大学物理第四版第16章变化的电磁场分析
大学物理第16章麦克斯韦方程组和电磁辐射
位移电流 全电流安培环路定理
稳恒磁场中,安培环路定理 H dl I j ds
l s
S1
L
-
S2
+ + + +
(以 L 为边做任意曲面 S ) H dl j ds I
L S1
I
H dl j ds 0
第16章 麦克斯韦方程组和电 磁辐射
本章主要内容
§16.1 Maxwell电磁场方程组
§16.2 电磁波和电磁辐射 §16.4 电磁波的性质 §16.5 电磁波的能量 §16.6 电磁波的动量 光压
第16章 麦克斯韦方程组和电磁辐射
电现象/磁现象
电场/磁场(稳恒态)
我国:周朝(BC8世)/战国(BC4-3世) 西方:BC6世/ AD15世末
B
2
计算得
r dQ H 2 2 π R dt
Q
0 r dQ
2 π R dt
2
代入数据计算得
Q
I d 1.1 A
B 1.1110 T
5
Ic
R
P *r
Ic
例2. 一平行板电容器的两极板都是圆形板,面积为S,其上 的电荷随时间变化,变化率为 q q sint
m
求: 1)电容器中位移电流密度的大小。
麦克斯韦18311879英国物理学家1865年麦克斯韦在总结前人工作的基础上提出完整的电磁场理论他的主要贡献是提出了有旋电场和位移电流两个假设从而预言了电磁波的存在并计算出电磁波的速度即光1888年赫兹的实验证实了他的预言麦克斯韦理论奠定了经典电动力学的基础为无线电技术和现代电子通讯技术发展开辟了广阔前景
大学物理电磁场16
3:磁能:
Wm
=
1 LI 2 2
wm
=
1 2
BH
Wm = V wmdV
4.电磁场与电磁波
(1)位移电流
Id
=
d ΦD dt
d
=
dD dt
dD dt
(2)麦克斯韦方程组
B
D dS S
=
q0
SB dS = 0
LE dl = -
H dl L
(D) M12 = M21, e12 e21
e12
=
M12
di2 dt
e 21
=
M 21
di1 dt
[C]
M12 = M 21
二.塡空题:
1.将电阻为R的导体回路从磁场中匀速拉出,如图 所示,则此回路中将产生———逆———时针方向的感应电 动势。设拉出回路的时间为Δt,磁通量变化为ΔΦ, 则回路中通过的感应电量为———RΦ———。
0
s
in
t
m0l 2
ln
a
a
b
v vt
t
I
0
cost
= m0lI0 sin t v v 2 a vt a b vt
m0lI0 ln a b vt cost
2
a vt
以顺时针为正方向。
2.
在均匀磁场
(1)长直导线中电流恒定,t 时刻 AB 以垂直于导线的 速度 v 以图示位置远离导线匀速平移到某一位置时,
(2)长直导线中电流 I = I0 sin t,ABCD不动,
(3)长直导线中电流 I = I0 sin t, ABCD以垂直于导
大学物理第16章
E k dl
(v B) dl
= Blv
C
例3:如图所示,导体棒 oa 垂直均 匀磁场以角速度绕o端旋转切割磁 力线,求感应电动势? (v B) dl vBdl 解:沿oa方向取 dl
d Bvdl Bldl
洛仑兹力的作用并不提供能量,而只是传递 能量,实质上表示能量的转换和守恒。 发电机的工作原理
u
u v
l c N d
1
b l
2
B
S
-
a
+
Φm BS cos(
) BS sin 感应电流受磁力矩作用,阻 2 碍线圈转动,要维持匀速转 动,外力须克服磁场力做功, 为线圈平面与 的夹角 B 将机械能转为电能。 dΦm d BS cos BS cos t dt dt
dΦm 0 ln a b [ dI (t ) x(t ) dx(t ) I (t )] dt 2 a dt dt 0 a b 感生电动势 ln [t 1]I 0 e t v 2 a t 1, 0
t 1, 0
逆时针方向
t 1, 0 顺时针方向
B 2l 2 cos2 t mR (1 e )
导体在t时刻的速度
v
mgRsin B 2l 2 cos2
B 2l 2 cos2 t mR (1 e )
由上式可知,当
t
mgR sin v vm 2 2 B l cos2
此即为导体棒下滑的稳定速度,也是导体棒能够达到的最大速度, 其v-t 图线如图所示。 中学: 斜面方向合力为零,导体棒达到下滑的稳定速度(最大速度).
大学物理 第16次课知识点总结
u
ΔS
(单位时间通过的距离)
上页
下页
四.能流密度 (j矢量) 波的强度I 能流密度:
1)大小:通过单位垂直横截面的能流。
j P wuΔS
ΔS
ΔS
2)方向:与波速一致。
wu
r j
wur
波的强度:通过单位垂直横截面的平均能流。
I p wu 1 2 A2u
ΔS
x ) cos 2π t
(驻波方程)
上页
下页
2.驻波特征:y (2Acos 2π x ) cost
振幅
(1)弦线各点振幅不同,频率相同。
cos 2 x 1
波腹位置:
振幅最大,称为波腹。
2 x kπ
x k ,(k=0,±1…)
2
相邻波腹间距离:xk1
上页
下页
§4 惠更斯原理 波的叠加原理
惠更斯原理:以几何作图法定性讨论当给定某一时刻波前的位 置后,怎样确定这个波前在未来任意时刻将到达 的位置—解决波的传播方向问题。
❖ 适用于各种波, 机械波、电磁波等 ❖ 适用于非均匀的、各向异性的介质
一.惠更斯原理内容
波前上的每一个点,都可以看作产生球面次级子波的点波 源,其后任一时刻,这些子波的包迹便是新的波前。
u 2dWk 2dWP
当y=±A时: dWk dWP dW 0
当y=0时: dW、k dW、P d均W为最大
2.平均能量密度: w 1 2 A2
2
3.能流:
P dW dt
wuS
4.平均能流: P wuΔS
5.波的强度I : I p
ΔS
wu ∝ A2
大学物理电磁学总结
大学物理电磁学总结电磁学部分总结静电场部分第一部分:静电场的基本性质和规律电场是物质的一种存在形态,它同实物一样也具有能量、动量、质量等属性。
静电场的物质特性的外在表现是:(1)电场对位于其中的任何带电体都有电场力的作用(2)带电体在电场中运动, 电场力要作功——电场具有能量1、描述静电场性质的基本物理量是场强和电势,掌握定义及二者间的关系。
电场强度 E =q 0∞ W a 电势 U a ==E ⋅d rq 0a2、反映静电场基本性质的两条定理是高斯定理和环路定理Φe =E ⋅d S =ε0∑qL E ⋅d r =0要掌握各个定理的内容,所揭示的静电场的性质,明确定理中各个物理量的含义及影响各个量的因素。
重点是高斯定理的理解和应用。
3、应用(1)、电场强度的计算1q E =r 02a) 、由点电荷场强公式 4πεr 及场强叠加原理 E = ∑ E 计i 0算场强一、离散分布的点电荷系的场强1q i E =∑E i =∑r 2i 0i i 4πεr 0i二、连续分布带电体的场强 d q E =⎰d E =⎰r 204πε0r其中,重点掌握电荷呈线分布的带电体问题b) 、由静电场中的高斯定理计算场源分布具有高度对称性的带电体的场强分布一般诸如球对称分布、轴对称分布和面对称分布,步骤及例题详见课堂笔记。
还有可能结合电势的计算一起进行。
c) 、由场强和电势梯度之间的关系来计算场强(适用于电势容易计算或电势分布已知的情形),掌握作业及课堂练习的类型即可。
(2)、电通量的计算a) 、均匀电场中S 与电场强度方向垂直b) 、均匀电场,S 法线方向与电场强度方向成θ角E =-gradU =-∇U∂U ∂U ∂U =-(i +j +k )∂x ∂y ∂zc) 、由高斯定理求某些电通量(3)、电势的计算a) 、场强积分法(定义法)——计算U P =⎰E ⋅d rb) 、电势叠加法——q i ⎰电势叠加原理计算⎰∑U i =∑4πεr⎰0iU =⎰dq ⎰dU =⎰⎰⎰4πε0r ⎰第二部分:静电场中的导体和电介质一、导体的静电平衡状态和条件导体内部和表面都没有电荷作宏观定向运动的状态称为静电平衡状态。
大学物理变化的电磁场总复习内容深入超赞
dt
3.计算互感系数: (1)给任一回路通电流;
(2)计算穿过另一回路的磁通量;
(3)代入定义式或定义方程
例3:长直导线与矩形线圈共面,线圈中通有电
流I(t),计算长直导线中的互感电动势。
问题:长直导线是 解:设长直导线通有电流 I1
回路吗?
矩形线圈内的磁通量
I 1 I(t)
ds l
m S
BdS
=0
Lddtmddt(L)I
LdI dt
I
dL dt
当线圈形状、匝数、介质等不变时,L是常量.
εL
LdI dt
L L
dI dt
自感电动势与电流的变化率成正比
3.自感系数计算 考虑方法同计算电容。
(1)令回路通电流;
B
(2)计算穿过回路的磁通量;
(3)代入定义式或定义方程。
I
例1.计算长直螺线管(N,l,R)的自感系数:
da d
0 I1ldx 2 x
0Ill 2
nda d
o x d a
M m 0l lnd a
I1
M
2 d
dI 0llndadI
dt 2 d dt
三、磁场的能量
L
考虑自感线圈中电流的建立过程:
L
L di dt
K1
在移动dq=idt的过程中,电源反抗
自感电动势做功 dALdqLidt Lidi
在i从0到I过程中,做功
•单位:伏V
正
第十一章 变化的电磁场
§1 电磁感应 §2自感与互感 §3 Maxwell’s 方程组
本章重点:感应电动势、自感、互感 的计算
本章难点:涡旋电场,位移电流,场概念的理解
大学物理 十六章 课后答案
习题十六16-1 将星球看做绝对黑体,利用维恩位移定律测量m λ便可求得T .这是测量星球表面温度的方法之一.设测得:太阳的m 55.0m μλ=,北极星的m 35.0m μλ=,天狼星的m 29.0m μλ=,试求这些星球的表面温度.解:将这些星球看成绝对黑体,则按维恩位移定律:K m 10897.2,3⋅⨯==-b b T m λ对太阳:K 103.51055.010897.236311⨯=⨯⨯==--mbT λ对北极星:K 103.81035.010897.236322⨯=⨯⨯==--mbT λ对天狼星:K 100.11029.010897.246333⨯=⨯⨯==--m bT λ16-2 用辐射高温计测得炉壁小孔的辐射出射度(总辐射本领)为22.8W ·cm -2,求炉内温度. 解:炉壁小孔视为绝对黑体,其辐出度242m W 108.22cm W 8.22)(--⋅⨯=⋅=T M B按斯特藩-玻尔兹曼定律:=)(T M B 4T σ41844)1067.5108.22()(-⨯⨯==σT M T BK 1042.110)67.58.22(3341⨯=⨯=16-3 从铝中移出一个电子需要4.2 eV 的能量,今有波长为2000οA 的光投射到铝表面.试问:(1)由此发射出来的光电子的最大动能是多少?(2)遏止电势差为多大?(3)铝的截止(红限)波长有多大?解:(1)已知逸出功eV 2.4=A 据光电效应公式221m mv hv =A +则光电子最大动能:A hcA h mv E m -=-==λυ2max k 21 eV 0.2J 1023.3106.12.41020001031063.6191910834=⨯=⨯⨯-⨯⨯⨯⨯=----m2max k 21)2(mv E eU a ==Θ ∴遏止电势差 V 0.2106.11023.31919=⨯⨯=--a U (3)红限频率0υ,∴000,λυυcA h ==又∴截止波长1983401060.12.41031063.6--⨯⨯⨯⨯⨯==A hc λm 0.296m 1096.27μ=⨯=- 16-4 在一定条件下,人眼视网膜能够对5个蓝绿光光子(m 105.0-7⨯=λ)产生光的感觉.此时视网膜上接收到光的能量为多少?如果每秒钟都能吸收5个这样的光子,则到 达眼睛的功率为多大? 解:5个兰绿光子的能量J 1099.1100.51031063.65187834---⨯=⨯⨯⨯⨯⨯===λυhcnnh E 功率 W1099.118-⨯==t E16-5 设太阳照射到地球上光的强度为8 J ·s -1·m -2,如果平均波长为5000οA ,则每秒钟落到地面上1m 2的光子数量是多少?若人眼瞳孔直径为3mm ,每秒钟进入人眼的光子数是多少? 解:一个光子能量λυhch E ==1秒钟落到2m 1地面上的光子数为21198347m s 1001.21031063.6105888----⋅⨯=⨯⨯⨯⨯⨯===hc E n λ每秒进入人眼的光子数为11462192s 1042.14/10314.31001.24--⨯=⨯⨯⨯⨯==d nN π16-6若一个光子的能量等于一个电子的静能,试求该光子的频率、波长、动量.解:电子的静止质量S J 1063.6,kg 1011.934310⋅⨯=⨯=--h m 当 20c m h =υ时,则Hz 10236.11063.6)103(1011.92034283120⨯=⨯⨯⨯⨯==--h c m υο12A02.0m 104271.2=⨯==-υλc122831020122s m kg 1073.21031011.9s m kg 1073.2-----⋅⋅⨯=⨯⨯⨯=====⋅⋅⨯==c m c c m c E p cpE hp 或λ16-7 光电效应和康普顿效应都包含了电子和光子的相互作用,试问这两个过程有什么不同?答:光电效应是指金属中的电子吸收了光子的全部能量而逸出金属表面,是电子处于原子中束缚态时所发生的现象.遵守能量守恒定律.而康普顿效应则是光子与自由电子(或准自由电子)的弹性碰撞,同时遵守能量与动量守恒定律.16-8 在康普顿效应的实验中,若散射光波长是入射光波长的1.2倍,则散射光子的能量ε与反冲电子的动能k E 之比k E /ε等于多少?解:由 2200mc h c m hv +=+υ)(00202υυυυ-=-=-=h h h c m mc E kυεh =∴5)(00=-=-=υυυυυυεh h E k已知2.10=λλ由2.10=∴=υυλυc2.110=υυ则52.0112.110==-=-υυυ16-9 波长οA 708.0=λ的X 射线在石腊上受到康普顿散射,求在2π和π方向上所散射的X射线波长各是多大? 解:在2πϕ=方向上:ο1283134200A 0243.0m 1043.24sin 1031011.91063.622sin 2Δ=⨯=⨯⨯⨯⨯⨯==-=---πϕλλλc m h散射波长ο0A 732.00248.0708.0Δ=+=+=λλλ在πϕ=方向上ο120200A0486.0m 1086.422sin 2Δ=⨯===-=-c m h c m h ϕλλλ散射波长 ο0A756.00486.0708.0Δ=+=+=λλλ16-10 已知X 光光子的能量为0.60 MeV ,在康普顿散射之后波长变化了20%,求反冲电子的能量.解:已知X 射线的初能量,MeV 6.00=ε又有000,ελλεhchc =∴=经散射后000020.1020.0λλλλ∆λλ=+=+=此时能量为 002.112.1ελλε===hc hc反冲电子能量MeV 10.060.0)2.111(0=⨯-=-=εεE16-11 在康普顿散射中,入射光子的波长为0.030 οA ,反冲电子的速度为0.60c ,求散射光子的波长及散射角.解:反冲电子的能量增量为202022020225.06.01c m c m c m c m mc E =--=-=∆由能量守恒定律,电子增加的能量等于光子损失的能量,故有 20025.0c m hchc=-λλ散射光子波长ο1210831341034000A043.0m 103.410030.0103101.925.01063.610030.01063.625.0=⨯=⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=-=------λλλc m h h由康普顿散射公式2sin 0243.022sin 22200ϕϕλλλ∆⨯==-=c m h 可得 2675.00243.02030.0043.02sin 2=⨯-=ϕ散射角为7162'=οϕ16-12 实验发现基态氢原子可吸收能量为12.75eV 的光子. (1)试问氢原子吸收光子后将被激发到哪个能级?(2)受激发的氢原子向低能级跃迁时,可发出哪几条谱线?请将这些跃迁画在能级图上. 解:(1)2eV 6.13eV 85.0eV 75.12eV 6.13n -=-=+-解得 4=n或者)111(22n Rhc E -=∆ 75.12)11.(1362=-=n解出 4=n题16-12图 题16-13图(2)可发出谱线赖曼系3条,巴尔末系2条,帕邢系1条,共计6条.16-13 以动能12.5eV 的电子通过碰撞使氢原子激发时,最高能激发到哪一能级?当回到基态时能产生哪些谱线?解:设氢原子全部吸收eV 5.12能量后,最高能激发到第n 个能级,则]11[6.135.12,eV 6.13],111[2221n Rhc n Rhc E E n -==-=-即得5.3=n ,只能取整数,∴ 最高激发到3=n ,当然也能激发到2=n 的能级.于是ο322ο222ο771221A6563536,3653121~:23A121634,432111~:12A 1026m 10026.110097.18989,983111~:13===⎥⎦⎤⎢⎣⎡-=→===⎥⎦⎤⎢⎣⎡-=→=⨯=⨯⨯===⎥⎦⎤⎢⎣⎡-=→-R R R n R R R n R R R n λυλυλυ从从从可以发出以上三条谱线.题16-14图16-14 处于基态的氢原子被外来单色光激发后发出巴尔末线系中只有两条谱线,试求这两 条谱线的波长及外来光的频率.解:巴尔末系是由2>n 的高能级跃迁到2=n 的能级发出的谱线.只有二条谱线说明激发后最高能级是4=n 的激发态.ο1983424ο101983423222324A4872106.1)85.04.3(1031063.6A6573m 1065731060.1)51.14.3(10331063.6e 4.326.13e 51.136.13e 85.046.13=⨯⨯-⨯⨯⨯=-==⨯=⨯⨯-⨯⨯⨯⨯=-=∴-=∴-==-=-=-=-=-=-=-----E E hc E E hc E E hc E E hch VE V E V E a mn m n βλλλλυ基态氢原子吸收一个光子υh 被激发到4=n 的能态∴λυhcE E h =-=14 Hz 1008.310626.6106.1)85.06.13(15341914⨯=⨯⨯⨯-=-=--h E E υ16-15 当基态氢原子被12.09eV 的光子激发后,其电子的轨道半径将增加多少倍? 解:eV 09.12]11[6.1321=-=-n E E n26.1309.126.13n =-51.16.1309.12.1366.132=-=n , 3=n12r n r n =,92=n ,19r r n =轨道半径增加到9倍.16-16德布罗意波的波函数与经典波的波函数的本质区别是什么?答:德布罗意波是概率波,波函数不表示实在的物理量在空间的波动,其振幅无实在的物理意义,2φ仅表示粒子某时刻在空间的概率密度.16-17 为使电子的德布罗意波长为1οA ,需要多大的加速电压?解:oo A1A 25.12==uλ 25.12=U∴ 加速电压 150=U 伏16-18 具有能量15eV 的光子,被氢原子中处于第一玻尔轨道的电子所吸收,形成一个 光电子.问此光电子远离质子时的速度为多大?它的德布罗意波长是多少?解:使处于基态的电子电离所需能量为eV 6.13,因此,该电子远离质子时的动能为eV 4.16.13152112=-=+==E E mv E k φ它的速度为31191011.9106.14.122--⨯⨯⨯⨯==m E v k -15s m 100.7⋅⨯= 其德布罗意波长为:o 953134A10.4m 1004.1100.71011.91063.6=⨯=⨯⨯⨯⨯==---mv h λ16-19 光子与电子的波长都是2.0οA ,它们的动量和总能量各为多少?解:由德布罗意关系:2mc E =,λhmv p ==波长相同它们的动量相等.1-241034s m kg 103.3100.21063.6⋅⋅⨯=⨯⨯==---λhp光子的能量eV102.6J 109.9103103.3316824⨯=⨯=⨯⨯⨯====--pc hch λυε电子的总能量 2202)()(c m cp E +=,eV102.63⨯=cp而eV 100.51MeV 51.0620⨯==c m ∴cp c m >>20 ∴MeV51.0)()(202202==+=c m c m cp E16-20 已知中子的质量kg 1067.127n -⨯=m ,当中子的动能等于温度300K 的热平衡中子气体的平均动能时,其德布罗意波长为多少?解:kg 1067.127n -⨯=m ,S J 1063.634⋅⨯=-h ,-123K J 1038.1⋅⨯=-k中子的平均动能m p KT E k 2232== 德布罗意波长 o A456.13===mkT hp h λ16-21 一个质量为m 的粒子,约束在长度为L 的一维线段上.试根据测不准关系估算这个粒子所具有的最小能量的值. 解:按测不准关系,h p x x ≥∆∆,x x v m p ∆=∆,则h v x m x ≥∆∆,x m hv x ∆≥∆这粒子最小动能应满足222222min22)(21)(21mL h x m h x m h m v m E x =∆=∆≥∆=16-22 从某激发能级向基态跃迁而产生的谱线波长为4000οA ,测得谱线宽度为10-4οA ,求该激发能级的平均寿命.解:光子的能量λυhch E ==由于激发能级有一定的宽度E ∆,造成谱线也有一定宽度λ∆,两者之间的关系为:λλ∆=∆2hcE由测不准关系,h t E ≥∆⋅∆,平均寿命t ∆=τ,则λλτ∆=∆=∆=c E h t 2s 103.51010103)104000(81048210----⨯=⨯⨯⨯⨯=16-23 一波长为3000οA 的光子,假定其波长的测量精度为百万分之一,求该光子位置的测不准量.解: 光子λhp =,λλλλ∆=∆-=∆22hhp由测不准关系,光子位置的不准确量为cm30A 103103000o 962=⨯=====-λ∆λλ∆λ∆∆p h x16-24波函数在空间各点的振幅同时增大D 倍,则粒子在空间分布的概率会发生什么变化?解:不变.因为波函数是计算粒子t 时刻空间各点出现概率的数学量.概率是相对值.则21、点的概率比值为:22212221φφφφD D =∴ 概率分布不变.16-25 有一宽度为a 的一维无限深势阱,用测不准关系估算其中质量为m 的粒子的零点能. 解:位置不确定量为a x =∆,由测不准关系:h p x x ≥∆⋅∆,可得:x h P x ∆≥∆,x hP P x x ∆≥∆≥∴222222)(22ma h x m h m P E x x =∆≥=,即零点能为222ma h . 16-26 已知粒子在一维矩形无限深势阱中运动,其波函数为:a xax 23cos1)(πψ=︒ )(a x a ≤≤-那么,粒子在ax 65=处出现的概率密度为多少? 解:22*)23cos 1(a x a πψψψ==a a a a a a aa 21)21(14cos 1)4(cos 145cos 12653cos 122222===+===πππππ16-27 粒子在一维无限深势阱中运动,其波函数为:)sin(2)(a x n a x n πψ=)0(a x <<若粒子处于1=n 的状态,在0~a41区间发现粒子的概率是多少?解:xa x a x w d sin 2d d 22πψ==∴ 在4~0a 区间发现粒子的概率为: ⎰⎰⎰===40020244)(d sin 2d sin 2a a ax a a x a ax a x a dw p ππππ 091.0)(]2cos 1[2124/0=-=⎰x a d a x a πππ16-28 宽度为a 的一维无限深势阱中粒子的波函数为xa n A x πψsin )(=,求:(1)归一化系数A ;(2)在2=n 时何处发现粒子的概率最大?解:(1)归一化系数⎰⎰==+∞∞-ax x 0221d d ψψ即⎰⎰=aa x a n x a n A n a x x a n A 00222)(d sin d sin ππππ⎰-=a x a n x a n A n a 02)(d )2cos 1(2πππ12222===A a n A n a ππ∴ =A a 2粒子的波函数x a n a x πψsin 2)(=(2)当2=n 时,x a a πψ2sin 22=几率密度]4cos 1[12sin 2222x a a x a a w ππψ-===令0d d =x w ,即04sin 4=x a a ππ,即,04sin =x a π,Λ,2,1,0,4==k k x a ππ∴4a kx = 又因a x <<0,4<k ,∴当4a x =和ax 43=时w 有极大值, 当2a x =时,0=w . ∴极大值的地方为4a ,a 43处16-29 原子内电子的量子态由s l m m l n ,,,四个量子数表征.当l m l n ,,一定时,不同的量子态数目是多少?当l n ,一定时,不同的量子态数目是多少?当n 一定时,不同的量子态数目是多少?解:(1)2)21(±=s m Θ (2))12(2+l ,每个l 有12+l 个l m ,每个l m 可容纳21±=s m 的2个量子态.(3)22n16-30求出能够占据一个d 分壳层的最大电子数,并写出这些电子的s l m m ,值.解:d 分壳层的量子数2=l ,可容纳最大电子数为10)122(2)12(2=+⨯=+=l Z l 个,这些电子的:0=l m ,1±,2±,21±=s m16-31 试描绘:原子中4=l 时,电子角动量L 在磁场中空间量子化的示意图,并写出L 在磁场方向分量z L 的各种可能的值. 解:ηηη20)14(4)1(=+=+=l l L题16-31图磁场为Z 方向,ηl Z m L =,0=l m ,1±,2±,3±,4±.∴ )4,3,2,1,0,1,2,3,4(----=Z L η16-32写出以下各电子态的角动量的大小:(1)s 1态;(2)p 2态;(3)d 3态;(4)f 4态.解: (1)0=L (2)1=l , ηη2)11(1=+=L (3)2=l ηη6)12(2=+=L(4)3=l ηη12)13(3=+=L 16-33 在元素周期表中为什么n 较小的壳层尚未填满而n 较大的壳层上就开始有电子填入?对这个问题我国科学工作者总结出怎样的规律?按照这个规律说明s 4态应比d 3态先填入电子.解:由于原子能级不仅与n 有关,还与l 有关,所以有些情况虽n 较大,但l 较小的壳层能级较低,所以先填入电子.我国科学工作者总结的规律:对于原子的外层电子,能级高低以)7.0(l n +确定,数值大的能级较高.s 4(即0,4==l n ),代入4)07.04()7.0(=⨯+=+l n)2,3(3==l n d ,代入4.4)27.03(=⨯+s 4低于d 3能级,所以先填入s 4壳层.。
16-1电磁振荡+物理学第四版 马文蔚主编+高等教育出版社
能量不断的相互转化,其总和保持不变.
电磁场能量守恒是有条件的.
16 – 1 电磁振荡
第十六章 电磁振荡和电磁波
例 在 LC 电路中,已知L 260μ H,C 120pF , 初始时两极板间的电势差 U0 1V,且电流为零. 求:
(1)振荡频率;
1
2π LC
9.01105 Hz
(2)最大电流; 当 t Байду номын сангаас 时
q Q0 cos(t )
i
I0
cos(t
π 2
)
16 – 1 电磁振荡
第十六章 电磁振荡和电磁波
三 无阻尼电磁振荡的能量
Ee
q2 2C
Q02 2C
cos2 (t
)
Em
1 2
Li 2
1 2
LI
2 0
sin2 (t
)
Q02 2C
sin2 (t
)
E
Ee
Em
1 2
LI
2 0
Q02 2C
在无阻尼自由电磁振荡过程中,电场能量和磁场
(3)电容器两极板间的电场能量随时间变化的关系;
Ee
1 2
CU
2 0
cos2 t
(0.601010 J) cos2 t
(4)自感线圈中的磁场能量随时间变化的关系;
Em
1 2
LI
2 0
sin 2 t
(0.601010 J) sin 2 t
(5)证明在任意时刻电场能量与磁场能量之和总
是等于初始时的电场能量.
Ee
Em
0.601010 J
Ee0
1 2
CU
2 0
d2q dt 2
大学物理下变化的电磁场
3、讨论:
•若有N匝线圈,它们彼此串联,总电动势等于各匝线圈所产生 的电动势之和。令每匝的磁通量为 1、 2 、 3
d1 d 2 dt dt
磁通链数:
1 2 3
d (1 2 3 ) d dt dt
故本题的结果为: r=2cm时
r dB 0.02 Ek =- 0.2 2 10 3V m 1 2 dt 2
R dB 0.05 Ek =- 0.2 5 10 3V m 1 2 dt 2
R 2 dB 0.052 Ek 0.2 2.5 10 3V m 1 2r dt 2 0.1
演示
11-2 动生电动势
引起磁通量变化的原因有两种: 1.磁场不变,回路全部或局部在稳恒磁场中运动——动生电动势 2.回路不动,磁场随时间变化——感生电动势 当上述两种情况同时存在时,则同时存在动生电动势与感生电 动势。 a
d
1、从运动导线切割磁场线导出 动生电动势公式
d d Blx d x i Bl Blv dt dt dt
d B i B dS dS S t dt S
不论空间是否存在导 体,变化的磁场总是 在周围空间激发电场
•感生电场的电场线是无头无尾的闭合曲线,所以又叫涡旋电场。
B dl 0 j dS
L S•感生电场和磁感应强Fra bibliotek的变化连在一起。
(b) 0, increase
n
n
i
direction
i
direction
(c) 0, decrease
(d ) 0, decrease
大学物理第四版第16章变化的电磁场讲述
所以铜棒中的动生电动势为
1 BL2
1 BL2
t 2 t 2
大学物理学
• 如果是铜盘转动,可以把铜盘看成由无数根并 联的铜棒组合而成,每根铜棒都类似于OA。因 为是并联,所以铜盘的电动势也为
1 BL2
2
• 如果把铜盘的中心和其边缘通过外接电路接通, 则在磁场中转动的铜盘就能对外供应电流,这 种简易的发电机称为法拉第圆盘发电机。
——因导体在磁场中的运动而产生的感应电动势
动生电动势的非静电力场来源
洛伦兹力
Fm qv B
平衡时 Fm Fq qEk
Ek
Fm q
vB
+B
+
+ +P +
+Fm++++
+ +
+ +
+ +
v + + + +-+ + + +
+
+
Fq+
-
+
-
+
+
+
+ + + O+ + + +
OP的总电动势
OP Ek dl
前提:假设B向上变大
dm
dt
大学物理学
若回路线圈有N匝,则由于串联关系
N dm d(Nm ) d
dt
dt
dt
N
——磁通链
m
大例I0是1学6电-物1流一理幅长学值直,导ω线是中角通频有率交,变I0电和流ω是I常量I。0 s在in长直t导,线式旁中平I表行示放瞬置间N电匝流矩,
大学物理学(下册)第16章 物理学课外知识
超声波可用来探 测鱼群和冰山
2020/5/7
用于潜艇 导航或传 送信息、 地形地貌 测绘和地
质勘测
利用超声波检测固体材料内部缺陷、材料尺寸测量、物理参数测量等在 医学中利用超声波进行人体内部器官的组织结构扫描和血流速度的测量
• 宇宙中99.9%以上的物质是处在等离子态。
•
例如太阳、恒星就是等离子体,只有行星和某些星际物质和
微尘云是处在气液固三态,而这只是宇宙中极小的一部分。在地i球
上,闪电、极光、大气电离层也是等离子体,霓虹灯发出的辉光、
电焊时闪烁的电弧、火箭喷出的火焰、核爆炸产生的火球云等则是
人工产生的等离子体。
太阳
高真空 可用于热绝缘、电绝缘和避免分子电子、离子碰撞的场合。 高真空中分子自由程大于容器的线性尺寸,因此高真空可用于电子 管、光电管、阴极射线管、X 射线管、加速器、质谱仪和电子显微 镜等器件中,以避免分子、电子和离子之间的碰撞。这个特性还可 应用于真空镀膜 ,以供光学、电学或镀制装饰品等方面使用。
目前,发现混沌 现象不仅存在于物理 系统,也存在于化学 系统、生物系统及人 的生命进程中,甚至 还存在于社会学与经 “今天在北京的一只蝴蝶扇动了一下翅膀,可 济学等社会科学领域。 能下月在纽约引起一场暴风雨”
2020/5/7
超声波简介
正常人的听觉可以听到20Hz-20kHz的声波,低于20Hz的声波称 为次声波,超过20kHz的声波称为超声波。超声波和可闻声本质上是一 致的,它们的共同点都是一种机械振动,通常以纵波的方式在弹性介质 内传播,是一种能量和动量的传播形式,其不同点是超声频率高,波长 短,在一定距离内沿直线传播具有良好的束射性和方向性。
大学物理答案第十六章
第十六章 机械波16-1 一波源作简谐振动,周期s 010.=T ,振幅m 40.=A ,当0=t 时,振动位移恰为正方向的最大值.设此方程以m/s 400=v 的速度沿直线传播,试求(1)此波的波函数;(2)距波源m 2和m 16处质点的振动方程和初相;(3)距波源15m 和m 16处质点振动的相位差.分析 波源的周期和频率就是机械波的周期和频率,对于平面波,在忽略传播过程中的能量损失的情况下,波源的振幅就是波的振幅,如果已知波速或波长以及波源的初相,就能给出波函数.由上一章的讨论可知,当给出振动的初始位置和运动方向时,振动的初相就确定了.由波函数可以获得波线上任一点的振动方程;以及任一时刻波线上各点的位移,即波形.波线上相位差为π2质点间的距离(也可视为两个相邻的相位相同点间的距离)为一个波长.解 (1)波源的角频率为rad/s200rad/s 01.022πππω===T初始时波源振动达正方向的最大值,即0=ϕ,波源的振动方程为)200cos(4.0π=y已知m/s 400=v ,波函数为)400(200cos 4.0x t y -=π0>x(2)由波函数得m 2=x 处振动方程为)200cos(4.0)4002(200cos 4.0πππ-=-=t y该处质点初相为π.m 16=x 处振动方程为m8200404001620040)cos(.)(cos .πππ-=-=t y该处质点初相为π8或0.(3)两点相位差为 201.0400151622ππλ∆πϕ∆=⨯-==x15m处质点相位超前.16-2 已知平面波波函数).(cos .x t y -=5220π.式中x 、y 以米计,t 以秒计,试求(1)波长、周期、波速;(2)在m 1=x 处质点的振动方程;(3)在s 40.=t 时,该处质点的位移和速度.这是原点处的质点在哪一时刻的运动状态?再经过s 40.后该运动状态传至何处?分析 本题强调这样的概念:波的传播过程是振动状态(或相位)的传播过程.在单位时间内振动状态(或相位)传播的距离称为波的传播速度,也称为相速度,即本书中的波速v (以区别于反映振幅或能量传播的群速度).波在介质中传播时,波线上各质点仍在各自的平衡位置附近振动,并不跟随波前进,质点的振动速度为ty u d d =.解 (1)将波函数).(cos .x t y -=5220π与简谐波的标准形式对比,得m/s5.2 /s rad 5.2==v πωm2m 8.05.2s8.0s 5.222=⨯=====T T v λππωπ(2)由波函数得m 1=x 处的振动方程为m)5.2cos(2.0 )5.21(5.2cos 2.0)5.2(5.2cos 2.01ππππ-=-=-==t t x t y x(3)由波函数得s 040.=t 时m 1=x 处质点的位移为m205215220040.).(.cos ..=-==t t y π该时刻该质点振动速度为0521525220d d 040040=-⨯-====..).(.sin ..t t t ty u ππ是原点处质点在052140=-)..(时刻的振动状态.再经过s 40.该运动状态传播的距离m1524040=⨯==...v x即传至距该处m 1或距原点m 2处.16-3 如图16-3,一平面简谐波在空间传播,已知波线上某点P 的振动规律为)cos(ϕω+=t A y ,根据图中所示的两种情况,分别列出以O 为原点的波函数. 分析 本题可以沿两条思路求解:(1)由于波线上各点的相位依次落后, 根据两点间的距离可以判断O 点比P 点相位超前多少或落后多少, 因已知P 点的振动方程,就能写出O 点的振动方程,再写出以O 为原点的波函数.(2) 从P 点的振动方程直接写出以P 为原点的波函数,根据波函数的物理意义写出O 点的振动方程,再写出O 为原点的波函数.下面给出第一种解法.解 (1)第一种情况,波沿x 轴正向传播,O 点的相位比P 点超前vω, 所以O 点的振动方程为)](cos[ϕωω++=v l t A y以O 为原点的波函数为)])(cos[)]()(cos[ϕωϕωω+--=++-=vvvl x t A l x t A y(2)第二种情况,波沿x 轴负向传播,O 点在P 点右侧,O 点的相位比P 点超前vl ω,所以O 点的振动方程为)](cos[ϕωω++=v l t A y以O 为原点的波函数为)])(cos[]()(cos[ϕωϕωω+++=++--=vvv l x t A l x t A y16-4 一平面余弦波在Tt 43=时的波形如图16-4(a )所示(T 为周期), 此波以v =36m/s 的速度沿x 轴正向传播, (1)画出t =0时刻的波形图;(2) 求O 、P 点的振动初相;写出O 点的振动方程及以O 为原点的波函数.分析 波形曲线,即y-x 图,给出了某一时刻波线上各点的位移.已知波速时,从Tt 43=时的波形可以推出t =0或t=T 时的波形,从而可得O 点的振动方程, 进而求出O 为原点的波函数.图16-4解 (1) Tt 43=时刻的波形沿x 轴负向移动λ43即为t=0时的波形,或沿x轴正向移动λ41即得t=T 时的波形,如图16-4(b).(2) 由图16-4(a)得 m,40 m,20..==λA 又m/s 36=v 对O 点有,t =0时,有0c o s0==ϕA y (1) 0s i n 0<-=ϕωA v (2) 由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=对P 点, t =0时,有2.0cos 0==ϕA y P (3)0sin 0=-=ϕωA P v (4)因A =0.2m ,由(3)式得0=ϕ,满足(4)式.(3)波的角频率 r a d /s180rad/s 403622ππλπω=⨯==.vO 点的振动方程为 )c o s (.218020ππ+=t y m以O 为原点的波函数为 ])(c o s [.23618020ππ+-=x t y m16-5 一平面波在t =0时的波形曲线如图16-5中曲线(I)所示,波沿x 轴正向传播,经过t =0.5s 后, 波形变为曲线(II). 已知波的周期1≥T s , 试由图中所给条件, 求(1)波函数;(2)A 点的振动方程.分析 从波形曲线(I)可以求出振幅、波长以及O 点的初相. 但另一个重要的常数ω需结合两条波形曲线考虑. 从图上不难看出, 在0.5s 内波形在x 轴正向移动0.1m ,于是可以计算出波速.再根据周期、波长、波速间的关系求出周期,进而求出角频率.解 由图16-5知, A =0.1m, 40.=λm ,20501010....===tv m/s 22040===..v T λs πππω===222Trad/s对O 点0c o s0==ϕA y (1) 0s i n 0<-=ϕωA v (2)由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=故O 点的振动方程为 )c o s (.210ππ+=t ym以O 为原点的波函数为])(c o s [.]).(c o s [.251022010ππππ+-=+-=x t x t y m(2)将10.=A x m 代入上式,得A 点的振动方程为10210510t t y πππc o s .]).(c o s [.=+⨯-=m 16-6 一平面波的波函数为 )sin(.x t y 20050010+=π,式中x ,y 以m 为单位,t 以s 为单位, 试求:(1)波的振幅、频率、波长和波速;(2)何时原点处第一次出现波峰;(3)当t =1s 时,最靠近原点的两个波峰位置.分析 本书约定波函数以余弦函数表示, 因此可先把题目给的波函数化为余弦函数.分列在原点两侧的第一个波峰应是最靠近原点的波峰. 解 (1)波函数化为余弦函数形式为 ])(c o s [.2100252010πππ-+=x t y mm1014.310025Hz, m,01.0 2-⨯====πλνAm /s 79025101432..=⨯⨯==-Tv λ(2) 将x=0, y=A 代入波函数,当第一次出现波峰时,有 02252=-ππ)(t得 t =0.01s(3) 将t =1s 代入波函数得t=1s 时的波形方程xx y 200010220050010sin .)cos(.=-+=ππ欲出现波峰需满足条件:)0,1,2.....( 212200=+±=k k x π)(sin得最靠近原点的两波峰位置为m1035.2 23200 -1,m1085.7 2200 ,02231--⨯-=-==⨯===x x k x x k ππ16-7 沿x 轴负向传播的平面简谐波在t =2s 时的波形如图16-17(a), 波速v =0.5m/s, 求O 点的振动方程及此波的波函数.分析 由已知条件算出T =4s. 欲从t =2s 时的波形求出t =0时的波形, 只需将t =2s 时的波形曲线沿x 轴负向移动半个波长即得. 从t =0时的波形便可求出振动方程的几个常数.解 从图16-7(a)知s 4s 5.02===v λT rad/s5.02==Tπω可得t =0时的波形如图16-7(b). 从图知O 点将向下运动,于是O 点在t =0时有0cos 0==ϕA y(1) 0sin 0<-=ϕωA v(2)由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=O 点的振动方程为 )c o s (.2250ππ+=t y m 以O 为原点的波函数为 ]).(c o s [.250250ππ++=x t y m16-8 一平面简谐波沿x 轴负向传播, 波长为,λ P 处质点元的振动规律如图16-8. (1)求P 点的振动方程; (2)设OP=d , 求此波以O 为原点的波函数.分析 振动曲线是描绘波线上某点位移与时间关系的曲线,即y-t 图.通过振动曲线可知P 点的初始条件.有了P 点的初始条件,可得P 点的振动方程.由于波沿x 轴负向传播,因而O 点的相位比P 点落后.解 (1)由振动曲线知P 点在t =0时有AA y -==ϕcos 0 (1)0sin 0=-=ϕωA v (2)由(1)式得πϕ=,满足(2)式.因T =4s ,则ππω5.02==Trad/s所以P 点的振动方程为)cos(ππ+=t A y 2m(2)波沿x 轴负向传播, P 点相位比O 点超前,所以O 点的振动方程为])(cos[])(cos[πλπππ+-=+-=dt A vd t A y 4220 m有 4λλ==Tv以O 为原点的波函数为])(cos[])(cos[πλπππ+-+=+-+=dx t A vd x t A y 4422m16-9 图16-9 (a)是一平面简谐波在t =0时的波形曲线. P 点位于波线上点为1 m 处P 点的振动曲线可以判明,当t 稍微大于零时其位移为正,因而t =0时P 点将向上运动.再观察波形图上x =1.5m 处的质点,当t =0时位于最大位移处,此后一定要向下运动回到平衡位置.既然t =0时P 点将向上最大位移处运动, 而1.5m 处质点已从最大位移返回,便可判断出P 点(1m 处)的相位比1.5m 处质点落后,所以波沿x 轴负向传播.解 从图16-9(a)知 2=λm, T =0.2s, A =0.2m.m/s10 rad/s 102====TTλππωv从图16-9 (b)P 点的振动曲线并结合波形曲线(a), 判断出波沿x 轴负向传播, 因而t =0时O 点向下运动,O 点初相由下两式决定:0c o s0==ϕωA y (1) 0s i n 0<-=ϕωA v (2)由(1)式得2πϕ±=,由(2)式得0sin >ϕ,所以应取2πϕ=得波函数为 ])(c o s [.2101020ππ++=x t y m16-10 两相干波源S 1、S 2具有相同的振幅、频率和初相位.已知振幅A =0.01m,频率为100Hz, 初相位为零. 两波源相距30m, 相向发出二简谐波, 波长为5m. 试求: (1)两波源的振动方程; (2)在两波源连线中点处的合振动方程. 分析 相干波在相遇点的合振幅是各列波在相遇点引起的振动的合成.解 (1) 已知 ππνωω200221=== rad/s所以S 1、S 2的振动方程为t t A y y πφω2000100201cos .)cos(=+==(2) 如图16-10, 取S 1为坐标原点, 向右为正. 第一列波到达波源连线中点P 的振动方程为)](cos[λνπPx t A y -=21)(cos .)](cos[.310020105151002010-=-=t t ππ第二列波到达P 点的振动方程为)](2cos[22λνπPx x t A y --=)(cos .)](cos[.310020105151002010-=-=t t ππ所以P 点的合振动方程式为)(cos .3100202021-=+=t y y y π m16-11 一简谐空气波, 沿直径为0.14m 的圆柱形管传播, 波的平均强度为3109-⨯W/m 2, 频率为300Hz, 波速为300m/s. 求: (1)波的平均能量密度和最大能量密度; (2)每两个相邻同相面间的波中含有的能量.分析 本题涉及的概念有: 能量密度、平均能量密度、平均能流、能流密度或波的强度. 从能量密度)(sin v x t A w -=ωρω222看到,介质单位体积中的能量不守恒, 随时间作周期变化, 在给定时刻能量又随单位体积平衡位置坐标x 作周期变化,因此波的传播既是振动相位的传播又是能量的传播,因此而称为行波.解 (1)平均能量密度为 2221A w ρω=平均强度为 v A I 2221ρω=3533J/m 103J/m300109--⨯=⨯==v I w能量密度为 )(s i n 222vxt A w -=ωρω最大能量密度为 353522m a x J /m 106J/m 10322--⨯=⨯⨯===w A w ρω(2)相邻同相面间隔的距离为一个波长,即 1300300===νλvm相邻同相面间的波中含有能量J 1062.4J )07.0(14.31037252--⨯=⨯⨯⨯===λπr w V w W16-12 一简谐波在弹性介质中传播, 波速31001⨯=.v m/s, 振幅A =1.0×10-4m, 频率31001⨯=.νHz. 若介质的密度3kg/m 800=ρ, 求: (1)该波的能流密度; (2) 若有一平面面积s=4.0×10-4m 2, 波速v 与该平面法线e n 的夹角为︒60, 求一分钟内通过该面积的平均能流.解 (1)能流密度为2523242322W/m1058.1W/m10)100.1()1014.32(80021 21⨯=⨯⨯⨯⨯⨯⨯⨯==-vA I ρω(2)一分钟内通过垂直于波传播方向的平均能流为W1089.1W 6060cos 100.41058.1345⨯=⨯⨯⨯⨯⨯==- Ist P16-13 若太阳能电池板的接收面积为13cm 2, 当正对太阳时, 电池板产生0.45V 电压, 并提供0.20A 电流. 设太阳光的能流密度为1.0×103W/m 2, 求太阳能转变为电能的效率.分析 1s 内太阳能电池板产生的电能与1s 内电池板吸收的太阳能之比就是能量转换效率.本题提供的太阳的能流密度是一常识性数据.解 1 s 内太阳能电池吸收的太阳能为J 3.1J 1013100.143=⨯⨯⨯==-Is W产生的电能为 E = 0.2×0.45 J = 0.09 J 所以转换效率为%9.6%1003.109.0=⨯=WE16-14 两相干平面波波源A 、B 相距20m, 作同频率、同方向和等振幅的振动, 它们所发出的波的频率为100Hz ,波速为200m/s ,相向传播, 且A 处为波峰时, B 处为波谷, 求AB 连线上因干涉而静止的各点的位置.分析 两相干波等振幅,所以相干减弱点的振幅为零,即因干涉而静止.A 处为波峰时B 处恰为波谷, 表明波源A 与波源B 的相位差为π.解 两相干平面波波长为 2100200===νλvm两平面波相向传播,相遇点在两波源之间,设P 在A 、B 间,距离波源A 为x ,如图16-14,设波源B 相位比波源A 超前π,有xxxx l A B ππππλππϕϕ21922202)(2+-=--=---=-相遇点为干涉静止时需满足条件为),2,1,0( )12( ±±=+=-k k A B πϕϕ得 πππ)12(219+=+-k x 所以AB 连线上因干涉而静止点的位置为x = k+10 m )9,,2,1,0(±±±= k16-15 如图16-15, 两列波长均为λ的相干简谐波, 分别通过图中的O 1和O 2点, 通过O 1点的简谐波在M 1M 2平面反射后与通过O 2点的简谐波在P 点相遇. 假定波在M 1M 2平面反射时有半波损失, O 1和O 2两点的振动方程分别为t A y πc o s 10=和)2/cos(20ππ+=t A y ,且O 1m +mP =8λ, O 2P =3λ, 求: (1)两列波分别在P 点引起的振动的振动方程; (2)P分析 通过O 1的简谐波在M 1M 2平面的m 点反射,反射时有半波损失,即对于通过O 1的简谐波, M 1M 2平面是波密介质, 反射时反射波的相位改变π.介质无吸收,即表明振幅保持不变. 解 (1) 222===ππωπT s在M 1M 2面上反射有半波损失, 所以通过O 1点的简谐波在P 点的振动方程为)cos()cos(])(cos[πππππλλπ-=-=+-=t A t A t A y P 158221通过O 2点的简谐波在P 点的振动方程为)cos(])(cos[223222πππλλπ+=+-=t A t A y P(2)由(16-22)式, P 点合振动的振幅为A A A A 222222=++=)cos(ππ合16-16 如图16-16(a), 三列波长均为λ的简谐波, 各自通过S 1、S 2、S 3后在P 点相遇,求P 点的振动方程. 设三列简谐波在 S 1、S 2、S 3 振动的振动方程分别为)/cos(,cos ),/cos(222321πωωπω-==+=t A y A y t A y ,且S 2P =4λ,S 1P =S 3P =5λ, 并设介质无吸收.分析 振动的合成采用旋转矢量法最简便.本题可用旋转矢量法先求第一、二个振动的合振动,再与第三个合成. 以此类推可作多个振动的合成.解 三列简谐波在P 点的振动方程分别为)cos()cos(])(cos[232192521πωπωπλλπ-=-=+-=t A t A T t A y Pt A t A T t A y P ωπωλλπcos )cos()](cos[=-=-=8422)cos()cos(])(cos[22210225223πωππωπλλπ-=--=--=t A t A T tA y P先将第一列波在P 点引起振动的旋转矢量A 1与第三列波在P 点引起振动的旋转矢量A 3合成,合旋转矢量为A 13, 如图16-16(b). 合振动方程为)c o s (313πω+=t A y)cos(2πω-=t A y 合16-17 沿弦线传播的一入射波的波函数为)./cos(λπωx t A y 21-=设波在x=L 处(B 点)反射, (1)反射点为自由端, 写出以B 为原点的反射波的波函数; (2)反射端为固定端又如何?分析 考虑在自由端反射的反射波无半波损失,在固定端反射的反射波有半波损失,结合波函数的物理意义, 可写出B 点的振动方程.沿入射波的传播方向, 波线上各点相位依次落后,且注意到入射波的波函数是以O 为原点.B 点的坐标为x B =L ,于是以B 为原点的反射波传到坐标x 点时, 传播距离是L-x.解 (1)如图16-17, 反射点B 为自由端时, 反射波无半波损失,B 点坐标x B =L ,B 点振动方程为 )cos(λπωLt A y B 2-=反射波沿BO 方向传播, BO 间各点的相位均落后于B 点, BO 上坐标为x 的任一点t 时刻相位为)()()(x L t x L Lt --=---2222λπωλπλπω所以B 点为自由端时, 以其为原点的反射波波函数为)cos(λπωxL t A y --=22反(2)当反射点B 为固定端时, 反射波有半波损失,以B 为原点的反射波波函数为)cos(πλπω+--=xL t A y 22反16-18 两列波在同一直线上传播, 波速均为 1 m/s.它们的波函数分别为),(cos .),(cos .t x y t x y +=-=ππ05005021 式中各量均采用国际单位制. (1)试说明在直线上形成驻波, 并给出波腹、波节的位置; (2)求在x =1.2m 处的振幅.分析 两列在同一直线上沿正反方向传播的等振幅相干波叠加形成驻波.驻波波函数为.cos )cos (t xA y πνλπ222= λπxA 22cos 为振幅项.结合书上对驻波的讨论, 可总结出驻波区别于行波的两个特点:在驻波中无能量传播, 无相位传播.解 两波函数改写为)(c o s .)(c o s .x t y x t y +=-=ππ05005021所以这两列波是在同一直线上沿正反方向传播的等振幅的相干波,在直线上叠加形成驻波,(16-24)式给出驻波波函数的形式为t xA y πνλπ222cos cos =与已知条件比较,知 m/s 2 rad/s, , m 050====T v A λπω. 得 22==ωπT s ,501.==Tν Hz , 2==vT λm.所以驻波波函数为t x y ππc o s c o s.10= m 当 x 满足1=x πcos 时出现波腹, 即ππk x = (k =0,1,2,…..)解出x=k m 出现波腹.当 x 满足0cos =x π时出现波节, 即212ππ)(+=k x (k =0,1,2,…..)解出)(1221+=k x m 出现波节.(2)x =1.2m 处的振幅为0810*******1..c o s .c o s..====ππx x A m .16-19 如图16-19, 位于x =0 处的波源O 作简谐振动, 产生振幅为A , 周期为T ,波长为λ的平面简谐波. 波沿x 轴负向传播, 在波密介质表面B 处反射. 若t =0时波源位移为正最大, 且OB=L, 求:(1)入射波的波函数; (2)以B 为原点的反射波的波函数; (3)设L =43λ, 证明BO 间形成驻波, 并给出因干涉而静止的点的位置.分析 将入射波的波函数写出后与习题16-17 联系应不难求解. 解题时需十分留心的是题目已把坐标取定, B 点的坐标L x B -=.解 (1)波源的初相由下式给出 A A y ==ϕc o s 0 (1)0sin 0>=ϕA v (2)从(1)式解出 0=ϕ 满足(2)式, 故 0=ϕ所以以O 为原点, 沿x 轴负向传播的入射波波函数为)(c o s λπxT t A y +=21(2)B 点坐标x B =-L , 且B 点为波密介质表面一点, 在B 点反射的反射波有半波损失,B 点的振动方程为])(2cos[πλπ+-=LT t A y B 振反射波沿x 轴正向传播, BO 间坐标为-x 的任一点t 时刻相位为πλππλλπ++-=++--)()(xL Tt xL LT t 222所以以B 为原点的反射波波函数为])(cos[πλπ++-=xL T t A y 222(3) 因43λ=L ,所以入射波波函数为)(cos λπxT t A y +=21反射波波函数为)(cos ]))((cos[λππλλπx T t A xTt A y -=++-=243222BO 间两波叠加, 合成波为tTxA y y y πλπ2221coscos=+=为驻波.因干涉而静止点的位置满足02=λπxc o s即λ412+±=k x (k =0,1,2,….),且],[L x 0∈,所以BO 间因干涉而静止的点为λλ4341,处.16-20 站在铁路附近的观察者, 听到迎面开来的火车笛声频率为440Hz,当火车驶过后, 笛声的频率降为390Hz, 设声音速度为340m/s, 求火车的速度.分析 据已知, 观察者相对于介质静止, 波源(汽笛)先向着观察者运动后又背离观察者,对照(16-29)式不难求解.解 设1ν和2ν分别为观察者听到的火车迎面开来和驶过时的频率, ν为汽笛的固有频率. 设声速为V, v 为火车速度,火车的汽笛是波源. 据(16-29)式, 火车向着观察者运动v>0, 有 ννvV V -=1火车背着观察者运动v<0, 有ννv V V +=2两式相除得vV v V -+=21νν解出火车速度 m /s 5.20m/s 3403904403904402121=⨯+-=+-=V ννννv16-21 水下甲潜艇静止, 乙潜艇以航速v 向着甲运动. 为了测定乙潜艇的航速, 甲潜艇上的人员用声纳装置向乙潜艇发出频率为0ν的超声波. 若甲潜艇收到的反射波的频率为ν, 试确定ν与0ν、v 间的关系(已知超声波在水中传播速度为u ).分析 超声波是指频率高于2000Hz 的机械纵波,具有频率高、波长短、强度大特点,因而有良好的定向传播性能和很强的穿透本领. 由于海水导电性能好,对电磁波有很强的吸收,因而依赖发射、接收电磁波而工作的电磁雷达无法在海水中使用. 利用超声波制成的超声波雷达——声纳应运而生.解 超声波从甲传到乙时, 甲为波源静止,频率为0ν. 乙为接收者,以 v 向着甲运动, v<0. 据(16-28)式, 乙接收到的频率为0ννuv +='u超声波从乙传到甲时,甲为接收者,静止. 乙为波源,频率为ν',以v 向着甲运动, v>0. 由(16-29)式, 甲接收到的反射波频率为0νννv-u v v+='-=u u u。
大学物理习题答案-第16章-电磁场
第16章 电磁场 参考答案一、选择题1(A),2(A),3(C),4(C),5(D),6(D),7(C),8(B),9(B),10(B) 二、填空题(1). )2/cos(/d d π+==t A NbB t x NbB ωωε 或t NBbA ωωεsin =. (2). πBnR 2, O . (3). 相同(或221R B ω), 沿曲线由中心向外.(4). 小于, 有关. (5). 0 (6). )8/(2220a I πμ. (7). 9.6 J.(8). ⎰⎰⋅∂∂S S D t ϖϖd 或 t D /d d Φ , ⎰⎰⋅∂∂-SS B t ϖϖd 或 t m /d d Φ-. (9). t E R d /d 02επ, 与E ϖ方向相同(或由正极板垂直指向负极板).(10).t B r d /d 21.三 计算题1. 如图所示,有一半径为r =10 cm 的多匝圆形线圈,匝数N =100,置于均匀磁场B ϖ中(B = 0.5 T ).圆形线圈可绕通过圆心的轴O 1O 2转动,转速 n =600 rev/min .求圆线圈自图示的初始位置转过π21时,(1) 线圈中的瞬时电流值(线圈的电阻R 为 100 Ω,不计自感);(2) 圆心处的磁感强度.(μ0 =4π×10-7 H/m)解:(1) 设线圈转至任意位置时圆线圈的法向与磁场之间的夹角为θ,则通过该圆线圈平面的磁通量为θΦcos 2r B π=, nt t π==2ωθ∴ nt r B ππ=2cos 2Φ在任意时刻线圈中的感应电动势为nt n r NB tNπππ=Φ-=2sin 2d d 2 nt n BNr ππ=2sin 222 t ΤI nt R n NBr R i m π=ππ==22sin 2sin 22 当线圈转过π /2时,t =T /4,则 987.0/22=π==2R NBn r I i m A(2) 由圆线圈中电流I m 在圆心处激发的磁场为==')2/(0r NI B m μ 6.20×10-4 T方向在图面内向下,故此时圆心处的实际磁感强度的大小500.0)(2/1220≈'+=B B B T 方向与磁场B ρ的方向基本相同.ϖ2. 如图所示,真空中一长直导线通有电流I (t ) =I 0e -λt (式中I 0、λ为常量,t 为时间),有一带滑动边的矩形导线框与长直导线平行共面,二者相距a .矩形线框的滑动边与长直导线垂直,它的长度为b ,并且以匀速v ϖ(方向平行长直导线)滑动.若忽略线框中的自感电动势,并设开始时滑动边与对边重合,试求任意时刻t 在矩形线框内的感应电动势 i 并讨论 i 方向.解:线框内既有感生又有动生电动势.设顺时针绕向为 i 的正方向.由 i = -d Φ /dt 出发,先求任意时刻t 的Φ (t )⎰⋅=S B t ρϖd )(Φy t x yt I ba ad )(2)(0⎰+π=μaba t x t I +π=ln )()(20μ 再求Φ (t )对t 的导数:)d d d d )((ln 2d )(d 0txI x t I b ba t t ++π=μΦ ab a t I t+-π=-ln )1(e 200λμλv )(t x v =∴ i ab a t I tt +-π=-=-ln )1(e 2d d 00λμΦλvi 方向:λ t <1时,逆时针;λ t >1时,顺时针.3. 如图所示,一根长为L 的金属细杆ab 绕竖直轴O 1O 2以角速度ω在水平面内旋转.O 1O 2在离细杆a 端L /5处.若已知地磁场在竖直方向的分量为B ϖ.求ab 两端间的电势差b a U U -.解:Ob 间的动生电动势:⎰⎰=⋅⨯=5/405/401d d )L L l Bl l B ωϖϖϖv ( 225016)54(21BL L B ωω== b 点电势高于O 点. Oa 间的动生电动势:⎰⎰⋅=⨯=5/05/02d d )L L l Bl l B ωϖϖϖv ( 22501)51(21BL L B ωω== a 点电势高于O 点. ∴ 22125016501BL BL U U b a ωω-=-=- 221035015BL BL ωω-=-=I (t )v ϖI (t ) x (t )b4. 有一很长的长方的U 形导轨,与水平面成θ角,裸导线ab 可在导轨上无摩擦地下滑,导轨位于磁感强度B ϖ竖直向上的均匀磁场中,如图所示.设导线ab 的质量为m ,电阻为R ,长度为l ,导轨的电阻略去不计,abcd 形成电路,t =0时,v =0. 试求:导线ab 下滑的速度v 与时间t 的函数关系.解:ab 导线在磁场中运动产生的感应电动势 θcos v Bl i = abcd 回路中流过的电流 θcos RBl R I ii v ==ab 载流导线在磁场中受到的安培力沿导轨方向上的分力为: θθθcos cos cos Bl RBl Bl I F i v ==由牛顿第二定律: t mBl R Bl mg d d cos cos sin vv =-θθθ mR l B g t θθ222cos sin d d v v-=令 θsin g A =,)/(cos 222mR l B c θ= 则 )/(d d v v c A t -=利用t = 0,v = 0 有⎰⎰⎰---=-=vv v v v v 000)d(1d c A c A c c A d t t Ac A ct v--=ln1 ∴ )e 1(cos sin )e 1(222ct ctl B mgR c A ---=-=θθv5. 一根长为l ,质量为m ,电阻为R 的导线ab 沿两平行的导电轨道无摩擦下滑,如图所示.轨道平面的倾角为θ,导线ab 与轨道组成矩形闭合导电回路abdc .整个系统处在竖直向上的均匀磁场B ϖ中,忽略轨道电阻.求ab 导线下滑所达到的稳定速度.解∶动生电动势θcos Bl i v = RBl RI iθcos v ==导线受到的安培力 lB I f m =ab 导线下滑达到稳定速度时重力和磁力在导轨方向的分力相平衡 θθcos sin m f mg =θθθcos cos sin lB RBl mg v =∴ θθ222cos sin l B mgR =vdϖ6. 已知,一根长的同轴电缆由半径为R 1的空心圆柱导体壳和另一半径为R 2的外圆柱导体壳组成,两导体壳间为真空.忽略电缆自身电阻,设电缆中通有电流i ,导体间电势差为U ,求(1) 两导体壳之间的电场强度E ϖ和磁感强度B ϖ. (2) 电缆单位长度的自感L 和电容C .解:(1) 根据安培环路定理i l B 0d μ⎰=⋅ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1 (r 为轴线到场点的半径)区域有 )2/(0r I B π=μB ϖ方向与内导体壳电流方向成右手螺旋关系.根据高斯定理:⎰⋅=0/d εQ S E ϖϖ和长直条件及轴对称性可知,在R 2 >r > R 1区域有r E 02/ελπ=E ϖ方向沿半径指向电势降落方向,式中λ为电缆内导体壳上单位长度上的电荷.由两导体间电势差U ,可求得 )/ln(2120R R U ελπ=, ∴ )/ln(12R R r UE =(2) 在电缆的两个导体壳之间单位长度的磁通量为 1200ln 2d 221R R ir riR R π=π=⎰μμΦ 单位长度电缆的自感系数为12ln2R R iL π==μΦ由电容定义又知单位长度电缆的电容应为 )/ln(2120R R UC ελπ==7. 两线圈顺接,如图(a),1、4间的总自感为1.0 H .在它们的形状和位置都不变的情况下,如图(b)那样反接后1、3之间的总自感为0.4 H .求两线圈之间的互感系数.解:设顺接的总自感为L S ,反接的总自感为L F . ∵ M L L L S 221++= M L L L F 221-+=∴ 4/)(F S L L M -== 0.15 H8. 如图所示,真空中一矩形线圈宽和长分别为2a 和b ,通有电流I 2,可绕其中心对称轴OO '转动.与轴平行且相距为d +a 处有一固定不动的长直电流I 1,开始时矩形线圈与长直电流在同一平面内,求:(1) 在图示位置时,I 1产生的磁场通过线圈平面的磁通量;(2) 线圈与直线电流间的互感系数. (3) 保持I 1、I 2不变,使线圈绕轴OO '转过90°外力要做多少功? 解:(1) 按题意是指图示位置时的Φ.123(a)顺接(b) 反接Ibdad bI bdx xI ad d2ln2210210+π=π=⎰+μμΦ (2) dad bI M 2ln201+π==μΦ(3)dad bI I I A 2ln22102+π==∆μΦ9. 一根电缆由半径为R 1和R 2的两个薄圆筒形导体组成,在两圆筒中间填充磁导率为μ 的均匀磁介质.电缆内层导体通电流I ,外层导体作为电流返回路径,如图所示.求长度为l 的一段电缆内的磁场储存的能量.解: ⎰∑⋅=i I l H ϖϖd , I rH =π2 (R 1< r < R 2)r I H π=2, r I H B π==2μμ2222)2(22r I B w m π==μμμ l r r w V w W m m m ⋅π==d 2d d r rl r Id 2)2(222ππ=μ∴ ⎰⎰π==2121d 4d 2R R R R m m rrl I W W μ122ln4R R lI π=μ四 研讨题1. 我们考虑这样一个例子: 设一个半径为R 的导体圆盘绕通过其中心的垂直轴在磁场中作角速度为ω的匀速转动,并假设磁场B 均匀且与轴线平行,如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:①在铜棒上距O点为L处取长度元dl
方向从O指向A ,其速率为 =l
则 dl上的动生电动势为
d =( B) dl Bdl Bldl
因为各长度元上电动势方向相同,所以铜棒中总的动生电动势为
= L Bldl B L2 方向由A指向O
0
2
②设铜棒在 t 内转过的角度为 ,则在这段时间内通过铜棒扫过
(v B) dl
OP
对于导线回路 v B dl dm
l
dt
大学物理学
非闭合回路:
b
a (v B) dl
dm
dt 时间内扫过 面积的磁通量
dt
动生电动势的演示
大1学6.物2.理2 学洛伦兹力做功问题
设均匀磁场 B 以恒定外力向右拉杆
F q u B
q B qu B f1 f2
•1831年法拉第发现了电磁感应现象,只要通过导线回 路中的磁通量发生变化,回路中就会出现感应电流和 感应电动势。当导线不成回路时,没有感应电流,但 是有感应电动势。电动势的方向可由楞次定则判断。
大学物理学
楞次定则
感应电动势产生的感 应电流产生的磁场的方向总 是阻碍原磁通量的变化。
大学物理学
16.1.2 法拉第电磁感应定律*
大学物理学
第16章 变化的电磁场
长春理工大学
大学物理学
第16章 变化的电磁场
1 16.1电磁感应定律 3 16.3感生电动势
1 16.1.1电磁感应现象 2 16.1.2法拉第定律
2 16.2动生电动势
1 16.2.1动生电动势的产生 2 16.2.2洛伦兹力做功问题
1 16.3.1感生电动势和感应电场 2 16.3.2感应电场的性质 3 16.3.3涡电流和趋肤效应 4 16.3.4感生电动势的计算
法拉第(Michael Faraday, 1791-1867),伟大的英国物理 学家和化学家.
磁场这一名称是法拉第最早 引入的。
电磁理论的创始人之一。 于1831年发现电磁感应现象
大学物理学
16.1 电磁感应现象
• 1819年奥斯特发现了电流的磁效应,第一次揭示了 电现象和磁现象内在的关系。 • 后来人们致力于它的逆现象,用磁场来产生电流。
大学物理学
16.2.3 动生电动势的计算
动生电动势的求解可以采用两种方法: 1 利用“动生电动势”的公式来计算。
l B dl 或 l B dl
2 设法构成一种合理的闭合回路以便于应用 “ 法拉第电磁感应定律”求解。
dm
dt
大例学16物-2理铜学棒OA长为L,在方向垂直纸面向内的匀强磁场B中,沿逆时 针方向绕O轴转动,角速度为ω,求铜棒中动生电动势的大小和方向。
——因导体在磁场中的运动而产生的感应电动势
动生电动势的非静电力场来源
洛伦兹力
Fm qv B
平衡时 Fm Fq qEk
Ek
Fm q
vB
+B
+
+ +P +
+Fm++++
+ +
+ +
+ +
v + + + +-+ + + +
+
+
Fq+
-
+
-
+
+
+
+ + + O+ + + +
OP的总电动势
OP Ek dl
大例学16物-3一理长学直导线中通有电流I,在其附近有一长L的金属AB,以
速度v平行于长直导线作匀速运动,如棒的近导线一端距离导线d,
求金属棒中的动生电动势。
解:长直导线形成的磁场是非匀强磁场 B 0 I
取水平方向为x轴,在金属棒AB上任取
2 x
一长度元 dx(方向由A指向B)与长直
一瞬时线圈中的感应电动势。
解:某一瞬时,距导线x处磁感应强度为
B
0 I 2 x
选顺时针的转向作为矩形线圈的绕行正方向,则
通过阴影面积 dS ldx 的磁通量为
d=BdS cos 0 0 I ldx 2 x
在t时刻,通过一匝线圈的磁通量为
= d
db 0 I ldx 0lI0 sint ln( d b )
d 2 x
2
d
因为I随t变化,磁通量也随t变化,故线圈中的感应电动势为
=
d( N )
0 NlI0
ln( d
b)
d( sint)
0 NlI0
d ln(
b ) cos t
dt
2
d
dt
2
d
大学物理学
16.2 动生电动势
电源电动势方向:规定从负极通过电源内 部指向正极的方向。即和回路中电流的方 向一致。
3 16.4自感和互感
3 16.2.3动生电动势的计算
大学物理学
6 16.6磁场能量
1 16.6.1自感能量 2 16.6.2互感能量
7 16.7位移电流
1 16.7.1位移电流假设 2 16.7.2全电流定律 3 16.7.3位移电流性质
8 16.8麦克斯韦磁场方程
大学物理学
第16章 变化的电磁场
当穿过闭合回路所围 面积的磁通量发生变化时, 回路中会产生感应电动势, 且感应电动势正比于磁通 量对时间变化率的负值。dmdtຫໍສະໝຸດ SI: (V),m (Wb)
大学物理学
法拉第定律说明感应电动势的方向:
先假设回路正方向,得到磁通量的正负,再求感 应电动势。若感应电动势为正,则它与假设的回路方 向相同;若为负,则其方向与假设方向相反。
分力f1的功率为
f1
f2
u
f1 u q( B)u qBu qu B f2
由此可见,洛伦兹力的总功率为0.f1作正功,f2作负功。外力做正 功输入机械能,安培力做负功吸收它,同时感应电动势在回路中
做正功又以电能形式输出这个份额的能量。
洛伦兹力的作用并不提供能量,而只是传递能量。
前提:假设B向上变大
dm
dt
大学物理学
若回路线圈有N匝,则由于串联关系
N dm d(Nm ) d
dt
dt
dt
N
——磁通链
m
大例I0是1学6电-物1流一理幅长学值直,导ω线是中角通频有率交,变I0电和流ω是I常量I。0 s在in长直t导,线式旁中平I表行示放瞬置间N电匝流矩,
形线圈,线圈和长直导线在同一平面内。已知线圈长为L,宽为b。求任
扇形面积的磁通量为 BS B L2 L2 2 2
所以铜棒中的动生电动势为
1 BL2
1 BL2
t 2 t 2
大学物理学
• 如果是铜盘转动,可以把铜盘看成由无数根并 联的铜棒组合而成,每根铜棒都类似于OA。因 为是并联,所以铜盘的电动势也为
1 BL2
2
• 如果把铜盘的中心和其边缘通过外接电路接通, 则在磁场中转动的铜盘就能对外供应电流,这 种简易的发电机称为法拉第圆盘发电机。