2013年湖北省孝感市中考数学试题含答案
湖北省孝感市中考数学试卷(解析版)
湖北省孝感市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.﹣的绝对值是()A.﹣3 B.3 C.D.﹣【分析】根据绝对值的意义即可求出答案.【解答】解:|﹣|=,故选(C)【点评】本题考查绝对值的意义,解题的关键是正确理解绝对值的意义,本题属于基础题型2.如图,直线a∥b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A.4个 B.3个 C.2个 D.1个【分析】根据射线DF⊥直线c,可得与∠1互余的角有∠2,∠3,根据a∥b,可得与∠1互余的角有∠4,∠5.【解答】解:∵射线DF⊥直线c,∴∠1+∠2=90°,∠1+∠3=90°,即与∠1互余的角有∠2,∠3,又∵a∥b,∴∠3=∠5,∠2=∠4,∴与∠1互余的角有∠4,∠5,∴与∠1互余的角有4个,故选:A.【点评】本题主要考查了平行线的性质以及余角的综合应用,解决问题的关键是掌握:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.3.下列计算正确的是()A.b3b3=2b3B.=a2﹣4C.﹣(4a﹣5b)=4a﹣12b【分析】各项计算得到结果,即可作出判断.【解答】解:A、原式=b6,不符合题意;B、原式=a2﹣4,符合题意;C、原式=a3b6,不符合题意;D、原式=8a﹣7b﹣4a+5b=4a﹣2b,不符合题意,故选B【点评】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.4.一个几何体的三视图如图所示,则这个几何体可能是()A.B.C.D.【分析】如图所示,根据三视图的知识可使用排除法来解答【解答】解:根据俯视图为三角形,主视图以及左视图都是矩形,可得这个几何体为三棱柱,故选C.【点评】本题考查了由三视图判断几何体的知识,考查了学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.5.不等式组的解集在数轴上表示正确的是()A.B.C.D.【分析】首先解出两个不等式的解;根据在数轴上表示不等式解集的方法分别把每个不等式的解集在数轴上表示出来即可.【解答】解:解不等式①得,x≤3解不等式②得,x>﹣2在数轴上表示为:故选:D.【点评】本题考查的是在数轴上表示不等式组的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.方程=的解是()A.x= B.x=5 C.x=4 D.x=﹣5【分析】方程的两边都乘以(x+3)(x﹣1),把分式方程变成整式方程,求出方程的解,再进行检验即可.【解答】解:方程的两边都乘以(x+3)(x﹣1)得:2x﹣2=x+3,解方程得:x=5,经检验x=5是原方程的解,所以原方程的解是x=5.故选B.【点评】本题考查了分式方程的解法,关键是把分式方程转化成整式方程,注意一定要进行检验.7.下列说法正确的是()A.调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查B.一组数据85,95,90,95,95,90,90,80,95,90的众数为95C.“打开电视,正在播放乒乓球比赛”是必然事件D.同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为【分析】根据抽样调查、众数和概率的定义分别对每一项进行分析,即可得出答案.【解答】解:A、调查孝感区居民对创建“全国卫生城市”的知晓度,宜采用抽样调查,正确;B、一组数据85,95,90,95,95,90,90,80,95,90的众数为95和90,故错误;C、“打开电视,正在播放乒乓球比赛”是随机事件,故错误;D、同时抛掷两枚质地均匀的硬币一次,出现两个正面朝上的概率为,故选A.【点评】此题考查了抽样调查、众数、随机事件,概率,众数是一组数据中出现次数最多的数.8.如图,在平面直角坐标系中,点A的坐标为(﹣1,),以原点O为中心,将点A顺时针旋转150°得到点A′,则点A′的坐标为()A.(0,﹣2)B.(1,﹣)C.(2,0)D.(,﹣1)【分析】作AB⊥x轴于点B,由AB=、OB=1可得∠AOy=30°,从而知将点A 顺时针旋转150°得到点A′后如图所示,OA′=OA==2,∠A′OC=30°,继而可得答案.【解答】解:作AB⊥x轴于点B,∴AB=、OB=1,则tan∠AOB==,∴∠AOB=60°,∴∠AOy=30°∴将点A顺时针旋转150°得到点A′后,如图所示,OA′=OA==2,∠A′OC=30°,∴A′C=1、OC=,即A′(,﹣1),故选:D.【点评】本题考查了坐标与图形的变化﹣旋转,根据点A的坐标求出∠AOB=60°,再根据旋转变换只改变图形的位置,不改变图形的形状与大小确定出点B′在OA 上是解题的关键.9.如图,在△ABC中,点O是△ABC的内心,连接OB,OC,过点O作EF∥BC 分别交AB,AC于点E,F.已知△ABC的周长为8,BC=x,△AEF的周长为y,则表示y与x的函数图象大致是()A.B.C.D.【分析】由三角形的内心性质和平行线的性质证出BE=OE,CF=OF,得出△AEF 的周长y与x的关系式为y=8﹣x,求出0<x<4,即可得出答案.【解答】解:∵点O是△ABC的内心,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF∥BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为8,BC=x,∴AB+AC=8﹣x,∴y=8﹣x,∵AB+AC>BC,∴y>x,∴8﹣x>x,∴0<x<4,即y与x的函数关系式为y=8﹣x(x<4),故选:B.【点评】本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.10.如图,六边形ABCDEF的内角都相等,∠DAB=60°,AB=DE,则下列结论成立的个数是()①AB∥DE;②EF∥AD∥BC;③AF=CD;④四边形ACDF是平行四边形;⑤六边形ABCDEF既是中心对称图形,又是轴对称图形.A.2 B.3 C.4 D.5【分析】根据六边形ABCDEF的内角都相等,∠DAB=60°,平行线的判定,平行四边形的判定,中心对称图形的定义一一判断即可.【解答】解:∵六边形ABCDEF的内角都相等,∴∠EFA=∠FED=∠FAB=∠ABC=120°,∵∠DAB=60°,∴∠DAF=60°,∴∠EFA+∠DAF=180°,∠DAB+∠ABC=180°,∴AD∥EF∥CB,故②正确,∴∠FED+∠EDA=180°,∴∠EDA=∠ADC=60°,∴∠EDA=∠DAB,∴AB∥DE,故①正确,∵∠FAD=∠EDA,∠CDA=∠BAD,EF∥AD∥BC,∴四边形EFAD,四边形BCDA是等腰梯形,∴AF=DE,AB=CD,∵AB=DE,∴AF=CD,故③正确,连接CF与AD交于点O,连接DF、AC、AE、DB、BE.∵∠CDA=∠DAF,∴AF∥CD,AF=CD,∴四边形AFDC是平行四边形,故④正确,同法可证四边形AEDB是平行四边形,∴AD与CF,AD与BE互相平分,∴OF=OC,OE=OB,OA=OD,∴六边形ABCDEF既是中心对称图形,故⑤正确,故选D.【点评】本题考查平行四边形的判定和性质、平行线的判定和性质、轴对称图形、中心对称图形等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.二、填空题(本大题共6小题,每小题3分,共18分)11.我国是世界上人均拥有淡水量较少的国家,全国淡水资源的总量约为27500亿m3,应节约用水,数27500用科学记数法表示为 2.75×104.【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.【解答】解:27500=2.75×104.故答案为:2.75×104.【点评】此题主要考查了用科学记数法表示较大的数,一般形式为a×10n,其中1≤|a|<10,确定a与n的值是解题的关键.12.如图所示,图1是一个边长为a的正方形剪去一个边长为1的小正方形,图2是一个边长为(a﹣1)的正方形,记图1,图2中阴影部分的面积分别为S1,S2,则可化简为.【分析】首先表示S1=a2﹣1,S2=(a﹣1)2,再约分化简即可.【解答】解:===,故答案为:.【点评】此题主要考查了平方公式的几何背景和分式的化简,关键是正确表示出阴影部分面积.13.如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为(,0).【分析】先作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,根据待定系数法求得平移后的直线为y=﹣x﹣2,进而得到点B的坐标以及点B'的坐标,再根据待定系数法求得直线AB'的解析式,即可得到点P的坐标.【解答】解:如图所示,作点B关于x轴对称的点B',连接AB',交x轴于P,则点P即为所求,设直线y=﹣x沿y轴向下平移后的直线解析式为y=﹣x+a,把A(2,﹣4)代入可得,a=﹣2,∴平移后的直线为y=﹣x﹣2,令x=0,则y=﹣2,即B(0,﹣2)∴B'(0,2),设直线AB'的解析式为y=kx+b,把A(2,﹣4),B'(0,2)代入可得,,解得,∴直线AB'的解析式为y=﹣3x+2,令y=0,则x=,∴P(,0),故答案为:(,0).【点评】本题属于最短路线问题,主要考查了一次函数图象与几何变换的运用,解决问题的关键是掌握:在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L的交点就是所要找的点.14.如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,则线段BH 的长为.【分析】直接利用菱形的性质得出AO,DO的长,再利用三角形面积以及勾股定理得出答案.【解答】解:∵四边形ABCD是菱形,AC=24,BD=10,∴AO=12,OD=5,AC⊥BD,∴AD=AB==13,∵DH⊥AB,∴AO×BD=DH×AB,∴12×10=13×DH,∴DH=,∴BH==.故答案为:.【点评】此题主要考查了菱形的性质以及勾股定理,正确得出DH的长是解题关键.15.已知半径为2的⊙O中,弦AC=2,弦AD=2,则∠COD的度数为150°或30°.【分析】连接OC,过点O作OE⊥AD于点E,由OA=OC=AC可得出∠OAC=60°,再根据垂径定理结合勾股定理可得出AE=OE,即∠OAD=45°,利用角的计算结合圆周角与圆心角间的关系,即可求出∠COD的度数.【解答】解:连接OC,过点O作OE⊥AD于点E,如图所示.∵OA=OC=AC,∴∠OAC=60°.∵AD=2,OE⊥AD,∴AE=,OE==,∴∠OAD=45°,∴∠CAD=∠OAC+∠OAD=105°或∠CAD=∠OAC﹣∠OAD=15°,∴∠COD=360°﹣2×105°=150°或∠COD=2×15°=30°.故答案为:150°或30°.【点评】本题考查了垂径定理、解直角三角形、等边三角形的判定与性质以及圆周角定理,依照题意画出图形,利用数形结合解决问题是解题的关键.16.如图,在平面直角坐标系中,OA=AB,∠OAB=90°,反比例函数y=(x>0)的图象经过A,B两点.若点A的坐标为(n,1),则k的值为.【分析】作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,则AG⊥BC,先求得△AOE≌△BAG,得出AG=OE=n,BG=AE=1,从而求得B(n+1,1﹣n),根据k=n×1=(n+1)(1﹣n)得出方程,解方程即可.【解答】解:作AE⊥x轴于E,BF⊥x轴于F,过B点作BC⊥y轴于C,交AE于G,如图所示:则AG⊥BC,∵∠OAB=90°,∴∠OAE+∠BAG=90°,∵∠OAE+∠AOE=90°,∴∠AOE=∠GAB,在△AOE和△BAG中,,∴△AOE≌△BAG(AAS),∴OE=AG,AE=BG,∵点A(n,1),∴AG=OE=n,BG=AE=1,∴B(n+1,1﹣n),∴k=n×1=(n+1)(1﹣n),整理得:n2+n﹣1=0,解得:n=(负值舍去),∴n=,∴k=;故答案为:.【点评】本题考查了全等三角形的判定与性质、反比例函数图象上点的坐标特征、解方程等知识;熟练掌握反比例函数图象上点的坐标特征,证明三角形全等是解决问题的关键.三、解答题(本大题共8小题,共72分)17.计算:﹣22++cos45°.【分析】根据乘方的意义、立方根的定义、特殊角的三角函数值化简计算即可.【解答】解:原式=﹣4﹣2+×=﹣4﹣2+1=﹣5.【点评】本题考查实数的运算、乘方、立方根、特殊角的三角函数值等知识,解题的关键是掌握有理数的运算法则.18.如图,已知AB=CD,AE⊥BD,CF⊥BD,垂足分别为E,F,BF=DE,求证:AB∥CD.【分析】根据全等三角形的判定与性质,可得∠B=∠D,根据平行线的判定,可得答案.【解答】证明:∵AE⊥BD,CF⊥BD,∴∠AEB=∠CFD=90°,∵BF=DE,∴BF+EF=DE+EF,∴BE=DF.在Rt△AFB和Rt△CFD中,,∴Rt△AFB≌Rt△CFD(HL),∴∠B=∠D,∴AB∥CD.【点评】本题考查了全等三角形的判定与性质,利用等式的性质得出BE=DF是解题关键,又利用了全等三角形的判定与性质.19.今年四月份,某校在孝感市争创“全国文明城市”活动中,组织全体学生参加了“弘扬孝德文化,争做文明学生”的知识竞赛,赛后随机抽取了部分参赛学生的成绩,按得分划分成A,B,C,D,E,F六个等级,并绘制成如下两幅不完整的统计图表.等级得分x(分)频数(人)A95≤x≤1004B90≤x<95mC85≤x<90nD80≤x<8524E75≤x<808F70≤x<754请根据图表提供的信息,解答下列问题:(1)本次抽样调查样本容量为80,表中:m=12,n=8;扇形统计图中,E等级对应扇形的圆心角α等于36度;(2)该校决定从本次抽取的A等级学生(记为甲、乙、病、丁)中,随机选择2名成为学校文明宣讲志愿者,请你用列表法或画树状图的方法,求恰好抽到甲和乙的概率.【分析】(1)由D等级人数及其百分比求得总人数,总人数乘以B等级百分比求得其人数,根据各等级人数之和等于总人数求得n的值,360度乘以E等级人数所占比例可得;(2)画出树状图即可解决问题.【解答】解:(1)本次抽样调查样本容量为24÷30%=80,则m=80×15%=12,n=80﹣(4+12+24+8+4)=28,扇形统计图中,E等级对应扇形的圆心角α=360°×=36°,故答案为:80,12,8,36;(2)树状图如图所示,∵从四人中随机抽取两人有12种可能,恰好是甲和乙的有2种可能,∴抽取两人恰好是甲和乙的概率是.【点评】本题考查列表法、树状图法、扇形统计图、频数分布表等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.20.如图,已知矩形ABCD(AB<AD).(1)请用直尺和圆规按下列步骤作图,保留作图痕迹;①以点A为圆心,以AD的长为半径画弧交边BC于点E,连接AE;②作∠DAE的平分线交CD于点F;③连接EF;(2)在(1)作出的图形中,若AB=8,AD=10,则tan∠FEC的值为.【分析】(1)根据题目要求作图即可;(2)由(1)知AE=AD=10、∠DAF=∠EAF,可证△DAF≌△EAF得∠D=∠AEF=90°,即可得∠FEC=∠BAE,从而由tan∠FEC=tan∠BAE=可得答案.【解答】解:(1)如图所示;(2)由(1)知AE=AD=10、∠DAF=∠EAF,∵AB=8,∴BE==6,在△DAF和△EAF中,∵,∴△DAF≌△EAF(SAS),∴∠D=∠AEF=90°,∴∠BEA+∠FEC=90°,又∵∠BEA+∠BAE=90°,∴∠FEC=∠BAE,∴tan∠FEC=tan∠BAE===,故答案为:.【点评】本题主要考查作图﹣基本作图及全等三角形的判定与性质、解直角三角形,熟练掌握角平分线的尺规作图和全等三角形的判定与性质是解题的关键.21.已知关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2.(1)求m的取值范围;(2)若x1x2满足3x1=|x2|+2,求m的值.【分析】(1)根据方程的系数结合根的判别式,即可得出△=20﹣4m≥0,解之即可得出结论;(2)由根与系数的关系可得x1+x2=6①、x1x2=m+4②,分x2≥0和x2<0可找出3x1=x2+2③或3x1=﹣x2+2④,联立①③或①④求出x1、x2的值,进而可求出m的值.【解答】解:(1)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴△=(﹣6)2﹣4(m+4)=20﹣4m≥0,解得:m≤5,∴m的取值范围为m≤5.(2)∵关于x的一元二次方程x2﹣6x+m+4=0有两个实数根x1,x2,∴x1+x2=6①,x1x2=m+4②.∵3x1=|x2|+2,当x2≥0时,有3x1=x2+2③,联立①③解得:x1=2,x2=4,∴8=m+4,m=4;当x2<0时,有3x1=﹣x2+2④,联立①④解得:x1=﹣2,x2=8(不合题意,舍去).∴符合条件的m的值为4.【点评】本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)根据方程的系数结合根的判别式,找出△=20﹣4m≥0;(2)分x2≥0和x2<0两种情况求出x1、x2的值.22.为满足社区居民健身的需要,市政府准备采购若干套健身器材免费提供给社区,经考察,劲松公司有A,B两种型号的健身器材可供选择.(1)劲松公司2015年每套A型健身器材的售价为2.5万元,经过连续两年降价,每套售价为1.6万元,求每套A型健身器材年平均下降率n;(2)市政府经过招标,决定年内采购并安装劲松公司A,B两种型号的健身器材共80套,采购专项经费总计不超过112万元,采购合同规定:每套A型健身器材售价为1.6万元,每套B型健身器材售价为1.5(1﹣n)万元.①A型健身器材最多可购买多少套?②安装完成后,若每套A型和B型健身器材一年的养护费分别是购买价的5%和15%,市政府计划支出10万元进行养护,问该计划支出能否满足一年的养护需要?【分析】(1)该每套A型健身器材年平均下降率n,则第一次降价后的单价是原价的(1﹣x),第二次降价后的单价是原价的(1﹣x)2,根据题意列方程解答即可.(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,根据采购专项经费总计不超过112万元列出不等式并解答;②设总的养护费用是y元,则根据题意列出函数y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m)=﹣0.1m+14.4.结合函数图象的性质进行解答即可.【解答】解:(1)依题意得:2.5(1﹣n)2=1.6,则(1﹣n)2=0.64,所以1﹣n=±0.8,所以n1=0.2=20%,n2=1.8(不合题意,舍去).答:每套A型健身器材年平均下降率n为20%;(2)①设A型健身器材可购买m套,则B型健身器材可购买(80﹣m)套,依题意得:1.6m+1.5×(1﹣20%)×(80﹣m)≤112,整理,得1.6m+96﹣1.2m≤1.2,解得m≤40,即A型健身器材最多可购买40套;②设总的养护费用是y元,则y=1.6×5%m+1.5×(1﹣20%)×15%×(80﹣m),∴y=﹣0.1m+14.4.∵﹣0.1<0,∴y随m的增大而减小,∴m=40时,y最小.01×40+14.4=10.4(万元).∵m=40时,y最小值=﹣又∵10万元<10.4万元,∴该计划支出不能满足养护的需要.【点评】本题考查了一次函数的应用,一元一次不等式的应用和一元二次方程的应用.解题的关键是读懂题意,找到题中的等量关系,列出方程或不等式,解答即可得到答案.23.如图,⊙O的直径AB=10,弦AC=6,∠ACB的平分线交⊙O于D,过点D作DE∥AB交CA的延长线于点E,连接AD,BD.(1)由AB ,BD ,围成的曲边三角形的面积是 + ;(2)求证:DE 是⊙O 的切线; (3)求线段DE 的长.【分析】(1)连接OD ,由AB 是直径知∠ACB=90°,结合CD 平分∠ACB 知∠ABD=∠ACD=∠ACB=45°,从而知∠AOD=90°,根据曲边三角形的面积=S 扇形AOD+S △BOD可得答案;(2)由∠AOD=90°,即OD ⊥AB ,根据DE ∥AB 可得OD ⊥DE ,即可得证; (3)勾股定理求得BC=8,作AF ⊥DE 知四边形AODF 是正方形,即可得DF=5,由∠EAF=90°﹣∠CAB=∠ABC 知tan ∠EAF=tan ∠CBA ,即=,求得EF 的长即可得.【解答】解:(1)如图,连接OD ,∵AB 是直径,且AB=10, ∴∠ACB=90°,AO=BO=DO=5, ∵CD 平分∠ACB ,∴∠ABD=∠ACD=∠ACB=45°, ∴∠AOD=90°,则曲边三角形的面积是S 扇形AOD +S △BOD =+×5×5=+,故答案为: +;(2)由(1)知∠AOD=90°,即OD⊥AB,∵DE∥AB,∴OD⊥DE,∴DE是⊙O的切线;(3)∵AB=10、AC=6,∴BC==8,过点A作AF⊥DE于点F,则四边形AODF是正方形,∴AF=OD=FD=5,∴∠EAF=90°﹣∠CAB=∠ABC,∴tan∠EAF=tan∠CBA,∴=,即=,∴,∴DE=DF+EF=+5=.【点评】本题主要考查切线的判定、圆周角定理、正方形的判定与性质及正切函数的定义,熟练掌握圆周角定理、切线的判定及三角函数的定义是解题的关键.24.在平面直角坐标系xOy中,规定:抛物线y=a(x﹣h)2+k的伴随直线为y=a (x﹣h)+k.例如:抛物线y=2(x+1)2﹣3的伴随直线为y=2(x+1)﹣3,即y=2x ﹣1.(1)在上面规定下,抛物线y=(x+1)2﹣4的顶点坐标为(﹣1,﹣4),伴随直线为y=x﹣3,抛物线y=(x+1)2﹣4与其伴随直线的交点坐标为(0,﹣3)和(﹣1,﹣4);(2)如图,顶点在第一象限的抛物线y=m(x﹣1)2﹣4m与其伴随直线相交于点A,B(点A在点B的右侧),与x轴交于点C,D.①若∠CAB=90°,求m的值;②如果点P(x,y)是直线BC上方抛物线上的一个动点,△PBC的面积记为S,当S取得最大值时,求m的值.【分析】(1)由抛物线的顶点式可求得其顶点坐标,由伴随直线的定义可求得伴随直线的解析式,联立伴随直线和抛物线解析式可求得其交点坐标;(2)①可先用m表示出A、B、C、D的坐标,利用勾股定理可表示出AC2、AB2和BC2,在Rt△ABC中由勾股定理可得到关于m的方程,可求得m的值;②由B、C的坐标可求得直线BC的解析式,过P作x轴的垂线交BC于点Q,则可用x表示出PQ的长,进一步表示出△PBC的面积,利用二次函数的性质可得到m的方程,可求得m的值.【解答】解:(1)∵y=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4),由伴随直线的定义可得其伴随直线为y=(x+1)﹣4,即y=x﹣3,联立抛物线与伴随直线的解析式可得,解得或,∴其交点坐标为(0,﹣3)和(﹣1,﹣4),故答案为:(﹣1,﹣4);y=x﹣3;(0,﹣3);(﹣1,﹣4);(2)①∵抛物线解析式为y=m(x﹣1)2﹣4m,∴其伴随直线为y=m(x﹣1)﹣4m,即y=mx﹣5m,联立抛物线与伴随直线的解析式可得,解得或,∴A(1,﹣4m),B(2,﹣3m),在y=m(x﹣1)2﹣4m中,令y=0可解得x=﹣1或x=3,∴C(﹣1,0),D(3,0),∴AC2=4+16m2,AB2=1+m2,BC2=9+9m2,∵∠CAB=90°,∴AC2+AB2=BC2,即4+16m2+1+m2=9+9m2,解得m=(抛物线开口向下,舍去)或m=﹣,∴当∠CAB=90°时,m的值为﹣;②设直线BC的解析式为y=kx+b,∵B(2,﹣3m),C(﹣1,0),∴,解得,∴直线BC解析式为y=﹣mx﹣m,过P作x轴的垂线交BC于点Q,如图,∵点P的横坐标为x,∴P(x,m(x﹣1)2﹣4m),Q(x,﹣mx﹣m),∵P是直线BC上方抛物线上的一个动点,∴PQ=m(x﹣1)2﹣4m+mx+m=m(x2﹣x﹣2)=m[(x﹣)2﹣],=×[(2﹣(﹣1)]PQ=(x﹣)2﹣m,∴S△PBC∴当x=时,△PBC的面积有最大值﹣m,∴S取得最大值时,即﹣m=,解得m=﹣2.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、函数的图象的交点、勾股定理、方程思想等知识.在(1)中注意伴随直线的定义的理解,在(2)①中分别求得A、B、C、D的坐标是解题的关键,在(2)②中用x表示出△PBC的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.。
孝感市中考数学试题及答案
孝感市中考数学试题及答案一、选择题1. 某商场进行了“满100减50”的促销活动,如果小明购买了一件原价为300元的商品,实际需要支付的金额是多少?A. 100元B. 150元C. 200元D. 250元答案:C2. 下列哪个数是一个无理数?A. 3/10B. 0.5C. √5D. 2/3答案:C3. 如果已知直角三角形的斜边长为10,一条直角边长为6,求另一条直角边的长度。
A. 4B. 5C. 6D. 8答案:A4. 某班级共有男生40人,女生60人,男生占班级总人数的百分比是多少?A. 20%B. 40%C. 60%D. 80%答案:A5. 某商品原价为120元,现进行8折优惠,打完折后的价格是多少?A. 72元B. 88元C. 96元D. 104元答案:C二、填空题1. (5 × 10^3) × (2 × 10^5) = ______答案:10^82. 一本书的原价是200元,打8折后的价格是______元。
答案:1603. 如果把1000元存入银行,年利率为4%,3年后的本息总额是______元。
答案:11244. 如果x = 2,y = 3,那么2x + 3y的值是______。
答案:135. 一个四边形的周长为24,其中两条边长分别为6和8,另外两条边长分别为______和______。
答案:3, 7三、解答题1. 一辆汽车以每小时60公里的速度行驶,经过4小时后,它行驶的总距离是多少公里?答案:240公里解析:速度公式为:速度=路程/时间,题中已知速度为60公里/小时,时间为4小时,代入公式可得:路程=速度×时间=60公里/小时×4小时=240公里。
2. 某人有4000元,他先花掉总数的1/5,然后又花掉剩余数的1/4,最后还剩下多少钱?答案:2400元解析:某人先花掉总数的1/5,剩余数为4/5×4000元=3200元。
2013年湖北省孝感市中考数学试卷及答案
2013年湖北省孝感市中考数学试卷及答案一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.(3分)(2013•孝感)计算﹣32的值是()A.9 B.﹣9 C.6 D.﹣6考点:有理数的乘方.解析:根据有理数的乘方的定义解答.解答:解:﹣32=﹣9.故选B.点评:本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.(3分)(2013•孝感)太阳的半径约为696000km,把696000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×106考点:科学记数法—表示较大的数.解析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将696000用科学记数法表示为6.96×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(3分)(2013•孝感)如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°考点:平行线的判定与性质.解析:首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.解答:解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.点评:此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.4.(3分)(2013•孝感)下列计算正确的是()A.a3÷a2=a3•a﹣2B.C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2考点:同底数幂的除法;合并同类项;同底数幂的乘法;完全平方公式;负整数指数幂;二次根式的性质与化简.解析:根据合并同类项的法则、同底数幂的乘除法则及幂的乘方法则,结合各选项进行判断即可.解答:解:A、a3÷a2=a3•a﹣2,计算正确,故本选项正确;B、=|a|,计算错误,故本选项错误;C、2a2+a2=3a2,计算错误,故本选项错误;D、(a﹣b)2=a2﹣2ab+b2,计算错误,故本选项错误;故选A.点评:本题考查了同底数幂的乘除、合并同类项的知识,解答本题的关键是掌握各部分的运算法则.5.(3分)(2013•孝感)为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:16 9 14 11 12 10 16 8 17 19则这组数据的中位数和极差分别是()A.13,16 B.14,11 C.12,11 D.13,11考点:极差;中位数.解析:根据中位数及极差的定义,结合所给数据即可作出判断.解答:解:将数据从小到大排列为:8,9,10,11,12,14,16,16,17,19,中位数为:13;极差=19﹣8=11.故选D.点评:本题考查了极差及中位数的定义,在求中位数的时候,注意将所给数据从新排列.6.(3分)(2013•孝感)下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交考点:圆与圆的位置关系;垂径定理;圆心角、弧、弦的关系;圆周角定理.解析:利用圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识进行判断即可解答:解:A、平分弦(不是直径)的直径垂直于弦,故本选项错误;B、半圆或直径所对的圆周角是直角,故本选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故本选项错误;D、两圆有两个公共点,两圆相交,故本选项错误,故选B.点评:本题考查了圆与圆的位置关系、垂径定理、圆周角定理等有关圆的知识,牢记这些定理是解决本题的关键.7.(3分)(2013•孝感)使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在考点:一元一次不等式组的整数解.解析:先分别解出两个一元一次不等式,再确定x的取值范围,最后根据x的取值范围找出x的整数解即可.解答:解:根据题意得:,解得:3≤x<5,则x的整数值是3,4;故选A.点评:此题考查了一元一次不等式组的整数解,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.8.(3分)(2013•孝感)式子的值是()A.B.0 C.D.2考点:特殊角的三角函数值.解析:将特殊角的三角函数值代入后,化简即可得出答案.解答:解:原式=2×﹣1﹣(﹣1)=﹣1﹣+1=0.故选B.点评: 本题考查了特殊角的三角函数值,一些特殊角的三角函数值是需要我们熟练记忆的内容.9.(3分)(2013•孝感)在平面直角坐标系中,已知点E (﹣4,2),F (﹣2,﹣2),以原点O 为位似中心,相似比为,把△EFO 缩小,则点E 的对应点E′的坐标是( )A . (﹣2,1)B . (﹣8,4)C . (﹣8,4)或(8,﹣4)D . (﹣2,1)或(2,﹣1)考点: 位似变换;坐标与图形性质.专题: 作图题.解析: 根据题意画出相应的图形,找出点E 的对应点E′的坐标即可.解答: 解:根据题意得:则点E 的对应点E′的坐标是(﹣2,1)或(2,﹣1).故选D .点评: 此题考查了位似图形,以及坐标与图形性质,位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.10.(3分)(2013•孝感)如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是( )A .B .C .D .考点: 由三视图判断几何体;简单组合体的三视图.解析: 根据该组合体的主视图和俯视图及正方形的个数确定每层的小正方形的个数,然后确定其左视图即可;解答: 解:∵该组合体共有8个小正方体,俯视图和主视图如图,∴该组合体共有两层,第一层有5个小正方体,第二层有三个小正方形,且全位于第二层的最左边,∴左视图应该是两层,每层两个,故选B.点评:考查由视图判断几何体;用到的知识点为:俯视图中正方形的个数是组合几何体最底层正方体的个数;组合几何体的最少个数是底层的正方体数加上主视图中第二层和第3层正方形的个数.11.(3分)(2013•孝感)如图,函数y=﹣x与函数的图象相交于A,B两点,过A,B两点分别作y 轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()A.2 B.4 C.6 D.8考点:反比例函数与一次函数的交点问题.解析:首先根据反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,得出S△AOC=S△ODB=2,再根据反比例函数的对称性可知:OC=OD,AC=BD,即可求出四边形ACBD的面积.解答:解:∵过函数的图象上A,B两点分别作y轴的垂线,垂足分别为点C,D,∴S△AOC=S△ODB=|k|=2,又∵OC=OD,AC=BD,∴S△AOC=S△ODA=S△ODB=S△OBC=2,∴四边形ABCD的面积为:S△AOC+S△ODA+S△ODB+S△OBC=4×2=8.故选D.点评:本题主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|,是经常考查的一个知识点;同时考查了反比例函数图象的对称性.12.(3分)(2013•孝感)如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.B.C.D.考点:相似三角形的判定与性质;等腰三角形的判定与性质.解析:依次判定△ABC∽△BDC∽△CDE∽△DFE,根据相似三角形的对应边成比例的知识,可得出EF的长度.解答:解:∵AB=AC,∴∠ABC=∠ACB,又∵∠CBD=∠A,∴△ABC∽△BDC,同理可得:△ABC∽△BDC∽△CDE∽△DFE,∴=,=,=,解得:CD=,DE=,EF=.故选C.点评:本题考查了相似三角形的判定与性质,本题中相似三角形比较容易找到,难点在于根据对应边成比例求解线段的长度,注意仔细对应,不要出错.二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分.请将结果直接填写在答题卡相应位置上)13.(3分)(2013•孝感)分解因式:ax2+2ax﹣3a= a(x+3)(x﹣1).考点:因式分解-十字相乘法等;因式分解-提公因式法.专题:计算题.解析:原式提取a后利用十字相乘法分解即可.解答:解:ax2+2ax﹣3a=a(x2+2x﹣3)=a(x+3)(x﹣1).故答案为:a(x+3)(x﹣1)点评:此题考查了因式分解﹣十字相乘法与提公因数法,熟练掌握因式分解的方法是解本题的关键.14.(3分)(2013•孝感)在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为(结果用分数表示).解析:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.解答:解:∵在5瓶饮料中,有2瓶已过了保质期,∴从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为;故答案为:.点评:此题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.15.(3分)(2013•孝感)如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为12m(结果不作近似计算).考点:解直角三角形的应用-仰角俯角问题.解析:首先过点D作DE⊥AB于点E,可得四边形BCDE是矩形,然后分别在Rt△ABC与Rt△ADE 中,利用正切函数的知识,求得AB与AE的长,继而可求得答案.解答:解:过点D作DE⊥AB于点E,则四边形BCDE是矩形,根据题意得:∠ACB=β=60°,∠ADE=α=30°,BC=18m,∴DE=BC=18m,CD=BE,在Rt△ABC中,AB=BC•tan∠ACB=18×tan60°=18(m),在Rt△ADE中,AE=DE•tan∠ADE=18×tan30°=6(m),∴DE=BE=AB﹣AE=18﹣6=12(m).故答案为:12.点评:本题考查俯角的知识.此题难度不大,注意能借助俯角构造直角三角形并解直角三角形是解此题的关键,注意掌握数形结合思想的应用.16.(3分)用半径为10cm,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为8 cm.专题:计算题.解析:根据圆的周长公式和扇形的弧长公式解答.解答:解:如图:圆的周长即为扇形的弧长,列出关系式解答:=2πx,又∵n=216,r=10,∴(216×π×10)÷180=2πx,解得x=6,h==8.故答案为:8cm.点评:考查了圆锥的计算,先画出图形,建立起圆锥底边周长和扇形弧长的关系式,即可解答.17.(3分)(2013•孝感)如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是51 .考点:规律型:图形的变化类.专题:规律型.解析:计算不难发现,相邻两个图形的小石子数的差值依次增加3,根据此规律依次进行计算即可得解.解答:解:∵5﹣1=4,12﹣5=7,22﹣12=10,∴相邻两个图形的小石子数的差值依次增加3,∴第4个五边形数是22+13=35,第5个五边形数是35+16=51.故答案为:51.点评:本题是对图形变化规律的考查,仔细观察图形求出相邻两个图形的小石子数的差值依次增加3是解题的关键.18.(3分)(2013•孝感)如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.那么,从关闭进水管起8 分钟该容器内的水恰好放完.考点:一次函数的应用.解析:先根据函数图象求出进水管的进水量和出水管的出水量,由工程问题的数量关系就可以求出结论.解答:解:由函数图象得:进水管每分钟的进水量为:20÷4=5升设出水管每分钟的出水量为a升,由函数图象,得20+8(5﹣a)=30,解得:a=,故关闭进水管后出水管放完水的时间为:30÷=8分钟.故答案为:8.点评:本题考查利用函数的图象解决实际问题和用一元一次方程求出水管的出水量的运用,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)19.(6分)(2013•孝感)先化简,再求值:,其中,.考点:分式的化简求值;二次根式的化简求值.解析:先根据分式混合运算的法则把原式进行化简,再把x与y的值代入进行计算即可.解答:解:原式===,当,时,原式=.点评:本题考查的是分式的化简求值,在解答此类题目时要注意通分及约分的灵活应用.20.(8分)(2013•孝感)如图,已知△ABC和点O.(1)把△ABC绕点O顺时针旋转90°得到△A1B1C1,在网格中画出△A1B1C1;(2)用直尺和圆规作△ABC的边AB,AC的垂直平分线,并标出两条垂直平分线的交点P(要求保留作图痕迹,不写作法);指出点P是△ABC的内心,外心,还是重心?考点:作图-旋转变换;作图—复杂作图.解析:(1)分别得出△ABC绕点O顺时针旋转90°后的对应点坐标,进而得到△A1B1C1,(2)根据垂直平分线的作法求出P点即可,进而利用外心的性质得出即可.解答:解:(1)△A1B1C1如图所示;(2)如图所示;点P是△ABC的外心.点评:此题主要考查了复杂作图,正确根据垂直平分线的性质得出P点位置是解题关键.21.(10分)(2013•孝感)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图解析这种方法对姐弟俩是否公平?考点:条形统计图;列表法与树状图法;游戏公平性.解析:(1)假设出去B地的人数为x,根据去B地参加夏令营活动人数占总人数的40%,进而得出方程求出即可;(2)根据已知列表得出所有可能,进而利用概率公式求出即可.解答:解:(1)设去B地的人数为x,则由题意有:;解得:x=40.∴去B地的人数为40人.(2)列表:4 (1,4)(2,4)(3,4)(4,4)3 (1,3)(2,3)(3,3)(4,3)2 (1,2)(2,2)(3,2)(4,2)1 (1,1)(2,1)(3,1)(4,1)1 2 3 4∴姐姐能参加的概率,弟弟能参加的概率为,∵<,∴不公平.点评:此题主要考查了条形统计图以及列表法求出概率和游戏公平性等知识,正确列举出所有可能是解题关键.22.(10分)(2013•孝感)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?考点:二次函数的应用;一次函数的应用.解析:(1)设y与x满足的函数关系式为:y=kx+b.,由题意可列出k和b的二元一次方程组,解出k和b的值即可;(2)根据题意:每天获得的利润为:P=(﹣3x+108)(x﹣20),转换为P=﹣3(x﹣28)2+192,于是求出每天获得的利润P最大时的销售价格.解答:解:(1)设y与x满足的函数关系式为:y=kx+b.由题意可得:解得故y与x的函数关系式为:y=﹣3x+108.(2)每天获得的利润为:P=(﹣3x+108)(x﹣20)=﹣3x2+168x﹣2160=﹣3(x﹣28)2+192.故当销售价定为28元时,每天获得的利润最大.点评:本题主要考查二次函数的应用的知识点,解答本题的关键是熟练掌握二次函数的性质以及最值得求法,此题难度不大.23.(10分)(2013•孝感)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若PD=,求⊙O的直径.考点:切线的判定.解析:(1)连接OA,根据圆周角定理求出∠AOC,再由OA=OC得出∠ACO=∠OAC=30°,再由AP=AC得出∠P=30°,继而由∠OAP=∠AOC﹣∠P,可得出OA⊥PA,从而得出结论;(2)利用含30°的直角三角形的性质求出OP=2OA,可得出OP﹣PD=OD,再由PD=,可得出⊙O的直径.解答:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵,∴.∴⊙O的直径为.点评:本题考查了切线的判定及圆周角定理,解答本题的关键是掌握切线的判定定理、圆周角定理及含30°直角三角形的性质.24.(10分)(2013•孝感)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得≥0成立?若存在,请求出k的值;若不存在,请说明理由.考点:根与系数的关系;根的判别式.解析:(1)根据已知一元二次方程的根的情况,得到根的判别式△≥0,据此列出关于k的不等式[﹣(2k+1)]2﹣4(k2+2k)≥0,通过解该不等式即可求得k的取值范围;(2)假设存在实数k使得≥0成立.利用根与系数的关系可以求得,然后利用完全平方公式可以把已知不等式转化为含有两根之和、两根之积的形式≥0,通过解不等式可以求得k的值.解答:解:(1)∵原方程有两个实数根,∴[﹣(2k+1)]2﹣4(k2+2k)≥0,∴4k2+4k+1﹣4k2﹣8k≥0∴1﹣4k≥0,∴k≤.∴当k≤时,原方程有两个实数根.(2)假设存在实数k使得≥0成立.∵x1,x2是原方程的两根,∴.由≥0,得≥0.∴3(k2+2k)﹣(2k+1)2≥0,整理得:﹣(k﹣1)2≥0,∴只有当k=1时,上式才能成立.又∵由(1)知k≤,∴不存在实数k使得≥0成立.点评:本题综合考查了根的判别式和根与系数的关系,在解不等式时一定要注意数值的正负与不等号的变化关系.25.(12分)(2013•孝感)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.考点:二次函数综合题.专题:综合题.解析:(1)取AB的中点G,连接EG,利用SSS能得到△AGE与△ECF全等;(2)①在AB上截取AM=EC,证得△AME≌△ECF即可证得AE=EF;②过点F作FH⊥x轴于H,根据FH=BE=CH设BH=a,则FH=a﹣1,然后表示出点F的坐标,根据点F恰好落在抛物线y=﹣x2+x+1上得到有关a的方程求得a值即可求得点F的坐标;解答:(1)解:如图1,取AB的中点G,连接EG.△AGE与△ECF全等.(2)①若点E在线段BC上滑动时AE=EF总成立.证明:如图2,在AB上截取AM=EC.∵AB=BC,∴BM=BE,∴△MBE是等腰直角三角形,∴∠AME=180°﹣45°=135°,又∵CF平分正方形的外角,∴∠ECF=135°,∴∠AME=∠ECF.而∠BAE+∠AEB=∠CEF+∠AEB=90°,∴∠BAE=∠CEF,∴△AME≌△ECF.∴AE=EF.②过点F作FH⊥x轴于H,由①知,FH=BE=CH,设BH=a,则FH=a﹣1,∴点F的坐标为F(a,a﹣1)∵点F恰好落在抛物线y=﹣x2+x+1上,∴a﹣1=﹣a2+a+1,∴a2=2,(负值不合题意,舍去),∴.∴点F的坐标为.点评:本题考查了二次函数的综合知识,题目中涉及到了全等的知识,还渗透了方程思想,是一道好题.。
2013年湖北中考数学真题卷含答案解析
2013年武汉市初中毕业生学业考试数学试题(含答案全解全析)(满分:120分时间:120分钟)第Ⅰ卷(选择题,共30分)一、选择题(共10小题,每小题3分,共30分)1.下列各数中,最大的是()A.-3B.0C.1D.22.式子√x-1在实数范围内有意义,则x的取值范围是()A.x<1B.x≥1C.x≤-1D.x<-1的解集是()3.不等式组{x+2≥0,x-1≤0A.-2≤x≤1B.-2<x<1C.x≤-1D.x≥24.袋子中装有4个黑球和2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出三个球.下列事件是必然事件的是()A.摸出的三个球中至少有一个球是黑球B.摸出的三个球中至少有一个球是白球C.摸出的三个球中至少有两个球是黑球D.摸出的三个球中至少有两个球是白球5.若x1,x2是一元二次方程x2-2x-3=0的两个根,则x1x2的值是()A.-2B.-3C.2D.36.如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A.18°B.24°C.30°D.36°7.如图是由四个大小相同的正方体组合而成的几何体,其主视图是()8.两条直线最多有1个交点,三条直线最多有3个交点,四条直线最多有6个交点,….那么六条直线最多有()A.21个交点B.18个交点C.15个交点D.10个交点9.为了解学生课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其他”类统计.图(1)与图(2)是整理数据后的是()绘制的两幅不完整的统计图.以下结论不正确...图(1)图(2)A.由这两个统计图可知喜欢“科普常识”的学生有90人B.若该年级共有1200名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有360人C.由这两个统计图不能确定喜欢“小说”的人数D.在扇形统计图中,“漫画”所在扇形的圆心角为72°10.如图,☉A与☉B外切于点D,PC,PD,PE分别是圆的切线,C,D,E是切点,若∠CED=x°,∠ECD=y°,☉B的半径为R,则DE⏜的长度是()A.π(90-x)R90B.π(90-y)R90C.π(180-x)R180D.π(180-y)R180第Ⅱ卷(非选择题,共90分)二、填空题(共6小题,每小题3分,共18分)11.计算cos45°=.12.在2013年的体育中考中,某校6名学生的分数分别是27、28、29、28、26、28.这组数据的众数是.13.太阳的半径约为696000千米,用科学记数法表示数696000为.14.设甲、乙两车在同一直线公路上匀速行驶,开始甲车在乙车的前面,当乙车追上甲车后,两车停下来,把乙车的货物转给甲车,然后甲车继续前行,乙车向原地返回.设x秒后两车间的距离为y米,y关于x的函数关系如图所示,则甲车的速度是米/秒.15.如图,已知四边形ABCD是平行四边形,BC=2AB,A,B两点的坐标分别是(-1,0),(0,2),C,D两点在反比例函数y=kx(x<0)的图象上,则k等于.16.如图,E,F是正方形ABCD的边AD上两个动点,满足AE=DF.连结CF交BD于点G,连结BE交AG于点H.若正方形的边长为2,则线段DH长度的最小值是.三、解答题(共9小题,共72分)17.(本小题满分6分)解方程2x-3=3 x .18.(本小题满分6分)直线y=2x+b经过点(3,5),求关于x的不等式2x+b≥0的解集.19.(本小题满分6分)如图,点E,F在BC上,BE=CF,AB=DC,∠B=∠C.求证∠A=∠D.有两把不同的锁和四把不同的钥匙,其中两把钥匙恰好分别能打开这两把锁,其余的钥匙不能打开这两把锁.现在任意取出一把钥匙去开任意一把锁.(1)请用列表或画树状图的方法表示出上述试验所有可能的结果;(2)求一次打开锁的概率.21.(本小题满分7分)如图,在平面直角坐标系中,Rt△ABC的三个顶点分别是A(-3,2),B(0,4),C(0,2).(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;平移△ABC,若点A的对应点A2的坐标为(0,-4),画出平移后对应的△A2B2C2;(2)若将△A1B1C绕某一点旋转可以得到△A2B2C2,请直接写出旋转中心的坐标;(3)在x轴上有一点P,使得PA+PB的值最小,请直接写出点P的坐标.如图,已知△ABC是☉O的内接三角形,AB=AC,点P是AB⏜的中点,连结PA,PB,PC.(1)如图①,若∠BPC=60°,求证AC=√3AP;,求tan∠PAB的值.(2)如图②,若sin∠BPC=2425图①图②23.(本小题满分10分)科幻小说《实验室的故事》中,有这样一个情节:科学家把一种珍奇的植物分别放在不同温度的环境中,经过一天后,测试出这种植物高度的增长情况(如下表).温度x/℃……-4-2024 4.5……植物每天高度增长量y/mm……414949412519.75……由这些数据,科学家推测出植物每天高度增长量y是温度x的函数,且这种函数是反比例函数、一次函数和二次函数中的一种.(1)请你选择一种适当的函数,求出它的函数关系式,并简要说明不选择另外两种函数的理由;(2)温度为多少时,这种植物每天高度增长量最大?(3)如果实验室温度保持不变,在10天内要使该植物高度增长量的总和超过250mm,那么实验室的温度x应该在哪个范围内选择?请直接写出结果.已知四边形ABCD 中,E,F 分别是AB,AD 边上的点,DE 与CF 交于点G. (1)如图①,若四边形ABCD 是矩形,且DE ⊥CF.求证DE CF =ADCD ;(2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得DE CF =ADCD成立?并证明你的结论; (3)如图③,若BA=BC=6,DA=DC=8,∠BAD=90°,DE ⊥CF.请直接写出DE CF的值.图① 图② 图③25.(本小题满分12分)如图,点P 是直线l:y=-2x-2上的点,过点P 的另一条直线m 交抛物线y=x 2于A,B 两点. (1)若直线m 的解析式为y=-12x+32,求A,B 两点的坐标;(2)①若点P的坐标为(-2,t),当PA=AB时,请直接写出点A的坐标;②试证明:对于直线l上任意给定的一点P,在抛物线上都能找到点A,使得PA=AB成立;(3)设直线l交y轴于点C,若△AOB的外心在边AB上,且∠BPC=∠OCP,求点P的坐标.答案全解全析:1.D 因为正数大于0,负数小于0,在数轴上,越往右边的点所表示的数越大,所以有-3<0<1<2.故选D.2.B 根据“二次根式的被开方数大于或等于0”,得x-1≥0,解得x≥1.故选B.评析本题考查二次根式的概念、不等式解法的简单应用,通常学生易忽略“等于0”的情形,属容易题.3.A 解不等式x+2≥0得x≥-2,解不等式x-1≤0得x≤1,所以不等式组的解集为-2≤x≤1.故选A.4.A 因为必然事件是一定会发生的事件,所以在装有4个黑球和2个白球的袋子中,“摸出的三个球中至少有一个球是黑球”一定会发生,而选项B、C、D中的事件都是可能会发生也可能不会发生的,是随机事件,故选A.5.B 根据一元二次方程的根与系数的关系易得x1x2=-3,故选B.6.A ∵AB=AC,∠A=36°,×(180°-36°)=72°.∴∠ABC=∠C=12∵BD是AC边上的高,∴∠BDC=90°.∴∠DBC=90°-72°=18°.故选A.7.C 主视图是指从正面看几何体得到的平面图形,该几何体有三列正方体,且第三列的正方体有上下2层,故选C.8.C ∵两条直线最多有一个交点,在此基础上增加一条直线,则最多增加2个交点,即三条直线最多有1+2=3个交点;在此基础上再增加一条直线,则最多增加3个交点,即四条直线最多有1+2+3=6个交点;…,以此类推,六条直线最多有1+2+3+4+5=15个交点.故选C.9.C 由统计图可知喜欢“其他”类的人数为30人,占总体的10%,∴抽取的样本总数为30÷10%=300(人).喜欢“科普常识”的学生占30%,∴喜欢“科普常识”的学生有300×30%=90(人),显然选项A正确,不符合题意;若该年级共有1 200名学生,则可估计喜爱“科普常识”的学生约有1200×90=360(人),显然选项B也正确,不符合题意;300又由统计图知喜欢“小说”的人数为300-90-60-30=120(人),显然选项C不正确,符合题意; 又由条形统计图可知喜欢“漫画”的人数为60人,占抽取样本的比例为20%,∴“漫画”所在扇形的圆心角为20%×360°=72°,显然选项D正确,不符合题意.综上,选C.评析 本题考查的是条形统计图和扇形统计图的综合运用,体现了用样本估计总体的统计思想.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图能直接反映部分占总体的百分比. 10.B 过D 作☉B 的直径DM,连结ME 、BE,则∠MED=90°,BE⊥PE. ∴∠BEM+∠BED=90°,∠PEB=∠BED+∠PED=90°. ∴∠PED=∠BEM. 又∵BE=BM,∴∠BEM=∠BME, ∴∠DBE=∠BEM+∠BME=2∠BEM. ∴∠BEM=12∠DBE, ∴∠PED=∠BEM=12∠DBE.由已知及切线长定理知PE=PD,PD=PC, ∴∠PED=∠PDE,∠PDC=∠PCD,∠PEC=∠PCE.在△CDE 中,∵∠CED=x°,∠ECD=y°,则x°+∠PDE+∠PDC+y°=180°, 即x°+x°+∠PEC+y°+∠PCE+y°=180°,∴x°+y°+∠PEC=90°,∴∠PED=x°+∠PEC=90°-y°,即12∠DBE=90°-y°. ∴∠DBE=2(90°-y°), ∴由弧长公式可知DE⏜的长度=2(90-y )πR 180=(90-y )πR90,故选B.评析 本题主要考查了圆的切线长定理、直径所对的圆周角是直角、等腰三角形的性质、三角形内角和定理以及圆的弧长公式等知识的综合应用,解题关键是通过等角转化求出圆心角∠DBE 的大小.属中等难度题.11.答案 √22解析 由特殊角的三角函数值直接可得.12.答案 28解析 因为28是这组数据中出现最多的数据,所以根据众数的概念可知这组数据的众数是28.13.答案 6.96×105解析 因为科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,所以696 000=6.96×105,故填6.96×105.14.答案 20解析 设甲车的速度是m 米/秒,乙车的速度为n 米/秒,由题意,得{100n -100m =500,20m +20n =900,解得{m =20,n =25.故甲车的速度为20米/秒. 15.答案 -12解析 如图.过D 作DH⊥y 轴于H,过C 作CF⊥DH 于F.则∠CFD=∠BOA=90°,又∵四边形ABCD 是平行四边形,∴∠CDH=∠BAO,DC=AB,∴△CFD≌△BOA.∴DF=OA=1,CF=OB=2.设D(x,y),则C(x+1,y+2).∵C、D 在反比例函数图象上,∴xy =(x+1)(y+2),即y=-(2x+2).过C 作CE⊥y 轴于E,由勾股定理得AB=√5,EC 2+EB 2=BC 2.即(x+1)2+y 2=(2√5)2,解方程组{y =-(2x +2),(x +1)2+y 2=(2√5)2, 得{x =-3,y =4或{x =1,y =-4(不合题意,舍去). ∴D(-3,4) .∴k=-12 .故答案为-12.评析 本题主要考查反比例函数图象与性质、平行四边形的性质、全等三角形的判定与性质、勾股定理等知识的综合应用,解题关键是巧妙构造全等三角形,利用勾股定理和反比例函数的意义列出方程组,求出反比例函数上某一点的坐标.16.答案 √5-1解析 ∵四边形ABCD 是正方形,∴AB=AD=DC,∠BAD=∠ADC=90°,∠ADG=∠CDG=45°.又∵AE=DF,DG=DG,∴△ABE≌△DCF,△ADG≌△CDG,∴∠ABE=∠DCG,∠DAG=∠DCG,∴∠ABE=∠DAG.∵∠BAH+∠DAG=90°,∴∠BAH+∠ABE=90°,∴∠AHB=90°.∴H 在以AB 为直径的☉M 上.连结MD 、MH (如图所示).则MH+HD≥MD.∵AB=AD=2,∴AM=BM=MH=1.∴在Rt△ADM 中,由勾股定理得DM=√AD 2+AM 2=√5.∴DH≥√5-1,∴DH 的最小值是√5-1.评析 本题是一道以正方形为载体的动态几何探究题,主要考查了正方形的性质、全等三角形的判定与性质、勾股定理以及圆周角定理的推论等相关知识的综合应用,其解题关键是通过等角转化,确定动点H 运动的路径,从而求出线段DH 的最小值,属中等偏难题.17.解析 方程两边同乘以x(x-3),得2x=3(x-3),解得x=9.经检验,x=9是原方程的解.18.解析 ∵直线y=2x+b 经过点(3,5),∴5=2×3+b,∴b=-1.即不等式为2x-1≥0,解得x≥12.19.证明 ∵BE=CF,∴BE+EF=CF+EF,即BF=CE,在△ABF 和△DCE 中,{AB =DC ,∠B =∠C ,BF =CE ,∴△ABF≌△DCE,∴∠A=∠D.20.解析 (1)设两把不同的锁分别为A,B,能把A,B 两锁打开的钥匙分别为a,b,其余两把钥匙分别为m,n.根据题意,可以画出如下的树状图:由上图可知上述试验共有8种等可能的结果.(2)由(1)可知,任意取出一把钥匙去开任意的一把锁共有8种可能的结果,一次打开锁的结果有2种,且所有结果的可能性相等,∴P(一次打开锁)=28=14. 21.解析 (1)画出△A 1B 1C 如图,画出△A 2B 2C 2如图.(2)旋转中心坐标:(32,-1). (3)点P 的坐标:(-2,0).22.解析 (1)证明:∵BC⏜=BC ⏜,∠BPC=60°,∴∠BAC=∠BPC=60°. 又∵AB=AC,∴△ABC 为等边三角形,∴∠ACB=60°,∵点P 是AB⏜的中点,∴∠ACP=30°. 又∠APC=∠ABC=60°,∴∠PAC=90°.在Rt△PAC 中,∠ACP=30°,∴AC=√3AP.(2)连结AO 并延长交PC 于E,交BC 于F,过点E 作EG⊥AC 于点G,连结OC.∵AB=AC,且O 为△ABC 的外心,∴AF⊥BC,BF=CF.∵点P是AB⏜的中点,∴∠ACP=∠PCB,∴EG=EF.易知∠BPC=∠FOC,∴sin∠FOC=sin∠BPC=2425. 设FC=24a,则OC=OA=25a. ∴OF=7a,AF=32a.在Rt△AFC中,AC2=AF2+FC2, ∴AC=40a.在Rt△AGE和Rt△AFC中,sin∠FAC=EGAE =FC AC,∴EG32a-EG =24a40a,∴EG=12a.∴tan∠PAB=tan∠PCB=EFCF =12a24a=12.23.解析(1)选择二次函数,设y=ax2+bx+c(a≠0),得{c=49,4a-2b+c=49,4a+2b+c=41,解得{a=-1,b=-2,c=49.∴y关于x的函数关系式是y=-x2-2x+49.不选另外两个函数的理由:注意到点(0,49)不可能在任何反比例函数图象上,∴y不是x的反比例函数;点(-4,41),(-2,49),(2,41)不在同一直线上,∴y不是x的一次函数.(2)由(1),得y=-x2-2x+49=-(x+1)2+50.∵a=-1<0,∴当x=-1时,y的最大值为50.即当温度为-1 ℃时,这种植物每天高度增长量最大.(3)-6<x<4.24.解析 (1)证明:∵四边形ABCD 是矩形,∴∠A=∠ADC=90°,∴∠ADE+∠CDE=90°,∵DE⊥CF,∴∠CDE+∠DCF=90°,∴∠ADE=∠DCF,∴△ADE∽△DCF,∴DE CF =AD DC .(2)当∠B+∠EGC=180°时,DE CF =AD DC 成立.证明如下:在AD 的延长线上取点M,使CF=CM,则∠CMF=∠CFM.∵AB∥CD,∴∠A=∠CDM.∵AD∥BC,∴∠CFM=∠FCB.∵∠B+∠EGC=180°,∴∠FCB+∠GEB=180°,又∠AED+∠GEB=180°,∴∠AED=∠FCB, ∴∠CMF=∠AED.∴△ADE∽△DCM,∴DE CM =AD DC ,即DE CF =AD DC .(3)DE CF =2524.25.解析 (1)依题意,得{y =-12x +32,y =x 2,解得{x 1=-32,y 1=94,{x 2=1,y 2=1.∴A (-32,94),B(1,1). (2)①A 1(-1,1),A 2(-3,9).②证明:过点P,B 分别作过点A 且平行于x 轴的直线的垂线,垂足分别为点G,H. 设P(a,-2a-2),A(m,m 2).∵PA=AB,∴△PAG≌△BAH.∴AG=AH,PG=BH.∴B(2m -a,2m 2+2a+2).将点B 坐标代入抛物线y=x 2,得2m 2-4am+a 2-2a-2=0.∵Δ=16a 2-8(a 2-2a-2)=8a 2+16a+16=8(a+1)2+8>0,∴无论a 为何值时,关于m 的方程总有两个不等的实数解,即对于任意给定的点P,抛物线上总能找到两个满足条件的点A.(3)设直线m:y=kx+b(k≠0)交y 轴于点D,设A(m,m 2),B(n,n 2).过A 、B 两点分别作AG 、BH 垂直x 轴于G 、H.∵△AOB 的外心在AB 上,∴∠AOB=90°.易得△AGO∽△OHB,∴AG OG =OH BH ,∴mn=-1.联立{y =kx +b ,y =x 2,得x 2-kx-b=0, 依题意,得m,n 是方程x 2-kx-b=0的两根.∴mn=-b,∴b=1,即D(0,1).由题可得C(0,-2). ∵∠BPC=∠OCP,∴DP=DC=3.设P(a,-2a-2),过点P 作PQ⊥y 轴于Q,在Rt△PDQ 中,PQ 2+DQ 2=PD 2,即a 2+(-2a-2-1)2=32,∴a 1=0(舍去),a 2=-125,∴P (-125,145).。
2013年孝感市中考数学试卷及答案(Word版)
2013年孝感市中考数学试卷及答案(Word版)2013年孝感市⾼中阶段学校招⽣考试数学⼀、精⼼选⼀选,相信⾃⼰的判断!(本⼤题共12⼩题,每⼩题3分,共36分.在每⼩题给出的四个选项中只有⼀项是符合题⽬要求的,不涂、错涂或涂的代号超过⼀个,⼀律得0分) 1、计算23-的值是 A 、9 B 、9- C 、6 D 、6- 2.太阳的半径约为696 000km ,把696 000这个数⽤科学记数法表⽰为 A 、3 6.9610? B .569.610? C .56.9610? D 、66.9610?3、如图,1=2∠∠,3=40∠?.则4∠等于A 、120?B 、130?C 、140?D 、40?4、下列计算正确的是 A 、3232a a a a -÷=? B aC 、22423a a a +=D 、(a -b )2=a 2-b 25、为了考察某种⼩麦的长势,从中抽取了10株麦苗,测得苗⾼(单位:cm )为:16 9 14 11 12 10 16 8 17 19则这组数据的中位数和极差分别是 A .13,16B .14,11C .12,11D .13,116、下列说法正确的是A 、平分弦的直径垂直于弦B 、半圆(或直径)所对的圆周⾓是直⾓C 、相等的圆⼼⾓所对的弧相等D 、若两个圆有公共点,则这两个圆相交 7、使不等式x -1≥2与3x -7<8同时成⽴的x 的整数值是A 、3,4B 、4,5C 、3,4,5D 、不存在8、式⼦2cos30tan 45?-?的值是A 、2B 、0C 、D 、2(第10题)主视图俯视图9、在平⾯直⾓坐标系中,已知点E (-4,2),F (-2,-2),以原点O 为位似中⼼,相似⽐为12,把△EFO 缩⼩,则点E 的对应点E ′的坐标是 A 、(-2,1)B 、(-8,4)C 、(-8,4)或(8,-4)D 、(-2,1)或(2,-1)10、由8个⼤⼩相同的正⽅体组成的⼏何体的主视图和俯视图如图所⽰,则这个⼏何体的左视图是A 、C 、D 、 11、如图,函数y x =-与函数4y =-的图像相交于A ,B 两点,过A ,B 两点分别作y 轴8A 、2aB 、2bC 、3aD 、43a b⼆、细⼼填⼀填,试试⾃⼰的⾝⼿!(本⼤题共6⼩题,每⼩题3分,共18分.请将结果直接填写在答题卡相应位置上)13、分解因式:223ax ax a +-= 。
圆的概念与性质(含答案)
BD B. BC
C. ∠BAC ∠BAD
D. AC AD
C
A
E O
B
D
【答案】D 13. 【易】(吉林省 2013 年初中毕业生学业考试数学试题)如图,在平面直角坐标系中,点
A ,B 的坐标分别为 6 , 0 、 0 , 8 .以点 A 为圆心,以 AB 长为半径画弧,交 x 正
1 AB 的长为半径做弧,两弧相交于点 P 和 Q . 2
②作直线 PQ 交 AB 于点 D ,交 BC 于点 E ,连接 AE . 若 CE 4 ,则 AE ________.
C E P A Q D B
【答案】8
5/101
的度数小于 180 ,且 ,那么弦 AB 和弦 CD 的大小关 23. 【中】在同圆中, CD AB 2CD
半轴于点 C ,则点 C 的坐标为_____.
0 【答案】 4 ,
3/101
14. 【中】(2013 年玉林市防城港市初中毕业数学暨升学考试)如图, △ ABC 是 O 内接 正三角形,将 △ ABC 绕 O 点顺时针旋转 30 得到 △ DEF , DE 分别交 AB , AC 于点 M , N , DF 交 AC 于点 Q ,则有以下结论: ① DQN 30 ; ② △DNQ ≌△ANM ; ③ △DNQ 的周长等于 AC 的长; ④ NQ QC . 其中正确的结论是_____________.(把所有正确的结论的序号都填上)
1/101
A.0 【答案】B 6.
B.1
C.2
D.3
【易】(河南省实验中学 2011 年内部中考数学第一轮复习资料 4)下列命题中,正确 的是( ) ① 顶点在圆周上的角是圆周角;② 圆周角的度数等于圆心角度数的一半; ③ 90 的圆周角所对的弦是直径;④ 不在同一条直线上的三个点确定一个圆; ⑤ 同弧所对的圆周角相等 A.①②③ B.③④⑤ 【答案】B C.①②⑤ D.②④⑤
2013年湖北孝感市中考数学模拟试卷
2013孝感市中考数学模拟试卷一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.1.的绝对值是().C2.不等式组的解集在数轴上表示为()A.B.C.D.3.娄底市针对城区中小学日益突出的“大班额”问题,决定自2012年起启动《中心城区化解大班额四年(2012年~2015年)行动计划》,计划投入资金8.71亿元,力争新增学位3.29万个.3.29万用科学记数法表示为()A. 3.29×105B. 3.29×106C.3.29×10D.3.29×1034.下列命题中,假命题是()A.平行四边形是中心对称图形B.三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C.对于简单的随机样本,可以用样本的方差去估计总体的方差D.若x2=y2,则x=y5.如图,正方形MNEF的四个顶点在直径为4的大圆上,小圆与正方形各边都相切,AB与CD是大圆的直径,AB⊥CD,CD⊥MN,则图中阴影部分的面积是()A. 4 B2πC2πD.π(5题图)(11题图)(12题图)7.对于一次函数y=﹣2x+4,下列结论错误的是()A.函数值随自变量的增大而减小B.函数的图象不经过第三象限C.函数的图象向下平移4个单位长度得y=﹣2x的图象D.函数的图象与x轴的交点坐标是(0,4)8.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为289元的药品进行连续两次降价后为256元,设平均每次降价的百分率为x,则下面所列方程正确的是() A. 289(1﹣x)2=256 B. 256(1﹣x)2=289 C. 289(1﹣2x)=256 D.256(1﹣2x)=2899. 已知反比例函数的图象经过点(﹣1,2),则它的解析式是()A. y=﹣B. y=﹣C. y=D.y=10.一次函数y=﹣5x﹣3的图象不经过的象限是()11.如图,在Rt△ABC中,∠ABC=90°,∠BAC=30°,AB=,将△ABC绕顶点C顺时针旋转至△A′B′C′的位置,且A、C、B′三点在同一条直线上,则点A经过的路线的长度D12.如图,△ABD中,EF∥BD交AB于点E、交AD于点F,AC交EF于点G、交BD 于点C,S △AEG=S四边形EBCG,则的值为()B D13.函数中自变量x的取值范围是_________.14.一组数据1,a,4,4,9的平均数是4,则a=_________.15.分解因式:27x2﹣18x+3=_________.16.第二象限内的点P(x,y)满足|x|=5,y2=4,则点P的坐标是_________.17.观察下列算式:21=2,22=4,23=8,24=16,25=32,26=64,27=128,28=256,…通过观察,用所发现的规律确定215的个位数字是_________.18. 如图,A.B的坐标分别为(1,0)、(0,2),若将线段AB平移到至A1B1,A1、B1的坐标分别为(2,a)、(b,3),则a+b=.三、解答题(本大题共7小题,满分66分)19计算..20.在一个口袋中有4个完全相同的小球,把它们分别标号为1,3,5,7,随机摸出一个小球然后放回,再随机摸出一个小球,求下列事件的概率:(1)两次取出的小球标号相同;(2)两次取出的小球的标号和是5的倍数.21.在图中求作一点P,使点P到∠AOB两边的距离相等,并且使OP等于MN,保留作图痕迹并写出作法.(要求:用尺规作图)22.某校为了了解九年级学生体育测试成绩情况,抽取九年级部分学生的体育测试成绩为样本,按A、B、C、D四个等级进行统计,并将统计结果绘制如图①,其中A等级人数为50人.请你结合图①中所给信息解答下列问题:(1)样本容量是_________;B级学生的人数为_________人;(2)根据已有信息在图②中绘制条形统计图;(3)若该校九年级学生共有1500人,请你求出这次测试中C级的学生约有多少人?23.如图,线段AB与⊙O相切于点C,连接OA,OB,OB交⊙O于点D,已知OA=OB=6,AB=6.(1)求⊙O的半径;(2)求图中阴影部分的面积.24.甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.(1)求甲乙两件服装的进价各是多少元;(2)由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;(3)若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数).25.如图①,在平面直角坐标系内,Rt△ABC≌Rt△FED,点C、D与原点O重合,点A、F在y轴上重合,∠B=∠E=30°,AC=FD=.△FED不动,△AB C沿直线BE以每秒1个单位的速度向右平移,直到点B与点E重合为止,设移动x秒后两个三角形重叠部分的面积为s.(1)求出图①中点B的坐标;(2)如图②,当x=4秒时,点M坐标为(2,),求出过F、M、A三点的抛物线的解析式;此抛物线上有一动点P,以点P为圆心,以2为半径的⊙P在运动过程中是否存在与y 轴相切的情况?若存在,直接写出P点的坐标;若不存在,请说明理由.(3)求出整个运动过程中s与x的函数关系式.2013孝感市中考数学模拟试卷(二)参考答案1-12 BBCDDDABBADD13x≤514a=2.153(3x﹣1)2.16 (﹣5,2).178.18 2答题参考答案×﹣.∴两次取出的小球标号相同的概率为:=的倍数的概率为:.AC=3)连接AC=BC=AB==3.=3,=πOCπ﹣根据题意得:90%•(1+30%)x+90%•(1+20%)(500﹣x)﹣500=67,解得:x=300,500﹣x=200.答:甲服装的成本为300元、乙服装的成本为200元.(2)∵乙服装的成本为200元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y,则200(1+y)2=242,解得:y1=0.1=10%,y2=﹣2.1(不合题意舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调,∴再次上调价格为:242×(1+10%)=266.2(元),∵商场仍按9折出售,设定价为a元时,0.9a﹣266.2>0,解得:a>.故定价至少为296元时,乙服装才可获得利润.),,y=﹣y=﹣==3,且坐,3BO=(3FG=(=(﹣×x×x﹣+=(×=﹣;。
2013年湖北省孝感市中考数学试题及参考答案(word解析版)
2013年湖北省孝感市中考数学试题及参考答案与解析一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.计算﹣32的值是()A.9 B.﹣9 C.6 D.﹣62.太阳的半径约为696000km,把696000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×1063.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°4.下列计算正确的是()=C.2a2+a2=3a4D.(a﹣b)2=a2﹣b2A.a3÷a2=a3•a﹣2B a5.为了考察某种小麦的长势,从中抽取了10株麦苗,测得苗高(单位:cm)为:169141112101681719则这组数据的中位数和极差分别是()A.13,16 B.14,11 C.12,11 D.13,116.下列说法正确的是()A.平分弦的直径垂直于弦B.半圆(或直径)所对的圆周角是直角C.相等的圆心角所对的弧相等D.若两个圆有公共点,则这两个圆相交7.使不等式x﹣1≥2与3x﹣7<8同时成立的x的整数值是()A.3,4 B.4,5 C.3,4,5 D.不存在︒-︒-)8.式子2cos30tan45A.2B.0 C.D.29.在平面直角坐标系中,已知点E(﹣4,2),F(﹣2,﹣2),以原点O为位似中心,相似比为,把△EFO缩小,则点E的对应点E′的坐标是()A.(﹣2,1)B.(﹣8,4)C.(﹣8,4)或(8,﹣4)D.(﹣2,1)或(2,﹣1)10.如图,由8个大小相同的正方体组成的几何体的主视图和俯视图,则这个几何体的左视图是()A.B.C.D.11.如图,函数y=﹣x与函数4yx=-的图象相交于A,B两点,过A,B两点分别作y轴的垂线,垂足分别为点C,D.则四边形ACBD的面积为()A.2 B.4 C.6 D.812.如图,在△ABC中,AB=AC=a,BC=b(a>b).在△ABC内依次作∠CBD=∠A,∠DCE=∠CBD,∠EDF=∠DCE.则EF等于()A.32baB.32abC.43baD.43ab二、细心填一填,试试自己的身手!(本大题共6小题,每小题3分,共18分)13.分解因式:ax2+2ax﹣3a=.14.在5瓶饮料中,有2瓶已过了保质期,从这5瓶饮料中任取1瓶,取到已过保质期饮料的概率为(结果用分数表示).15.如图,两建筑物的水平距离BC为18m,从A点测得D点的俯角α为30°,测得C点的俯角β为60°.则建筑物CD的高度为m(结果不作近似计算).16.用半径为10cm ,圆心角为216°的扇形做成一个圆锥的侧面,则这个圆锥的高为 cm .17.如图,古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:称图中的数1,5,12,22…为五边形数,则第6个五边形数是 .18.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y (单位:升)与时间x (单位:分)之间的部分关系.那么,从关闭进水管起 分钟该容器内的水恰好放完.三、用心做一做,显显自己的能力!(本大题共7小题,满分66分)19.(6分)先化简,再求值:111x y y x ⎛⎫÷- ⎪-⎝⎭,其中x =y = 20.(8分)如图,已知△ABC 和点O .(1)把△ABC 绕点O 顺时针旋转90°得到△A 1B 1C 1,在网格中画出△A 1B 1C 1;(2)用直尺和圆规作△ABC 的边AB ,AC 的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P 是△ABC 的内心,外心,还是重心?21.(10分)如图,暑假快要到了,某市准备组织同学们分别到A,B,C,D四个地方进行夏令营活动,前往四个地方的人数.(1)去B地参加夏令营活动人数占总人数的40%,根据统计图求去B地的人数?(2)若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定.父亲说:现有4张卡片上分别写有1,2,3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平?22.(10分)在“母亲节”前夕,我市某校学生积极参与“关爱贫困母亲”的活动,他们购进一批单价为20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母亲.经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出21件.假定每天销售件数y(件)与销售价格x(元/件)满足一个以x为自变量的一次函数.(1)求y与x满足的函数关系式(不要求写出x的取值范围);(2)在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?23.(10分)如图,△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上的一点,且AP=AC.(1)求证:PA是⊙O的切线;(2)若O的直径.24.(10分)已知关于x的一元二次方程x2﹣(2k+1)x+k2+2k=0有两个实数根x1,x2.(1)求实数k的取值范围;(2)是否存在实数k使得2212120x x x x--≥成立?若存在,请求出k的值;若不存在,请说明理由.25.(12分)如图1,已知正方形ABCD的边长为1,点E在边BC上,若∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)图1中若点E是边BC的中点,我们可以构造两个三角形全等来证明AE=EF,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(2)如图2,若点E在线段BC上滑动(不与点B,C重合).①AE=EF是否总成立?请给出证明;②在如图2的直角坐标系中,当点E滑动到某处时,点F恰好落在抛物线y=﹣x2+x+1上,求此时点F的坐标.参考答案与解析一、精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中只有一项是符合题目要求的,不涂、错涂或涂的代号超过一个,一律得0分)1.计算﹣32的值是()A.9 B.﹣9 C.6 D.﹣6【知识考点】有理数的乘方.【思路分析】根据有理数的乘方的定义解答.【解答过程】解:﹣32=﹣9.故选B.【总结归纳】本题考查了有理数的乘方,是基础题,熟记概念是解题的关键.2.太阳的半径约为696000km,把696000这个数用科学记数法表示为()A.6.96×103B.69.6×105C.6.96×105D.6.96×106【知识考点】科学记数法—表示较大的数.。
2013年湖北省孝感市中考适应性考试数学试卷_20200625145046
2013年湖北省孝感市中考适应性数学试卷一、精心选择,一锤定音(每小题3分,满分36分)1.在下列实数中,无理数是()A.0.3333B.C.D.﹣3.142.如图是一个“众志成城,奉献爱心”的图标,图标中两圆的位置关系是()A.外离B.相交C.外切D.内切3.(2011•芜湖)如图所示,下列几何体中主视图、左视图、俯视图都相同的是()A.B.C.D.4.(3分)实数m,n满足﹣2<n<﹣1,﹣1<m<0,则下列不等关系正确的是()A.n<m B.n2<m2C.﹣n<﹣m D.|n|<|m|5.(3分)(2006•嘉兴)一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是()A x3﹣x=x(x2﹣1)B x2﹣2xy+y2=(x﹣y)2C x2y﹣xy2=xy(x﹣y)D x2﹣y2=(x﹣y)(x+y)6.某城市居民最低生活保障在2010年是300元,经过连续两年的增加,到2012年提高到432元.设该城市最低生活保障的平均年增长率是x,则下面所列方程中正确的是()A.300(1﹣x)2=432B.300(1+x)2=432C.300(1﹣2x)=432D.300(1+2x)=4327.(3分)对于数据:80,88,85,85,83,84.下列说法()①这组数据的平均数是84;②这组数据的众数是85;③这组数据的中位数是84;④这组数据的极差是8.下列说法中正确的有()A.1个B.2个C.3个D.4个8.(3分)已知:如图,E(﹣4,2),F(﹣1,﹣1),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A(2,﹣1)或(﹣2,1)B(8,﹣4)或(﹣8,4)C(2,﹣1)D(8,﹣4)9.(3分)如图,将矩形ABCD沿对角线BD折叠,使C落在F处,BF交AD于E,则下列结论不一定成立的是()A.AD=BF B.△ABE≌FDE C.sin D.△ABE∽△CBD10.(3分)将正整数按下表排成5列()…根据上面规律,2013应在()A.503行,2列B.503行,4列C.504列,2列D.504行,4列11.(3分)(2011•德州)已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A.B.C.D.12.(3分)如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心O,另一边所在直线与半圆相交于点D、E,量出半径OC=5cm,弦DE=8cm,则直尺的宽度为()A.1cm B.2cm C.3cm D.4cm二、耐心填空,准确无误(本大题共6小题,每小题3分,共18分)13.(3分)分式方程:的解是_________.14.(3分)若关于x的一元二次方程(m﹣1)x2+5x+m2﹣m=0的常数项是0,则m 的值是_________.15.(3分)如图,若函数y=﹣x与的图象交于A、B两点,过点A作AC垂直于y轴,垂足为点C,则△BOC的面积为_________.16.(3分)如图所示,在平面直角坐标系中,菱形MNPO的顶点P坐标是(3,4),则tan∠NOM=_________.17.对实数a、b,定义“★”运算规则如下:a★,则★(★)=_________.18.(3分)(2010•绍兴)水管的外部需要包扎,包扎时用带子缠绕在管道外部.若要使带子全部包住管道且不重叠(不考虑管道两端的情况),需计算带子的缠绕角度α(α指缠绕中将部分带子拉成图中所示的平面ABCD时的∠ABC,其中AB为管道侧面母线的一部分).若带子宽度为1,水管直径为2,则α的余弦值为_________.三、认真解答,妙笔生花(本大题共7小题,满分66分)19.(8分)计算或求值(1)计算:()﹣2﹣||﹣2sin60°+(π﹣2)0(2)已知a是方程x2+3x﹣1=0的实数根.求的值.20.(8分)如下网格图中,每个小三角形的边长都为1个单位,E是正△ABC内一点,以C为旋转中心,将△AEC沿顺时针方向旋转120°得到△A1E1C,再以C为旋转中心,将△AEC沿逆时针方向旋转60°得到△BE2C(1)试画出△A1E1C及△BE2C;(2)直接说出△A1E1C和△BE2C有何对称关系?(3)判断EE1,EE2,E1E2有何数量对称关系?21.(9分)(2011•綦江县)我县实施新课程改革后,学习的自主字习、合作交流能力有很大提高,张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(1)本次调查中,张老师一共调査了_________名同学,其中C类女生有_________名,D类男生有_________名;(2)将上面的条形统计图补充完整;(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.22.(9分)已知关于x的方程x2﹣2(a+1)x+a2+2=0有两个实数根x1,x2(1)求a的取值范围;(2)若(x1+1)(x2+1)=8,求a的值.23.(10分)如图,从⊙O外一点A作⊙O的切线AB,AC,切点分别为B,C,⊙O 的直径BD为6,连结CD,AO.(1)求证:CD∥AO;(2)求CD•AO的值;(3)若AO=2CD,求劣弧BC的长.24.(10分)(2007•日照)某水产品市场管理部门规划建造面积为2400m2的集贸大棚,大棚内设A种类型和B种类型的店面共80间,每间A种类型的店面的平均面积为28m2,月租费为400元;每间B种类型的店面的平均面积为20m2,月租费为360元.全部店面的建造面积不低于大棚总面积的80%,又不能超过大棚总面积的85%.(1)试确定A种类型店面的数量;(2)该大棚管理部门通过了解业主的租赁意向得知,A种类型店面的出租率为75%,B种类型店面的出租率为90%.为使店面的月租费最高,应建造A种类型的店面多少间?25.(12分)如图,已知正方形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,抛物线y=x2+bx+c经过点A,B,交正x轴于点D,E是OC 上的动点(不与C重合)连接EB,过B点作BF⊥BE交y轴与F(1)求b,c的值及D点的坐标;(2)求点E在OC上运动时,四边形OEBF的面积有怎样的规律性?并证明你的结论;(3)连接EF,BD,设OE=m,△BEF与△BED的面积之差为S,问:当m为何值时S最小,并求出这个最小值.2013年湖北省孝感市中考适应性数学试卷参考答案1——5:BC CAA6——10:BBADD11——12D C 13.解:去分母得:x=﹣3,经检验x=﹣3是分式方程的解.故答案为:x=﹣314.解:∵方程(m﹣1)x2+5x+m2﹣m=0是关于x的一元二次方程,常数项是0,∴,解得m=0.15.解:依题意:△AOC和△BOC是同底等高的两个三角形,都等于|k|=2.故△BOC的面积为2.16.解:由勾股定理得,OP==5,在菱形MNPO中,PN=OP=5,∵3+5=8,∴点N的坐标为(8,4),∴tan∠NOM==.故答案为:.17.解:∵★=,∴★(★)=★===2.18.解:其展开图如图所示.∵水管直径为2,∴水管的周长为2π,∴cos∠α=.19.解:(1)原式=﹣2+﹣2×+1 =4﹣2+﹣+1=3;(2)原式=÷(﹣)=÷=•==,∵a是方程x2+3x﹣1=0的实数根,∴a2+3a=1,∴原式==1.20.解:(1)如图所示:△A1E1C及△BE2C即为所求;(2)△A1E1C和△BE2C关于C成中心对称;(3)∵△AEC沿逆时针方向旋转60°得到△BE2C,∴EC=CE2,∠ECE2=60°,∴△ECE2是等边三角形,∴∠EE2E1=∠E2EC=60°,∵EC=E1C,∠ECE1=120°,∴∠CEE1=∠CE1E=30°,∴∠E2EE1=90°,∴△E2EE1是直角三角形,∴EE+EE=E1E.21.解:(1)3÷15%=20,20×25%=5.女生:5﹣3=2,1﹣25%﹣50%﹣15%=10%,20×10%=2,男生:2﹣1=1,故答案为:20,2,1;(2)如图所示:(3)根据张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,可以将A类与D类学生分为以下几种情况:男A女A1女A2男D男A男D女A1男D女A2男D女D女D男A女A1女D女A2女D∴共有6种结果,每种结果出现可能性相等,∴两位同学恰好是一位男同学和一位女同学的概率为:P(一男一女)==.22.解:(1)根据题意得△=4(a+1)2﹣4(a2+2)≥0,解得a≥;(2)根据题意得x1+x2=2(a+1),x1•x2=a2+2,∵(x1+1)(x2+1)=8,∴x1•x2+x1+x2+1=8,∴a2+2+2(a+1)+1=8,整理得a2+2a﹣3=0,解得a1=﹣3,a2=1,∵a≥,∴a=1.23.(1)证明:连接OC,∵AC、AB分别切⊙O于C、B,∴∠ACO=∠ABO=90°,∠CAO=∠BAO,∵∠COA+∠ACO+∠CAO=180°,∠BOA+∠BAO+∠OBA=180°,∴∠COA=∠BOA,∵OC=OD,∴∠OCD=∠ODC,∵∠COA+∠BOA=∠OCD+∠ODC,∴2∠ODC=2∠AOB,即∠D=∠AOB,∴CD∥AO.(2)解:连接BC,∵BD是⊙O直径,∴∠DCB=∠ABO=90°,∵∠D=∠AOB,∴△BCD∽△ABO,∴=,∴CD•AO=DB•BO=6×3=18.(3)解:∵CD•AO=18,AO=2CD,∴CD=3,∵OC=3=OD=3,∴△COD是等边三角形,∴∠OCD=∠ODC=60°,∴∠COB=120°,∴弧BC的长是=2π.24.解:(1)设A种类型店面的数量为x间,则B种类型店面的数量为(80﹣x)间,根据题意得解之得∴A种类型店面的数量为40≤x≤55,且x为整数;(2)设应建造A种类型的店面z间,则店面的月租费为W=400×75%•z+360×90%•(80﹣z)=300z+25920﹣324z=﹣24z+25920,为减函数,又∵40≤z≤55∴为使店面的月租费最高,应建造A种类型的店面40间.25.解:(1)把点A(0,2)、B(2,2)代入抛物线y=x2+bx+c得解得b=,c=2;∴y=x2+x+2;令x2+x+2=0解得x1=﹣1,x2=3∴D点坐标为(3,0).(2)点E在OC上运动时,四边形OEBF的面积不变;∵四边形OABC是正方形∴AB=BC,∠BCE=∠BAE=∠ABC=90°又∵BF⊥BE∴∠FBE=90°∴∠ABF=∠CBE∴△ABF≌△BCE∴四边形OEBF的面积始终等于正方形OABC的面积.(3)如图,=S梯形OCBF﹣S△OEF﹣S△BEC可以看出S△BEF=(2+2+m)×2﹣m(2+m)﹣(2﹣m)×2 =﹣m2+m+2S△BED=×(3﹣m)×2=3﹣m两个三角形的面积差最小为0,即3﹣m=﹣m2+m+,解得m=2±,∵E是OC上的动点∴m=2﹣,当m=2﹣时S最小为0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013年孝感市高中阶段学校招生考试数 学精心选一选,相信自己的判断!(本大题共12小题,每小题3分,共36分•在每小题给出的四个选项中只有一项是符合题目要求的, 得0分)不涂、错涂或涂的代号超过一个,一律2•太阳的半径约为 696 000 km ,把696 000这个数用科学记数法表示为7、使不等式x — 1 >2与3x — 7v 8同时成立的x 的整数值是A 、3, 4B 、4, 5C 、3, 4, 5D 、不存在&式子 2cos30 - tan45 -:(1 -tan60 )2 的值是A 、2 .3 -2B 、0C 、2 3D 、29、在平面直角坐标系中,已知点E( — 4, 2), F(— 2, — 2),以原点O 为位似中心,相似1比为丄,把△ EFO 缩小,则点E 的对应点E '的坐标是2A 、( — 2,1)B 、( — 8, 4)C 、( — 8, 4)或(8, — 4)D 、( — 2, 1)或(2, — 1)1、计算-32的值是 A 、9-9 A 、6.96 103B • 69.6 1053、 如图,• 1= 2 , ■ 3=40 •则.4等于A 、120 C 、140 4、 下列计算正确的是3.23_2A 、a " a a aC 、2a 2 a 2 =3a 4C • 6.96 105B 、D 、B 、13040(a — b ) a2 =aD 、6.96 1065、为了考察某种小麦的长势,从中抽取了 10株麦苗,测得苗高(单位:cm )为:16 9 14 11 则这组数据的中位数和极差分别是[来源学科网A • 13, 16B • 14, 116、下列说法正确的是A 、平分弦的直径垂直于弦C 、相等的圆心角所对的弧相等12 10 16 817 19C • 12, 11D • 13, 11B 、半圆(或直径)所对的圆周角是直角D 、若两个圆有公共点,则这两个圆相交10、由8个大小相同的正方体组成的几何体的主视图 和俯视图如图所示,则这个几何体的左视图是FH FR rR LFHA 、B 、C 、D 、411、如图,函数y 二-x 与函数y的图像相交于A ,B 两点,过A ,B 两点分别作y 轴x的垂线,垂足分别为点 C ,D .则四边形ACBD 的面积为CBD = A , DCE 二 CBD , EDF = DCE .贝y EF 等于b 3a5瓶饮料中任取1瓶,取到已过保质期饮料的概率为 (结果用分数表示)。
15、 如图,两建筑物的水平距离 BC 为18m ,从A 点测得D 点的俯角〉为30° ,测得C 点的俯角一:为60° •则建筑物CD 的高度为 _____________ m (结果不作近似计算)。
16、 用半径为10cm ,圆心角为216°的扇形作一个圆锥的侧面,则这个圆锥的高是 ______ cm 。
12、如图,在△ ABC 中,AB = AC = a ,BC 二b (a b ) •在△ ABC 内依次作b 2、细心填一填,试试自己的身手!(本大题共6小题,每小题 3分,共18分•请将结果13、分解因式: 2ax 2ax —3a =(第 15 题)直接填写在答题卡相应位置上)14、在5瓶饮料中,有2瓶已过了保质期,从这 A17、古希腊人常用小石子在沙滩上摆成各种形状来研究数.例如:(第17题)18、一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x (单位:分)之间的部分关系如图所示.那么,从关闭进水管起_分钟该容器内的水恰好放完。
[来源学科网]三、用心做一做,显显自己的能力!(本大题共7小题,满分66分.解答写在答题卡上)1 11 ——一一19、(本题满分6分)先化简,再求值:(),其中x「.3「、.2 , .3 - . 2。
x — y y x20、(本题满分8分)如图,已知△ ABC和点O。
(1 )把厶ABC绕点O顺时针旋转90°得到△ ABG,在网格中画出厶AB I G ; (4 分)(2)用直尺和圆规作厶ABC的边AB , AC的垂直平分线,并标出两条垂直平分线的交点P (要求保留作图痕迹,不写作法);指出点P是厶ABC的内心,外心, 称图中的数1, 5, 12, 22,为五边形数,则第6个五边形数是O还是重心? ( 4分)(第20题)21、(本题满分10分)暑假快要到了,某市准备组织同学们分别到 A , B , C , D 四个地方进行夏令营活动,前往四个地方的人数如图所示。
(1) 去B 地参加夏令营活动人数占总人数的 40%,根据统计图求去 B 地的人数? ( 4分) (2) 若一对姐弟中只能有一人参加夏令营,姐弟俩提议让父亲决定。
父亲说:现有4张卡片上分别写有 1,2, 3,4四个整数,先让姐姐随机地抽取一张后放回,再由弟弟随机 地抽取一张.若抽取的两张卡片上的数字之和是5的倍数则姐姐参加,若抽取的两张卡片上的数字之和是3的倍数则弟弟参加.用列表法或树形图分析这种方法对姐弟俩是否公平? (6 分)(第21题)22、(本题满分10分)在“母亲节”前夕,我市某校学生积极参与 “关爱贫困母亲”的活动, 他们购进一批单价为 20元的“孝文化衫”在课余时间进行义卖,并将所得利润捐给贫困母 亲。
经试验发现,若每件按24元的价格销售时,每天能卖出36件;若每件按29元的价格销售时,每天能卖出 21件•假定每天销售件数 y (件)与销售价格x (元/件)满足一个以x 为自变量的一次函数。
(1) 求y 与x 满足的函数关系式(不要求写出x 的取值范围);(4分)(2) 在不积压且不考虑其他因素的情况下,销售价格定为多少元时,才能使每天获得的利润P最大?(6分)[来源学科网ZXXK]23、(本题满分10分)如图,△ ABC内接于O O, B=60°, CD是O O的直径,点P 是CD延长线上的一点,且AP二AC 。
(1)求PA是O O的切线;(5分)(2)若PD =、3,求O O的直径。
(5分)B(第23题)2 224、(本题满分10分)已知关于x的一元二次方程x - (2k 1)x k - 2k = 0有两个实数根%, x2。
(1)求实数k的取值范围;(4分)(2)是否存在实数k使得x1 x^x1^x22> 0成立?若存在,请求出k的值;若不存在,请说明理由。
(6分)来源学网25、(本题满分12分)如图1,已知正方形 ABCD 的边长为1,点E 在边BC 上, 若.AEF =90°,且EF 交正方形外角的平分线 CF 于点F 。
(1) 图1中若点E 是边BC 的中点,我们可以构造两个三角形全等来证明 AE = EF ,请叙述你的一个构造方案,并指出是哪两个三角形全等(不要求证明);(3分)(2) 如图2,若点E 在线段BC 上滑动(不与点 B ,C 重合)。
① AE 二EF 是否总成立?请给出证明; (5分)② 在如图所示的直角坐标系中,当点 E 滑动到某处时,点 F 恰好落在抛物线2y = -X x 1上,求此时点F 的坐标.(4分)(第25题)图1图22013年孝感市高中阶段学校招生考试数学参考答案及评分说明题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 BCCADBABDBDC2 —13. a(x 3)(x-1) ;14•一 ;15. 12,3 ;516 . 8 ; 17. 51 ;18 . 8 .三、解答题1 x — y19 •解:原式=,”,”,””,”,2 分x - y xy _ 1 xyx -y x -y xy (x-y)2当 x = 3 .2 , y = 3 -、2 时,C.3 、;2)(、、3- ;2) (.3 2 - 3 .2)220•解:(1)△ ABG 如图所示;(2)如图所示;,”,,”,,”,点P 是厶ABC 的外心.21 •解:(1)设去B 地的人数为x ,解得:x =40 .•••去B 地的人数为40人则由题意有:40%30 x 20 10原式=(2)列表:4(1 , 4)(2 , 4)(3 , 4)(4 ,4) 3(1 , 3)(2 , 3)(3 , 3)(4 ,3)2(1 , 2)(2 , 2)(3 , 2)(4 , 2)1(1 , 1)(2 , 1)(3 , 1)(4 , 1)1234,””7 分说明:能正确画出树形图给3分.4 1 5姐姐能参加的概率P(姐) ,弟弟能参加的概率为P(弟)””,9分16 4 164 5T P(姐)< P(弟),•••不公平. ,””10分16 1622•解:(1 )设y与x满足的函数关系式为:y = kx • b .由题意可得: 36= 24k b, 21 = 29k b.丄k - -3,解得lb =108.• y与x的函数关系式为:y = -3x • 108 .1分2分3分4分(2)每天获得的利润为:P =(-3x 108)(x-20)= -3x2168X-2160--3(x - 28)2 192 .•当销售价定为28元时,每天获得的利润最大23. (1)证明:连接OA ,,,,,,,••• B =60 ,• • AOC =2 B =120 . 又••• OA =OC ,• • OAC = • OCA =30又••• AP = AC ,• P "ACP = 30 ,•OAP =/AOC 一P =90 ,,,,,,,•OA _ PA ,•PA是O O的切线. ,,,,,,(2 )在Rt △ OAP中,••• PO =2OA=OD PD .又••• OA =OD , • PD =OA ,•/ PD「3 ,•2OA =2PD =2、、3 .•••o O的直径为2、、3.24.解:(1) •••原方程有两个实数根,•[-(2k 1)]2 -4(k22k) > 0•4k24k 1 -4k2-8k > 0•1 -4k > 0 ,1 一一•当k w丄时,原方程有两个实数根.42 2(2)假设存在实数k使得X1 X2-X1 - X2 > 0成立.••• X1 , X2是原方程的两根,2•为x2 = 2k 1,为x2 = k 2k .由X x2 - X|2 _x22> 0 , 得3x1 X2 -(X| x2)2> 0 .• 3(k2 2k)-(2k 1)2> 0 ,整理得:-(k-1)2> 0 , •只有当k =1时,上式才能成立.1又由(1)知k w42 2•不存在实数k使得X1冷-为-X2 > 0成立.10分, 1分”3分,, 4分5分7分9分10分25.解:(1)如图1,取AB的中点G,连接EG .△ AGE与厶ECF全等.(2)①若点E在线段BC上滑动时AE二EF总成立. 证明:如图2,在AB上截取AM =EC . ,, 4分•/ AB = BC , • BM = BE ,•△ MBE是等腰直角三角形,•AME =180 -45 =135 ,又CF平分正方形的外角,•■ ECF =135 ,•AME 二ECF . ””6分而BAE AEB "CEF AEB 二90 , BAE - CEF , ””7 分•△ AME ECF .2013年中考真題•• AE =EF . ,”,8 分②过点F作FH _x轴于H , ””9分由①知,FH =BE =CH ,设BH =a,则FH =a -1,•••点F的坐标为F(a, a-1). ,”10分•••点F恰好落在抛物线y = —x2• x • 1上,2•- a -1 _ -a a 1,• a2 =2, a「2 (负值不合题意,舍去),•• a -1=2 -1.•••点F 的坐标为F(.、.2, 2-1)12 分注意:1.按照评分标准分步评分,不得随意变更给分点;2.第19题至第25题的其它解法,只要思路清晰,解法正确,都应按步骤给予相应分数.。