平行线的判定·课堂实录
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“平行线的判定”课堂实录
授课人:李泉学校:祥云县祥城镇一中班级:七年级336班
一、教学目标
1.经历观察、操作、想象、推理、交流等活动,进一步发展空间观念,培养推理能力和有条理的表达能力。
2.经历探究直线平行的判定方法的过程;掌握直线平行的判定方法,领悟归纳和转化的数学思想。
3.通过探究,体验逻辑推理的乐趣。
二、教学重、难点
教学重点:经历平行线判定的探究过程,感知逻辑推理。
教学难点:直线平行的判定方法的应用。
三、教学过程(实录)
1、复习旧知,引入新课
教师活动:以课件展示:判断对错,错误的请举出反例。
(1)两条不相交的直线叫平行线;
(2)过一点画已知直线的平行线能且只能画一条 ;
(3)与已知直线平行的直线有且只有一条;
(4)若直线a、b都和c平行,那么a与b平行.
学生活动:通过已学知识进行辨析,然后举手回答。
2、新课探究
教师活动:让学生作一条已知直线的平行线。
问题1:回顾小学所学的画平行线的方法:
① 三角尺紧靠直尺的边和直线l
所成的角在平移前的位置和平移后
的
②②只要保持_________相等,
画出的直线就平行于已知直线。
通过上述作图,概括得:
学生活动:在草稿纸上作图。
教师活动:在学生作图的基础上,教师提问1:图中的三角板起到了怎样的作用?并引导学生往三线八角方向考虑。
追问2:把途中的60°角改成30°角画出来的线还平行吗?
通过引导启发,学生容易得出:只要固定一对同位角,那么所得的必然是平行线。
进而得出:同位角相等,两直线平行。
教师活动:在问题1的基础上,给出:
问题2.
4
3
2
1
c
b
a
在判定方法1的图中,如果∠1=∠2,那么a∥b,如果给出的是∠3=∠2,是否还能够判定a∥b?为什么?
首先引导学生:在怎样的条件下,两条直线平行?
学生回答:同位角相等,两直线平行。
教师追问:那图中给的∠3=∠2,他们是一对同位角吗?
学生回答:不是,他们是一对内错角。图中的同位角是∠1、∠2。
教师追问:那由题目的已知∠3=∠2,可以得到∠1=∠2吗?
此处重在引导学生引入对顶角进行等量代换
引导学生:通过∠3=∠2,又∠1=∠3,可以代换出∠1=∠2,进而得到一对同位角相等。
进而得出:内错角相等,两直线平行。
教师活动:在问题2的基础上,给出:
问题3.同旁内角在数量上满足什么关系时,两直线平行?
解析1:此时学生已经有了判定定理2的探究思路,所以教师不急于引导,而是让学生参照问题2的方式进行探究.
2:此处教师提示:既可以把同旁内角转为为同位角,也可以转化为内错角。
进而得出:同旁内角互补,两直线平行。
3、新课小结
教师活动:
引导学生体会怎样的条件下,直线平行?
同位角相等,两直线平行。
内错角相等,两直线平行。
同旁内角互补,两直线平行。
进而呼应本节课的主题:平行线的判定。
提示学生:要让线平行,去找哪几种角?
3、随堂练习
参看课件10-13张
4、作业
课本14页.习题5.2 1、2、4题做到作业本上做《同步解析与测评》