

过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。

求证:(1)平面EFG//平面ABC ;(2)BC SA ⊥。

如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。

(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程;(2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。

18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。

现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50米/分钟。

在甲出发2分钟后,乙从A 乘坐缆车到B ,在B 处停留1分钟后,再从B 匀速步行到C 。

假设缆车速度为130米/分钟,山路AC 的长为1260米,经测量,123cos ,cos 135A C ==。

2013年高考真题——数学(江苏卷)解析版

2013年高考真题——数学(江苏卷)解析版

2013年普通高等学校招生全国统一考试 (江苏卷)数学Ⅰ 注意事项绝密★启用前考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗.一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置.......上.. 1.函数)42sin(3π-=x y 的最小正周期为 ▲ .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 ▲ .YN 输出n 1a 2n ←←,1n n ←+32a a ←+20a <结束(第5题)3.双曲线191622=-y x 的两条渐近线的方程为 ▲ .4.集合{}1,0,1-共有 ▲ 个子集.5.右图是一个算法的流程图,则输出的n 的值是 ▲6.抽样统计甲,乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为▲.7.现有某类病毒记作n m Y X ,其中正整数)9,7(,≤≤n m n m 可以任意选取,则n m ,都取到奇数的概率为 ▲ .8.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界).若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 ▲ .9.抛物线2y x =在1x =处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) 。

2013年江苏数学高考试卷含答案和解析

2013年江苏数学高考试卷含答案和解析

2013年江苏数学高考试卷参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。

1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。

2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。

3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。

4、集合{-1,0,1}共有 ▲ 个子集。

5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。

6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。

7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。

8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F-ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V = ▲ 。

9、抛物线2y x =在1x =处的切线与坐标轴围成三角形区域为D(包含三角运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892形内部与边界)。

若点P(x ,y)是区域D 内的任意一点,则2x y +的取值范围是 ▲ 。

10、设D 、E 分别是△ABC 的边AB 、BC 上的点,且12,23AD AB BE BC ==。

若12DE AB AC λλ=+(1λ、2λ均为实数),则1λ+2λ的值为 ▲ 。

2013年江苏高考数学试题及参考答案

2013年江苏高考数学试题及参考答案

2013年普通高等学校招生全国统一考试(江苏卷)数学Ⅰ(必做题)注意事项考生在答题前请认真阅读本注意事项及各题答题要求:1.本试卷共4页,均为非选择题(第1题~第20题,共20题).本卷满分为160分.考试时间为120分钟.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请您务必将自己的姓名、考试证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与您本人是否相符. 4.作答试题必须用0.5毫米黑色墨水的签字笔在答题卡的指定位置作答,在其它位置作答一律无效.5.如需作图,须用2B 铅笔绘、写清楚,线条、符号等须加黑、加粗. 一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在答题卡相应位置上......... 1.函数)42sin(3π+=x y 的最小正周期为 .2.设2)2(i z -=(i 为虚数单位),则复数z 的模为 .3.双曲线191622=-y x 的两条渐近线的方程为 .4.集合}1,0,1{-共有 个子集.5.下图是一个算法的流程图,则输出的n 的值是 .6.抽样统计甲、乙两位设计运动员的5此训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 .7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m ,都取到奇数的概率为 .8.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V . 9.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部与边界)。

若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=,若21λλ+= (21λλ,为实数),则21λλ+的值为 .11.已知)(x f 是定义在R 上的奇函数。

2013年江苏高考数学试题和答案(含理科附加)

2013年江苏高考数学试题和答案(含理科附加)

2013年普通高等学校招生全国统一考试(江苏卷)参考公式: 样本数据12,,,n x x x 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。

DE AB AC λλ=+(λ、λ11、已知()f x 是定义在R 上的奇函数。

12n n a a a a ++>的二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤. 15、(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<<。

(1)若||2a b -=,求证:a b ⊥;(2)设(0,1)c =,若a b c +=,求βα,的值。

16、(本小题满分14分)如图,在三棱锥S-ABC 中,平面⊥SAB 平面SBC,BC AB ⊥,AS=AB 。

过A 作SB AF ⊥,垂足为F ,点E 、G 分别为线段SA 、SC 的中点。

求证:(1)平面EFG//平面ABC ; (2)BC SA ⊥。

17、(本小题满分14分)如图,在平面直角坐标系xoy 中,点A(0,3),直线42:-=x y l ,设圆C 的半径为1,圆心在直线l 上。

(1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线,求切线的方程; (2)若圆C 上存在点M ,使MA=2MO ,求圆心C 的横坐标a 的取值范围。

18、(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C 。

2013年江苏高考数学试题和答案(含理科附加)

2013年江苏高考数学试题和答案(含理科附加)

2013年普通高等学校招生全国统一考试(江苏卷)参考公式:样本数据12,,,n x x x L 的方差2211()n i i s x x n ==-∑,其中11n i i x x n ==∑。

棱锥的体积公式:13V Sh =,其中S 是锥体的底面积,h 为高。

棱柱的体积公式:V Sh =,其中S 是柱体的底面积,h 为高。

一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡的相应......位置上...。

1、函数3sin(2)4y x π=+的最小正周期为 ▲ 。

2、设2(2)z i =- (i 为虚数单位),则复数z 的模为 ▲ 。

3、双曲线221169x y -=的两条渐近线的方程为 ▲ 。

4、集合{-1,0,1}共有 ▲ 个子集。

5、右图是一个算法的流程图,则输出的n 的值是 ▲ 。

6、抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结果如下:则成绩较为稳定(方差较小)的那位运动员成绩的方差为 ▲ 。

7、现有某类病毒记作为m n X Y ,其中正整数,(7,9)m n m n ≤≤可以任意选取,则,m n 都取到奇数的概率为 ▲ 。

8、如图,在三棱柱A 1B 1C 1 -ABC 中,D 、E 、F 分别为AB 、AC 、A A 1的中点,设三棱锥F -ADE 的体积为1V ,三棱柱A 1B 1C 1 -ABC 的体积为2V ,则1V :2V = ▲ 。

运动员 第1次 第2次 第3次 第4次 第5次 甲 87 91 90 89 93 乙8990918892二、解答题:本大题共6小题,共计90分,请在答题卡指定区域.......内作答,解答时应写出文字说明、证明或演算步骤. 15、(本小题满分14分)已知向量(cos ,sin ),(cos ,sin ),0a b ααβββαπ==<<<r r。

(1)若||a b -=r ra b ⊥r r ;(2)设(0,1)c =r,若a b c +=r r r ,求βα,的值。

2013年江苏省高考数学试卷答案与解析

2013年江苏省高考数学试卷答案与解析

2013年江苏省高考数学试卷参考答案与试题解析一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相印位置上.1.(5分)(2013•江苏)函数y=3sin(2x+)的最小正周期为π.2x+T=||=||=2.(5分)(2013•江苏)设z=(2﹣i)2(i为虚数单位),则复数z的模为5.=53.(5分)(2013•江苏)双曲线的两条渐近线方程为.的而双曲线的渐近线方程为±x∴双曲线的渐近线方程为故答案为:4.(5分)(2013•江苏)集合{﹣1,0,1}共有8个子集.5.(5分)(2013•江苏)如图是一个算法的流程图,则输出的n的值是3.6.(5分)(2013•江苏)抽样统计甲、乙两位射击运动员的5次训练成绩(单位:环),结则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.7.(5分)(2013•江苏)现在某类病毒记作X m Y n,其中正整数m,n(m≤7,n≤9)可以任意选取,则m,n都取到奇数的概率为.都取到奇数的概率为故答案为8.(5分)(2013•江苏)如图,在三棱柱A1B1C1﹣ABC中,D,E,F分别是AB,AC,AA1的中点,设三棱锥F﹣ADE的体积为V1,三棱柱A1B1C1﹣ABC的体积为V2,则V1:V2= 1:24.9.(5分)(2013•江苏)抛物线y=x2在x=1处的切线与两坐标轴围成三角形区域为D(包含三角形内部和边界).若点P(x,y)是区域D内的任意一点,则x+2y的取值范围是[﹣2,].所以当直线)时,故答案为10.(5分)(2013•江苏)设D,E分别是△ABC的边AB,BC上的点,AD=AB,BE=BC,若=λ1+λ2(λ1,λ2为实数),则λ1+λ2的值为.=,=12,===1+2,,,所以故答案为:11.(5分)(2013•江苏)已知f(x)是定义在R上的奇函数.当x>0时,f(x)=x2﹣4x,则不等式f(x)>x 的解集用区间表示为(﹣5,0)∪(5,﹢∞).12.(5分)(2013•江苏)在平面直角坐标系xOy中,椭圆C的标准方程为(a>b>0),右焦点为F,右准线为l,短轴的一个端点为B,设原点到直线BF的距离为d1,F到l的距离为d 2,若d2=,则椭圆C的离心率为.=的关系,可求得x==,则,整理得a,得()﹣,解得=.故答案为:13.(5分)(2013•江苏)在平面直角坐标系xOy中,设定点A(a,a),P是函数y=(x>0)图象上一动点,若点P,A之间的最短距离为2,则满足条件的实数a的所有值为﹣1或.,利用两点间的距离公式可得=,∴,解得.14.(5分)(2013•江苏)在正项等比数列{a n}中,,a6+a7=3,则满足a1+a2+…+a n>a1a2…a n的最大正整数n的值为12.由题意可得,解之可得:===,=>,,即,即最大为二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.15.(14分)(2013•江苏)已知=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.)由给出的向量的坐标,求出的坐标,由模等于由向量坐标的加法运算求出+,+列式整理得到)由==.即)由得:,得:.所以16.(14分)(2013•江苏)如图,在三棱锥S﹣ABC中,平面SAB⊥平面SBC,AB⊥BC,AS=AB,过A作AF⊥SB,垂足为F,点E,G分别是棱SA,SC的中点.求证:(1)平面EFG∥平面ABC;(2)BC⊥SA.17.(14分)(2013•江苏)如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x ﹣4.设圆C的半径为1,圆心在l上.(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.)联立得:,=1﹣x+3=2,≤.18.(16分)(2013•江苏)如图,游客从某旅游景区的景点A处下山至C处有两种路径.一种是从A沿直线步行到C,另一种是先从A沿索道乘缆车到B,然后从B沿直线步行到C.现有甲、乙两位游客从A处下山,甲沿AC匀速步行,速度为50m/min.在甲出发2min后,乙从A乘缆车到B,在B处停留1min后,再从B匀速步行到C.假设缆车匀速直线运动的速度为130m/min,山路AC长为1260m,经测量,cosA=,cosC=(1)求索道AB的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?cosA=cosC=,所以sinA=,,=sinAcosC+cosAsinC=由正弦定理=×=200),即t=min)由正弦定理BC=≤解得[19.(16分)(2013•江苏)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项和.记b n=,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.代入中整理得到的形式,说明,成等比数列时,则,得:,,即,而20.(16分)(2013•江苏)设函数f(x)=lnx﹣ax,g(x)=e x﹣ax,其中a为实数.(1)若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围;(2)若g(x)在(﹣1,+∞)上是单调增函数,试求f(x)的零点个数,并证明你的结论.)上是单调减函数,转化为﹣﹣,.结合上述两种情况,有=﹣≤﹣.当时,时,x=(时,<<(<([)在(<=)上时单调增函数,所)上只有一个零点.)在(((<,即)([,)在(,>﹣)在(,,时,时,评分.解答时应写出文字说明、证明过程或演算步骤.A.[选修4-1:几何证明选讲](本小题满分10分)21.(10分)(2013•江苏)如图,AB和BC分别与圆O相切于点D、C,AC经过圆心O,且BC=2OC.求证:AC=2AD.,可得B.[选修4-2:矩阵与变换](本小题满分10分)22.(10分)(2013•江苏)已知矩阵A=,B=,求矩阵A﹣1B.1=,即,C.[选修4-4:坐标系与参数方程](本小题满分0分)23.(2013•江苏)在平面直角坐标系xOy中,直线l的参数方程为(为参数),曲线C的参数方程为(t为参数).试求直线l和曲线C的普通方程,并求出它们的公共点的坐标.的参数方程为,解得,,D.[选修4-5:不等式选讲](本小题满分0分)24.(2013•江苏)已知a≥b>0,求证:2a3﹣b3≥2ab2﹣a2b.第25题、第26题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.25.(10分)(2013•江苏)如图,在直三棱柱A1B1C1﹣ABC中,AB⊥AC,AB=AC=2,AA1=4,点D是BC的中点.(1)求异面直线A1B与C1D所成角的余弦值;(2)求平面ADC1与ABA1所成二面角的正弦值.}}=>=所成角的余弦值为的法向量为的法向量为|=|,=.所成二面角的正弦值为26.(10分)(2013•江苏)设数列{a n}:1,﹣2,﹣2,3,3,3,﹣4,﹣4,﹣4,﹣4,…,,…,即当<n≤(k∈N*)时,.记S n=a1+a2+…+a n(n∈N∗).对于l∈N∗,定义集合P l=﹛n|S n为a n的整数倍,n∈N∗,且1≤n≤l}(1)求P11中元素个数;(2)求集合P2000中元素个数.21。

2013年江苏高考数学试题及答案解析

2013年江苏高考数学试题及答案解析
2013江苏高考真题数学(理)卷2013江苏高考真题数学(文)卷
高考频道全体预祝所有考生梦想成真,考试顺利!
为了给您在高考填报志愿有所帮助我们精心收集到江苏高考真题供您参考出国留学网高考频道在考后快速为您揭晓2013江苏高考数学真题答案
2013年江苏高考数学试题及答案解析
为了给您在高考填报Байду номын сангаас愿有所帮助,我们精心收集到江苏高考真题供您参考,高考频道在考后快速为您揭晓2013江苏高考数学真题答案。一旦高考真题及答案发布,将在此表页的头条显示,记得按crtl+F5刷新哦。预祝您考个好的成绩。

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)答案解析

2013年全国普通高等学校招生统一考试数学(江苏卷带解析)答案解析

2013年全国普通高等学校招生统一考试(江苏卷)数学答案解析1、【答案】【解析】∵函数的周期为,∴函数的最小正周期.2、【答案】5【解析】∵,∴.3、【答案】【解析】依题意,,,∴双曲线的两条渐近线的方程为.4、【答案】8【解析】因为集合中有3个元素,其子集有个.5、【答案】3【解析】输入,,执行,后;输入,,执行,后;输出.6、【答案】2【解析】由表中数据知,乙运动员成绩稳定,平均成绩,方差.7、【答案】【解析】∵,,且、,基本事件的总数是种,、都取到奇数的事件有种,由古典概型公式,、都取到奇数的概率为. 【考点定位】考查奇数、偶数的定义,古典概型.注意古典概型与几何概型的区别.容易题.8、【答案】【解析】依题意,,三棱锥的高为三棱柱的高的. ∴.【考点定位】三棱柱与三棱锥的体积,三角形中位线定理,相似三角形的面积比等于相似比的平方.空间想象能力.中等题.9、【答案】【解析】∵,∴,,而当时,即切点为,切线方程为,即,切线与两坐标轴围成的三角形区域为如图,令,由图知,当斜率为的直线经过,取得最大值,即;当斜率为的直线经过,取得最大值,即. 故的取值范围是.【考点定位】.导数的集合意义,不等式表示的平面区域,线性规划求目标函数的取值范围. 中等题.10、【答案】【解析】依题意,,∴,∴,,故.【考点定位】平面向量的加法、减法法则.分析、计算能力.中等题.11、【答案】【解析】∵当时,,令,,∴,又是定义在上的奇函数,∴,∴,即时,. 要,则或或,解得或,∴不等式的解集用区间为.【考点定位】分段函数,函数的奇偶性,一元二次不等式的解法. 考查计算能力.中等题.12、【答案】【解析】依题意,作于,则,又,解得,而椭圆准线的方程为,,设直线与轴交于,则点到直线的距离,∵,∴,整理的,两边平方,,∴,又,解得.【考点定位】椭圆的性质、点到直线的距离公式,考查分析转化能力、计算能力.中等题.13、【答案】【解析】依题意,定点在直线上,直线与曲线的交点,,由两点间的距离公式得这两点间的距离为,∴满足条件.设,则设,∵,∴,,即,解得,而,∴.故满足条件的实数的所有值为,【考点定位】考查函数与的图象性质,两点间的距离公式,考查不等式的性质、二次函数的最值. 较难题.14、【答案】12【解析】∵正项等比数列中,,.∴,,∴,解得或(舍去),∴,∴,∴,.∴当,即,取,不成立;取,成立;…取,成立;取,成立;取,不成立;故满足的最大正整数的值为12.【考点定位】等比数列的性质,考查分析转化能力、计算能力.较难题.15、【答案】(1)见解析(2),.【解析】由题意,,即,又因为,∴,即,∴.(2),∴,由此得,由,得,又,故,代入得,而,∴,.【考点定位】本小题主要考查平面向量的加法、减法、数量积、三角函数的基本关系、有道公式等基础只晒,考查运算求解能力和推理论证能力.16、【答案】见解析【解析】[证明](1)∵,,垂足为,∴是的中点,又因为是的中点,∴∥,∵平面,平面,∴∥平面;同理∥平面. 又,∴平面∥平面.(2)∵平面平面,且交线为,又平面,,∴平面,∵平面,∴,又因为,,、平面,∴平面,∵平面,∴.【考点定位】本小题主要考查直线与直线、直线与平面以及平面与平面的位置关系,考查空间想象能力和推理论证能力.17、【答案】(1)或(2)【解析】(1)由题意,圆心是直线和的交点,解得点,于是切线的斜率必存在,设过的圆的切线方程为,由题意,,解得或,故所求切线方程为或.(2)∵圆心在直线上,∴圆的方程为,设,∵,∴,化简整理得,∴点在以为圆心,2为半径的圆上,由题意,在圆上,∴圆与圆有公共点,则,即,由得,由,得,所以点的横坐标的取值范围是.【考点定位】本小题主要考查直线与圆的方程,考查直线与直线、直线与圆、圆与圆的位置关系,等基础知识,考查运用数形结合、待定系数法等数学思想方法分析解决问题的能力.18、【答案】(1)m (2)(3)(单位:m/min)【解析】(1)在中,∵,,∴,,从而.由正弦定理,得,所以索道的长为1040(m).(2)假设乙出发分钟后,甲、乙两游客距离为,此时,甲行走了m,乙距离处m,由余弦定理得,∵,即,故当(min)时,甲、乙两游客距离最短.(3)由正弦定理,,得(m),乙从出发时,甲走了(m),还需要走(m)才能到达,设乙步行的速度为m/min,由题意,,解得,∴为使两游客在处互相等待的时间不超过3分钟,乙步行的速度应控制在(单位:m/min)范围内.【考点定位】本小题主要考查正弦定理、余弦定理、二次函数的最值以及三角函数的基本关系、两角和的正弦等基础知识,考查数学阅读能力和分析解决实际问题的能力.19、【答案】见解析【解析】[证明](1)由题设,,由,得,又,,成等比数列,∴,即,化简得,∵,∴.因此对于所有的,从而对于所有的,.(2)设数列的公差为,则,即,,代入的表达式,整理得,对于所有的有,令,,,则对于所有的有,在上式中取,∴,从而有,由②③得,代入①得,从而,即,,,若,则由得,与题设矛盾,∴,又,∴. 【考点定位】本小题主要考查等差、等比数列的定义、通项、求和等基础知识,考查分析转化以及推理论证能力.20、【答案】(1)(2)当或时,的零点个数为1;当时,的零点个数为2.【解析】(1)∵,考虑到函数的定义域为,故,进而解得,即在上是单调减函数. 同理,在上是单调增函数.由于在是单调减函数,故,从而,即. 令,得,当时,;当时,,又在上有最小值,所以,即,综上所述,.(2)当时,必是单调增函数;当时,令,解得,即,∵在上是单调函数,类似(1)有,即,综合上述两种情况,有.①当时,由以及,得存在唯一的零点;②当时,由于,,且函数在上的图象不间断,∴在是单调增函数,∴在上存在零点. 另外,当时,,则在上是单调增函数,只有一个零点.③当时,令,解得.当时,;当时,. ∴是的最大值点,且最大值为.1)当,即时,有一个零点.2)当,即时,有两个零点. 实际上,对于,由于,,且函数在上的图象不间断,∴在上存在零点.另外,当时,,故在上是单调增函数,∴在上有一个零点.下面需要考虑在上的情况,先证,为此,我们要证明:当时,,设,则,再设,则.当时,,∴在上是单调增函数,故当时,,从而在上是单调增函数,进而当时,,即当时,.当,即时,,又,且函数在的图象不间断,∴在上存在零点.又当时,,故在是单调减函数,所以,在上只有一个零点.综上所述,当或时,的零点个数为1;当时,的零点个数为2.【考点定位】本小题主要考查导数的运算及用导数研究函数的性质,考查函数、方程及不等式的相互转化,考查综合运用数学思想方法分析与解决问题及推理论证能力.21、【答案】见解析【解析】[证明]连结,∵和分别与圆相切于、,∴,又,∴,∴,而,∴.【考点定位】本小题主要考查圆的切线性质、相似三角形判定与性质,考查推理论证能力.22、【答案】【解析】设矩阵的逆矩阵为,则,即,∴,,,,从而,的逆矩阵为,∴.【考点定位】本小题主要考查逆矩阵、矩阵的乘法,考查运算求解能力.23、【答案】.【解析】因为直线的参数方程为,(为参数),由,得代入得到直线的普通方程为.同理得曲线的普通方程为.联立方程组,解得公共点的坐标为,.【考点定位】本小题主要考查参数方程与普通方程的互化以及直线与抛物线的位置关系等基础知识,考查转化问题的能力.24、【答案】见解析【解析】[证明]∵,∴,,,从而,即.【考点定位】本小题主要考查利用比较法证明不等式,考查推理论证能力.25、【答案】(1)(2)【解析】(1)以为坐标原点,建立如图所示的空间直角坐标系,则,,,,,,∴,,∵,∴异面直线与所成角的余弦值为.(2)设平面的法向量为,因为,,∴,即,取,得,,∴,取平面的一个法向量为,设平面与平面所成的二面角的大小为,由,得,故平面与平面所成二面角的正弦值.【考点定位】本小题主要考查异面直线、二面角、空间向量等基础知识以及基本运算,考查运用空间向量解决问题的能力.26、【答案】(1)2 (2)1008【解析】(1)由数列的定义,得,,,,,,,,,,,∴,,,,,,,,,,∴,,,,,∴集合中元素的个数为5.(2)先证:,事实上,①当时,,,原等式成立;②当时成立,即,则时,,综合①②可得,于是,,由上式可知是的倍数,而,∴是的倍数,又不是的倍数,而,∴不是的倍数,故当时,集合中元素的个数为,于是,当时,集合中元素的个数为,又,故集合中元素的个数为.【考点定位】本小题主要考查集合、数列的概念和运算、计数原理等基础知识,考查探究能力及运用数学归纳法的推理论证能力.。

2013年高考理科数学江苏卷试题与答案word解析版[1]

2013年高考理科数学江苏卷试题与答案word解析版[1]

(直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(直打版)2013年高考理科数学江苏卷试题与答案word解析版(word版可编辑修改)的全部内容。

2013年普通高等学校夏季招生全国统一考试数学(江苏卷)数学Ⅰ试题一、填空题:本大题共14小题,每小题5分,共计70分.请把答案填写在答题卡相应位置上..........1.(2013江苏,1)函数π3sin 24y x ⎛⎫=+ ⎪⎝⎭的最小正周期为__________.2.(2013江苏,2)设z =(2-i )2(i 为虚数单位),则复数z 的模为__________.3.(2013江苏,3)双曲线22=1169x y -的两条渐近线的方程为__________.4.(2013江苏,4)集合{-1,0,1}共有__________个子集. 5.(2013江苏,5)下图是一个算法的流程图,则输出的n 的值是__________.6.(2013江苏,6)抽样统计甲、乙两位射击运动员的5次训练成绩(7.(2013江苏,7)现有某类病毒记作X m Y n ,其中正整数m ,n (m ≤7,n ≤9)可以任意选取,则m ,n 都取到奇数的概率为__________.8.(2013江苏,8)如图,在三棱柱A 1B 1C 1-ABC 中,D ,E ,F 分别是AB ,AC ,AA 1的中点,设三棱锥F -ADE 的体积为V 1,三棱柱A 1B 1C 1-ABC 的体积为V 2,则V 1∶V 2=__________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2013年普通高等学校统一考试试题(江苏卷)一、填空题:本大题共14小题,每小题5分,共计70分。

请把答案填写在答题卡相印位置上。

.6则成绩较为稳定(方差较小)的那位运动员成绩的方差为 【答案】2 7.现在某类病毒记作n m Y X ,其中正整数m ,n (7≤m ,9≤n )可以任意选取,则n m , 都取到奇数的概率为 .63208.如图,在三棱柱ABC C B A -111中,F E D ,,分别是1AA AC AB ,,的中点,设三棱锥ADE F -的体积为1V ,三棱柱ABC C B A -111的体积为2V ,则=21:V V .1:249.抛物线2x y =在1=x 处的切线与两坐标轴围成三角形区域为D (包含三角形内部和边界) .若点),(y x P 是区域D 内的任意一点,则y x 2+的取值范围是 .[—2,12 ]10.设E D ,分别是ABC ∆的边BC AB ,上的点,AB AD 21=,BC BE 32=, 若AC AB DE 21λλ+=(21λλ,为实数),则21λλ+的值为 .1211.已知)(x f 是定义在R 上的奇函数。

当0>x 时,x x x f 4)(2-=,则不等式x x f >)( 的解集用区间表示为 .(﹣5,0) ∪(5,﹢∞)12.在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为 .3313.在平面直角坐标系xOy 中,设定点),(a a A ,P 是函数xy 1=(0>x )图象上一动点,若点A P ,之间的最短距离为22,则满足条件的实数a 的所值为 .1或1014.在正项等比数列}{n a 中,215=a ,376=+a a ,则满足n n a a a a a a 2121>+++的最大正整数n 的值为 .12二、解答题:本大题共6小题,共计90分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤. 15.(本小题满分14分) 已知)sin ,(cos )sin ,(cos ββαα=b a ,=,παβ<<<0.(1)若2||=-b a ,求证:b a ⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值. 解:(1)a -b =(cosα-cosβ,sin α-sin β),|a -b |2=(cosα-cosβ)2+(sin α-sin β)2=2-2(cosα·cosβ+sin α·sin β)=2, 所以,cosα·cosβ+sin α·sin β=0,所以,b a ⊥. (2)⎩⎨⎧=+=+②1sin sin ①0cos cos βαβα,①2+②2得:cos(α-β)=-12 .所以,α-β=π32,α=π32+β,带入②得:sin(π32+β)+sin β=23cosβ+12 sin β=sin(3π+β)=1, 所以,3π+β=2π. 所以,α=65π,β=6π.16.(本小题满分14分)如图,在三棱锥ABC S -中,平面⊥SAB 平面SBC ,BC AB ⊥,AB AS =,过A 作SB AF ⊥,垂足为F ,点G E ,分别是棱SC SA ,的中点.求证: (1)平面//EFG 平面ABC ;(2)SA BC ⊥. 证:(1)因为SA =AB 且AF ⊥SB , 所以F 为SB 的中点. 又E ,G 分别为SA ,SC 的中点, 所以,EF ∥AB ,EG ∥AC .又AB ∩AC =A ,AB ⊂面SBC ,AC ⊂面ABC , 所以,平面//EFG 平面ABC . (2)因为平面SAB ⊥平面SBC ,平面SAB ∩平面SBC =BC ,AF ⊂平面ASB ,AF ⊥SB .所以,AF ⊥平面SBC .又BC ⊂平面SBC , 所以,AF ⊥BC .又AB ⊥BC ,AF ∩AB =A , 所以,BC ⊥平面SAB .又SA ⊂平面SAB , 所以,SA BC ⊥.17.(本小题满分14分)如图,在平面直角坐标系xOy 中,点)3,0(A ,直线42:-=x y l .设圆C 的半径为1,圆心在l 上. (1)若圆心C 也在直线1-=x y 上,过点A 作圆C 的切线, 求切线的方程;A BSG F E(2)若圆C 上存在点M ,使MO MA 2=,求圆心C 的横坐 标a 的取值范围.解:(1)联立:⎩⎨⎧-=-=421x y x y ,得圆心为:C (3,2).设切线为:3+=kx y ,d =11|233|2==+-+r k k ,得:430-==k or k .故所求切线为:343+-==x y or y .(2)设点M (x ,y ),由MO MA 2=,知:22222)3(y x y x +=-+,化简得:4)1(22=++y x ,即:点M 的轨迹为以(0,1)为圆心,2为半径的圆,可记为圆D . 又因为点M 在圆C 上,故圆C 圆D 的关系为相交或相切. 故:1≤|CD |≤3,其中22)32(-+=a a CD .解之得:0≤a ≤125 .18.(本小题满分16分)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径。

一种是从A 沿直线步行 到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两 位游客从A 处下山,甲沿AC 匀速步行,速度为m in /50m .在甲出发m in 2后,乙从 A 乘缆车到B ,在B 处停留min 1后,再从匀速步行到C .假设缆车匀速直线运动的速度为min /130m ,山路AC 长为m 1260,经测量,1312cos =A ,53cos =C . (1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内? 解:(1)如图作BD ⊥CA 于点D ,设BD =20k ,则DC =25k ,AD =48k ,AB =52k ,由AC =63k =1260m ,知:AB =52k =1040m .(2)设乙出发x 分钟后到达点M ,此时甲到达N 点,如图所示. 则:AM =130x ,AN =50(x +2),由余弦定理得:MN 2=AM 2+AN 2-2 AM ·AN cos A =7400 x 2-14000 x +10000,其中0≤x ≤8,当x =3537 (min)时,MN 最小,此时乙在缆车上与甲的距离最短. (3)由(1)知:BC =500m ,甲到C 用时:126050 =1265 (min).若甲等乙3分钟,则乙到C 用时:1265 +3=1415 (min),在BC 上用时:865 (min) . 此时乙的速度最小,且为:500÷865 =125043 m/min .若乙等甲3分钟,则乙到C 用时:1265 -3=1115 (min),在BC 上用时:565 (min) .此时乙的速度最大,且为:500÷565 =62514 m/min .故乙步行的速度应控制在[125043 ,62514 ]范围内.C B ADMN19.(本小题满分16分)设}{n a 是首项为a ,公差为d 的等差数列)0(≠d ,n S 是其前n 项和.记cn nS b nn +=2, *N n ∈,其中c 为实数.(1)若0=c ,且421b b b ,,成等比数列,证明:k nk S n S 2=(*,N n k ∈); (2)若}{n b 是等差数列,证明:0=c . 证:(1)若0=c ,则d n a a n )1(-+=,2]2)1[(a d n n S n +-=,22)1(ad n b n +-=.当421b b b ,,成等比数列,4122b b b =,即:⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+2322d a a d a ,得:ad d 22=,又0≠d ,故a d 2=.由此:a n S n 2=,a k n a nk S nk 222)(==,a k n S n k 222=.故:k nk S n S 2=(*,N n k ∈).(2)cn a d n n c n nS b n n ++-=+=22222)1(, c n a d n ca d n c a d n n ++--+-++-=2222)1(22)1(22)1( cn a d n ca d n ++--+-=222)1(22)1(. (※) 若}{n b 是等差数列,则Bn An b n +=型. 观察(※)式后一项,分子幂低于分母幂,故有:022)1(2=++-cn ad n c,即022)1(=+-a d n c ,而22)1(a d n +-≠0, 故0=c .经检验,当0=c 时}{n b 是等差数列.20.(本小题满分16分)设函数ax x x f -=ln )(,ax e x g x-=)(,其中a 为实数.(1)若)(x f 在),1(+∞上是单调减函数,且)(x g 在),1(+∞上有最小值,求a 的取值范围; (2)若)(x g 在),1(+∞-上是单调增函数,试求)(x f 的零点个数,并证明你的结论. 解:(1)a x x f -='1)(≤0在),1(+∞上恒成立,则a ≥x 1,)1(∞+∈,x . 故:a ≥1.a x g x -='e )(,若1≤a ≤e ,则a x g x-='e )(≥0在),1(+∞上恒成立,此时,ax e x g x-=)(在),1(+∞上是单调增函数,无最小值,不合;若a >e ,则ax e x g x-=)(在)ln 1(a ,上是单调减函数,在)(l n ∞+,a 上是单调增函数,)ln ()(m in a g x g =,满足.故a 的取值范围为:a >e .(2)a x g x-='e )(≥0在),1(+∞-上恒成立,则a ≤e x ,故:a ≤1e .)0(11)(>-=-='x xax a x x f . (ⅰ)若0<a ≤1e ,令)(x f '>0得增区间为(0,1a );令)(x f '<0得减区间为(1a ,﹢∞). 当x →0时,f (x )→﹣∞;当x →﹢∞时,f (x )→﹣∞;当x =1a 时,f (1a )=﹣ln a -1≥0,当且仅当a =1e 时取等号. 故:当a =1e 时,f (x )有1个零点;当0<a <1e 时,f (x )有2个零点. (ⅱ)若a =0,则f (x )=﹣ln x ,易得f (x )有1个零点. (ⅲ)若a <0,则01)(>-='a xx f 在)0(∞+,上恒成立, 即:ax x x f -=ln )(在)0(∞+,上是单调增函数, 当x →0时,f (x )→﹣∞;当x →﹢∞时,f (x )→﹢∞. 此时,f (x )有1个零点.综上所述:当a =1e 或a <0时,f (x )有1个零点;当0<a <1e 时,f (x )有2个零点.。

相关文档
最新文档