流量计校正实验 实验报告
流量计性能测定实验报告
流量计性能测定实验报告流量计性能测定实验报告一、引言流量计是工业生产中常用的仪表之一,用于测量液体或气体的流量。
准确测量流量对于工业生产的稳定运行至关重要。
本实验旨在通过对不同类型的流量计进行性能测定,评估其准确性和适用性。
二、实验目的1. 测定不同类型流量计的准确性。
2. 比较不同类型流量计的适用范围。
3. 分析流量计的工作原理和性能特点。
三、实验装置和方法1. 实验装置:实验装置包括液体流量计和气体流量计。
液体流量计采用电磁流量计和涡街流量计,气体流量计采用差压流量计和浮子流量计。
2. 实验方法:分别使用不同类型的流量计进行流量测量,记录测量结果。
同时,通过改变流量计的工作条件,比如流速和介质压力,观察流量计的响应情况。
四、实验结果与分析1. 电磁流量计:在不同流速和介质压力下,电磁流量计的测量结果基本稳定,准确性较高。
然而,当介质中存在杂质或气泡时,电磁流量计的测量结果可能会受到干扰。
2. 涡街流量计:涡街流量计对于流速变化较大的液体测量具有较高的准确性。
然而,在低流速下,涡街流量计的测量结果可能会出现较大误差。
3. 差压流量计:差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
然而,差压流量计对于液体流量测量的准确性较差。
4. 浮子流量计:浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
然而,当流速变化较大时,浮子流量计的测量结果可能会出现较大误差。
五、实验结论1. 电磁流量计和涡街流量计适用于液体流量测量,具有较高的准确性和稳定性。
2. 差压流量计适用于气体流量测量,对于流速变化较大的气体具有较高的准确性。
3. 浮子流量计适用于液体流量测量,对于流速变化较小的液体具有较高的准确性。
4. 不同类型的流量计在不同工况下的准确性和稳定性可能存在差异,需要根据实际应用需求进行选择。
六、实验总结本实验通过对不同类型的流量计进行性能测定,评估了其准确性和适用性。
文丘里流量计实验报告
文丘里流量计实验报告一、实验目的。
本实验旨在通过对文丘里流量计的实验研究,掌握流量计的工作原理和使用方法,以及对流量计进行性能测试,验证其测量准确性和稳定性。
二、实验原理。
文丘里流量计是一种用来测量流体流量的仪器,其工作原理是利用流体在管道中流动时产生的压力差来计算流量。
当流体通过管道时,管道中会产生一个静压和动压,通过测量这两种压力的差值,可以计算出流体的流量。
三、实验仪器和材料。
1. 文丘里流量计。
2. 压力传感器。
3. 流量计检定装置。
4. 水泵。
5. 水管、接头等。
四、实验步骤。
1. 将文丘里流量计安装在管道上,并连接好压力传感器和流量计检定装置。
2. 启动水泵,让水流通过文丘里流量计。
3. 通过压力传感器和流量计检定装置,实时监测流体的压力和流量数据。
4. 改变水泵的流量和压力,记录不同工况下的流体压力和流量数据。
五、实验结果与分析。
通过实验数据的记录和分析,我们得出了文丘里流量计在不同工况下的流体流量数据。
通过对比实验数据和理论值,我们发现文丘里流量计的测量准确性较高,且稳定性良好。
在不同压力和流量下,文丘里流量计的测量误差较小,能够满足工程实际需求。
六、实验结论。
通过本次实验,我们对文丘里流量计的工作原理和性能有了更深入的了解。
实验结果表明,文丘里流量计具有较高的测量准确性和稳定性,能够满足工程实际需求。
在实际工程应用中,我们可以根据不同的工况选择合适的文丘里流量计,以确保流体流量的准确测量。
七、实验注意事项。
1. 在实验过程中,要注意安全操作,避免发生意外事故。
2. 实验中要严格按照操作规程进行,确保数据的准确性和可靠性。
3. 实验结束后要对仪器进行清洁和保养,以确保下次实验的顺利进行。
八、参考文献。
1. 《流量计原理与应用》。
2. 《流体力学实验指导》。
以上为本次文丘里流量计实验的实验报告,希望能对相关领域的研究和应用提供一定的参考价值。
流量计校核实验报告
流量计校核实验报告一、实验目的1、熟悉孔板流量计和文氏流量计的构造及工作原理;2、掌握流量计标定方法之一——称量法;3、测定孔板流量计和文氏流量计的孔流系数,掌握孔流系数随雷诺数的变化规律;4、测定孔板流量计和文氏流量计的流量与压差的关系。
二、实验原理常用的流量计大都按标准规范制造,出厂前厂家需通过实验为用户提供流量曲线:或给出规定的流量计算公式用的流量系数,或将流量读数直接刻在显示仪表上。
如果用户遗失出厂的流量曲线;或被测流体的密度与工厂标定所用流体不同;或流量计经长期使用而磨损;或使用自制的非标准流量计时,都必须对流量计进行标定。
孔板流量计和丘里流量计是应用最广的节流式流量计,本实验就是通过测定节流元件前后的压差及相应的流量来确定流量系数。
(一)孔板流量计孔板流量计的构造原理如图1-1所示,在管路中装有一块孔板,孔板两侧接出测压管,分别与U 形压差计相连接。
孔板流量计是利用流体通过锐孔的节流作用,使流速增大,压强减小,造成孔板前后压强差,作为测量的依据。
若管路直径为1d ,孔板锐孔直径为0d ;流体流经孔板后所形成缩脉的直径为2d ;流体密度为ρ。
在截面积I 、II 处,即孔板前导管处和缩脉处的速度和压强分别为1212u u p p ,与,,根据柏努利方程可得:2221122u u p p ρ--=(1) 或= (2)由于缩脉位置因流速而变,截面积2S 又难于知道,而孔板孔径的面积0S 是已知的,测压器的位置在设置一旦制成后也是不变的。
因此,用孔板孔径处流速0u 来代替式(2)中的2u ;又考虑到实际流体因局部阻力所造成的能量损失,故需用系数C 加以校正。
式(2)就可改写为:图1-1 孔板流量计构造原理图= (3)对于不可压缩流体,根据连续性方程式又可得: 010S u u S= (4) 将式(4)代入式(3),整理后可得:0u =(5)令0/C C = 则式(5)可简化为0u C = (6)根据00u S 和即可算出流体的体积流量:3000(/)s V u S C Hm s== (7) 或30(/)s V C S m s = (8)式中:R ——U 形压差计示数(液柱高度差),m ;R ρ——压差计中指示液的密度,3/kg m ;0C 称为孔板流量系数。
孔板流量计标定实验报告
孔板流量计标定实验报告实验背景孔板流量计是一种常见的流量测量设备,广泛应用于工业生产和实验室测试中。
通过测量流体通过孔板时的压差来计算流量,具有结构简单、使用方便等优点。
为了确保孔板流量计的准确性和可靠性,需要进行标定实验。
本实验旨在使用标准流量计对孔板流量计进行标定,验证其测量流量的准确性。
通过测量实验数据并进行计算、分析,得出孔板流量计的标定曲线,为日后的流量测量提供依据。
实验器材和药品1.孔板流量计:型号XK-012.标准流量计:型号SL-013.压力计:型号YP-014.数据采集设备:型号DC-015.进口水泵:型号WP-01实验步骤步骤一:准备工作1.检查实验器材和药品是否齐全,并进行必要的清洁和消毒。
2.将孔板流量计安装到流体管道中,确保其位置固定稳定。
3.将标准流量计与孔板流量计串联连接。
步骤二:实验前设置1.打开进口水泵,调节水泵出口阀门,使水流量逐渐增大。
2.使用压力计测量孔板流量计进口和出口两侧的压差,并记录数据。
步骤三:实验数据采集1.将数据采集设备与压力计连接,并设置数据采集参数。
2.开始数据采集,记录孔板流量计和标准流量计的流量数据,并记录对应的压差数据。
3.每隔一定时间间隔采集一次数据,以确保数据的准确性和连续性。
步骤四:数据处理和分析1.将采集到的数据导入计算机,并使用数据分析软件进行处理。
2.绘制孔板流量计的标定曲线,将压差和流量数据进行图表展示,并进行数据拟合。
3.利用线性回归等方法,得出标定曲线的数学表达式,用于后续的流量计算。
步骤五:实验结果和讨论1.根据实验数据处理的结果,得出孔板流量计的标定曲线和相关参数。
2.分析实验结果,评价孔板流量计的准确性和可靠性。
3.讨论实验中可能存在的误差来源,并提出改进措施。
步骤六:结论和建议1.根据实验结果,得出关于孔板流量计的结论,并总结实验的主要发现。
2.根据实验过程和结果,提出改进孔板流量计使用和标定的建议。
结论本实验通过对孔板流量计的标定实验,验证了其测量流量的准确性。
流量计的校正试验报告
流量计的校正试验报告1.引言流量计是用于测量流体流量的一种仪器设备,广泛应用于工业生产过程中。
校正是保证流量计准确性的关键步骤,通过与标准流量计对比,可以获得准确的校正系数,提高流量计的测量精度。
本报告对型号流量计进行了校正试验,并对结果进行了分析和评价。
2.实验目的本次实验的目的是获得流量计的校正系数,验证其测量准确性,并评估其使用范围和误差范围。
3.实验装置与方法3.1实验装置本次实验使用了一台标准流量计和待校正的流量计。
标准流量计具有高精度和稳定性,可以作为参考依据。
3.2实验方法3.2.1准备工作:根据流量计的规格和要求,对实验装置进行搭建和安装。
确保实验装置与流量计的连接完好,并消除可能的泄漏隐患。
3.2.2校正试验:按照流量计的使用方法,将标准流量计和待校正流量计依次安装在实验装置上。
调整实验装置的流量设置,使其在一定流量范围内变化。
记录标准流量计和待校正流量计的输出数值,并计算相应的流量值。
重复多组实验数据,以减小误差。
3.2.3数据处理:根据实验数据,计算流量计的校正系数和误差范围。
比较待校正流量计的实际测量值与标准流量计的测量值,分析误差的原因和程度。
4.实验结果与分析通过实验,获得了待校正流量计的校正系数及其误差范围。
在流量范围为100-1000 L/min时,待校正流量计的校正系数为0.98,并且误差范围在±0.05 L/min内,满足使用要求。
但在较低流量范围下(10-100L/min),校正系数下降至0.92,误差范围扩大至±0.1 L/min。
分析认为这可能是由于流量计的机械结构和算法设计造成的。
5.结论与建议通过本次实验,获得了待校正流量计的校正系数,验证了其测量准确性,并评估了其使用范围和误差范围。
实验结果显示,在较高流量范围内,待校正流量计表现良好,具备高精度和稳定性。
然而,在较低流量范围内,该流量计的性能下降,误差范围较大。
建议在实际应用中,针对流量范围进行选择,并在低流量范围内进行补偿或选择其他型号的流量计。
最新文丘里流量计实验实验报告
最新文丘里流量计实验实验报告
实验目的:
1. 理解并掌握文丘里流量计的工作原理。
2. 通过实验测定不同流量下的压差,并计算流量。
3. 验证文丘里流量计的测量准确性。
实验设备:
1. 文丘里流量计
2. 流量调节阀
3. 压力传感器
4. 数据采集器
5. 流量标准溶液(如水)
实验步骤:
1. 准备实验设备,确保文丘里流量计和压力传感器安装正确,连接无漏气现象。
2. 使用流量调节阀调节流量,从零开始逐步增加至最大设计流量。
3. 在每个流量级别下,记录压力传感器测得的上游和下游压差。
4. 根据压差数据,利用文丘里公式计算流量,并与实际设定流量进行对比,分析误差。
5. 重复步骤2至4,至少进行五次独立测量,以确保数据的可靠性。
实验数据与分析:
1. 列出实验中记录的所有压差数据及其对应的设定流量。
2. 利用文丘里公式计算理论流量值,并与实际流量进行对比,制作误差分析图表。
3. 分析可能影响测量结果的因素,如温度、压力变化等,并提出改进措施。
实验结论:
1. 总结文丘里流量计的测量性能,包括其准确性和稳定性。
2. 根据实验数据,评估文丘里流量计在实际应用中的适用性和可靠性。
3. 提出实验中遇到的问题及解决方案,为未来改进实验设计提供参考。
注意事项:
1. 在实验过程中,确保所有设备的安全性,避免高压气体泄漏造成危险。
2. 记录数据时要准确无误,以保证实验结果的有效性。
3. 实验结束后,对设备进行适当的清理和保养,确保下次实验的顺利
进行。
最新流体力学实验报告流量计实验报告
最新流体力学实验报告流量计实验报告实验目的:本实验旨在通过使用不同类型的流量计,测量并分析流体流过管道的流量。
通过实验,学生将能够理解流量计的工作原理,掌握流量的测量方法,并能够对实验数据进行有效分析。
实验设备:1. 不同类型的流量计(如涡轮流量计、电磁流量计、超声波流量计等)。
2. 流量控制阀门。
3. 测试管道系统。
4. 数据采集器。
5. 计时器。
实验步骤:1. 准备工作:确保所有流量计已校准并处于良好工作状态。
安装流量计于测试管道上,并确保无泄漏。
2. 调整流量控制阀门,设定初步流量。
3. 开始实验:打开数据采集器,记录流量计读数和相应时间。
4. 改变流量控制阀门的开度,重复步骤3,获取不同流量下的读数。
5. 对每种类型的流量计重复上述步骤。
6. 实验结束后,关闭所有设备,并进行数据整理。
实验数据与分析:1. 记录每种流量计在不同流量下的读数。
2. 利用公式Q = V × A 计算实际流量,其中 Q 为流量,V 为流速,A 为管道截面积。
3. 绘制流量计读数与实际流量之间的关系图。
4. 分析不同流量计的测量精度和适用范围。
5. 讨论可能影响测量结果的因素,如流体粘度、温度变化等。
实验结论:通过本次实验,我们得出了不同类型流量计在不同流量下的测量结果,并分析了它们的性能特点。
实验结果表明,涡轮流量计适用于中小流量的精确测量,电磁流量计适用于导电液体的宽范围流量测量,而超声波流量计则具有非侵入性和宽量程的优点。
通过对比分析,可以为实际工程中选择合适的流量计提供参考依据。
流量计校核实验报告
流量计校核实验报告流量计校核一、实验操作1. 熟悉实验装置,了解各阀门的位置及作用。
2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。
3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8,9个点,大流量时测量5,6个点。
为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。
4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。
二、数据处理1.数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d(mm):15.347 0查出实验温度下水的物性:密度ρ= 996.2542 kg/m3 粘度μ= 0.000958 PaS2.数据处理du,d,VV,44 ,,,,Re2,,,d,,du0 则 V,uA,CA2,p/,C,000002,p/,孔板流量计试验数据处理水箱时间高度流量流速雷诺数33-1-1 左/cm 右/cm ΔR/m t/s h/cm 体积V/m Qv/m?s V/m?s 空流系数C0 Re min 57.0 57.0 4qvV= Qv=h.S/t max 33.1 45.3 d2V=C. Re=dvρ/μ 2gR0,1.1078 0.7049 16916.60 1 33.7 46.3 0.126 40 6.7 0.0081932.05E-04 0.9833 0.7445 15014.92 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.9264 0.7307 14146.29 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.8662 0.7734 13228.02 4 42.5 48.9 0.064 40 5.2 0.006406 1.60E-04 0.7964 0.7601 12160.84 5 43.8 49.4 0.056 414.9 0.006037 1.47E-04 0.7313 0.7620 11168.12 6 45.6 50.3 0.047 41 4.5 0.005544 1.35E-04 0.6338 0.7764 9679.04 7 47.9 51.3 0.034 41 3.9 0.004805 1.17E-04 0.5688 0.7678 8686.32 8 49.4 52.2 0.028 41 3.5 0.004312 1.05E-04 0.4713 0.8165 7197.23 9 51.6 53.3 0.017 41 2.9 0.0035738.71E-05 0.4998 0.8189 7631.55 1 50.9 52.8 0.019 40 3.0 0.0036969.24E-05 0.6013 0.7976 9182.68 2 48.7 51.6 0.029 41 3.7 0.004558 1.11E-04 0.6663 0.7825 10175.40 3 47.1 50.8 0.037 40 4.0 0.004928 1.23E-04 0.7638 0.7566 11664.48 4 44.7 49.9 0.052 41 4.7 0.00579 1.41E-04 0.8451 0.7605 12905.39 5 42.5 48.8 0.063 41 5.2 0.006406 1.56E-040.9101 0.7661 13898.11 6 40.8 48.0 0.072 41 5.6 0.006899 1.68E-041.0239 0.7503 15635.37 7 37.6 47.1 0.095 41 6.3 0.007762 1.89E-04 1.1214 0.7672 17124.45 8 35.3 46.2 0.109 41 6.9 0.0085012.07E-04 1.1161 0.7218 17043.80 9 33.4 45.6 0.122 40 6.7 0.008254 2.06E-04 孔板流量计R-Qv双对数坐标图lgQv-0.600-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-0.800-1.000-1.200y = 2.233x + 7.302-1.400lgR-1.600-1.800-2.000孔板流量计C0-Re图0.84000.8200y = -0.2058x + 1.6040.8000空流系数C00.78000.76000.74000.72000.70000.68003.83.944.14.24.3雷诺数的对数logRe文丘里流量计实验数据处理水箱高时间度体积流量流速33-1-1 左/cm 右/cm ΔR/m t/s h/cm V/m Qv/m?s V/m?s 空流系数C 雷诺数Re 0 min 66.3 66.3 4qvV= Qv=h.S/t max 19.0 57.8 d2V=C. Re=dvρ/μ 2gR0,4.472 1.756 55449.87 1 29.6 62.7 0.331 40 17.70 0.02185.45E-044.032 1.663 50001.92 2 34.1 64.1 0.3 41 16.36 0.0202 4.92E-043.739 1.663 46364.86 3 40.3 66.1 0.258 40 14.80 0.0182 4.56E-043.385 1.634 41979.00 4 44.4 66.3 0.219 40 13.40 0.0165 4.13E-043.060 1.607 37941.22 5 48.4 66.9 0.185 36 10.90 0.0134 3.73E-042.981 1.762 36966.58 6 52.5 67.1 0.146 40 11.80 0.01453.63E-042.282 1.639 28301.82 7 56.5 66.4 0.099 41 9.26 0.0114 2.78E-041.768 1.752 21929.33 8 60.5 65.7 0.052 40 7.00 0.00862.16E-041.251 1.997 15507.17 1 63.3 65.3 0.02 40 4.95 0.0061 1.52E-041.960 1.763 24298.00 2 59.4 65.7 0.063 41 7.95 0.00982.39E-042.395 1.728 29698.57 3 56.4 66.2 0.098 40 9.48 0.0117 2.92E-042.784 1.651 34523.03 4 51.9 66.4 0.145 40 11.02 0.0136 3.39E-043.486 1.757 43232.10 5 45.3 65.4 0.201 40 13.80 0.01704.25E-04 3.456 1.577 42856.17 6 40.7 65.2 0.245 40 13.68 0.0169 4.21E-043.979 1.699 49340.98 7 37.0 65.0 0.28 40 15.75 0.01944.85E-044.042 1.587 50124.17 8 32.1 65.2 0.331 41 16.40 0.0202 4.93E-04 4.371 1.627 54196.76 9 27.1 63.9 0.368 40 17.30 0.0213 5.33E-04 文丘里流量计R-Qv双对数坐标图lgQv-0.800-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-1.000-1.200y = 2.233x + 7.302-1.400-1.600-1.800lgR-2.000文丘里流量计C0-Re单对数坐标图2.500y = -0.4311x + 3.66692.000C01.5001.0000.5000.0004.104.204.304.404.504.604.704.80lgRe3.结果分析由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。
流量计校正实验 实验报告
一、实验目的1. 分别用三角堰、涡轮流量计、水银比压计校正孔板流量计,实验测定流量计的流量系数。
2. 制作流量系数 与雷诺数 关系曲线,并确定 = 的范围和数值。
二、 实验原理孔板是常用的流量计,都是利用改变流道截面的方法使截面前后测压管水头差发生变化,通过测量测压管水头差计算流量。
如果将流体视为理想流体,则根据连续方程和伯努利方程有=1− Ω2实际流体都是有粘性的,考虑粘性影响后引入修正系数,即流量系数 μ ,于是实际流量为实=1− Ω 2由于流量系数的引入考虑了粘性的影响,因此根据相似原理,流量系数为雷诺数的函数。
三、 设备与仪器实验设备包括三角量水堰、涡轮流量计、水银比压计、孔板流量计、水泵数显高度尺、水箱等。
流量采用三角量水堰进行测量。
通过测量堰上水头高度,可由 Q-H 关系式求得流量 Q。
采用水银比压计测量孔板上的测压管水头差。
读出温度计上显示的温度,通过查表确定 υ。
四、 实验步骤1. 在启动水泵前将泵前阀和调节阀关死。
2. 启动水泵后将泵前阀和调节阀完全打开,泵运行的同时排出试验管路内的空气。
3. 将排气阀打开,排空水银比压计及连接管内的空气,并检查空气是否完全排空。
4. 通过调节控制阀的开关确定实验工况点,记录与水银比压计高度差相对应的实验数据。
5. 将泵前阀关死,然后关闭水泵。
五、实验数据记录及处理0.5800.6000.6200.6400.6600.6800.7004.20 4.304.404.504.604.704.804.905.00三角堰μ-lg(Re)关系曲线0.5800.6000.6200.6400.6600.6800.7004.204.304.404.504.604.704.804.905.00涡轮流量计μ-lg(Re)关系曲线观察曲线可知,流量系数的常数值约为0.59,对应的Re 范围为83500~30500。
六、思考题1.两测压管孔应在一条流线上,这样使用沿流线的伯努利方程计算才更准确。
流量计的校正实验报告
流量计的校正实验报告流量计的校正实验报告一、引言流量计是现代工业生产中常用的一种仪器,用于测量液体或气体的流量。
准确的流量测量对于工业生产的稳定性和安全性至关重要。
然而,由于流量计的使用环境以及长期使用的磨损,其测量结果可能会存在一定的误差。
因此,进行流量计的校正实验是必要的,以确保其准确性和可靠性。
二、实验目的本次实验的目的是通过对流量计进行校正实验,研究流量计的测量误差,并提出相应的校正方法,以提高流量计的准确性。
三、实验装置和方法1. 实验装置本次实验使用的流量计为磁性涡街流量计,实验装置包括流量计、流量控制阀、压力传感器、温度传感器等。
2. 实验方法首先,将实验装置按照实验要求进行搭建,确保流量计与其他传感器的连接正确。
然后,通过调节流量控制阀,控制流体的流量。
在不同流量下,记录流量计的测量值、压力传感器的测量值以及温度传感器的测量值。
最后,根据实验数据进行分析和计算。
四、实验结果与分析通过对实验数据的处理和分析,得到了以下结果:1. 流量计的测量误差根据实验数据,我们计算出了流量计在不同流量下的测量误差。
结果显示,在较低流量下,流量计的测量误差较小,但在较高流量下,测量误差逐渐增大。
这表明流量计在高流量条件下的测量准确性较差。
2. 流量计的校正方法针对流量计的测量误差,我们提出了一种校正方法。
通过在实验过程中,同时记录流量计的测量值和标准流量计的测量值,可以得到流量计的校正曲线。
根据校正曲线,可以对流量计的测量结果进行修正,提高其准确性。
3. 流量计的温度补偿实验数据还显示,流量计的测量结果受温度的影响较大。
在不同温度下,流量计的测量误差存在较大差异。
因此,我们还提出了一种温度补偿方法,通过对流量计的测量结果进行修正,以消除温度对流量计的影响。
五、结论通过本次实验,我们对流量计的测量误差进行了研究,并提出了相应的校正方法和温度补偿方法。
这些方法可以有效提高流量计的测量准确性和可靠性。
然而,实验结果也显示,流量计的测量误差受多种因素的影响,如压力、温度等。
流量计标定实验报告
流量计标定实验报告1. 研究流量计的工作原理;2. 学习流量计的标定方法;3. 了解流量计的准确度和精度。
实验原理:流量计是用来测量流体通过管道或管道中流动的速度的装置。
常用的流量计有涡轮流量计、电磁流量计和超声波流量计等。
流量计的工作原理不同,标定方法也有所不同。
实验步骤:1. 确定流量计的类型和参数;2. 安装流量计,并连接相应的管道;3. 准备标定设备和流体;4. 开始标定流量计:首先关闭出口阀门,利用标定设备向流量计输入一定的流速,记录流量计的读数。
然后逐渐增大流速,每次增加一定的流量,记录流量计的读数,并计算流速。
将不同流速下的读数和流速数据进行对比分析。
重复多次实验,取平均值作为最终的标定结果。
实验结果:通过实验我们得到了流量计在不同流速下的读数,并计算出了相应的流速值。
通过对比分析,我们可以得出流量计的标定曲线。
标定曲线可以用来校正实际应用中流量计的读数,提高其准确度和精度。
实验讨论:在实际应用中,流量计常常会受到一些影响因素的干扰,如压力、温度等。
这些因素对流量计的准确度和精度会产生一定的影响。
因此,在实际应用中使用流量计时,需要对其进行定期的标定和校正,以保证其可靠性和准确度。
实验结论:本次实验通过对流量计的标定,得到了其准确度和精度的标定曲线。
标定曲线可以用来校正流量计在实际应用中的读数,提高其测量的准确性和精度。
同时,实验还模拟了实际应用中的流速情况,对流量计的性能进行了评估和分析。
这些结果对于流量计的使用和维护具有重要的指导意义。
实验心得:通过本次实验,我对流量计的工作原理、标定方法和准确度有了更深入的了解。
实验中需要注意实验操作的细节,如流量计的安装和连接、流速的控制和记录等。
同时,在实验过程中还发现了一些问题,并通过调整实验方案进行了改进。
这些经验和教训对我今后进行实验和研究具有重要的借鉴意义。
验二、孔板流量计的流量校正
实验二、孔板流量计的流量校正一、实验目的1、学会流量计流量校正(或标定)的方法2、通过孔板流量计孔流系数的测定,了解孔流系数的变化规律 二、实验内容1、测定孔板流量计的孔流系数2、观察孔流系数与雷诺数的变化规律3、测定孔板流量计的永久压强损失三、实验原理孔板流量计是压差式流量计,也称速度式流量计,它用测定流体压差的方法来确定流体的速度。
可用流体流动规律(即伯努利方程)导出孔板流量计的计算模型。
即=(1)因孔口的大小已知,所以用孔口速度u 0替代u 2,并引入校正因子C ,将(1)式转变为:=(2) 对于不同压缩流体,20101()d u u d =,代入(2)式,整理得0u =令0C C =0u C =当采用倒U 型压差计测量压差时,P gR ρ∆=于是孔板流量计的流速为:0u C =得孔板流量计流量的数学模型式为:0G C A =(3) 式中:G--被测流体(水)的体积流量,m/sC 0--孔流系数,无因次 A 0--流量计最小流道截面积,m 2R--流量计上,下游两取压口处所连接的U 型管压差计读数,mρ--被测流体的密度Kg/m 3由管径d 可计算出雷诺数 1Re du ρμ=由于孔板流量计(局部阻力)引起的永久压强损失为: f f P H ρ∆=∙ 或 22ff P u H ζρ∆==∙问题引导:1、 工业上如何使用孔板流量计测流量?2、 测孔流系数的压差R 与测孔板流量计的永久压力损失ΔP f ,理论上测压点应该相同,但实际上测出的永久压力损失不准,为什么?3、 如何精确的测出并计算出孔板流量计的永久压强损失? 四、实验装置1、实验装置示意图如下:水箱转子流量计涡流转子流量计2、主要设备及参数:涡轮转子流量计转子流量计倒U形管压差计磁力泵水箱阀门新设备参数:测试段管径:d1=0.029m 孔板孔径:d=0.02m老设备参数:测试段管径:d1=32mm,孔板孔径: d=18mm五、实验操作1、检查各部分电路是否连接完好,开关处于关闭状态。
流量计流量校正实验报告
流量计流量校正实验报告
一、实验目的
本次实验旨在通过校正方法改变流量计,使其准确、简便地测量液体流量,并准确地
显示出实际流量。
二、实验原理
流量计校正仪通过测量液体流量自身的正常脉冲,来衡量液体流量,然后根据这些信号,通过运算和计算得出实际流量情况。
它只有当确认流量脉冲有效时,才能正确地显示
和读取流量数据。
三、实验设备
本次校验中使用的设备主要有:流速计、流量脉冲计、电子温度传感器、校正仪及其
他辅助设备。
四、实验流程
(1)将各个系统组件连接好,包括流量计、流量脉冲计、传感器等;
(2)将流量计校准时,使用校正仪进行校验,并确保每个部件正常工作;
(3)根据预设的脉冲设定系统脉冲信号,通过连续的脉冲算法和多次灵敏度校正,
使流量计读数准确;
(4)当系统的脉冲算法准确无误后,可以更加准确的计算流速和流量,并进行显示、记录;
(5)根据实际测量的液体流量,对流量计进行校正,使其更加准确;
(6)当流量计准确无误时,可以正确地显示和读取流量数据;
(7)在所有设备完成流量校正后,可以进行多次测试以确保校正准确无误。
五、实验结果
进行该实验后,我们得到了令人满意的结果,流量计已经经过精密检测,确保能够准
确测量液体流量,并准确地显示出实际流量情况。
六、实验结论
通过本次实验,我们发现,在流量计校验仪的帮助下,可以使流量计准确测量液体流量,并准确地显示出实际流量。
而且,在确保流量脉冲信号有效的情况下,流量计也可以
正确地读取和显示流量数据。
文丘里流量计实验(包括实验数据结果及思考题)
实验报告:文丘里流量计实验一、实验目的1、通过测定流量系数,掌握文丘里流量计测量管道流量的技术。
2、掌握气—水多管压差计测量压差的技能。
二、实验装置三、实验原理如下图所示:文丘里管前1-1断面及喉管处2-2断面,该两处截面面积分别为A 1、A 2,两处流速分别为v 1、v 2。
不考虑流体受到的阻力作用,对两断面列伯努利方程gvg p z g v g p z 222222221111αραρ++=++ (1)11 22d1文丘里管前1-1断面喉管处2-2断面1、水箱2、上水管3、恒定水箱4、实验管段5、文丘里管6、测压管7、水位测针8、水位测针筒9、流量控制阀门及连续性方程:即:(2)由(1)、(2)两式联立可得:hK g p z gp z g d d d Q ∆=+-+-=)]()[(21)(422114222121ρρπ (3)式中,K 为文丘里流量计常数△h 为两断面测压管水头差 )()(2211gp z g p z h ρρ+-+=∆ 由式(3)算得的流量为不考虑阻力的理论流量,即Q =Q 理论,而实际通过的流量Q 实际恒小于Q 理论,引入一无量纲系数μ对所测流量Q 理论进行校正。
即:(4)式(4)中的μ为文丘里管的流量系数。
通过实验测得实际流量Q 实际及水头差△h ,便可以测得文丘里管的流量系数μ(5)四、实验步骤1、记录各有关实验常数。
2、打开电源开关并打开调节流量阀,待水流稳定后,读取各测压管的液面读数h 1、h 2、h3、h 4,并用秒表、量筒测定流量。
3、逐次改变调节流量阀,改变流量,重复步骤2,注意调节阀门要缓慢,要使测压管内有水柱。
4、把测量值记录在实验表格内,并进行有关计算。
5、实验结束,关闭电源开关。
五、实验原始记录1、记录有关常数d 1 = 1.50 ㎝, d 2 = 0.86 ㎝, 测针筒直径D= 6 cm 2、记录测量值 2211A v A v Q ==44222211d v d v Q ππ==hK Q Q ∆μμ==理论实际hK Q ∆实际=μ1)(2442121-=d d g d K π六、实验数据计算1、计算原理Q 实际的测量方法是体积法,计算公式为: (其中:V=πR 2×(h 4-h 3),V 、t 值见上表。
流量计的标定实验报告
流量计的标定实验报告标定流量计实验报告流量计的校核实验报告文丘里流量计实验报告篇一:实验2 流量计标定实验实验2 流量计标定实验一、实验目的1.了解文氏管、转子流量计、孔板流量计和涡轮流量计的构造、工作原理和主要特点;2.掌握流量计的标定方法;3. 用直接容量法或对比法对文氏流量计、孔板流量计、转子进行标定,测定孔流系数与雷诺数间的关系;3.学习合理选用坐标系的方法。
二、实验原理流体流过文氏管由于喉部流速大压强小,文氏管前端与喉部产生压差,此差值可用倒U管型、单管压差计测出。
又压强差与流量大小有关,根据柏努力方程及压差计计算公式,可以推导出公式如下:Vs=Cv〃Sv2gR?0?? ?则在测定不同流量下的R、Vs等数值代入公式即可求得1Cv值。
当流体流过流量计时,因为阻力造成机械能损失。
把文氏管看成一个局部阻力部位,流体克服局部阻力所消耗的机械能(损失压头)可表示为动能(动压头)的倍数。
22u0u0?J/kg? 或Hf???m? 即hf??22g若流量计前部压强为p1 后部为p2列出实际流体的机械能衡算式为:2p1u1p2u2?z2g??2?hf z1g???2?2对在水平管上安装的文氏管,上式可整理成p?phf?12?J/kg? ?即只要在文氏管两端连接测压导管并用U型压差计测出p1-p2值,即可测出文氏管阻力,并进一步得出局部阻力系数。
三、实验装置如后图所示,文氏流量计所用的压差计分单管压差计和倒U型压差计两种,测定文氏管阻力采用倒U型管压差计,流体水由离心泵从水箱中输送,并循环使用。
四、实验方法1.装有单管压差计的装置(1)在出口阀(即流量调节阀或管道进口阀)关闭情况下开动离心泵。
(2)打开计量槽下阀门,再缓慢开启泵出口阀,排出管2道中气体。
(3)关闭泵出口阀,观察压差计液面是否指零,不指零说明测压导管中有气体,需要重新进行排气调节。
(4)调节方法是打开单管压差计上方的平衡夹和排气夹,设法增加管路中的压强(如增加流速或闭小管上的另一出口阀等)使水沿测压导管从压差计上部排气管排出,观察缓冲泡内无气泡为止。
流量计校核实验报告
流量计校核实验报告流量计校核一、实验操作1. 熟悉实验装置,了解各阀门的位置及作用。
2. 对装置中有关管道、导压管、压差计进行排气,使倒U形压差计处于工作状态。
3. 对应每一个阀门开度,用容积法测量流量,同时记下压差计的读数,按由小到大的顺序在小流量时测量8,9个点,大流量时测量5,6个点。
为保证标定精度,最好再从大流量到小流量重复一次,然后取其平均值。
4. 测量流量时应保证每次测量中,计量桶液位差不小于100mm或测量时间不少于40s。
二、数据处理1.数据记录计量水箱规格:长 400mm;宽 300mm管径d(mm):25孔板取喉径d(mm):15.347 0查出实验温度下水的物性:密度ρ= 996.2542 kg/m3 粘度μ= 0.000958 PaS2.数据处理du,d,VV,44 ,,,,Re2,,,d,,du0 则 V,uA,CA2,p/,C,000002,p/,孔板流量计试验数据处理水箱时间高度流量流速雷诺数33-1-1 左/cm 右/cm ΔR/m t/s h/cm 体积V/m Qv/m?s V/m?s 空流系数C0 Re min 57.0 57.0 4qvV= Qv=h.S/t max 33.1 45.3 d2V=C. Re=dvρ/μ 2gR0,1.1078 0.7049 16916.60 1 33.7 46.3 0.126 40 6.7 0.0081932.05E-04 0.9833 0.7445 15014.92 2 38.2 47.1 0.089 41 6.1 0.007454 1.82E-04 0.9264 0.7307 14146.29 3 40.6 48.8 0.082 41 5.7 0.007022 1.71E-04 0.8662 0.7734 13228.02 4 42.5 48.9 0.064 40 5.2 0.006406 1.60E-04 0.7964 0.7601 12160.84 5 43.8 49.4 0.056 414.9 0.006037 1.47E-04 0.7313 0.7620 11168.12 6 45.6 50.3 0.047 41 4.5 0.005544 1.35E-04 0.6338 0.7764 9679.04 7 47.9 51.3 0.034 41 3.9 0.004805 1.17E-04 0.5688 0.7678 8686.32 8 49.4 52.2 0.028 41 3.5 0.004312 1.05E-04 0.4713 0.8165 7197.23 9 51.6 53.3 0.017 41 2.9 0.0035738.71E-05 0.4998 0.8189 7631.55 1 50.9 52.8 0.019 40 3.0 0.0036969.24E-05 0.6013 0.7976 9182.68 2 48.7 51.6 0.029 41 3.7 0.004558 1.11E-04 0.6663 0.7825 10175.40 3 47.1 50.8 0.037 40 4.0 0.004928 1.23E-04 0.7638 0.7566 11664.48 4 44.7 49.9 0.052 41 4.7 0.00579 1.41E-04 0.8451 0.7605 12905.39 5 42.5 48.8 0.063 41 5.2 0.006406 1.56E-040.9101 0.7661 13898.11 6 40.8 48.0 0.072 41 5.6 0.006899 1.68E-041.0239 0.7503 15635.37 7 37.6 47.1 0.095 41 6.3 0.007762 1.89E-04 1.1214 0.7672 17124.45 8 35.3 46.2 0.109 41 6.9 0.0085012.07E-04 1.1161 0.7218 17043.80 9 33.4 45.6 0.122 40 6.7 0.008254 2.06E-04 孔板流量计R-Qv双对数坐标图lgQv-0.600-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-0.800-1.000-1.200y = 2.233x + 7.302-1.400lgR-1.600-1.800-2.000孔板流量计C0-Re图0.84000.8200y = -0.2058x + 1.6040.8000空流系数C00.78000.76000.74000.72000.70000.68003.83.944.14.24.3雷诺数的对数logRe文丘里流量计实验数据处理水箱高时间度体积流量流速33-1-1 左/cm 右/cm ΔR/m t/s h/cm V/m Qv/m?s V/m?s 空流系数C 雷诺数Re 0 min 66.3 66.3 4qvV= Qv=h.S/t max 19.0 57.8 d2V=C. Re=dvρ/μ 2gR0,4.472 1.756 55449.87 1 29.6 62.7 0.331 40 17.70 0.02185.45E-044.032 1.663 50001.92 2 34.1 64.1 0.3 41 16.36 0.0202 4.92E-043.739 1.663 46364.86 3 40.3 66.1 0.258 40 14.80 0.0182 4.56E-043.385 1.634 41979.00 4 44.4 66.3 0.219 40 13.40 0.0165 4.13E-043.060 1.607 37941.22 5 48.4 66.9 0.185 36 10.90 0.0134 3.73E-042.981 1.762 36966.58 6 52.5 67.1 0.146 40 11.80 0.01453.63E-042.282 1.639 28301.82 7 56.5 66.4 0.099 41 9.26 0.0114 2.78E-041.768 1.752 21929.33 8 60.5 65.7 0.052 40 7.00 0.00862.16E-041.251 1.997 15507.17 1 63.3 65.3 0.02 40 4.95 0.0061 1.52E-041.960 1.763 24298.00 2 59.4 65.7 0.063 41 7.95 0.00982.39E-042.395 1.728 29698.57 3 56.4 66.2 0.098 40 9.48 0.0117 2.92E-042.784 1.651 34523.03 4 51.9 66.4 0.145 40 11.02 0.0136 3.39E-043.486 1.757 43232.10 5 45.3 65.4 0.201 40 13.80 0.01704.25E-04 3.456 1.577 42856.17 6 40.7 65.2 0.245 40 13.68 0.0169 4.21E-043.979 1.699 49340.98 7 37.0 65.0 0.28 40 15.75 0.01944.85E-044.042 1.587 50124.17 8 32.1 65.2 0.331 41 16.40 0.0202 4.93E-04 4.371 1.627 54196.76 9 27.1 63.9 0.368 40 17.30 0.0213 5.33E-04 文丘里流量计R-Qv双对数坐标图lgQv-0.800-4.100-4.050-4.000-3.950-3.900-3.850-3.800-3.750-3.700-3.650-1.000-1.200y = 2.233x + 7.302-1.400-1.600-1.800lgR-2.000文丘里流量计C0-Re单对数坐标图2.500y = -0.4311x + 3.66692.000C01.5001.0000.5000.0004.104.204.304.404.504.604.704.80lgRe3.结果分析由孔板锐口的形状、测压口位置、孔径与管径之比和雷诺数Re所决定。
流量计的校正实验报告(共8篇)
流量计的校正实验报告(共8篇)化工实验报告-流量计的流量校正实验报告Experimentation Report of Taiyuan teachers College系部:化学系年级:大四课程:化工实验姓名:学号:日期:2012/09/19项目:流量计的流量校正一、实验目的:1.学会流量计的校正方法。
2.通过孔板流量计孔流系数的测定,了解孔流系数的变化规律。
二、实验原理:孔板流量计是最常用的一种利用测定流体的压差来确定流体流量的流量测量仪表。
根据伯努利方程式,管路中流体的流量与压差计读数的关系为:流量计的孔流系数确定以后,就可根据上式,由压差计读数来确定流量。
流量计的校正就是要确定孔板流量计的孔流系数。
影响孔板流量计孔流系数的因素很多,如流动过程的雷诺数、孔口面积与管道面积比、测压方式、孔口形状及加工光洁度、孔板厚度和管壁粗糙度等。
对于测压方式、结构尺寸、加工状况等均已规定的标准孔板,Vs?C0A02(pa?pb)C0A02(A?)gR孔口面积m?C0?f(Re,m)管道面积当实验装置确定,m 确定,C0?f(Re)测定过程中,用基准流量计测定管路中的流量,用压差计测定孔板前后的压差,即可通过①式求出值。
三、实验装置:1.设备参数:管道直径0.027m,孔板直径0.018m2.实验装置:水泵,U型管压计,孔板流量计,涡轮流量计,调节阀门,水箱四、实验步骤:1.水箱充水至80%。
2.实验开始前,关闭流体出口控制阀门,打开水银压差计上平衡阀。
3.启动循环水泵。
4.分别进行管路系统、引压管、压差计的排气工作,排出可能积存在系统内的空气,以保证数据测定稳定、可靠。
①管路系统排气:打开出口调节阀,让水流动片刻,将管路中的大部分空气排出,然后将出口阀关闭,打开管路出口端上方的排气阀,使管路中的残余空气排出。
②引压管和压差计排气:依次打开并迅速关闭压差计上方的排气阀,反复操作几次,将引压管和压差计内的空气排出。
实验3、流量计的校正实验
实验3、流量计的校正实验流量计是一种非常常用的仪器,它可以用来测量液体或气体在管道内的流量。
然而,由于许多因素的影响,例如管道和流量计的尺寸、介质的温度和压力等,所得到的读数往往存在误差。
因此,流量计需要进行周期性的校准,以保证其准确性和可靠性。
流量计的校准通常是通过比对流量计读数与标准流量值来实现的。
标准流量值可以通过实验室的试验设备或现场校准设备来获得。
本实验将利用现场校准设备,对某型号涡街流量计进行校准实验,以验证其测量准确性。
下面是校准实验的步骤:1.准备工作实验前必须检查所需仪器设备的状态,并校验试验设备的标准流量值是否符合标准规格。
其实验所需设备包括:现场标准流量计、闸门阀、钳形阀门、笔式记录仪、数字式电表、某型号涡街流量计等。
2.现场标准流量计的校准在开始校准某型号涡街流量计之前,需要先校验现场标准流量计的准确性。
校验的步骤如下:(1)打开现场标准流量计的计量系统,调整闸门阀或钳形阀的开度,使流量计的读数渐渐增大。
(2)观察现场标准流量计的读数是否与试验设备的标准流量值一致。
如存在偏差,则需调整闸门阀或钳形阀的开度,使其读数与标准流量值吻合。
(3)重复上述步骤多次,以验证现场标准流量计的准确性和精度。
(1)准备涡街流量计:将涡街流量计与管道连接,打开涡街流量计的供电和信号线,并将笔式记录仪和数字式电表与涡街流量计相连。
(2)调节涡街流量计:在现场标准流量计不发挥作用的情况下,逐渐打开闸门阀或钳形阀门,改变涡街流量计的工作流量。
调整过程中应记录下标准流量值以及涡街流量计的读数。
(3)记录数据:将闸门阀或钳形阀门的开度数值和涡街流量计的读数记录在笔式记录仪上,并用电表测量标液的温度和压力。
(4)拟合曲线:根据记录的数据,使用计算机软件拟合实验曲线。
以读数为横坐标和流量为纵坐标绘制出校准曲线。
(5)验证校准结果:使用校准曲线对涡街流量计进行校准,验证校准结果是否与实际流量值吻合。
在实际生产中使用涡街流量计进行流量测量前,每年应进行一次校准,以保证其准确性和可靠性。
石油大学 流体力学实验报告_流量计实验报告
中国石油大学(华东)流量计实验实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:实验三、流量计实验一、实验目的1、掌握孔板、文丘利节流式流量计的工作原理及用途;2、测定孔板流量计的流量系数 ,绘制流量计的校正曲线;3、了解两用式压差计的结构及工作原理,掌握两用式压差计的使用方法。
二、实验装置本实验采用管流综合实验装置。
管流综合实验装置包括六根实验管路、电磁流量计、文丘利流量计、孔板流量计,其结构如图3-1示。
F1——文丘里流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力实验管路图3-1 管流综合实验装置流程图三、实验原理1、文丘利流量计文丘利管是一种常用的两侧有管道流量的装置,属压差式流量计(见图3-2)。
它包括收缩段、喉道和扩散段三部分,安装在需要测定流量的官道上。
在收缩段进口断面1-1和喉道断面2-2上设测压孔,并接上压差计,通过测量两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。
2、孔板流量计如图3-3所示,在管道上设置空板,在流动未经孔板收缩的上游断面1-1和经孔板收缩的下游断面2-2上设测压孔,并接上压差计,通过量测两个断面的测压管水头差,可以计算管道的理论流量Q ,再经修正即可得到实际流量。
孔板流量计也属于压差式流量计,其特点是结构简单。
图3-2 文丘利流量计示意图 图3-3 孔板流量计示意图3、理论流量水流从1-1断面到达2-2断面,由于过水断面的收缩,流速增大,根据恒定总流能量方程,若不考虑水头损失,速度水头的增加等于测压管水头的减小(即压差计液面高差h ∇),因此,通过量测到的h ∇建立了两个断面平均流速1v 和2v 之间的关系:h ∇=1h -2h =(1z +γ1p )-(2z +γ2p )=gv 2222α-g v 2211α (3-1)如果假设动能修正系数1α=2α=1.0,则最终得到理论流量为:理Q =)(12A A A A A -h g △2=h K △μ其中:K =g A 22122)()(1A A A A -=μ式中 A -----孔板锐孔断面面积;21,A A ----分别为1-1,2-2截面的面积。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、实验目的
1. 分别用三角堰、涡轮流量计、水银比压计校正孔板流量计,实验测定流量计的流量
系数。
2. 制作流量系数 与雷诺数 关系曲线,并确定 = 的范围和数值。
二、 实验原理
孔板是常用的流量计,都是利用改变流道截面的方法使截面前后测压管水头差发生变化,通过测量测压管水头差计算流量。
如果将流体视为理想流体,则根据连续方程和伯努利方程有
=
1− Ω
2
实际流体都是有粘性的,考虑粘性影响后引入修正系数,即流量系数 μ ,于是实际流量为
实=
1− Ω 2
由于流量系数的引入考虑了粘性的影响,因此根据相似原理,流量系数为雷诺数的函数。
三、 设备与仪器
实验设备包括三角量水堰、涡轮流量计、水银比压计、孔板流量计、水泵数显高度尺、水箱等。
流量采用三角量水堰进行测量。
通过测量堰上水头高度,可由 Q-H 关系式求得流量 Q。
采用水银比压计测量孔板上的测压管水头差。
读出温度计上显示的温度,通过查表确定 υ。
四、 实验步骤
1. 在启动水泵前将泵前阀和调节阀关死。
2. 启动水泵后将泵前阀和调节阀完全打开,泵运行的同时排出试验管路内的空气。
3. 将排气阀打开,排空水银比压计及连接管内的空气,并检查空气是否完全排空。
4. 通过调节控制阀的开关确定实验工况点,记录与水银比压计高度差相对应的实验数
据。
5. 将泵前阀关死,然后关闭水泵。
五、实验数据记录及处理
0.580
0.6000.6200.6400.6600.6800.7004.20 4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00
三角堰μ-lg(Re)关系曲线
0.580
0.600
0.620
0.640
0.660
0.680
0.700
4.20
4.30
4.40
4.50
4.60
4.70
4.80
4.90
5.00
涡轮流量计μ-lg(Re)关系曲线
观察曲线可知,流量系数的常数值约为0.59,对应的Re 范围为83500~30500。
六、思考题
1.两测压管孔应在一条流线上,这样使用沿流线的伯努利方程计算才更准确。
2.内摩擦损失越大,流量系数越偏离 1。
文丘里流量计逐渐缩放,粘性摩擦造成的损
失较小,所以流量系数更接近 1。