(完整版)二次函数的应用教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
22.5 二次函数的应用
岑川中学龙小丹
一、教学目标
1、知识与技能:
通过本节学习,巩固二次函数y=ax2+bx+c(a≠0)的图象与性质,理解顶点与最值的关系,会求解实际问题中的最值问题。
2、过程与方法:
通过观察图象,理解顶点的特殊性,会把实际问题中的最值问题转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,了解数形结合思想、函数思想和数学模型思想。
3、情感态度价值观:
通过学生之间的讨论、交流和探索,建立合作意识,提高探索能力,激发学习的兴趣和欲望,体会数学在生活中广泛的应用价值。
二、重点、难点
教学重点:利用二次函数y=ax2+bx+c(a≠0)的图象与性质,求最值问题
教学难点:1、正确构建数学模型
2、对函数图象顶点、端点与最值关系的理解与应用
三、教学方法与手段的选择
由于本节课是应用问题,重在通过学习总结解决问题的方法,因而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。
四、教学流程
(一)复习引入
(1)由二次函数y= -x2 +20x的解析式我们能够想到的图象特征和性质是…?(2)根据同学们描述信息,画出函数的示意图为:
(二)讲解新课
1、在情境中发现问题
[做一做]
1)、你能够画一个周长为40cm 的矩形吗?
2)、周长为40cm 的矩形是唯一的吗?
3)、谁画出的矩形的面积最大?
4)、有没有一个矩形的面积是最大呢?最大面积为多少?
2、在解决问题中找出方法
[想一想]:某小区想用40m 的栅栏围成一个矩形花园,问矩形的长和宽各取多少米,才能使花园的面积最大,最大面积为多少?
3、在巩固与应用中提高技能
变式一:如果矩形的一面靠墙,(墙的最大利用长度为18m )
那么此时用40m 的栅栏可以围成矩形的面积
(1)能够为202m 2 吗?
(2)能够为200m 2 吗?
(3)此时还会有最大面积吗?如果有,请说明最大面积为多少?画出示意图。 在(想一想)的基础上,我在此设计了一个条件墙长18米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图像辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。
(三)、师生小结
1、通过本节课的探讨,在实际问题中求解最值,你有怎样的收获?
2、体会数学的价值
(四)练习检测:
1、在22.1节的问题2中,你能用二次函数的性质求出每件商品涨价多少,才能使每周得到的利润最多吗?
2、变式二:如果两面靠墙围成一个矩形,其它
条件不变如何围才能使矩形的面积最大?
(五)板书设计
(六)课外作业: