(完整版)二次函数的应用教案

合集下载

二次函数教案(3篇)

二次函数教案(3篇)

二次函数教案(3篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数教案(3篇)作为一名无私奉献的老师,就有可能用到教案,通过教案准备可以更好地根据具体情况对教学进程做适当的必要的调整。

《二次函数的应用》教学设计

《二次函数的应用》教学设计

《二次函数的应用》教学设计【教学设计】一、教学目标1.知识目标:掌握解决二次函数应用问题的基本方法,了解二次函数在现实生活中的应用。

2.能力目标:能够运用二次函数的知识解决与现实生活相关的问题,培养学生的应用数学思维和解决问题的能力。

3.情感目标:培养学生对数学的兴趣,激发学生的学习热情。

二、教学重点和难点重点:掌握应用二次函数解决实际问题的方法。

难点:运用二次函数解决生活中的实际问题。

三、教学内容1.二次函数的基本知识回顾2.二次函数在现实生活中的应用四、教学步骤与教学过程1.由教师布置一个小组讨论的问题:“在现实生活中,你能举出哪些例子可以用到二次函数?”鼓励学生积极参与,思考多个方面,并将问题记录在小组讨论总结表上。

2.整理讨论总结表,让每个小组派出一名代表将总结结果向全班进行汇报和讨论。

教师逐一帮助学生分析总结的例子是否能用二次函数进行模型建立和求解。

3.在学生了解和感兴趣的基础上,教师从中选取一个例子进行详细讲解,以便让学生深入理解二次函数在实际问题中的应用。

如:发射炮弹问题。

4.给学生展示一个炮弹发射的视频,并引导学生分析视频中炮弹的抛射轨迹。

通过观察和分析,引导学生发现炮弹的抛射轨迹可以用二次函数来描述。

5.示范讲解炮弹抛射问题的建模与求解过程:首先,引入二次函数的标准形式,并解释各个参数的意义;其次,根据问题的条件,列出二次函数的方程;最后,根据解方程的方法,求得抛射物的落地点和飞行时间。

6.将示例问题交给学生进行练习,鼓励学生思考并解答问题。

分析解决问题的方法,并帮助学生找出解决问题的关键步骤,培养学生灵活应用数学知识解决实际问题的能力。

7.针对其他生活例子,鼓励学生展开独立思考,提出二次函数的思考问题,并给予必要的指导。

8.课堂小结:对本节课所学知识进行总结,重点强调二次函数在现实生活中的应用和解决问题的方法。

五、课后作业1.思考二次函数的其他应用,并写一篇小短文进行总结。

2.练习本单元其他相关题目。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

九年级数学下册《二次函数的应用》优秀教学案例

九年级数学下册《二次函数的应用》优秀教学案例
四、教学内容与过程
(一)导入新课
在导入新课环节,我将结合学生的实际生活,提出以下问题:“同学们,你们在生活中遇到过抛物线运动吗?比如抛硬币、投篮等。这些现象与数学中的哪个知识点有关?”通过这个问题,引导学生回顾之前学过的抛物线知识,为新课的学习做好铺垫。
接着,我会展示一些与二次函数相关的图片和实例,如拱桥、卫星轨道等,让学生观察并思考这些图像的共同特点。在此基础上,引出本节课的主题——二次函数的应用,激发学生的好奇心和探究欲望。
小组合作是本章节教学的重要组成部分。我将根据学生的学习特点和兴趣,合理分组,使学生在合作交流中共同进步。在小组合作过程中,引导学生明确分工、相互协作,共同探讨二次函数的性质、图像以及应用问题。通过小组讨论、成果展示等形式,培养学生的团队协作能力和表达能力。
(四)反思与评价
在教学过程中,我将重视学生的反思与评价,让学生在反思中总结经验,不断提高。在每节课结束后,引导学生回顾所学内容,总结二次函数的性质、图像和应用方法,查找自己在学习过程中的不足之处,并进行针对性的改进。同时,开展多元化的评价方式,如自我评价、同伴评价、教师评价等,全面了解学生的学习情况,激发学生的学习积极性,促进学生的全面发展。此外,我还将关注学生的情感态度与价值观的培养,鼓励学生积极参与课堂活动,充分展示自己的个性特长,使学生在数学学习中获得成功的体验。
(三)学生小组讨论
在学生小组讨论环节,我会将学生分成若干小组,每组选出一名组长负责组织讨论。以下为讨论的主题和步骤:
1.各小组结合教材和实例,探讨二次函数在实际问题中的应用方法。
2.各小组分享自己在讨论过程中的发现和心得,相互交流、学习。
3.针对本节课的重点和难点,引导学生相互提问、解答,共同提高。
4.学会使用数学软件或图形计算器绘制二次函数图像,以便更好地理解二次函数的几何性质。

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)

《二次函数》教案(优秀7篇)《二次函数》教案篇一教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。

2、让学生经历二次函数y=ax2+b性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。

教学重点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y =ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系。

教学难点:正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b 与抛物线y=ax2的关系。

教学过程:一、提出问题导入新课1.二次函数y=2x2的图象具有哪些性质?2.猜想二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、学习新知1、问题1:画出函数y=2x2和函数y=2x2+1的图象,并加以比较问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?同学试一试,教师点评。

问题3:当自变量x取同一数值时,这两个函数的函数值(既y)之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,顶点坐标,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。

师:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?小组相互说说(一人记录,其余组员补充)2、小组汇报:分组讨论这个函数的性质并归纳:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=1。

3、做一做在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?三、小结 1、在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系? 2.你能说出函数y=ax2+k具有哪些性质?四、作业:在同一直角坐标系中,画出 (1)y=-2x2与y=-2x2-2;的图像五:板书《二次函数》教案篇二1、会用描点法画二次函数=ax2+bx+c的图象。

二次函数的应用教案

二次函数的应用教案

二次函数的应用教案教案标题:二次函数的应用教案教案目标:1. 理解二次函数的概念和特征。

2. 掌握二次函数在实际问题中的应用。

3. 能够解决涉及二次函数的实际问题。

教学重点:1. 理解二次函数的图像特征和性质。

2. 掌握二次函数的标准形式和顶点形式。

3. 学会将实际问题转化为二次函数模型,并解决问题。

教学难点:1. 将实际问题转化为二次函数模型。

2. 解决实际问题时的数学建模和推理能力。

教学准备:1. 教师准备:教学课件、教学素材、白板、彩色笔。

2. 学生准备:教材、作业本、计算器。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,回顾一次函数的特征和图像。

2. 提问学生:你们知道二次函数有什么特点吗?它的图像是什么样的?二、讲解二次函数的概念和特征(15分钟)1. 介绍二次函数的定义和一般形式:f(x) = ax^2 + bx + c。

2. 解释二次函数图像的开口方向和顶点位置。

3. 演示如何通过改变参数a、b、c来改变二次函数图像。

三、讲解二次函数的标准形式和顶点形式(15分钟)1. 解释二次函数的标准形式:f(x) = a(x-h)^2 + k。

2. 解释标准形式中的顶点坐标(h, k)的意义。

3. 演示如何通过标准形式来确定二次函数的图像。

四、应用二次函数解决实际问题(20分钟)1. 提供一些实际问题,如抛物线的运动轨迹、最优化问题等。

2. 引导学生思考如何将问题转化为二次函数模型。

3. 指导学生解决实际问题,并讨论解决过程和答案的合理性。

五、总结与拓展(10分钟)1. 总结二次函数的概念、特征和应用。

2. 提问学生:你们还能想到哪些实际问题可以通过二次函数来解决?3. 鼓励学生拓展应用二次函数的能力,思考更复杂的问题。

教学延伸:1. 给学生布置相关的作业,巩固所学知识。

2. 鼓励学生自主探索更多二次函数的应用案例,并进行展示和分享。

教学评估:1. 教师观察学生在课堂上的参与度和理解程度。

(完整版)二次函数的应用教案.docx

(完整版)二次函数的应用教案.docx

22.5二次函数的应用岑川中学龙小丹一、教学目标1、知与技能:通本学,巩固二次函数y=ax2+bx+c( a≠ 0)的象与性,理解点与最的关系,会求解中的最。

2、程与方法:通察象,理解点的特殊性,会把中的最化二次函数的最,通手,提高分析解决的能力,并体会一般与特殊的关系,了解数形合思想、函数思想和数学模型思想。

3、情感度价:通学生之的、交流和探索,建立合作意,提高探索能力,激学的趣和欲望,体会数学在生活中广泛的用价。

二、重点、难点教学重点:利用二次函数y=ax2+bx+c (a≠ 0)的象与性,求最教学点: 1、正确构建数学模型2、函数象点、端点与最关系的理解与用三、教学方法与手段的选择由于本是用,重在通学解决的方法,因而本以“启探究式” 主开展教学活,解决以学生手探究主,必要加以小合作,充分学生学极性和主性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

了提高堂效率,展示学生的学效果,适当地以多媒体技。

四、教学流程(一)复引入(1)由二次函数 y= -x 2 +20x 的解析式我能想到的象特征和性是⋯?(2)根据同学描述信息,画出函数的示意:(二)讲解新课1、在情境中发现问题[ 做一做 ]1)、你能够画一个周长为40cm 的矩形吗?2)、周长为 40cm 的矩形是唯一的吗?3)、谁画出的矩形的面积最大?4)、有没有一个矩形的面积是最大呢?最大面积为多少?2、在解决问题中找出方法[想一想 ]:某小区想用40m的栅栏围成一个矩形花园,问矩形的长和宽各取多少米,才能使花园的面积最大,最大面积为多少?3、在巩固与应用中提高技能变式一:如果矩形的一面靠墙,(墙的最大利用长度为18m),18m 那么此时用 40m 的栅栏可以围成矩形的面积(1)能够为 202m2吗?(2)能够为 200m2吗?(3)此时还会有最大面积吗?如果有,请说明最大面积为多少?画出示意图。

在(想一想)的基础上,我在此设计了一个条件墙长18 米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图像辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。

九年级数学上册《二次函数的应用》教案、教学设计

九年级数学上册《二次函数的应用》教案、教学设计
2.利用多媒体和实物展示,帮助学生形象地理解二次函数的图像与性质。
-通过动画展示二次函数图像的平移、伸缩等变换,使学生直观地感受图像的性质。
3.设计具有梯度的问题,引导学生逐步深入地掌握二次函数的知识。
-从简单的二次函数图像识别,到求解实际问题中的二次函数,逐步提高问题的难度。
4.采用小组合作、讨论交流的学习方式,促进学生之间的思维碰撞,共同解决难题。
5.学会运用二次函数的知识,解决生活中的实际问题,提高数学应用能力。
(二)过程与方法
在本章节的学习过程中,学生将通过以下方法培养数学思维与解决问题的能力:
1.通过小组合作、讨论交流,培养学生的合作意识和团队精神。
2.利用数形结合的方法,引导学生观察、分析二次函数的图像,培养学生直观想象和逻辑推理能力。
5.反思与总结:
-请同学们在作业本上写下本节课的学习心得,包括对二次函数的理解、学习过程中的困惑以及解题方法的总结。
-教师在批改作业时,应及时给予反馈,鼓励学生持续反思,不断提高。
4.通过小组合作,培养学生互相尊重、团结协作的品质,增强集体荣誉感。
5.引导学生认识到数学知识在实际生活中的重要性,培养学生的社会责任感和使命感。
二、学情分析
九年级的学生已经具备了一定的数学基础,掌握了线性方程、不等式等知识,对于函数的概念也有初步的理解。在此基础上,学生对二次函数的学习将面临以下挑战:
-完成课后作业中的基础题,旨在让学生通过实际操作,加深对二次函数图像特征的理解。
2.提高作业:
-选做课本第chapter页的提高题,涉及二次函数在实际问题中的应用,如最值问题、面积计算等,以提升学生解决问题的能力。
-设计一道综合性的应用题,要求学生运用本节课所学知识,结合生活实际,解决实际问题。

二次函数的应用教学设计

二次函数的应用教学设计

二次函数的应用教学设计二次函数的应用教学设计9篇教学设计需要注重教学环节的衔接,确保教学环节之间的内在逻辑性和衔接性。

需要注重教学方法的创新与多样化,充分利用现代信息技术及各种教学资源,运用多种教学策略。

现在随着小编一起往下看看二次函数的应用教学设计,希望你喜欢。

二次函数的应用教学设计(篇1)教学目标(一)教学知识点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系,理解何时方程有两个不等的实根、两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、(二)能力训练要求1、经历探索二次函数与一元二次方程的关系的过程,培养学生的探索能力和创新精神、2、通过观察二次函数图象与x轴的交点个数,讨论一元二次方程的根的情况,进一步培养学生的数形结合思想、3、通过学生共同观察和讨论,培养大家的合作交流意识、(三)情感与价值观要求1、经历探索二次函数与一元二次方程的关系的过程,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性、2、具有初步的创新精神和实践能力、教学重点1、体会方程与函数之间的联系、2、理解何时方程有两个不等的实根,两个相等的实数和没有实根、3、理解一元二次方程的根就是二次函数与y=h(h是实数)交点的横坐标、教学难点1、探索方程与函数之间的联系的过程、2、理解二次函数与x轴交点的个数与一元二次方程的根的个数之间的关系、教学方法讨论探索法、教具准备投影片二张第一张:(记作§2、8、1A)第二张:(记作§2、8、1B)教学过程Ⅰ、创设问题情境,引入新课[师]我们学习了一元一次方程kx+b=0(k≠0)和一次函数y=kx+b(k≠0)后,讨论了它们之间的关系、当一次函数中的函数值y=0时,一次函数y=kx+b就转化成了一元一次方程kx+b=0,且一次函数y=kx+b(k≠0)的图象与x轴交点的横坐标即为一元一次方程kx+b=0的解、二次函数的应用教学设计(篇2)教学目标(一)教学知识点1、能够利用二次函数的图象求一元二次方程的近似根、2、进一步发展估算能力、(二)能力训练要求1、经历用图象法求一元二次方程的近似根的过程,获得用图象法求方程近似根的体验、2、利用图象法求一元二次方程的近似根,重要的是让学生懂得这种求解方程的思路,体验数形结合思想、(三)情感与价值观要求通过利用二次函数的图象估计一元二次方程的根,进一步掌握二次函数图象与x轴的交点坐标和一元二次方程的根的关系,提高估算能力、教学重点1、经历探索二次函数与一元二次方程的关系的过程,体会方程与函数之间的联系、2、能够利用二次函数的图象求一元二次方程的近似根、教学难点利用二次函数的图象求一元二次方程的近似根、教学方法学生合作交流学习法、教具准备投影片三张第一张:(记作§2、8、2A)第二张:(记作§2、8、2B)第三张:(记作§2、8、2C)教学过程Ⅰ、创设问题情境,引入新课[师]上节课我们学习了二次函数y=ax2+bx+c(a≠0)的图象与x 轴的交点坐标和一元二次方程ax2+bx+c=0(a≠0)的根的关系,懂得了二次函数图象与x轴交点的横坐标,就是y=0时的一元二次方程的根,于是,我们在不解方程的情况下,只要知道二次函数与x轴交点的横坐标即可、但是在图象上我们很难准确地求出方程的解,所以要进行估算、本节课我们将学习利用二次函数的图象估计一元二次方程的根、二次函数的应用教学设计(篇3)一.学习目标1.经历对实际问题情境分析确定二次函数表达式的过程,体会二次函数意义。

最新-二次函数数学教案(优秀11篇)二次函数教案

最新-二次函数数学教案(优秀11篇)二次函数教案

二次函数数学教案(优秀11篇) 二次函数教案作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?它山之石可以攻玉,本页是爱岗敬业的小编小月月给大家整理的二次函数数学教案【优秀11篇】,希望对大家有所帮助。

《1.1二次函数》教学设计篇一【知识与技能】1.理解具体情景中二次函数的意义,理解二次函数的概念,掌握二次函数的一般形式。

2.能够表示简单变量之间的二次函数关系式,并能根据实际问题确定自变量的取值范围。

【过程与方法】经历探索,分析和建立两个变量之间的二次函数关系的过程,进一步体验如何用数学的方法描述变量之间的数量关系。

【情感态度】体会数学与实际生活的密切联系,学会与他人合作交流,培养合作意识。

【教学重点】二次函数的概念。

【教学难点】在实际问题中,会写简单变量之间的二次函数关系式教学过程。

一、情境导入,初步认识1.教材p2“动脑筋”中的两个问题:矩形植物园的面积s(m2)与相邻于围墙面的每一面墙的长度x(m)的关系式是s=-2x2+100x,(0x50);电脑价格y(元)与平均降价率x的关系式是y=6000x2-1+6000,(0x1).它们有什么共同点?一般形式是y=ax2+bx+c(a,b,c为常数,a≠0)这样的函数可以叫做什么函数?二次函数。

2.对于实际问题中的二次函数,自变量的取值范围是否会有一些限制呢?有。

二、思考探究,获取新知二次函数的概念及一般形式在上述学生回答后,教师给出二次函数的定义:一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数,其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项。

注意:①二次函数中二次项系数不能为0.②在指出二次函数中各项系数时,要连同符号一起指出。

《1.1二次函数》教学设计篇二二次函数的教学设计马玉宝教学内容:人教版九年义务教育初中第三册第108页教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

九年级数学下册《二次函数的应用》教案、教学设计

九年级数学下册《二次函数的应用》教案、教学设计
(2)设计一些综合性的题目,让学生运用二次函数的顶点式、交点式进行求解,提高学生的问题解决能力。
3.拓展作业:
(1)针对优秀生,布置一些具有挑战性的题目,如研究二次函数图像的变换规律、探讨二次方程与二次不等式之间的关系等。
(2)鼓励学生利用网络、书籍等资源,了解二次函数在其他学科领域的应用,拓宽知识视野。
(三)情感态度与价值观
在本章节的教学中,学生将形成以下情感态度与价值观:
1.培养学生对数学学习的兴趣,激发他们探索数学问题的热情,增强自信心和自主学习的意识。
2.通过解决实际生活中的问题,使学生感受到数学与现实生活的紧密联系,认识数学的价值,提高学习的积极性。
3.培养学生的团队合作意识,让他们在交流、互助中学会尊重他人,培养良好的人际沟通能力。
2.运用问题驱动法,设计具有挑战性的问题和实际案例,激发学生的兴趣和求知欲,培养其独立思考、合作交流的能力。
3.利用数形结合的方法,结合图像和解析式,帮助学生形象地理解二次函数的几何意义,提高解决问题的直观感知能力。
4.通过分类讨论、逐步推进的解题策略,培养学生的逻辑思维和条理性。
5.组织课堂讨论和小组活动,鼓励学生分享解题心得,提高表达和沟通能力。
九年级数学下册《二次函数的应用》教案、教学设计
一、教学目标
(一)知识与技能
在本章节《二次函数的应用》的教学中,学生将掌握以下知识与技能:
1.理解二次函数的定义及其图像特点,能够识别并写出一般形式的二次函数表达式。
2.学会运用二次函数的顶点式、交点式等不同形式进行问题求解,掌握求解二次方程的方法。
3.能够利用二次函数解决实际生活中的问题,如最值问题、范围问题等,并能够解释其几何意义。
4.掌握二次函数与一元二次方程、不等式之间的关系,能够进行简单的综合应用。

二次函数的应用教学教案

二次函数的应用教学教案

二次函数的应用教学教案第一章:二次函数的图像与性质1.1 了解二次函数的一般形式:y = ax^2 + bx + c1.2 学习二次函数的图像:开口方向、顶点、对称轴、判别式1.3 掌握二次函数的增减性和奇偶性1.4 了解二次函数的图像与x轴的交点:解二次方程第二章:二次函数的图像变换2.1 了解图像的平移:上移、下移、左移、右移2.2 学习图像的伸缩:扩大、缩小2.3 掌握图像的旋转:顺时针旋转、逆时针旋转2.4 应用图像变换解决实际问题第三章:二次函数与几何图形3.1 了解二次函数与圆的关系3.2 学习二次函数与抛物线的关系3.3 掌握二次函数与三角形的关系3.4 应用二次函数与几何图形解决实际问题第四章:二次函数的顶点公式4.1 学习顶点公式:顶点坐标、对称轴、开口方向4.2 掌握顶点公式的应用:求最值、求对称轴、判断开口方向4.3 应用顶点公式解决实际问题4.4 了解顶点公式的拓展:配方法第五章:二次函数与方程的解法5.1 学习二次方程的解法:因式分解、公式法、配方法5.2 掌握二次方程的应用:求解实际问题中的未知数5.3 了解二次方程的根的判别式:判别式的计算与解释5.4 应用二次方程解决实际问题第六章:二次函数在实际问题中的应用6.1 学习将实际问题转化为二次函数模型6.2 掌握实际问题中二次函数的解析和解法6.3 了解二次函数在生活中的应用实例:如抛物线运动、光学成像等6.4 应用二次函数解决实际问题第七章:二次函数图像的描绘7.1 学习使用描点法描绘二次函数图像7.2 掌握坐标轴的绘制和标注7.3 了解二次函数图像的绘制技巧7.4 应用描绘的二次函数图像解决实际问题第八章:二次函数图像的解析8.1 学习二次函数图像的切线和渐近线8.2 掌握二次函数图像的凹凸性和拐点8.3 了解二次函数图像的面积和积分8.4 应用二次函数图像的解析解决实际问题第九章:二次函数与线性函数的组合9.1 学习二次函数和线性函数的组合形式9.2 掌握组合函数的图像和性质9.3 了解组合函数的应用实例9.4 应用组合函数解决实际问题第十章:二次函数的综合应用10.1 学习二次函数在不同领域的应用实例10.2 掌握二次函数的综合解题策略10.3 了解二次函数在高级数学中的应用10.4 应用二次函数的综合知识解决实际问题重点和难点解析六、二次函数在实际问题中的应用将实际问题转化为二次函数模型:学生需要学会识别实际问题中的变量和常数,并将它们转化为二次函数的一般形式。

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)

二次函数数学教案(优秀6篇)二次函数超级经典课件教案篇一1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。

2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。

3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。

初中数学二次函数教案篇二教学准备教学目标1、知识与技能(1)进一步理解表达式y=Asin(ωx+φ),掌握A、φ、ωx+φ的含义;(2)熟练掌握由的图象得到函数的图象的方法;(3)会由函数y=Asin(ωx+φ)的图像讨论其性质;(4)能解决一些综合性的问题。

2、过程与方法通过具体例题和学生练习,使学生能正确作出函数y=Asin(ωx+φ)的图像;并根据图像求解关系性质的问题;讲解例题,总结方法,巩固练习。

3、情感态度与价值观通过本节的学习,渗透数形结合的思想;通过学生的亲身实践,引发学生学习兴趣;创设问题情景,激发学生分析、探求的学习态度;让学生感受数学的严谨性,培养学生逻辑思维的缜密性。

教学重难点重点:函数y=Asin(ωx+φ)的图像,函数y=Asin(ωx+φ)的性质。

难点:各种性质的应用。

教学工具投影仪教学过程【创设情境,揭示课题】函数y=Asin(ωx+φ)的性质问题,是三角函数中的重要问题,是高中数学的重点内容,也是高考的热点,因为,函数y=Asin(ωx+φ)在我们的实际生活中可以找到很多模型,与我们的生活息息相关。

五、归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?六、布置作业:习题1-7第4,5,6题。

课后小结归纳整理,整体认识(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到主要数学思想方法有那些?(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

二次函数的应用教学教案

二次函数的应用教学教案

二次函数的应用教学教案第一章:二次函数的图像与性质1.1 教学目标了解二次函数的图像特征,如开口方向、顶点坐标等。

掌握二次函数的增减性和对称性。

能够分析实际问题中的二次函数图像和性质。

1.2 教学内容二次函数的标准形式:y = ax^2 + bx + c二次函数的图像:开口方向、顶点坐标、对称轴二次函数的增减性:a的正负与开口方向的关系二次函数的对称性:对称轴和顶点的性质1.3 教学活动引入二次函数图像的实例,让学生观察和描述。

引导学生通过变换二次函数的系数来分析开口方向、顶点坐标等。

运用实际问题,让学生应用二次函数的增减性和对称性解决问题。

1.4 教学资源二次函数图像的示例图片实际问题情境的案例1.5 教学评估通过练习题让学生绘制二次函数的图像,并分析其性质。

提供实际问题,让学生应用二次函数的性质解决问题,并进行评估。

第二章:二次函数的顶点公式2.1 教学目标掌握二次函数的顶点公式:y = a(x h)^2 + k能够通过顶点公式求解二次函数的顶点和对称轴。

2.2 教学内容二次函数的顶点公式及其意义顶点公式与标准形式的关系通过顶点公式求解二次函数的顶点和对称轴2.3 教学活动引导学生通过实际问题情境,发现二次函数的顶点公式。

解释顶点公式与标准形式的关系,并引导学生如何使用。

通过练习题,让学生应用顶点公式求解二次函数的顶点和对称轴。

2.4 教学资源实际问题情境的案例二次函数的顶点公式的示例图片2.5 教学评估提供练习题,让学生应用顶点公式求解二次函数的顶点和对称轴,并进行评估。

第三章:二次函数的根与解析式3.1 教学目标了解二次函数的根与解析式的关系。

能够通过解析式求解二次函数的根。

3.2 教学内容二次函数的根的定义和性质二次函数的解析式与根的关系通过解析式求解二次函数的根3.3 教学活动引入二次函数的根的概念,并通过实际例子解释其性质。

引导学生通过解析式来求解二次函数的根。

提供练习题,让学生应用解析式求解二次函数的根。

(完整)二次函数的应用教案

(完整)二次函数的应用教案

教学过程一、复习预习我们学习了利用二次函数最值的求法,我们要能利用二次函数解决最值问题的同时还要能利用二次函数与其他知识相结合解决综合性的问题。

二、知识讲解考点/易错点1用二次函数的性质解决实际问题利用二次函数的最值确定最大利润、最节省方案等问题是二次函数应用最常见的问题,解决此类问题的关键是认真审题,理解题意,建立二次函数的数学模型,再用二次函数的相关知识解决.利用二次函数的性质解决许多生活和生产实际中的最大和最小值的问题,它的一般方法是:(1)列出二次函数的解析式,列解析式时,要根据自变量的实际意义,确定自变量的取值范围. (2)在自变量取值范围内,运用公式法或配方法求出二次函数的最大值或最小值.考点/易错点2用二次函数图象解决几何问题二次函数与几何知识联系密切,互相渗透,以点的坐标和线段长度的关系为纽带,把二次函数常与全等、相似、最大(小)面积、周长等结合起来,解决这类问题时,先要对已知和未知条件进行综合分析,用点的坐标和线段长度的联系,从图形中建立二次函数的模型,从而使问题得到解决.解这类问题的关键就是要善于利用几何图形和二次函数的有关性质和知识,并注意挖掘题目中的一些隐含条件,以达到解题目的.三、例题精析【例题1】【题干】我市某镇的一种特产由于运输原因,长期只能在当地销售.当地政府对该特产的销售投资收益为:每投入x 万元,可获得利润41)60(10012+--=x p (万元)。

当地政府拟在“十二五”规划中加快开发该特产的销售,其规划方案为:在规划前后对该项目每年最多可投入100万元的销售投资,在实施规划5年的前两年中,每年都从100万元中拨出50万元用于修建一条公路,两年修成,通车前该特产只能在当地销售;公路通车后的3年中,该特产既在本地销售,也在外地销售.在外地销售的投资收益为:每投入x 万元,可获利润160)100(5294)100(100992+-+--=x x Q (万元).(1)若不进行开发,求5年所获利润的最大值是多少?(2)若按规划实施,求5年所获利润(扣除修路后)的最大值是多少? (3)根据(1)、(2),该方案是否具有实施价值? 【答案】【解析】(1)由41)60(10012+--=x p 可得p 最大为41。

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案

2024北师大版数学九年级下册2.4.2《二次函数的应用》教案一. 教材分析《二次函数的应用》是北师大版数学九年级下册第2章《二次函数》的第4节内容。

本节课主要让学生掌握二次函数在实际生活中的应用,培养学生的实际问题解决能力。

教材通过生活实例引入二次函数的应用,使学生感受到数学与生活的紧密联系。

二. 学情分析九年级的学生已经学习了二次函数的基本知识,对二次函数的图像和性质有了初步了解。

但学生在应用二次函数解决实际问题时,往往会因为不能很好地将实际问题转化为数学模型而感到困难。

因此,在教学过程中,教师需要引导学生正确地将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。

三. 教学目标1.让学生掌握二次函数在实际生活中的应用。

2.培养学生将实际问题转化为数学模型并解决的能力。

3.提高学生对数学与生活紧密联系的认识。

四. 教学重难点1.重点:二次函数在实际生活中的应用。

2.难点:将实际问题转化为二次函数模型,并运用二次函数的知识解决问题。

五. 教学方法采用问题驱动法、案例分析法、小组合作法等教学方法,引导学生主动探究、合作交流,提高学生解决实际问题的能力。

六. 教学准备1.准备相关的生活实例和案例分析。

2.准备教学课件和板书设计。

七. 教学过程1.导入(5分钟)通过一个生活实例引入二次函数的应用,让学生感受到数学与生活的紧密联系。

例如,假设某商场举行打折活动,商品的原价为100元,打折力度为x(0≤x≤1),求打折后的价格。

2.呈现(10分钟)呈现教材中的案例分析,引导学生将实际问题转化为二次函数模型。

例如,某工厂生产一批产品,生产成本为c元,生产数量为x(x≥0),求总成本。

3.操练(10分钟)让学生分组讨论,每组选取一个实际问题,尝试将其转化为二次函数模型,并运用二次函数的知识解决问题。

教师巡回指导,为学生提供帮助。

4.巩固(10分钟)选取几组学生解决的实际问题,让学生分享自己的解题过程和心得。

二次函数应用的教案

二次函数应用的教案

二次函数应用的教案教案标题:二次函数应用的教案教案目标:1. 理解二次函数的基本概念和特性;2. 掌握二次函数的图像、顶点、轴对称性等相关知识;3. 学会运用二次函数解决实际问题。

教案步骤:1. 引入二次函数的概念(10分钟)a. 提问引导学生思考:你们对二次函数有什么了解?b. 解释二次函数的定义和一般形式:y = ax^2 + bx + c,其中a、b、c为常数。

2. 讲解二次函数的图像和特性(15分钟)a. 展示二次函数的图像,并解释图像的特点。

b. 解释二次函数的顶点、轴对称性等概念,并通过图像进行说明。

3. 演示二次函数的应用(20分钟)a. 提供一些实际问题,如抛物线运动、最值问题等,让学生尝试用二次函数解决。

b. 引导学生分析问题,建立数学模型,并用二次函数解答。

4. 学生练习与巩固(15分钟)a. 给学生分发练习题,让他们在课堂上独立完成。

b. 随堂检查学生的练习,解答学生疑问。

5. 拓展应用与实践(10分钟)a. 鼓励学生在日常生活中寻找更多二次函数的应用场景,并分享给全班。

b. 提供一些拓展问题,让学生进行思考和探究。

6. 总结与反思(10分钟)a. 小结二次函数的基本概念和特性。

b. 让学生回顾本节课所学内容,并提出疑问或反思。

教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度。

2. 练习题表现:评估学生在练习题上的完成情况和准确性。

3. 拓展问题回答:评估学生对于拓展问题的回答和思考能力。

教案扩展:1. 可以引入二次函数的标准形式,让学生了解不同形式之间的转换关系。

2. 可以进一步讲解二次函数的根与因式分解的关系,帮助学生更好地理解二次函数的解法。

3. 可以引导学生进行二次函数应用的实践活动,如设计抛物线运动的实验等。

教案注意事项:1. 在讲解二次函数的图像时,使用具体的例子进行说明,以帮助学生更好地理解。

2. 在演示二次函数应用时,尽量选择与学生生活经验相关的问题,增加学习的实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

22.5 二次函数的应用
岑川中学龙小丹
一、教学目标
1、知识与技能:
通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解实际问题中的最值问题。

2、过程与方法:
通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想和数学模型思想。

3、情感态度价值观:
通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。

二、重点、难点
教学重点:利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求最值问题
教学难点:1、正确构建数学模型
2、对函数图象顶点、端点与最值关系的理解与应用
三、教学方法与手段的选择
由于本节课是应用问题,重在通过学习总结解决问题的方法,因而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

四、教学流程
(一)复习引入
(1)由二次函数y= -x2 +20x的解析式我们能够想到的图象特征和性质是…?(2)根据同学们描述信息,画出函数的示意图为:
(二)讲解新课
1、在情境中发现问题
[做一做]
1)、你能够画一个周长为40cm 的矩形吗?
2)、周长为40cm 的矩形是唯一的吗?
3)、谁画出的矩形的面积最大?
4)、有没有一个矩形的面积是最大呢?最大面积为多少?
2、在解决问题中找出方法
[想一想]:某小区想用40m 的栅栏围成一个矩形花园,问矩形的长和宽各取多少米,才能使花园的面积最大,最大面积为多少?
3、在巩固与应用中提高技能
变式一:如果矩形的一面靠墙,(墙的最大利用长度为18m )
那么此时用40m 的栅栏可以围成矩形的面积
(1)能够为202m 2 吗?
(2)能够为200m 2 吗?
(3)此时还会有最大面积吗?如果有,请说明最大面积为多少?画出示意图。

在(想一想)的基础上,我在此设计了一个条件墙长18米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图像辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。

(三)、师生小结
1、通过本节课的探讨,在实际问题中求解最值,你有怎样的收获?
2、体会数学的价值
(四)练习检测:
1、在22.1节的问题2中,你能用二次函数的性质求出每件商品涨价多少,才能使每周得到的利润最多吗?
2、变式二:如果两面靠墙围成一个矩形,其它
条件不变如何围才能使矩形的面积最大?
(五)板书设计
(六)课外作业:。

相关文档
最新文档