2001至2014年江苏专转本高数真题(附答案)
01—10年江苏专转本数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.等价无穷小,洛必达13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.x 分别为0,1,-1时化简求极限14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2001年江苏专转本高等数学真题(附答案)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x- B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctanπ+++=x x y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型. 14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx e e xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域. 19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2yx x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、y x z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分)21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
(整理)2001—年江苏专转本高等数学真题(附答案) (2).
江苏专转本高数考纲及重点总结一、函数、极限和连续(一)函数(1)理解函数的概念:函数的定义,函数的表示法,分段函数。
(2)理解和把握函数的简单性质:单调性,奇偶性,有界性,周期性。
(3)了解反函数:反函数的定义,反函数的图象。
(4)把握函数的四则运算与复合运算。
(5)理解和把握基本初等函数:幂函数,指数函数,对数函数,三角函数,反三角函数。
(6)了解初等函数的概念。
重点:函数的单调性、周期性、奇偶性,分段函数和隐函数(二)极限(1)理解数列极限的概念:数列,数列极限的定义,能根据极限概念分析函数的变化趋势。
会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件。
(2)了解数列极限的性质:唯一性,有界性,四则运算定理,夹逼定理,单调有界数列,极限存在定理,把握极限的四则运算法则。
(3)理解函数极限的概念:函数在一点处极限的定义,左、右极限及其与极限的关系,x趋于无穷(x→∞,x→+∞,x→-∞)时函数的极限。
(4)把握函数极限的定理:唯一性定理,夹逼定理,四则运算定理。
(5)理解无穷小量和无穷大量:无穷小量与无穷大量的定义,无穷小量与无穷大量的关系,无穷小量与无穷大量的性质,两个无穷小量阶的比较。
(6)熟练把握用两个重要极限求极限的方法。
重点:会用左、右极限求解分段函数的极限,把握极限的四则运算法则、利用两个重要极限求极限以及利用等价无穷小求解极限。
(三)连续(1)理解函数连续的概念:函数在一点连续的定义,左连续和右连续,函数在一点连续的充分必要条件,函数的中断点及其分类。
(2)把握函数在一点处连续的性质:连续函数的四则运算,复合函数的连续性,反函数的连续性,会求函数的中断点及确定其类型。
(3)把握闭区间上连续函数的性质:有界性定理,最大值和最小值定理,介值定理(包括零点定理),会运用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上连续,并会利用连续性求极限。
重点:理解函数(左、右连续)性的概念,会判别函数的中断点。
01到10年专转本考试真题及综合模拟(答案)
江苏省2001年专转本统一考试(答案)一、单项选择题(每题3分,共15分)1.下列极限中正确的是( C )11111111010===+=+→∞→∞→→xx D xx C e xB exA x x x x x x sinlim sinlim )(lim )(lim ....2.不定积分dx x ⎰⎥⎦⎤⎢⎣⎡-211= ( D ) c x D x C c xB xA ++--arcsin arcsin ....221111内必有在则:内在若.),()(,)(,)(),(),()(00003-∞>''>'+∞-=x f x f x f x f x f ( B )0000000>''>'<''>'>''<'<''<')(,)()(,)()(,)()(,)(x f x f D x f x f C x f x f B x f x f A ....4.定积分⎰-21dx x =( D )A .0B .2C . -1D . 15.示在空间直角坐标系下表方程x y x 422=+( A )旋转抛物面. 圆..点.圆柱面D C B A二、填空题(每题3分,共15分)6.0,22=⎪⎩⎪⎨⎧+==t dx dytt y et x t则参数方程为设= 27.的通解为微分方程0136=+'-''y y y )2sin 2cos (213x C x C e y x += 8.==dz x z y 的全微分函数xdy x dx yx y y ln 1+- 9.⎰⎰=202),(x xdy y x f dx 交换积分次序⎰⎰⎰⎰+2024222),(),(y y y dx y x f dy dx y x f dy10.[]=+-+⎰-dx x x x f x f x f 322)()(,)(则为连续函数设564三、计算题(每题4分,共40分) 11.已知 dy x y x 求,5cos)21ln(arctanπ+++=.答案: (dx x x xx )212ln 2)1(21+++ 12.计算xx dte x xt x sin lim202⎰-→.答案: (31-=) 13.)1(sin )1()(2--=x x xx x f 求函数 的间断点,并指出各间断点的类型. 答案:是可去间断点)是跳跃间断点第二类间断点(1,0,1==-=x x x 14.已知11,ln 2==+=y x dx dy x y x y 求. 答案: (=1)15.计算dx e e xx⎰+12. 答案: (=))1ln(C e e x x ++-16.已知21102=+⎰∞-dx x k ,求常数k 的值.答案: (=)1π17.求微分方程的特解满足条件00sec )(tan ===-'x yx y x y .答案:(=)cos xx 18.计算二重积分,sin 2dxdy y D⎰⎰,其中D 是由直线2,3,1===y x x 及1-=x y 所围成的区域.答案:(=)24cos 1- 19.已知曲线)(x f y =经过原点,并且在原点处的切线平行于直线032=-+y x ,若,3)(2b ax x f +=',且)(x f 在1=x 处取得极值,试确定ba ,的值,并求出)(x f y =的表达式.答案: (=)2323x x - 20.yx zx z f y x x f z ∂∂∂∂∂=22,,),,(求具有二阶连续偏导数其中设. ([]),(),(),(211),(2),(232v u f y v u f x v u f y x yy x z y v u f x v u f x z v vv uvv u '+''+''-=∂∂∂∙'+∙'=∂∂; ) 四、综合题(本大题共4小题,共30分) 21.过点)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程.答案:()1(21-=x y )(2)由抛物线,切线及X 轴所围的平面图形的面积答案:(A=)31(3)该平面图形分别绕X 轴、Y 轴旋转一周的体积.(10分)答案:()56,6ππ==y x V V 22.设函数⎪⎩⎪⎨⎧=≠=00)()(x ax xx f x g ,)(x f 具有二阶连续导数,且0)0(=f(1)求a ,使)(x g 在0=x 处连续。
江苏省2014年专转本高数真题及答案
江苏省2014年专转本高数真题及答案江苏省2014年普通高校专转本选拔考试高等数学 试题卷注意事项:1.本试卷分为试题卷和答题卡两部分,试题卷共3页,全卷满分150分,考试时间120分钟. 2.必须在答题卡上作答,作答在试卷上无效.作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置.3.本试卷共8页,五大题24小题,满分150分,考试时间120分钟.一、 单项选择题(本大题共6小题,每小题4分,满分24分.在下列每小题中,选出一个正确答案,请在答题卡上将所选项的字母标号涂黑) 1.若是1x =函数224()32x x af x x x -+=-+的可去间断点,则常数a =( )A. 1B. 2C. 3D. 42.曲线432y x x =-的凹凸区间为( )A. (,0],[1,)-∞+∞B. [0,1]C.3(,]2-∞D. 3[,)2+∞ 3.若函数)(x f 的一个原函数为sin x x,则()f x dx ''=⎰( )A.sin x x C+ B.2cos sin x x x C -+C.sin cos x x x C-+ D.sin cos x x x C++4.已知函数(,)z z x y =由方程33320zxyz x -+-=所确定,则10x y z x==∂=∂( )A. 1- B. 0 C. 1D. 25.二次积分221(,)xdx f x y dy -⎰⎰交换积分次序后得( )A. 221(,)ydy f x y dx -⎰⎰ B. 120(,)ydy f x y dx -⎰⎰C. 1202(,)y dy f x y dx -⎰⎰ D. 2201(,)ydy f x y dx-⎰⎰6.下列级数发散的是( )A. ∑∞=-1)1(n n n B.21sin n nn∞=∑ C. 2111()2nn n ∞=+∑D.212n n n∞=∑二、填空题(本大题共6小题,每小题4分,共24分) 7.曲线21xy x ⎛⎫=- ⎪⎝⎭的水平渐近线的方程为______________________. 8.设函数32()912f x axx x=-+在2x =处取得极小值,则()f x 的极大值为__________.9.定积分11(x -+⎰的值为___________.10.函数arctany z x=的全微分dz =______________________.11.设向量(1,2,1),(1,0,1)a b →→==-,则a b →→+与a b →→-的夹角为__________. 12.幂级数1n n ∞=____________.三、计算题(本大题共8小题,每小题8分,共64分)13.求极限211lim()arcsin x x x x→-. 14.设函数)(x y y =由参数方程2(1)t y x t e e ty e⎧=+⎪⎨+=⎪⎩所确定,求t dy dx =.15.求不定积分2ln x xdx⎰. 16.计算定积分2⎰ .17.求平行于x 轴且通过两点)3,2,1(M 与(2,3,4)N 的平面方程.18.设函数22(sin ,)z f x x y =-,其中函数f 具有二阶连续偏导数,求yx z∂∂∂2.19.计算二重积分()Dx y dxdy +⎰⎰,其中D 是由三直线, 1.0y x y x =-==所围成的平面区域.20.求微分方程22xy y xe '''-=的通解.四、证明题(本大题共2小题,每小题9分,共18分) 21.证明:方程 ln 3x x =在区间(2,3)内有且仅有一个实根. 22.证明:当x >时,211ln(1)2xex x ->++.五、综合题(本大题共2小题,每小题10分,共20分)23.设平面面图形D 由抛物线21y x =-及其在点(1,0)处的切线以及y 轴所围成,试求: (1)平面图形D 的面积;(2)平面图形D 绕y 轴旋转一周所形成的旋转体的体积.24.设()x ϕ是定义在),(+∞-∞上的连续函数,且满足方程0()1()x t t dt x ϕϕ=-⎰,(1)求函数()x ϕ的表达式; (2)讨论函数2()1,0()1,02x x x f x x ϕ-⎧≠⎪⎪=⎨⎪-=⎪⎩ 在0=x 处的连续性与可导性.2014年江苏专转本高数真题答案。
2019年2001—年江苏专转本高等数学真题(附答案)79233.doc
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
江苏省“专转本”《高等数学》试卷分类解析不定积分.
同方专转本高等数学核心教程第三章不定积分本章主要知识点:● 不定积分的意义,基本公式● 不定积分的三种基本方法● 杂例历年考试真题1.(2001)不定积分=( D )A.B. +CC. arcsinxD. arcsinx+C解析: 利用不定积分的定义.2001)计算⎰e2x2. (1+exdx。
解: ⎰e2xe2x+ex-exx1+exdx=⎰1+exdx=e-ln(1+ex)+C3. (2002)设f(x)有连续的导函数,且a≠0,1,则下列命题正确的是(A. ⎰f'(ax)dx=1af(ax)+C B. ⎰f'(ax)dx=f(ax)+CC. (⎰f'(ax)dx)'=af(ax)D. ⎰f'(ax)dx=f(x)+C解析: 由⎰f'(x)dx=f(x)+C⎰f'(ax)dx=1a⎰f'(ax)dax=1af(ax)+C4. (2002)求积分2解: 14arcsin2x2+C5. (2003)若F'(x)=f(x),f(x)连续,则下列说法正确的是( C ) - 78 - A )第三章不定积分A.C. ⎰F(x)dx=f(x)+c B. ⎰⎰dF(x)dx=f(x)dx dx⎰dF(x)dx=f(x) f(x)dx=F(x)+c D. dx⎰解析: 不定积分的定义 6. (2003)xlnxdxx2x2x2=lnx-⎰dlnx 解: 设u=lnx,dv=xdx,则⎰xlnxdx=⎰lnxd222x21=lnx-⎰xdx22 11=x2(lnx-)+C227. (2004)求不定积分3=1arcsin4x+C 4解析: 31dx=⎰arcsin3xdarcsinx=arcsin4x+C 4ex8. (2004)设f(x)的一个原函数为,计算⎰xf'(2x)dx xexex(x-1)ex解: 因为f(x)的一个原函数为,所以f(x)=()'=, xx2x1111⎰xf'(2x)dx=⎰xf'(2x)d(2x)=⎰xdf(2x)=xf(2x)-⎰f(2x)dx 222211x(2x-1)e2xx-12x-+C=e+C =xf(2x)-⎰f(2x)d(2x)=248x28x4x9. (2005)若⎰f(x)dx=F(x)+C,则⎰sinxf(cosx)dx=( D )A. F(sinx)+CB. -F(sinx)+CC. F(cosx)+CD. -F(cosx)+C解析: ⎰sinxf(cosx)dx=-⎰f(cosx)dcosx=-F(cosx)+C⎰310. (2005)计算tanxsecxdx2 解:原式=tanxtanxsecxdx=⎰⎰(secx-1)d- 79 - 22secx=⎰secxdsecx-secx同方专转本高等数学核心教程=secx-secx+C11.(2006)已知A.2e-2x133⎰f(x)dx=e2x+C,则⎰f'(-x)dx=( C ). 11+CB.e-2x+CC. -2e-2x+CD. -e-2x+C 22解析: 由题意f(x)=2e2x,∴f'(x)=4e2x,f'(-x)=4e-2x所以⎰f'(-x)dx=⎰4e-2x-2xdx=⎰-2e-2xd(-2x)=-2e+C12.(2006)计算⎰dx x解:原式=32(1+lnx)=(1+lnx)2+C 313. (2007) 设函数f(x)的一个原函数为sin2x,则⎰f'(2x)dx=( A )1cos4x+C 2C. 2cos4x+CD. sin4x+C A. cos4x+C B.解析: f(x)=2cos2x,所以f'(x)=4sin2x,⎰f'(2x)dx=⎰4sin4xdx=⎰sin4xd(4x)=cos4x+C2-x14. (2007)求不定积分xedx.⎰2-x2-x 解:xedx=-xd(e) ⎰⎰2-x-x2-x-x =-xe+2xedx=-xe-2xd(e) ⎰⎰2-x-x-x =-xe-2xe+2edx ⎰=-xe单元练习题3 2-x-2xe-x-2e-x+C1.dcos2x=- 80 - ⎰第三章不定积分2.已知f(cosx)=sin2x,则⎰f(x-1)dx=。
同方专转本高等数学
江苏2001年“专转本”统一考试《高等数学》试卷及答案一、选择题1. 下列极限正确的是 ( C )A .e x xx =⎪⎭⎫ ⎝⎛+→11lim 0; B .e x x x =⎪⎭⎫ ⎝⎛+∞→111lim;C.11sinlim =∞→xx x ; D.11sinlim=→xx x .2.不定积分=-⎰dx x211 ( D )A.211x-; B.C x+-211; C.x arcsin ; D.C x +arcsin3.若)()(x f x f -=,且在),0(+∞内:0)(>'x f ,0)(>''x f ,则)(x f 在)0,(-∞内必有:(B) A.0)(<'x f ,0)(<''x f ; B.0)(<'x f ,0)(>''x f ; C.0)(>'x f ,0)(<''x f ; D.0)(>'x f ,0)(>''x f . 4.定积分=-⎰201dx x ( D )A.0; B.2; C.1-; D.1. 5.方程x y x 422=+在空间直角坐标系下表示:( A ) A.圆柱面; B .点; C .圆; D .旋转抛物面.二、 填空题6.设参数方程为⎩⎨⎧+==22tt y te x t ;则==0t dx dy2 .7.微分方程0136=+'-''y y y 的通解为:)2sin 2cos (213x C x C e y x+=其中21,C C 是任意常数.8.交换积分次序后=⎰⎰202),(xxdy y x f dx ⎰⎰⎰⎰+422222),(),(yy ydx y x f dy dx y x f dy .9.函数yx z =的全微分dy x x dx yxdy yz dx xz dz yy ⋅⋅+=∂∂+∂∂=-ln 1.10.设(x f 为连续函数,则[]564)()(223⎰-=+-+dx x x x f x f原式=[]⎰-+-+223)()(dx x x f x f ⎰-=224dx x ⎰-=224dx x 564. (其中()()x f x f -+是偶函数)三、计算题11.已知5cos)21ln(arctan π+++=xx y ,求dy 。
2014年江苏专转本(高等数学)真题试卷(题后含答案及解析)
2014年江苏专转本(高等数学)真题试卷(题后含答案及解析) 题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。
1.下列各函数是同一函数的是( )A.B.C.D.正确答案:C2.已知函数在x=0点连续,则a=( )A.4B.2C.3D.0正确答案:B3.已知f’(x0)=3,则极限A.B.1C.3D.9正确答案:D4.已知y=sin2x+sin x2,则A.sin 2x+2xcosx2B.2 sinx+2xcosx2C.sin2x一2xcosx2D.2 sin x一2xcosx2正确答案:A5.二阶线性齐次微分方程y”+2y’一3y=0的通解为( )A.C1e3x+C2e-xB.e-3x(C1cosx+C2sinx)C.C2e3x+C2e-xD.C1e-3x+C2ex正确答案:D6.下列等式止确的是( )A.∫f’(x)dx=f(x)B.∫df(x)=f(x)C.D.d∫f(x)dx=f(x)正确答案:C填空题7.曲线y=的水平渐近线的方程为________.正确答案:y=e-2解析:,令t=-x,则当x→∞时,t→∞于是8.设函数f(x)=ax3-9x2+12x在x=2处取得极小值,则f(x)的极大值为________.正确答案:5解析:f’(x)=3ax2一18x+12f’(2)=12a一36+12=0a=2.令f’(x)=6x2一18x+12=0,即x2一3x+2=0,(x一1)(x一2)=0.x1=1,x2=2,令x=1代入,原式f(x)=5.9.定积分的值为________.正确答案:解析:对于可知其值为0,其结果为.10.函数的全微分dz=______.正确答案:解析:11.某县2004年年底人口数为x0(单位:万人),已知该县人口的年均增长率为r(r为常数),则该县2014年年底人口数为_____.正确答案:x0(1+r) 1012.极限正确答案:解答题解答时应写出推理、演算步骤。
2014年专转本考试试卷-数学
绝密★启用前江苏省2014年普通高校专转本选拔考试高等数学 试卷注意事项:1.本试卷分为试题卷和答题卡两部分,试题卷共3页,全卷满分150分,考试时间120分钟。
2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置。
3.考试结束时,请将试题卷和答题卡一并交回。
一、选择题(本大题共6小题,每小题4分,共24分,在下列每小题中,选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)1、若1x =是函数224()32x x a f x x x -+=-+的可去间断点,则a =( ) A 、1 B 、2 C 、3 D 、42、曲线432y x x =-的凸区间为( )A 、(,0],[1,)-∞+∞B 、[0,1]C 、3(,]2-∞D 、3[,)2+∞3、若函数()f x 的一个原函数为sin x x ,则()f x dx ''=⎰( )A 、sin x x C +B 、2cos sin x x xC -+C 、sin cos x x x C -+D 、sin cos x x x C ++4、已知函数(,)z z x y =由方程33320z xyz x -+-=所确定,则10x y z x ==∂=∂( ) A 、-1 B 、0 C 、1 D 、25、二次积分2210(,)x dx f x y dy -⎰⎰交换积分次序后得( ) A 、2210(,)y dy f x y dx -⎰⎰ B 、1200(,)y dy f x y dx -⎰⎰ C 、1202(,)y dy f x y dx -⎰⎰ D 、1201(,)y dy f x y dx -⎰⎰ 6、下列级数发散的是( ) A、1nn ∞= B 、21sin n n n ∞=∑ C 、2111()2n n n ∞=+∑ D 、212n n n ∞=∑ 二、填空题(本大题共6小题,每小题4分,共24分)7、曲线2(1)xy x =-的水平渐近线方程为 .8、设函数32()912f x ax x x =-+在2x =处取得极小值,则()f x 的极大值为 . 9、定积分131(x -+=⎰ .10、函数arctany z x=的全微分dz = . 11、设向量(1,2,1),(1,0,1)a b ==- ,则向量a b + 与a b - 的夹角为 . 12、幂级数1nn ∞=的收敛域为 . 三、计算题(本大题共8小题,每小题8分,共64分)13、求极限2011lim arcsin x x x x →⎛⎫- ⎪⎝⎭. 14、设函数()y f x =由参数方程2(1)t y x t e e ty e⎧=+⎪⎨+=⎪⎩所确定,求0t dy dx =. 15、求不定积分2ln x xdx ⎰. 16、计算定积分2⎰. 17、求平行于x 轴且通过两点(1,1,1)M 与(2,3,4)N 的平面方程.18、设22(sin ,)z f x x y =-,其中函数f 有二阶连续偏导数, 求2z x y ∂∂∂. 19、计算二重积分()Dx y dxdy +⎰⎰,其中D 是由三直线,1,0y x y x =-==所围成的平面闭区域.20、求微分方程22x y y xe '''-=的通解.四、证明题(本大题共2小题,每小题9分,共18分)21、证明:方程ln 3x x =在区间(2,3)内有且仅有一个实根.22、证明:当0x >时,211ln(1)2x e x x ->++. 五、综合题(本大题共2小题,每小题10分,共20分) 23、设平面图形D 由抛物线21y x =-及在点(1,0)处的切线以及y 轴所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕y 轴旋转一周所形成的旋转体的体积.24、设()x ϕ是定义在(,)-∞+∞上的连续函数,且满足方程0()1()x t t dt x ϕϕ=-⎰(1)求函数()x ϕ的解析式;(2)讨论函数2()1,0()1,02xxxf xxϕ-⎧≠⎪⎪=⎨⎪-=⎪⎩在0x=处的连续性与可导性.。
江苏省2014年专转本高等数学试卷及解答
解 当 t 0 时, x 1 , y 1 ,由 e y ty e 得 e y 于是
dy dy dy y dx y (2t 3)e 2t , yt 0, , dt dt dt e t dt
dy y 1 dy y , . t dx (e t )(2t 3)e 3e dx t 0
2 2 x
z z z 3 y ( z x ) 3x 2 0 得 x x x
D .
x 1 y 0
1 .
5.二次积分
1
dx
2 y 0
0
f x, y dy 交换积分次序后得
A. C.
解
2
1
dy
f ( x, y )dx
B. D.
2 y
dy
绝密★启用前
江苏省 2014 年普通高校专转本选拔考试
高等数学 试题卷
注意事项: 1.本试卷分为试题卷和答题卡两部分.试题卷共 3 页,全卷满分 150 分,考试时间 120 分钟. 2.必须在答题卡上作答,作答在试题卷上无效,作答前务必将自己的姓名和准考证号准确清晰 地填写在试题卷和答题卡上的指定位置. 3.考试结束时,须将试题卷和答题卷一并交回.
x ln
2
xdx
16. 计算定积分 2
1 2
5
2x 1 dx . 2x 3 1 2 1 5 (t 1) .当 x 时, t 0 ;当 x 时, t 2 . 2 2 2
2
解 设 2 x 1 t ,则 x
5 2 1 2
2 2 2x 1 t2 4 t dx 2 dt (1 2 )dt (t 2arctan ) 2 . 0 t 4 0 2x 3 t 4 2 0 2
江苏专转本高等数学真题(附答案) (2)
2001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211C 、x arcsinD 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx x x220),(9、函数yx z =的全微分=dz10、设)(x f 为连续函数,则=+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos)21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim202⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12. 16、已知⎰∞-=+02211dx x k ,求k 的值. 17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z∂∂、yx z ∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程; (2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2013江苏专转本高数复习回顾试题1-6章
江苏专转本高等数学选拔考试仿真试题(三) 高数回顾卷一、函数、极限、连续12、计算x x dte x xt x sin lim202⎰-→(2001) 23、设()()⎪⎩⎪⎨⎧=≠+=0,,11x k x x x f x ,且()x f 在0=x 点连续,求:(1)k 的值(2)()x f '(2002) 19、求函数1)1sin()(--=x x x f 的间断点并判断其类型.(2003) 14、求极限)31ln()1()sin (tan lim22x edtt t x xx +--⎰→(2004) 13、设函数⎪⎩⎪⎨⎧+=a xx x f x F sin 2)()( 00=≠x x 在R 内连续,并满足:0)0(=f 、6)0('=f ,求a .(2005) 1、若21)2(lim0=→x xf x ,则=→)3(lim 0x f xx A 、21B 、2C 、3D 、31(2006) 2、已知当0→x 时,)1ln(22x x +是x n sin 的高阶无穷小,而x n sin 又是x cos 1-的高阶无穷小,则正整数=n A 、1B 、2C 、3D 、4(2007) 8、设函数{=)(x f ,0,3tan ,0,<≥+x xx x x a 在点0=x 处连续,则a= .(2008) 1、已知32lim22=-++→x bax x x ,则常数b a ,的取值分别为 ( )A 、2,1-=-=b a B 、0,2=-=b a C 、0,1=-=b a D 、1,2-=-=b a (2009)13、求极限2011lim()tan x x x x→-(2010) 7要使函数x x x f 1)21()(-=在点0=x 处连续,则需补充定义=)0(f _________.13、求极限)1ln(2cos 2lim 320x x x x x +-+→.24设⎪⎩⎪⎨⎧≠=⎰0)0(0)()(2= x g x xdtt g x f x ,其中函数)(x g 在),(+∞-∞上连续,且3cos 1)(lim 0=-→x x g x 证明:函数)(x f 在0=x 处可导,且21)0(='f (2012)二、导数与微分24、一租赁公司有40套设备,若定金每月每套200元时可全租出,当租金每月每套增加10元时,租出设备就会减少一套,对于租出的设备每套每月需花20元的维护费。
江苏专转本高等数学真题 (附答案)
2001年江苏省普通高校“专转本”统一考试 ___________________________________________ 12002年江苏省普通高校“专转本”统一考试 ___________________________________________ 62003年江苏省普通高校“专转本”统一考试 __________________________________________ 10 2004年江苏省普通高校“专转本”统一考试 __________________________________________ 14 2005年江苏省普通高校“专转本”统一考试 __________________________________________ 182006年江苏省普通高校“专转本”统一考试 __________________________________________ 212007年江苏省普通高校“专转本”统一考试 __________________________________________ 24 2008年江苏省普通高校“专转本”统一考试 __________________________________________ 28 2009年江苏省普通高校“专转本”统一考试 __________________________________________ 31 2010年江苏省普通高校“专转本”统一考试 __________________________________________ 342001年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 37 2002年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 38 2003年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 40 2004年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 41 2005年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 432006年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 45 2007年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 47 2008年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 49 2009年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 51 2010年江苏省普通高校“专转本”统一考试高等数学参考答案 ______________________ 532001年江苏省普通高校“专转本”统一考试高等数学一、选择题(本大题共5小题,每小题3分,共15分)1、下列各极限正确的是 ( )A 、e xxx =+→)11(lim 0B 、e xx x =+∞→1)11(limC 、11sinlim =∞→x x x D 、11sin lim 0=→xx x2、不定积分=-⎰dx x211 ( )A 、211x-B 、c x+-211 C 、x arcsin D 、c x +arcsin3、若)()(x f x f -=,且在[)+∞,0内0)('>x f 、0)(''>x f ,则在)0,(-∞内必有 ( )A 、0)('<x f ,0)(''<x f B 、0)('<x f ,0)(''>x f C 、0)('>x f ,0)(''<x f D 、0)('>x f ,0)(''>x f4、=-⎰dx x 21 ( )A 、0B 、2C 、-1D 、15、方程x y x 422=+在空间直角坐标系中表示 ( ) A 、圆柱面B 、点C 、圆D 、旋转抛物面二、填空题(本大题共5小题,每小题3分,共15分)6、设⎩⎨⎧+==22tt y te x t ,则==0t dx dy7、0136'''=+-y y y 的通解为 8、交换积分次序=⎰⎰dy y x f dx xx22),(9、函数yx z =的全微分=dz 10、设)(x f 为连续函数,则+-+⎰-dx x x x f x f 311])()([三、计算题(本大题共10小题,每小题4分,共40分) 11、已知5cos )21ln(arctan π+++=xx y ,求dy .12、计算xx dte x xt x sin lim 22⎰-→.13、求)1(sin )1()(2--=x x xx x f 的间断点,并说明其类型.14、已知x y x y ln 2+=,求1,1==y x dxdy.15、计算dx ee xx⎰+12.16、已知⎰∞-=+02211dx x k ,求k 的值.17、求x x y y sec tan '=-满足00==x y 的特解.18、计算⎰⎰Ddxdy y 2sin ,D 是1=x 、2=y 、1-=x y 围成的区域.19、已知)(x f y =过坐标原点,并且在原点处的切线平行于直线032=-+y x ,若b ax x f +=2'3)(,且)(x f 在1=x 处取得极值,试确定a 、b 的值,并求出)(x f y =的表达式.20、设),(2y x x f z =,其中f 具有二阶连续偏导数,求x z ∂∂、yx z∂∂∂2.四、综合题(本大题共4小题,第21小题10分,第22小题8分,第23、24小题各6分,共30分) 21、过)0,1(P 作抛物线2-=x y 的切线,求(1)切线方程;(2)由2-=x y ,切线及x 轴围成的平面图形面积;(3)该平面图形分别绕x 轴、y 轴旋转一周的体积。
2014江苏专转本高数答案
江苏省2014年普通高校专转本选拔考试高等数学 试题卷答案一、选择题(本大题共6小题,每小题4分,共24分)1、C2、B3、B4、A5、D6、D二、填空题(本大题共6小题,每小题4分,共24分)7、2y e -= 8、5 9、2π10、2222y x dz dx dy x y x y =-+++ 11、3π 12、[0,2) 三、计算题(本大题共8小题,每小题8分,共64分)13、原式=230000arcsin arcsin lim lim arcsin x x x x x x x x x x x→→→→--===20116x x →-==- 14、2(32)y t dy y dy dt e t dx dx e t dt-+==+,013t dy dx e==-. 15、2222222221111ln ln ln ln ln ln 2222x xdx xdx x x x d x x x x xdx ==-=-⎰⎰⎰⎰222222222211111111ln ln ln ln ln ln ln 22222222x x xdx x x x x x d x x x x x xdx =-=-+=-+⎰⎰⎰2222111ln ln 224x x x x x C =-++ 16、令t x =-12,则原式=222222220002444(1)22arctan 2044422t t t dt dt dt t t t π+-==-=-=-+++⎰⎰⎰ 17、平面∏的法向量(1,2,3)(1,0,0)(0,3,2)n MN i →→=⨯=⨯=-,直线方程:0(1)3(1)2(1)0x y z -+---=.即3210y z --=.18、12cos 2z xf xf x∂''=+∂212221222cos (2)2(2)2cos 4z xf y xf y y xf xyf x y∂''''''''=⋅-+⋅-=--∂∂ 19、2101001()()26y D y x y dxdy dy x y dx dy -+=+==⎰⎰⎰⎰⎰ 20、特征方程:220r r -=,120,2r r ==,齐次方程的通解为212x Y C C e =+.令特解为2()x y x Ax B e *=+,则22(222)x y Ax Bx Ax B e *'=+++,22(44824)x y Ax Bx Ax A B e *''=++++代入原方程得:22(422)x x Ax A B e xe ++=, 有待定系数法得:41220A A B =⎧⎨+=⎩,解得1414A B ⎧=⎪⎪⎨⎪=-⎪⎩,所以通解为221211()44x x y C C e x x e =++-. 四、证明题(本大题共2小题,每小题9分,共18分)21、令()ln 3f x x x =-,显然在区间(2,3)上连续,且38(2)2ln 23ln ln10,f e =-=<< (3)3ln333(ln31)0,f =-=->根据零点定理,(2,3),()0f ξξ∃∈=成立.又()ln 10f x x '=->,(2,3)x ∈,)(x f '单调递增,唯一性得证.22、令21()1ln(1)2x f x e x x =---+,则1()1x f x e x x '=--+,21()1(1)x f x e x ''=-++, 在0x >时,()f x ''单调递增,()(0)10f x f ''''>=>,所以()f x '单调递增,()(0)0f x f ''>=,所以()f x 单调递增,()(0)0f x f >=,得证.五、综合题(本大题共2小题,每小题10分,共20分)23、(1)2k y x '==-切,切线:,02(1)y x -=--,即2(1)y x =--,D 面积1201[2(1)(1)]3x x dx ----=⎰. (2) 21200211(1)(1)2326y y V d y y d y πππππ=---=-=⎰⎰ 24、已知0()1()xt t dt x ϕϕ=-⎰两边同时对x 求导得:()()x x x ϕϕ'=-,22()x x Ce ϕ-=,令0x =代入0()1()xt t dt x ϕϕ=-⎰得(0)1ϕ=,所以求得221,()x C x e ϕ-==.(2)因为2222232222(),(),()(1),()(3)x x x x x e x xe x x e x x x e ϕϕϕϕ----''''''==-=-=-(0)1ϕ=,(0)0ϕ'=,(0)1,(0)0ϕϕ'''''=-=. 20000()1()()(0)1lim ()lim lim lim (0)2222x x x x x x x f x f x x ϕϕϕϕ→→→→'''''-=====-=. 所以()f x 在0=x 处的连续.223000()11()(0)2()22lim lim lim 2x x x x f x f x x x x x x ϕϕ→→→-+--+== 20002()2()()11lim lim lim 6666x x x x x x x x x x ϕϕϕ→→→''''''+++====. 所以()f x 在0=x 处可导,1(0)6f '=.。
江苏省专转本高数真题及答案之欧阳理创编
江苏省2014年普通高校专转本选拔考试高等数学试题卷注意事项:1.本试卷分为试题卷和答题卡两部分,试题卷共3页,全卷满分150分,考试时间120分钟.2.必须在答题卡上作答,作答在试卷上无效.作答前务必将自己的姓名和准考证号准确清晰地填写在试题卷和答题卡上的指定位置.3.本试卷共8页,五大题24小题,满分150分,考试时间120分钟.一、单项选择题(本大题共6小题,每小题4分,满分24分.在下列每小题中,选出一个正确答案,请在答题卡上将所选项的字母标号涂黑)1.若是1x=函数224()32x x af xx x-+=-+的可去间断点,则常数a=( )A.1B.2C.3D.42.曲线432y x x =-的凹凸区间为( )A.(,0],[1,)-∞+∞B.[0,1]C.3(,]2-∞ D.3[,)2+∞ 3.若函数)(x f 的一个原函数为sin x x ,则()f x dx ''=⎰( )A.sin x x C +B.2cos sin x x x C -+C.sin cos x x x C -+D.sin cos x x x C ++4.已知函数(,)z z x y =由方程33320z xyz x -+-=所确定,则10x y zx ==∂=∂( )A.1-B.0C.1D.25.二次积分2210(,)x dx f x y dy -⎰⎰交换积分次序后得( ) A.2210(,)y dy f x y dx -⎰⎰ B.1200(,)y dy f x y dx -⎰⎰ C.1202(,)y dy f x y dx -⎰⎰ D.2201(,)ydy f x y dx -⎰⎰ 6.下列级数发散的是( ) A. ∑∞=-1)1(n n n B. 21sin n n n ∞=∑ C.2111()2n n n ∞=+∑ D.212n n n ∞=∑ 二、填空题(本大题共6小题,每小题4分,共24分)7.曲线21x y x ⎛⎫=- ⎪⎝⎭的水平渐近线的方程为______________________.8.设函数32()912f x ax x x =-+在2x =处取得极小值,则()f x 的极大值为__________.9.定积分11(x -+⎰的值为___________.10.函数arctan yz x =的全微分dz =______________________.11.设向量(1,2,1),(1,0,1)a b →→==-,则a b →→+与a b →→-的夹角为__________.12.幂级数1n n ∞=的收敛域为____________.三、计算题(本大题共8小题,每小题8分,共64分)13.求极限2011lim()arcsin x x x x →-. 14.设函数)(x y y =由参数方程2(1)t y x t e e ty e ⎧=+⎪⎨+=⎪⎩所确定,求0t dy dx =. 15.求不定积分2ln x xdx ⎰.16.计算定积分2⎰ . 17.求平行于x 轴且通过两点)3,2,1(M 与(2,3,4)N 的平面方程.18.设函数22(sin ,)z f x x y =-,其中函数f 具有二阶连续偏导数,求yx z ∂∂∂2. 19.计算二重积分()Dx y dxdy +⎰⎰,其中D 是由三直线, 1.0y x y x =-==所围成的平面区域.20.求微分方程22x y y xe '''-=的通解.四、证明题(本大题共2小题,每小题9分,共18分)21.证明:方程ln 3x x =在区间(2,3)内有且仅有一个实根.22.证明:当0x >时,211ln(1)2x e x x ->++. 五、综合题(本大题共2小题,每小题10分,共20分)23.设平面面图形D 由抛物线21y x =-及其在点(1,0)处的切线以及y 轴所围成,试求:(1)平面图形D 的面积;(2)平面图形D 绕y 轴旋转一周所形成的旋转体的体积.24.设()x ϕ是定义在),(+∞-∞上的连续函数,且满足方程0()1()xt t dt x ϕϕ=-⎰,(1)求函数()x ϕ的表达式;(2)讨论函数2()1,0()1,02x x x f x x ϕ-⎧≠⎪⎪=⎨⎪-=⎪⎩ 在0=x 处的连续性与可导性.2014年江苏专转本高数真题答案。