高考数学不等式解题方法技巧
如何快速解决高考数学中的不等式
如何快速解决高考数学中的不等式高考数学中的不等式一直是让考生头痛的难点。
在考场上,不等式题目往往会占据很大一部分的分值,因此,高考数学中的不等式该如何快速解决呢?以下是一些解决不等式问题的技巧和方法。
一、掌握基本不等式基本不等式常常出现在高考数学考试中,要想在考场上得到高分,必须对其有深入的掌握。
基本不等式的形式是:对于任意正实数$a_1, a_2, …, a_n$,有:$$ \frac{a_1 + a_2 + … + a_n}{n} \geq \sqrt[n]{a_1 a_2 … a_n} $$其中等号成立的条件是$a_1 = a_2 = … = a_n$。
对于初学者来说,要掌握基本不等式,必须掌握求平均数和平均数与几何平均数的关系。
只有当我们能够准确地求出平均数并证明其与几何平均数之间的关系时,才能熟练地运用基本不等式。
二、掌握常用不等式的应用常用不等式有:均值不等式、柯西不等式、夹逼定理等。
这些常用不等式的应用能够帮助我们在解决不等式问题时灵活运用。
其中,均值不等式与基本不等式紧密相连,可以更好地帮助我们理解基本不等式的运用。
三、灵活掌握换元法换元法是解决不等式问题的必备技巧之一,有效地应用换元法能够简化不等式的复杂性。
例如,当一本书中大部分不等式的几个变量均在 $\sqrt{ab}$ 意外时,我们可以使用换元法将$\sqrt{ab}$ 替换成 $t$。
四、加减变形法在解决不等式问题时,加减变形法也是常见的技巧之一。
它的基本思想是将几个不等式加起来或者做差,然后通过加减变形法将其转换为更有利于解决的形式。
这种方法需要我们具有一定的直觉和判断力,能够快速分析加减变形的情况,并能够快速转化为有用的方式。
五、分段讨论法分段讨论法在解决不等式问题时也是一种常见的技巧。
其基本原理是将不等式分为不同的部分,并分别讨论每一部分的不等式情况。
例如,当我们需要解决$|ax+b|<c$的不等式问题时,我们可以将其分为 $ax+b<c$ 和 $ax+b>-c$ 两部分来分别讨论。
高考数学中的复数方程与不等式求解技巧
高考数学中的复数方程与不等式求解技巧在高考数学考试中,复数方程与不等式求解是一个重要的考点。
掌握了这些求解技巧,可以帮助考生更好地解题,提高数学成绩。
本文将介绍一些常见的复数方程与不等式求解技巧,帮助考生更好地应对高考数学考试。
一、复数方程的求解技巧1. 一元复数方程求解技巧对于一元复数方程,一般可以采用以下的求解思路:(1)观察方程,确定是否存在虚根,即方程中是否含有负数的平方根。
(2)如果存在虚根,可以转化为求解实系数方程。
将复数解表示为实数解的形式,然后联立相关实系数方程,利用常规的代数方法求解。
(3)如果方程中只存在实根,直接使用求解实数方程的方法进行求解即可。
2. 复数方程组的求解技巧对于复数方程组,可以利用以下的技巧进行求解:(1)将复数表示为实部与虚部的形式,然后联立相关的实系数方程组。
(2)利用方程组的性质,使用消元法、代入法等方法求解。
(3)在方程组求解过程中,注意虚部的运算规则,以免出现计算错误。
二、复数不等式的求解技巧1. 一元复数不等式求解技巧对于一元复数不等式,可以采用以下的求解思路:(1)观察不等式的性质,判断是否存在虚解。
如果存在虚解,可以转化为求解实系数不等式。
(2)利用复数的模表示法,进行运算,并结合不等式性质进行推导和求解。
2. 复数不等式组的求解技巧对于复数不等式组,可以利用以下的技巧进行求解:(1)将复数表示为实部与虚部的形式,然后联立相关的实系数不等式组。
(2)利用不等式组的性质,使用消元法、代入法等方法求解。
(3)在不等式组求解过程中,注意虚部的运算规则,并合理利用不等式的性质进行推导和求解。
三、应对高考中的复数方程与不等式求解题目的技巧1. 理解问题在解决复数方程与不等式问题时,首先要对问题进行仔细的理解和分析。
理解问题的关键点,确定所求的未知数以及方程或不等式的条件,这对于后面的解题过程非常重要。
2. 总结规律通过大量的练习和复习,总结复数方程与不等式求解的常见规律和技巧,这将帮助考生在解题过程中更快、更准确地找到解法和答案。
高考数学中常规的不等式证明思路及技巧
高考数学中常规的不等式证明思路及技巧数学是高考中必不可少的一门科目,而数学中的不等式证明题目更是高考难点之一。
不等式证明题目考察的是学生的推理能力、逻辑思维能力和精准计算能力。
本文将介绍常见的不等式证明思路及技巧,以帮助高中生更好地应对高考数学中的不等式证明题目。
一、利用已知条件推出结论在不等式证明题目中,往往会给出一些已知条件,利用这些条件我们可以推出某个结论,从而间接证明不等式的正确性。
在做题时,我们应该把题目中的已知条件先作出标注,理清思路后再进行推导。
例如:给定实数 $x$,$y$,$z$,满足 $x^2+y^2+z^2=1$,求证:$x+y+z\leq \sqrt{3}$。
解析:首先,我们可以根据均值不等式得出 $x+y+z\leq\sqrt{3(x^2+y^2+z^2)}$。
接下来,根据题目中的条件$x^2+y^2+z^2=1$,我们可以将被开方量化简为 $\sqrt{3}$,从而得到 $x+y+z\leq \sqrt{3}$。
因此,我们成功地证明了该不等式的正确性。
二、借助已知不等式证明目标不等式借助已知不等式间接证明目标不等式的正确性是不等式证明中最常用的方法之一。
这种方法需要对不等式理解深入,需要对不等式的性质有全面认知。
可以通过加、减、乘、除等运算方式进行变形,或者通过引理证明的方式来证明目标不等式的正确性。
例如:已知 $ab+bc+ca=1$,证明$\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\geq\dfrac{3\sqrt{3}}{4}$。
解析:首先,我们可以通过柯西不等式将原不等式中的多项式化成分数进行求解。
具体而言,我们有:$$\begin{aligned}&\dfrac{a}{1+b^2}+\dfrac{b}{1+c^2}+\dfrac{c}{1+a^2}\\ &\geq\dfrac{(a+b+c)^2}{a+ab^2+b+b^2c+c+c^2a+a^2}\\ &\geq\dfrac{3}{\dfrac{a}{c}+\dfrac{b}{a}+\dfrac{c}{b}+1}\\ &\geq\dfrac{3}{\sqrt[4]{\dfrac{abc}{abc}}+1}\\ &=\dfrac{3}{2}\end{aligned}$$由此,我们可以通过制定合适的策略,借助已知不等式成功证明了目标不等式的正确性。
高考数学不等式解题方法技巧
441 x 时,1+ log x 3 v 2log x2 ;当 x 时,1+ log x3 = 2log x 2)3 33.利用重要不等式求函数最值 时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
1x 2 3【例】(1)下列命题中正确的是A 、y x的最小值是 2 B 、y的最小值是 2 C 、X Vx 2 2y 2 3x 4(x 0)的最大值是 2 4'、3 D 、y 2 3x 4 (x 0)的最小值是 2 4-3 (答:C );x x(2)若x 2y 1,则2x 4y 的最小值是 ______________ (答: 2^2 );(3)正数x, y 满足x1 2y 1,则 1x -的最小值为 (答: y3 2 .2 ); a 2b 2 a b4.吊用不等式有:(1) ;22v ab 1 1 (恨据曰标不寺式左右的运算结构选用 );a b(2) a 、b 、c R , a 2 .2 2b cab bc ca (当且仅当a b c 时,取等号);(3) 若 a b 0,m0,则- b m (糖水的浓度问题)。
a a m【例】如果正数a 、b 满足ab a b 3,则ab 的取值范围是 (答:9,)不等式应试技巧总结1不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若a b,c d ,贝U a c b d (若a b,c d ,则a cb d ),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘 ,但不能相除;异向不等式可以相除 ,但不能相乘:若 a b 0,c d 0,则 ac bd (若 a b 0,0 c d ,则 a -); c d (3)左右同正不等式:两边可以同时乘方或开方 :若 a b 0 ,则 a n b n 或 n a 1 1 1 1 则 ;若ab 0 , a b ,贝U a b a b 【例】 (1)对于实数a,b,c 中, 给出下列命题: ①若a b,则 ac 2 bc 2; ③若a 2 2b 0,则 a ab b ④ 若a b 0,则- 1 ⑤a b⑥若a b 0,则: a lb ;⑦若c a b 0,则丄 ;⑧若a b,1 1 c a c b a b 命题是 (答: ②③⑥⑦⑧);(2)已知1 x y 1 , 1 x y 3,则3x y 的取值范围是 ______________________ (答:1 n b ; (4)若 ab 0 , a b , ②若 ac 2 bc 2,则a b ;b a 右a b 0,则 a b 则a 0,b 0。
高考数学解决不等式恒成立问题常用5种方法!最后一种很重要!
开篇语:不等式恒成立问题在高中数学是一类重点题型,高考也是必考内容。
由于不等式问题题型众多,题目也比较灵活。
所以在学习过程中,同学们要学会总结各种解题方法!方法一:分离参数法解析:分离参数法适用的题型特征:当不等式的参数能够与其他变量完全分离出来,并且分离后不等式其中一边的函数的最值或范围可求时,则将参数式放在不等式的一边,分离后的变量式放在另一边,将变量式看成一个新的函数,问题即转化为求新函数的最值或范围,若a≥f(x)恒成立,则a≥f(x)max,若a≤f(x)恒成立,则a≤f(x)min方法二:变换主元法(也可称一次函数型)解析:学生通常习惯把x当成主元(未知数),把另一个变量p看成参数,在有些问题中这样的解题过程繁琐,如果把已知取值范围的变量当成主元,把要求取值范围的变量看成参数,则可简便解题。
适用于变换主元法的题型特征是:题目有两个变量,且已知取值范围的变量只有一次项,这时就可以将不等式转化为一次函数求解。
方法三:二次函数法解析:二次函数型在区间的恒成立问题:解决这类问题主要是分析 1,判断二次函数的开口方向2,二次函数的判别式是大于0还是小于03,判断二次函数的对称轴位置和区间两端值的大小,即判断函数在区间的单调性 方法四:判别式法解析:不等式一边是分式,且分式的分子和分母的最高次项都是二次项时,利用判别式法可以快速的解题,分离参数将会使解题变得复杂。
方法五:最值法解析:不等式两边是两个函数,且含有参数时,我们可以分出出参数,构造新函数,求函数的导数来求得新函数的最值。
总结:在解不等式恒成立的问题时,应根据不等式的特点,选择适合的方式快速准确的解题。
平时练习过程中,应注意观察,总结!。
常见不等式的解法--高考数学【解析版】
专题04 常见不等式的解法所谓常见不等式是指,一元二次不等式、含绝对值不等式、指数对数不等式、函数不等式等,高考中独立考查的同时,更多地是在对其他知识的考查中,作为工具进行考查.正是解不等式的这一基础地位,要求务必做到求解快捷、准确.【重点知识回眸】(一)常见不等式的代数解法1、一元二次不等式:()200ax bx c a ++>≠可考虑将左边视为一个二次函数()2f x ax bx c =++,作出图象,再找出x 轴上方的部分即可——关键点:图象与x 轴的交点2、高次不等式(1)可考虑采用“数轴穿根法”,分为以下步骤:(令关于x 的表达式为()f x ,不等式为()0f x >)①求出()0f x =的根12,,x x ② 在数轴上依次标出根③ 从数轴的右上方开始,从右向左画.如同穿针引线穿过每一个根④ 观察图象,()0f x >⇒ 寻找x 轴上方的部分()0f x <⇒ 寻找x 轴下方的部分(2)高次不等式中的偶次项,由于其非负性在解不等式过程中可以忽略,但是要验证偶次项为零时是否符合不等式3、分式不等式(1)将分母含有x 的表达式称为分式,即为()()f xg x 的形式 (2)分式若成立,则必须满足分母不为零,即()0g x ≠(3)对形如()()0f x g x >的不等式,可根据符号特征得到只需()(),f x g x 同号即可,所以将分式不等式转化为()()()00f xg x g x ⋅>⎧⎪⎨≠⎪⎩ (化商为积),进而转化为整式不等式求解4、含有绝对值的不等式(1)绝对值的属性:非负性(2)式子中含有绝对值,通常的处理方法有两种:一是通过对绝对值内部符号进行分类讨论(常用);二是通过平方(3)若不等式满足以下特点,可直接利用公式进行变形求解:① ()()f x g x >的解集与()()f x g x >或()()f x g x <-的解集相同② ()()f x g x <的解集与()()()g x f x g x -<<的解集相同(4)对于其它含绝对值的问题,则要具体问题具体分析,通常可用的手段就是先利用分类讨论去掉绝对值,将其转化为整式不等式,再做处理5、指数、对数不等式的解法:(1)利用函数的单调性:1a >时,x y > log log (,0)x ya a a a x y x y ⇔>⇔>>01a <<时,x y > log log (,0)x y a a a a x y x y ⇔<⇔<>(2)对于对数的两点补充:① 对数能够成立,要求真数大于0,所以在解对数不等式时首先要考虑真数大于0这个条件,如当1a >时,()()()()()()0log log 0a a f x f x g x g x f x g x >⎧⎪>⇒>⎨⎪>⎩② 如何将常数转化为某个底的对数.可活用“1”:因为1log a a =,可作为转换的桥梁6、利用换元法解不等式利用换元法解不等式的步骤通常为:①选择合适的对象进行换元:观察不等式中是否有相同的结构,则可将相同的结构视为一个整体 ②求出新元的初始范围,并将原不等式转化为新变量的不等式③解出新元的范围④在根据新元的范围解x 的范围(二)构造函数解不等式1、函数单调性的作用:()f x 在[],a b 单调递增,则[]()()121212,,,x x a b x x f x f x ∀∈<⇔<(在单调区间内,单调性是自变量大小关系与函数值大小关系的桥梁)2、假设()f x 在[],a b 上连续且单调递增,()()00,,0x a b f x ∃∈=,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x > (单调性与零点配合可确定零点左右点的函数值的符号)3、导数运算法则:(1)()()()()()()()'''f x g x fx g x f x g x =+ (2)()()()()()()()'''2f x f x g x f x g x g x g x ⎛⎫-= ⎪⎝⎭4、构造函数解不等式的技巧:(1)此类问题往往条件比较零散,不易寻找入手点.所以处理这类问题要将条件与结论结合着分析.在草稿纸上列出条件能够提供什么,也列出要得出结论需要什么.两者对接通常可以确定入手点(2)在构造函数时要根据条件的特点进行猜想,例如出现轮流求导便猜有可能是具备乘除关系的函数.在构造时多进行试验与项的调整(3)此类问题处理的核心要素是单调性与零点,对称性与图象只是辅助手段.所以如果能够确定构造函数的单调性,猜出函数的零点.那么问题便易于解决了.(三)利用函数性质与图象解不等式:1、轴对称与单调性:此类问题的实质就是自变量与轴距离大小与其函数值大小的等价关系.通常可作草图帮助观察.例如:()f x 的对称轴为1x =,且在()1,+∞但增.则可以作出草图(不比关心单调增的情况是否符合()f x ,不会影响结论),得到:距离1x =越近,点的函数值越小.从而得到函数值与自变量的等价关系2、图象与不等式:如果所解不等式不便于用传统方法解决,通常的处理手段有两种,一类是如前文所说可构造一个函数,利用单调性与零点解不等式;另一类就是将不等式变形为两个函数的大小关系如()()f x g x <,其中()(),f x g x 的图象均可作出.再由()()f x g x <可知()f x 的图象在()g x 图象的下方.按图象找到符合条件的范围即可.【典型考题解析】热点一 简单不等式的解法【典例1】(2022·全国·高考真题)已知集合{}{}1,1,2,4,11A B x x =-=-≤,则A B =( )A .{1,2}-B .{1,2}C .{1,4}D .{1,4}-【答案】B【解析】【分析】求出集合B 后可求A B .【详解】{}|02B x x =≤≤,故{}1,2A B =,故选:B.【典例2】(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.【典例3】(2017·上海·高考真题)不等式11x x ->的解集为________【答案】(,0)-∞【解析】【详解】由题意,不等式11x x ->,得111100x x x->⇒<⇒<,所以不等式的解集为(,0)-∞. 【典例4】(2020·江苏·高考真题)设x ∈R ,解不等式2|1|||4x x ++<. 【答案】2(2,)3- 【解析】【分析】根据绝对值定义化为三个方程组,解得结果【详解】1224x x x <-⎧⎨---<⎩或10224x x x -≤≤⎧⎨+-<⎩或0224x x x >⎧⎨++<⎩21x ∴-<<-或10x -≤≤或203x << 所以解集为:2(2,)3- 【典例5】解下列高次不等式:(1)()()()1230x x x --->(2)()()()21230x x x +--< 【答案】(1)()()1,23,+∞;(2)()()1,22,3-. 【解析】(1)解:()()()()123f x x x x =---则()0f x =的根1231,2,3x x x ===作图可得:12x << 或3x >∴不等式的解集为()()1,23,+∞(2)思路:可知()220x -≥,所以只要2x ≠,则()22x -恒正,所以考虑先将恒正恒负的因式去掉,只需解()()13020x x x +-<⎧⎨-≠⎩ ,可得13x -<<且2x ≠∴不等式的解集为()()1,22,3-【名师点睛】在解高次不等式时,穿根前可考虑先将恒正恒负的项去掉,在进行穿根即可.穿根法的原理:它的实质是利用图象帮助判断每个因式符号,进而决定整个式子的符号,图象中的数轴分为上下两个部分,上面为()0f x > 的部分,下方为()0f x <的部分.以例2(1)为例,当3x >时,每一个因式均大于0,从而整个()f x 的符号为正,即在数轴的上方(这也是为什么不管不等号方向如何,穿根时一定要从数轴右上方开始的原因,因为此时()f x 的符号一定为正),当经过3x = 时,()3x -由正变负,而其余的式子符号未变,所以()f x 的符号发生一次改变,在图象上的体现就是穿根下来,而后经过下一个根时,()f x 的符号再次发生改变,曲线也就跑到x 轴上方来了.所以图象的“穿根引线”的实质是()f x 在经历每一个根时,式子符号的交替变化.【规律方法】1.含绝对值的不等式要注意观察式子特点,选择更简便的方法2.零点分段法的好处在于,一段范围可将所有的绝对值一次性去掉,缺点在于需要进行分类讨论,对学生书写的规范和分类讨论习惯提出了要求,以及如何整理结果,这些细节部分均要做好,才能保证答案的正确性.3.引入函数,通过画出分段函数的图象,观察可得不等式的解.热点二 含参数不等式问题【典例6】(2022·浙江·高考真题)已知,a b ∈R ,若对任意,|||4||25|0x a x b x x ∈-+---≥R ,则( )A .1,3a b ≤≥B .1,3a b ≤≤C .1,3a b ≥≥D .1,3a b ≥≤ 【答案】D【解析】【分析】将问题转换为|||25||4|a x b x x -≥---,再结合画图求解.【详解】由题意有:对任意的x ∈R ,有|||25||4|a x b x x -≥---恒成立.设()||f x a x b =-,()51,2525439,421,4x x g x x x x x x x ⎧-≤⎪⎪⎪=---=-<<⎨⎪-≥⎪⎪⎩,即()f x 的图像恒在()g x 的上方(可重合),如下图所示:由图可知,3a ≥,13b ≤≤,或13a ≤<,3143b a ≤≤-≤,故选:D .【典例7】(2020·浙江·高考真题)已知a ,b ∈R 且ab ≠0,对于任意x ≥0 均有(x –a )(x–b )(x–2a–b )≥0,则( )A .a <0B .a >0C .b <0D .b >0【答案】C【解析】【分析】对a 分0a >与0a <两种情况讨论,结合三次函数的性质分析即可得到答案.【详解】因为0ab ≠,所以0a ≠且0b ≠,设()()()(2)f x x a x b x a b =----,则()f x 的零点为123,,2x a x b x a b ===+当0a >时,则23x x <,1>0x ,要使()0f x ≥,必有2a b a +=,且0b <,即=-b a ,且0b <,所以0b <;当0a <时,则23x x >,10x <,要使()0f x ≥,必有0b <.综上一定有0b <.故选:C【典例8】(2023·全国·高三专题练习)解关于x 的不等式()222R ax x ax a ≥-∈-.【答案】详见解析.【解析】【分析】分类讨论a ,求不等式的解集即可.【详解】原不等式变形为()2220ax a x +--≥.①当0a =时,1x ≤-;②当0a ≠时,不等式即为()()210ax x -+≥,当0a >时,x 2a≥或1x ≤-; 由于()221a a a+--=,于是 当20a -<<时,21x a≤≤-; 当2a =-时,1x =-;当2a <-时,21x a-≤≤. 综上,当0a =时,不等式的解集为(,1]-∞-;当0a >时,不等式的解集为2(,1][,)a-∞-⋃+∞; 当20a -<<时,不等式的解集为2,1a ⎡⎤-⎢⎥⎣⎦;当2a =-时,不等式的解集为{}1-;当2a <-时,不等式的解集为21,a ⎡⎤-⎢⎥⎣⎦. 【总结提升】关于含参数不等式,其基本处理方法就是“分类讨论”,讨论过程中应注意“不重不漏”.关于含参数的一元二次不等式问题:(1)当判别式Δ能写成一个式子的平方的形式时,可先求方程的两根,再讨论两根的大小,从而写出解集.(2)三个方面讨论:二次项系数的讨论,根有无的讨论,根大小的讨论.(3)含参数分类讨论问题最后要写综述.热点三 函数不等式问题【典例9】(2018·全国·高考真题(文))设函数()2010x x f x x -⎧≤=⎨>⎩,,,则满足()()12f x f x +<的x 的取值范围是( )A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,【答案】D【解析】【分析】 分析:首先根据题中所给的函数解析式,将函数图像画出来,从图中可以发现若有()()12f x f x +<成立,一定会有2021x x x <⎧⎨<+⎩,从而求得结果. 详解:将函数()f x 的图像画出来,观察图像可知会有2021x x x <⎧⎨<+⎩,解得0x <,所以满足()()12f x f x +<的x 的取值范围是()0-∞,,故选D .【典例10】(2020·北京·高考真题)已知函数()21x f x x =--,则不等式()0f x >的解集是( ). A .(1,1)-B .(,1)(1,)-∞-+∞C .(0,1)D .(,0)(1,)-∞⋃+∞ 【答案】D【解析】【分析】作出函数2x y =和1y x =+的图象,观察图象可得结果.【详解】因为()21x f x x =--,所以()0f x >等价于21x x >+,在同一直角坐标系中作出2x y =和1y x =+的图象如图:两函数图象的交点坐标为(0,1),(1,2),不等式21x x >+的解为0x <或1x >.所以不等式()0f x >的解集为:()(),01,-∞⋃+∞. 故选:D.【典例11】(天津·高考真题(理))设函数f (x )=()212log ,0log ,0x xx x >⎧⎪⎨-<⎪⎩若()()f a f a >-,则实数a 的取值范围是( ) A .()()1,00,1-B .()(),11,-∞-+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃【答案】C【解析】【分析】由于a 的范围不确定,故应分0a >和0a <两种情况求解.【详解】当0a >时,0a -<,由()()f a f a >-得212log log a a>,所以22log 0a >,可得:1a >,当0a <时,0a ->,由()()f a f a >-得()()122log log a a ->-,所以()22log 0a -<,即01a <-<,即10a -<<,综上可知:10a -<<或1a >.故选:C【典例12】(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.【典例13】(2023·全国·高三专题练习)设函数()f x '是奇函数()f x (x ∈R )的导函数,f (﹣1)=0,当x >0时,()()0xf x f x '->,则使得f (x )>0成立的x 的取值范围是( )A .(﹣∞,﹣1)∪(﹣1,0)B .(0,1)∪(1,+∞)C .(﹣∞,﹣1)∪(0,1)D .(﹣1,0)∪(1,+∞)【答案】D【解析】【分析】构造函数()()f x g x x =,求导结合题意可得()()f x g x x =的单调性与奇偶性,结合()10g -=求解即可 【详解】由题意设()()f x g x x=,则()()()2xf x f x g x x '-'= ∵当x >0时,有()()0xf x f x '->,∴当x >0时,()0g x '>,∴函数()()f x g x x=在(0,+∞)上为增函数, ∵函数f (x )是奇函数,∴g (﹣x )=g (x ),∴函数g (x )为定义域上的偶函数,g (x )在(﹣∞,0)上递减,由f (﹣1)=0得,g (﹣1)=0,∵不等式f (x )>0⇔x •g (x )>0,∴()()01x g x g >⎧⎨>⎩或()()01x g x g <⎧⎨<-⎩, 即有x >1或﹣1<x <0,∴使得f (x )>0成立的x 的取值范围是:(﹣1,0)∪(1,+∞),故选:D .【总结提升】关于函数不等式问题,处理方法往往从以下几方面考虑:(1)利用函数的奇偶性、单调性.(2)借助于函数的图象(数形结合法).(3)涉及抽象函数、导数问题,利用构造辅助函数法,构造函数时往往从两方面着手:①根据导函数的“形状”变换不等式“形状”;②若是选择题,可根据选项的共性归纳构造恰当的函数.【精选精练】一、单选题1.(2020·全国·高考真题(文))已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B =( )A .{4,1}-B .{1,5}C .{3,5}D .{1,3}【答案】D【解析】【分析】首先解一元二次不等式求得集合A ,之后利用交集中元素的特征求得A B ,得到结果.【详解】由2340x x --<解得14x -<<,所以{}|14A x x =-<<,又因为{}4,1,3,5B =-,所以{}1,3A B =,故选:D.2.(2021·湖南·高考真题)不等式|21|3x -<的解集是( )A .{}2x x <B .{}1x x >-C .{}12x x -<<D .{1x x <-或}2x >【答案】C【解析】【分析】根据绝对值的几何意义去绝对值即可求解.【详解】由|21|3x -<可得:3213x -<-<,解得:12x -<<, 所以原不等式的解集为:{}12x x -<<,故选:C.3.(2021·广东·潮阳一中明光学校高三阶段练习)设集合{}11A x x =-≤≤,{}2log 1B x x =<,则A B =( )A .{}11x x -<≤B .{}11x x -<<C .{}01x x <≤D .{}01x x <<【答案】C【解析】【分析】根据对数函数定义域以及对数函数不等式求解集合B ,再进行交集运算即可.【详解】 由题意得,{}{}2log 102B x x x x =<=<<,所以{}|01A B x x ⋂=<≤,故选:C.4.(2022·江苏·南京市第一中学高三开学考试)已知集合{}230A x x x =-<,{}|33x B x =≥,则A B =( ) A .10,2⎛⎫⎪⎝⎭ B .1,32⎡⎫⎪⎢⎣⎭ C .(2 D .()1,3【答案】B【解析】【分析】求出集合A 、B ,再由交集的定义求解即可【详解】 集合{}{}23003A x x x x x =-<=<<,{}1332x B x x x ⎧⎫==≥⎨⎬⎩⎭, 则132A B x x ⎧⎫⋂=≤<⎨⎬⎩⎭.故选:B.5.(天津·高考真题(理))设x ∈R ,则“21x -<”是“220x x +->”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】【分析】求绝对值不等式、一元二次不等式的解集,根据解集的包含关系即可判断充分、必要关系.【详解】 由21x -<,可得13x <<,即x ∈(1,3);由22(1)(2)0x x x x +-=-+>,可得2x <-或1x >,即x ∈(,2)(1,)-∞-+∞;∴(1,3)是(,2)(1,)-∞-+∞的真子集,故“21x -<”是“220x x +->”的充分而不必要条件.故选:A6.(2023·全国·高三专题练习)已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为( )A .4B .3C .9D .94【答案】C【解析】【分析】根据函数的值域求出a 与b 的关系,然后根据不等式的解集可得()f x c =的两个根为,6m m +,最后利用根与系数的关系建立等式,解之即可.【详解】∵函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),∴f (x )=x 2+ax +b =0只有一个根,即Δ=a 2﹣4b =0则b 24a =, 不等式f (x )<c 的解集为(m ,m +6),即为x 2+ax 24a +<c 解集为(m ,m +6), 则x 2+ax 24a +-c =0的两个根为m ,m +6 ∴|m +6﹣m |22444a a c c ⎛⎫=-- ⎪⎝⎭6 解得c =9故选:C .7.(2022·吉林·长春市第二实验中学高三阶段练习)已知函数()y f x =是奇函数,当0x >时,()22x f x =-,则不等式()0f x >的解集是( )A .()()1,00,1-B .()()1,01,-⋃+∞C .()(),10,1-∞-⋃D .()(),11,-∞-⋃+∞ 【答案】B【解析】【分析】根据函数为奇函数求出当0x <时,函数()f x 的函数解析式,再分0x <和0x >两种情况讨论,结合指数函数的单调性解不等式即可.【详解】解:因为函数()y f x =是奇函数,所以()()f x f x -=-,且()00f =当0x <时,则0x ->,则()()22x f x f x --=-=-,所以当0x <时,()22x f x -=-+,则()0220x x f x >⎧⎨=->⎩,解得1x >,()0220x x f x -<⎧⎨=-+>⎩,解得10x -<<,所以不等式()0f x >的解集是()()1,01,-⋃+∞.故选:B.8.(2023·全国·高三专题练习)已知函数33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,则不等式()(31)<-f a f a 的解集为()A .10,2⎛⎫⎪⎝⎭ B .1,02⎛⎫- ⎪⎝⎭C .1,2⎛⎫-∞ ⎪⎝⎭ D .1,2⎛⎫-∞- ⎪⎝⎭【答案】C【解析】【分析】由函数解析式判断函数的单调性,根据单调性将函数不等式转化为自变量的不等式,解得即可;【详解】解:因为33,0()e 1,0x x x f x x --+<⎧=⎨+≥⎩,当0x <时()33f x x =-+函数单调递减,且()3033f x >-⨯+=,当0x ≥时()e 1x f x -=+函数单调递减,且()00e 123f =+=<,所以函数()f x 在(,)-∞+∞上是单调递减,所以不等式()(31)<-f a f a 等价于31a a >-,解得12a <. 即不等式的解集为1,2⎛⎫-∞ ⎪⎝⎭; 故选:C9.(2020·海南·高考真题)若定义在R 的奇函数f (x )在(,0)-∞单调递减,且f (2)=0,则满足(10)xf x -≥的x 的取值范围是( )A .[)1,1][3,-+∞B .3,1][,[01]--C .[1,0][1,)-⋃+∞D .[1,0][1,3]-⋃【答案】D【解析】【分析】首先根据函数奇偶性与单调性,得到函数()f x 在相应区间上的符号,再根据两个数的乘积大于等于零,分类转化为对应自变量不等式,最后求并集得结果.【详解】因为定义在R 上的奇函数()f x 在(,0)-∞上单调递减,且(2)0f =,所以()f x 在(0,)+∞上也是单调递减,且(2)0f -=,(0)0f =,所以当(,2)(0,2)x ∈-∞-⋃时,()0f x >,当(2,0)(2,)x ∈-+∞时,()0f x <,所以由(10)xf x -≥可得: 0210x x <⎧⎨-≤-≤⎩或0012x x >⎧⎨≤-≤⎩或0x = 解得10x -≤≤或13x ≤≤,所以满足(10)xf x -≥的x 的取值范围是[1,0][1,3]-⋃,故选:D.10.(2023·全国·高三专题练习)定义在(0)+∞,上的函数()f x 满足()()110,2ln 2xf x f '+=>,则不等式)(e 0x f x +> 的解集为( ) A .(02ln2),B .(0,ln2)C .(ln21),D .(ln2)+∞, 【答案】D【解析】【分析】构造新函数()()ln ,(0)g x f x x x =+>,利用导数说明其单调性,将)(e 0x f x +>变形为)>(e (2)x g g ,利用函数的单调性即可求解.【详解】令()()ln ,(0)g x f x x x =+> , 则()11()()xf x g x f x x x'+''=+=,由于()10xf x '+>, 故()0g x '>,故()g x 在(0)+∞,单调递增, 而1(2)(2)ln2ln ln 202g f =+=+= , 由)(e 0x f x +>,得)>(e (2)x g g ,∴e 2x > ,即ln2x > ,∴不等式)(e 0x f x +>的解集为(ln2)+∞,, 故选:D .二、填空题11.(2023·全国·高三专题练习)不等式组230,340.x x x ->⎧⎨-->⎩的解集为_________. 【答案】()4,+∞【解析】【分析】解一元二次不等式取交集即可.【详解】原不等式组化简为3034(4)(1)041x x x x x x x ->>⎧⎧⇒⇒>⎨⎨-+>><-⎩⎩或 故答案为:()4,+∞.12.(2019·浙江·高考真题)已知a R ∈,函数3()f x ax x =-,若存在t R ∈,使得2|(2)()|3f t f t +-≤,则实数a 的最大值是____. 【答案】max 43a =【解析】【分析】本题主要考查含参绝对值不等式、函数方程思想及数形结合思想,属于能力型考题.从研究()2(2)()23642f t f t a t t +-=++-入手,令2364[1,)m t t =++∈+∞,从而使问题加以转化,通过绘制函数图象,观察得解.【详解】使得()222(2)()2(2)(2)2234{}2]6f t f t a t t t t a t t +-=•[++++-=++-,使得令2364[1,)m t t =++∈+∞,则原不等式转化为存在11,|1|3m am ≥-≤, 由折线函数,如图只需11133a -≤-≤,即2433a ≤≤,即a 的最大值是43【点睛】对于函数不等式问题,需充分利用转化与化归思想、数形结合思想.13.(2023·全国·高三专题练习)若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为________.【答案】(1,2]【解析】【分析】先利用导数判断函数的单调性,再利用其单调性解不等式.【详解】解:f (x )的定义域为(0,+∞),∴()1f x x'=+e x -cos x . ∵x >0,∴e x >1,∴()f x '>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,则原不等式的解集为(1,2].故答案为:(1,2]三、双空题14.(2019·北京·高考真题(理))李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】 130. 15.【解析】【分析】由题意可得顾客需要支付的费用,然后分类讨论,将原问题转化为不等式恒成立的问题可得x 的最大值.【详解】(1)10x =,顾客一次购买草莓和西瓜各一盒,需要支付()608010130+-=元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8y y x y x -≥≤,即min158y x ⎛⎫≤= ⎪⎝⎭元. 所以x 的最大值为15.【点睛】本题主要考查不等式的概念与性质、数学的应用意识、数学式子变形与运算求解能力,以实际生活为背景,创设问题情境,考查学生身边的数学,考查学生的数学建模素养.15.(2023·全国·高三专题练习)已知函数f (x )111()12x x x x -≤⎧⎪=⎨⎪⎩,,>,则()()2f f =__,不等式()()32f x f -<的解集为__.【答案】12## 0.5 {x |x 72<或x >5} 【解析】【分析】第一空先求出()2f 的值,再求()()2f f 的值;第二空将3x -分为大于1或小于等于1两种情况讨论,分别解出不等式,写出解集即可.【详解】解:f (2)211122-⎛⎫== ⎪⎝⎭,1122f ⎛⎫= ⎪⎝⎭, ∴()()122f f =, 当x ﹣3>1时,即x >4时,311122x --⎛⎫ ⎪⎝⎭<,解得x >5, 当x ﹣3≤1时,即x ≤4时,x ﹣312<,解得x 72<, 综上所述不等式f (x ﹣3)<f (2)的解集为752x x x ⎧⎫⎨⎬⎩⎭或 故答案为:12,752x x x ⎧⎫⎨⎬⎩⎭或. 四、解答题16.(2020·山东·高考真题)已知函数()225,02,0x x f x x x x -≥⎧=⎨+<⎩. (1)求()1f f ⎡⎤⎣⎦的值;(2)求()13f a -<,求实数a 的取值范围.【答案】(1)3;(2)35a -<<.【解析】【分析】(1)根据分段函数的解析式,代入计算即可;(2)先判断1a -的取值范围,再代入分段函数解析式,得到()13f a -<的具体不等式写法,解不等式即可.【详解】解:(1)因为10>,所以()12153f =⨯-=-,因为30-<,所以()()()()2133233f f f =-=-+⨯⎤⎦-⎣=⎡.(2)因为10a -≥, 则()1215f a a -=--, 因为()13f a -<,所以2153a --<, 即14a -<,解得35a -<<.17.(2021·全国·高考真题(理))已知函数()3f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.【答案】(1)(][),42,-∞-+∞.(2)3,2⎛⎫-+∞ ⎪⎝⎭. 【解析】【分析】(1)利用绝对值的几何意义求得不等式的解集.(2)利用绝对值不等式化简()f x a >-,由此求得a 的取值范围.【详解】(1)[方法一]:绝对值的几何意义法当1a =时,()13f x x x =-++,13x x -++表示数轴上的点到1和3-的距离之和,则()6f x ≥表示数轴上的点到1和3-的距离之和不小于6, 当4x =-或2x =时所对应的数轴上的点到13-,所对应的点距离之和等于6, ∴数轴上到13-,所对应的点距离之和等于大于等于6得到所对应的坐标的范围是4x ≤-或2x ≥, 所以()6f x ≥的解集为(][),42,-∞-+∞.[方法二]【最优解】:零点分段求解法当1a =时,()|1||3|f x x x =-++.当3x ≤-时,(1)(3)6-+--≥x x ,解得4x ≤-;当31x -<<时,(1)(3)6-++≥x x ,无解;当1≥x 时,(1)(3)6-++≥x x ,解得2x ≥.综上,|1||3|6-++≥x x 的解集为(,4][2,)-∞-+∞.(2)[方法一]:绝对值不等式的性质法求最小值依题意()f x a >-,即3a x a x -+>-+恒成立,333x a x x a a x -++-+=≥++,当且仅当()()30a x x -+≥时取等号,()3min f x a ∴=+, 故3a a +>-,所以3a a +>-或3a a +<, 解得32a >-. 所以a 的取值范围是3,2⎛⎫-+∞ ⎪⎝⎭. [方法二]【最优解】:绝对值的几何意义法求最小值由||x a -是数轴上数x 表示的点到数a 表示的点的距离,得()|||3||3|f x x a x a =-++≥+,故|3|a a +>-,下同解法一.[方法三]:分类讨论+分段函数法当3a ≤-时,23,,()3,3,23,3,x a x a f x a a x x a x -+-<⎧⎪=--≤≤-⎨⎪-+>-⎩则min [()]3=--f x a ,此时3-->-a a ,无解.当3a >-时,23,3,()3,3,23,,x a x f x a x a x a x a -+-<-⎧⎪=+-≤≤⎨⎪-+>⎩则min [()]3=+f x a ,此时,由3a a +>-得,32a >-. 综上,a 的取值范围为32a >-. [方法四]:函数图象法解不等式由方法一求得()min 3f x a =+后,构造两个函数|3|=+y a 和y a =-,即3,3,3,3a a y a a --<-⎧=⎨+≥-⎩和y a =-, 如图,两个函数的图像有且仅有一个交点33,22⎛⎫- ⎪⎝⎭M , 由图易知|3|a a +>-,则32a >-.【整体点评】(1)解绝对值不等式的方法有几何意义法,零点分段法.方法一采用几何意义方法,适用于绝对值部分的系数为1的情况,方法二使用零点分段求解法,适用于更广泛的情况,为最优解;(2)方法一,利用绝对值不等式的性质求得()3min f x a =+,利用不等式恒成立的意义得到关于a 的不等式,然后利用绝对值的意义转化求解;方法二与方法一不同的是利用绝对值的几何意义求得()f x 的最小值,最有简洁快速,为最优解法方法三利用零点分区间转化为分段函数利用函数单调性求()f x 最小值,要注意函数()f x 中的各绝对值的零点的大小关系,采用分类讨论方法,使用与更广泛的情况;方法四与方法一的不同在于得到函数()f x 的最小值后,构造关于a 的函数,利用数形结合思想求解关于a 的不等式.18.(2023·全国·高三专题练习)已知函数2()2f x x ax =++,R a ∈.(1)若不等式()0f x 的解集为[1,2],求不等式2()1f x x -的解集;(2)若对于任意的[1x ∈-,1],不等式()2(1)4f x a x -+恒成立,求实数a 的取值范围;(3)已知2()(2)1g x ax a x =+++,若方程()()f x g x =在1(,3]2有解,求实数a 的取值范围. 【答案】(1)(-∞,1][12,)∞+ (2)13a ≤ (3)[0,1).【解析】【分析】(1)根据不等式的解集转化为一元二次方程,利用根与系数之间的关系求出a ,然后解一元二次不等式即可;(2)问题转化为222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],根据函数的单调性求出a 的范围即可;(3)利用参数分离法进行转化求解即可.(1)解:若不等式()0f x 的解集为[1,2],即1,2是方程220x ax ++=的两个根,则123a +=-=,即3a =-,则2()32f x x x =-+,由2()1f x x -得,22321x x x -+-即22310x x -+得(21)(1)0x x --,得1x 或12x ,即不等式的解集为(-∞,1][12,)∞+. (2)解:不等式()2(1)4f x a x -+恒成立,即222x a x --在[1x ∈-,1]恒成立,令22()2x h x x -=-,[1x ∈-,1],则2242()(2)x x h x x -+'=-,令()0h x '=,解得:22x =,故()h x 在[1-,22)递增,在(221]递减,故()min h x h =(1)或1()h -,而h (1)1=,1(1)3h -=,故13a . (3)解:由()()f x g x =得22(2)12ax a x x ax +++=++,2(1)210a x x ∴-+-=,即2(1)12a x x -=-,若方程()()f x g x =在1(2,3]有解,等价为2212121x a x x x --==-有解,设22121()(1)1h x x x x =-=--,1(2x ∈,3],∴11[3x ∈,2),即1()0h x -<,即110a --<,则01a <,即实数a 的取值范围是[0,1).。
高考数学中如何处理不等式和函数不等式
高考数学中如何处理不等式和函数不等式高中生的一大考验就是高考。
而在高考数学中,不等式和函数不等式是必考的考点。
然而,相较于直观的解题方法,不等式和函数不等式常常需要一定的技巧和灵活的思维方式。
本文将从解不等式和函数不等式的基本方法、案例分析和解题技巧等几个方面来探讨高考数学中如何处理不等式和函数不等式。
一、解不等式和函数不等式的基本方法1、将不等式化为一般形式。
处理不等式的第一步是把它化为一般形式,并且尽量把不等式的系数整理规范化。
然后,要对系数进行讨论来确定解不等式的范围。
举个例子:解不等式 $x-1\ge2x+3$。
我们可以移项化简得到$x\le-4$。
这样,我们就得出了不等式的解,也就是 $(-\infty,-4]$。
2、降低不等关系的阶数。
减少不等式中的绝对值、分式、开方等带有异于一次的函数形式,能促进求根工作。
有时还可以利用平方、移项等方法,将含有不等关系的式子处理为左式和右式的关系,即分成两个简单的不等式。
举个例子:解不等式 $|x+2|+|x+3|\ge5$。
我们可以使用等效方法将不等式处理为两个不等式的和,即 $|x+2|\ge1$ 或$|x+3|\ge4$。
最后的解集为 $x\le-3$ 或 $x\le-2$ 或 $x\ge2$。
3、分类讨论解不等式。
不同的不等式形式需要采用不同的解题方法。
没有一个万能的方法。
因此,我们需要根据特点和个别情况,考虑选择合适的解题方法。
举个例子:解不等式 $\frac{3}{1-x}+\frac{x+1}{x-3}\le0$。
我们可以把不等式的解划分为 $x\le-2$,$-2\lt x\lt1$ 和$x\ge1$ 三个区间来分别进行讨论。
二、案例分析1、绝对值不等式绝对值不等式是高中数学中非常重要的一个概念。
例如: $|x-2|<5$ 。
这里,我们可以先把不等式转化成两种不等式:$x-2<5$ 和 $x-2>-5$,再分别求解,得:x<7 和 x>-3。
高考数学中的不等式求解方法总结
高考数学中的不等式求解方法总结高考数学中不等式求解是一个重要的知识点,也是备战高考时需要重点掌握的内容之一。
不等式本身在数学领域具有广泛的应用,掌握不等式的求解方法也有助于学生更好地理解和应用数学知识。
在本文中,我们将总结高考数学中的不等式求解方法。
一、最值法当不等式的二次项系数为正数(即$ax^2+bx+c$,其中$a>0$)时,可使用最值法。
该方法的基本思路是,先确定 $x$ 的取值范围,然后通过求函数的最值来确定函数的正负性和取值范围。
如下例子:$$ x^2 - 6x + 5 > 0 $$该不等式中 $a=1$,所以最值法适用。
首先,我们需要求出二次函数 $y=x^2 - 6x + 5$ 的对称轴,即 $\frac{-b}{2a}=\frac{6}{2}=3$,也就是说,当 $x=3$ 时,函数取到最小值 $y=-1$。
因此我们可以将不等式转化为 $(x-3)^2-1>0$,进一步化简为 $|x-3| >1$。
根据绝对值的定义可知,$|x-3| >1$ 相当于$x<2$ 或 $x>4$。
因此该不等式的解集为 $(-\infty,2)\cup(4,+\infty)$。
二、配方法配方法是不等式求解的一种比较通用的方法,它的基本思路是,将不等式中的项按一定的方式加减或乘除,使得原不等式变为一个可以比较的简单的不等式。
常见的配方法有以下几种:1. 同除法通过同除法,将不等式中的一次项的系数变为 $1$,例如:$$ \frac{1}{x} + \frac{2}{x+2} < 1 $$可同除以 $x(x+2)$,得到:$$ 1< x(x+2)+2x $$化简得:$$ -x^2 -4x +1 <0 $$代数式的符号是问题的重点,由于 $a<0$,所以合法解集为 $-2+\sqrt{3} < x < -2-\sqrt{3}$。
2. 变量代换通过将不等式中的变量做适当的代换,将原不等式转化为一个更容易求解的不等式。
高中数学不等式解题技巧
不等式解题漫谈一、活用倒数法则 巧作不等变换——不等式的性质和应用不等式的性质和运算法则有许多,如对称性,传递性,可加性等.但灵活运用倒数法则对解题,尤其是不等变换有很大的优越性.倒数法则:若ab>0,则a>b 与1a <1b等价。
此法则在证明或解不等式中有着十分重要的作用。
如:(1998年高考题改编)解不等式log a (1-1x)>1.分析:当a>1时,原不等式等价于:1-1x >a,即 1x <1-a ,∵a>1,∴1-a<0, 1x <0,从而1-a,1x 同号,由倒数法则,得x>11-a ; 当0<a<1时,原不等式等价于 0<1- 1x <a,∴1-a<1x <1, ∵0<a<1,∴ 1-a>0, 1x >0, 从而1-a, 1x 同号,由倒数法则,得1<x<11-a;综上所述,当a>1时,x ∈(11-a ,+∞);当0<a<1时,x ∈(1,11-a).注:有关不等式性质的试题,常以选择题居多,通常采用特例法,排除法比较有效。
二、小小等号也有大作为——绝对值不等式的应用绝对值不等式:||a|-|b||≤|a ±b|≤|a|+|b|。
这里a,b 既可以表示向量,也可以表示实数。
当a,b 表示向量时,不等式等号成立的条件是:向量a 与b 共线;当a,b 表示实数时,有两种情形:(1)当ab ≥0时,|a+b|=|a|+|b|, |a-b|=||a|-|b||;(2)当ab ≤0时,|a+b|=||a|-|b||, |a-b|=|a|+|b|.简单地说就是当a,b 同号或异号时,不等式就可转化为等式(部分地转化),这为解决有关问题提供了十分有效的解题工具。
如:若1<1a <1b,则下列结论中不正确的是( )A 、log a b>log b aB 、| log a b+log b a|>2C 、(log b a)2<1D 、|log a b|+|log b a|>|log a b+log b a|分析:由已知,得0<b<a<1,∴a,b 同号,故|log a b|+|log b a|=|log a b+log b a|,∴D 错。
高考数学中的解不等式题技巧
高考数学中的解不等式题技巧高中数学中的解不等式是一个常见、重要而又复杂的话题,这也是每年高考必考的内容之一。
为了在高考中拿到更高的数学成绩,解不等式题的优秀技巧和方法就是必不可少的。
本文将为大家详细介绍高考数学中的解不等式题技巧。
一、确定不等式类型解不等式首先要确定不等式的类型,例如一次不等式、二次不等式以及一次不等式与二次不等式混合形式。
不同类型的不等式可能需要不同的解题方法和工具,所以正确地区分不同类型的不等式是解题的第一要素。
二、移项变号不等式中的每项都可以加上或减去相同的数,也可以乘以或除以相同的数,但是要注意判断是不是乘以负数。
在移项变号的过程中,必须保证不等式的方向不变,因为在不等式两侧同时加上一个正数,不等式转化成一个更大的不等式,而在不等式两侧同时加上一个负数,不等式转化成一个更小的不等式。
三、化简如果一个不等式的系数较复杂或有分数,可以通过合并同类项、约分、通分等等化简的方式,使其变得更简单明了,从而更方便地应用解不等式的技巧。
四、双边平方在处理二次不等式时,我们可以使用“双边平方”的方式将其化简成一次不等式,并继续应用一次不等式的解题方法。
不过,需要注意的是,双边平方的过程会使原不等式一些根号项的变化,并且有时会引入不合法解。
因此,在解二次不等式时,需要先判断根号里面的内容的正负,再进行双边平方,确定解的范围,并得出正确的解。
五、裂项在解不等式时,有时我们发现一个不等式的系数和项数都很复杂,难以应用一般的解题方法,这时候可以尝试使用“裂项”的方法,将不等式分解成几个部分,然后分别处理每个部分,最后得到整个不等式的解。
裂项方法的使用需要观察不等式的因式分解式,找到化简的方法,并找出合理的间隔点以及分段条件。
六、代入对于较复杂的不等式,我们可以先猜测一个解,然后代入验证是否成立,从而快速或全面地解出不等式的解。
这种方法的优点是简单易行,而且针对某些形式的不等式,代入还可以直接得到答案,缩短解题时间。
高考数学中不等式的证明方法和技巧有哪些
高考数学中不等式的证明方法和技巧有哪些在高考数学中,不等式的证明是一个重要的考点,也是很多同学感到头疼的问题。
不等式的证明方法多种多样,需要我们灵活运用数学知识和思维方法。
下面,我们就来详细探讨一下高考数学中不等式的证明的一些常见方法和技巧。
一、比较法比较法是证明不等式最基本的方法之一,分为作差比较法和作商比较法。
作差比较法的基本步骤是:将两个式子作差,然后对差进行变形,判断差的正负性。
如果差大于零,则被减数大于减数;如果差小于零,则被减数小于减数。
例如,要证明 a > b ,我们可以计算 a b ,然后通过因式分解、配方等方法将其变形为易于判断正负的形式。
作商比较法适用于两个正数比较大小。
将两个正数作商,然后与 1比较大小。
如果商大于 1,则被除数大于除数;如果商小于 1,则被除数小于除数。
比如,要证明 a > b (a、b 均为正数),计算 a/b ,若 a/b > 1 ,则 a > b 。
二、综合法综合法是从已知条件出发,利用已知的定理、公式、性质等,经过逐步的逻辑推理,最后推导出所要证明的不等式。
例如,已知 a > 0 ,b > 0 ,且 a + b = 1 ,要证明 a^2 +b^2 ≥1/2 。
因为 a + b = 1 ,所以(a + b)^2 = 1 ,即 a^2 + 2ab + b^2 =1 。
又因为2ab ≤ a^2 + b^2 ,所以 a^2 + b^2 +2ab ≤ 2(a^2 + b^2) ,即1 ≤ 2(a^2 + b^2) ,从而得出 a^2 +b^2 ≥ 1/2 。
三、分析法分析法是从要证明的不等式出发,逐步寻求使不等式成立的充分条件,直到所需条件为已知条件或明显成立的事实。
比如,要证明√a +√b <√(a + b) (a > 0 ,b > 0 )。
先将不等式移项得到√a +√b √(a + b) < 0 ,然后对其进行分析,逐步转化为易于证明的形式。
分析法的书写格式通常是“要证……,只需证……”。
高考数学中的三角函数方程与不等式求解技巧
高考数学中的三角函数方程与不等式求解技巧高考数学中,三角函数方程和不等式的求解是一个重要的考点。
掌握了相关的求解技巧,不仅可以提升数学成绩,还能在解决实际问题时起到关键作用。
本文将介绍一些常见的三角函数方程和不等式求解技巧,希望能对广大考生有所帮助。
一、三角函数方程的求解技巧1. 化简与等价变形在解三角函数方程时,首先要将复杂的方程化简为简单的形式。
通过等价变形,将方程转化为更易求解的形式,例如利用倒数公式、和差化积公式、和差化简等。
2. 观察周期性大多数三角函数具有周期性。
因此,在求解三角函数方程时,要充分利用函数图像的周期性质。
可以通过观察函数值的变化规律,找到方程在一个周期内的解,并推广到整个定义域。
3. 递推思想当遇到复杂的三角函数方程时,可以通过递推思想来解决。
即将方程中的变量逐步代入,化简为只含有一个未知数的方程,并逐步求解得到最终结果。
4. 回代与验证在得到方程的解后,要进行回代与验证。
将解代入原方程,验证等式是否成立。
如果成立,则解是方程的解;如果不成立,则需要重新检查求解过程。
二、三角函数不等式的求解技巧1. 图像法在解三角函数不等式时,可以绘制函数的图像来直观地找到不等式的解集。
通过观察图像的上升和下降趋势,确定不等式的取值范围。
2. 移项与化简与方程求解类似,不等式的求解也要通过移项和化简来将复杂的不等式转化为简单的形式。
通过等价变形,将不等式转化为更易求解的形式。
3. 考虑周期性与对称性三角函数的周期性和对称性是解三角函数不等式的重要技巧。
利用函数图像的周期性和对称性,可以将不等式的解集缩小到一个周期内,然后推广到整个定义域。
4. 关系式的转化有时候,将不等式转化为等价的关系式,可以更方便地求解。
例如,将不等式化为方程,然后根据方程的解集求解不等式的解集。
总结:高考数学中的三角函数方程与不等式求解技巧可以通过化简与等价变形、观察周期性、递推思想、图像法、移项与化简、考虑周期性与对称性、关系式的转化等方法来解决。
高考数学如何解决复杂的不等式题目
高考数学如何解决复杂的不等式题目不等式是高考数学中一个重要的考点,也是考生们容易遇到困惑的难题。
通过掌握一定的解题思路和技巧,我们可以有效地解决复杂的不等式题目。
本文将介绍一些解决不等式题目的方法和策略,帮助考生们应对高考中的挑战。
一、一元一次不等式的解法一元一次不等式是最简单的不等式形式,其解法与一元一次方程相似。
我们可以通过移项和化简的方式来求解。
首先,将所有的项都移到同一边,得到一个等式。
然后我们可以根据系数的正负以及零的位置来判断解集的情况,最后得到不等式的解。
二、二次不等式的解法二次不等式的解法相对复杂一些,需要通过因式分解或配方法等方式来求解。
在解二次不等式时,我们首先要将其转化为一个二次方程,然后再找到方程的解集。
我们可以通过以下两种方法来解二次不等式:1. 因式分解法:将二次不等式化为一个二次方程,通过因式分解将其展开为二个一次因式相乘的形式,然后根据因式的正负来确定解的范围。
2. 配方法:对于一般的二次不等式,我们可以通过配方法将其转化为完全平方的形式。
通过将方程配成完全平方后,我们可以通过解方程的方式来求解不等式。
三、绝对值不等式的解法绝对值不等式是一种特殊的不等式形式,在解法上需要注意绝对值的性质。
对于一元绝对值不等式,我们可以根据绝对值的定义将其分为两种情况来解决:1. 绝对值的定义:|a| = a (a≥0); |a| = -a (a<0)。
2. 情况一:如果不等式中的绝对值对应的是一个非负数,我们可以直接去掉绝对值符号,根据非负数的性质来解不等式。
3. 情况二:如果不等式中的绝对值对应的是一个负数,我们需要将绝对值转化为相反数的形式,然后在解不等式。
四、多元不等式的解法多元不等式是由多个变量构成的不等式,其解法要考虑多个变量之间的关系。
在解多元不等式时,我们可以通过以下步骤来进行:1. 将所有的项移到同一边,化简成一个等式。
2. 利用一元不等式的解法,将多元不等式转化为一元不等式。
高考数学如何解决复杂的不等式问题
高考数学如何解决复杂的不等式问题高考数学中,不等式问题一直是考试中的难点之一。
解决复杂的不等式问题需要灵活运用不等式的性质以及各种解不等式的方法。
本文将介绍解决复杂不等式问题的一些有效方法与技巧,帮助考生在高考数学中更好地应对不等式题目。
一、一元一次不等式一元一次不等式是最简单的不等式问题,形式一般为ax+b>0或ax+b<0。
解决一元一次不等式问题,可以通过下面的步骤进行:1. 化简不等式:将一元一次不等式化简为标准形式。
即将不等式左右两边移项,使得系数为正或负。
2. 约束条件:根据不等式中的约束条件,判断解的范围。
3. 解不等式:根据一元一次不等式的性质,得到不等式的解集。
二、一元二次不等式一元二次不等式是高考数学中常见的复杂不等式类型之一。
一元二次不等式的解决方法一般分为以下几种情况:1. 利用一元二次不等式的图像解题:将一元二次不等式转化为图像,通过观察图像的形状来确定解的范围和解集。
2. 利用配方法解题:对一元二次不等式进行配方法,将其化为平方形式,并利用平方的性质来解决不等式。
3. 利用根的性质解题:对一元二次不等式利用根的性质来解题。
即求出一元二次不等式的根,并根据根的位置来判断解的范围。
三、绝对值不等式绝对值不等式是数学中常见的不等式类型之一。
解决绝对值不等式问题,可以按照以下步骤进行:1. 分情况讨论:将绝对值不等式进行分情况讨论,根据绝对值的定义来确定绝对值的取值范围。
2. 解不等式:将不等式的绝对值表达式划分为两个部分,分别求解,得到不等式的解。
四、常见的不等式定理与性质在解决复杂不等式问题时,常常需要用到一些不等式定理与性质。
以下是一些常见的不等式定理与性质:1. 线性不等式性质:对于线性不等式,若两边同乘(除)一个正数,则不等号方向不变;若两边同乘(除)一个负数,则不等号方向反向。
2. 开方不等式性质:对于开方不等式,若两边平方,则不等号方向不变。
3. 加减不等式性质:对于加减不等式,若右边加(减)一个数,则不等号方向不变。
高考数学技巧解决不等式的简便方法
高考数学技巧解决不等式的简便方法不等式在高考数学中占据重要地位,掌握解决不等式问题的技巧对于学生们来说至关重要。
本文将介绍几种简便的方法,帮助高中生们更加有效地解决不等式题目。
方法一:零点法对于一元一次不等式,使用零点法是相对简便的方法。
假设不等式为f(x)>0,我们可以先求出f(x)的零点,然后根据零点的位置判断不等式的解集。
举例来说,如果我们有不等式2x+3>0,首先求出方程2x+3=0的解x=-1.5,可以得到方程的解集为x>-1.5。
方法二:区间判断法区间判断法适用于一元二次不等式。
我们可以先将一元二次不等式化为二次函数的形式,然后通过判断二次函数的取值范围来确定不等式的解集。
举例来说,如果我们有不等式x^2-4x+3<0,我们可以将该不等式化简为(x-1)(x-3)<0。
然后我们绘制出二次函数y=(x-1)(x-3)的图像,通过观察图像在x轴的上方还是下方来确定不等式的解集。
方法三:增减法增减法适用于一些特殊的不等式,例如当不等式中存在绝对值,或者不等式左右两侧都是函数时,可以使用增减法来解决问题。
举例来说,如果我们有不等式|3x-1|<2,我们可以根据绝对值的性质将该不等式化简为-2<3x-1<2。
然后我们可以根据不等式的形式来进行分析,得到解集-1<x<1。
方法四:因式分解法对于一些复杂的不等式,通过因式分解可以将不等式化为简单的形式,从而更方便地求解。
举例来说,如果我们有不等式x^3+x^2+x<0,我们可以对该不等式进行因式分解,得到x(x+1)(x+1)<0。
然后我们可以根据不等式的性质来确定解集。
方法五:数轴法数轴法是解决不等式问题常用的方法之一。
通过绘制数轴,将不等式中的关键点标出,并根据关键点的位置来确定解集。
举例来说,如果我们有不等式2x^2-3x-2>0,我们可以先求出方程2x^2-3x-2=0的解x=-1和x=2,然后在数轴上标出这两个点。
解决高考数学中的复数方程与不等式难题的方法
解决高考数学中的复数方程与不等式难题的方法高考数学中,复数方程与不等式往往是考生难以解答的问题之一。
然而,通过一些有效的方法和技巧,我们能够解决这些难题。
本文将介绍一些解决高考数学中的复数方程与不等式难题的方法。
一、解决复数方程的方法1. 代数法:对于复数方程,我们可以使用代数法进行求解。
首先,将方程中的复数表示为二元一次方程,然后根据二元一次方程的解法,求解出方程的解。
2. 模长法:对于复数方程中含有模长的情况,我们可以使用模长法进行求解。
在方程中,利用复数的模长性质,将方程中的模长拆开,然后对应相等部分进行求解。
3. 平方和法:对于复数方程中含有平方项的情况,我们可以使用平方和法进行求解。
在方程中,将平方项进行拆开,然后对应相等部分进行求解。
二、解决不等式的方法1. 画图法:对于复杂数学不等式,我们可以使用画图法进行求解。
将不等式中的各个式子表示为图形,然后通过观察图形的位置关系得出不等式的解集。
2. 变形法:对于复杂数学不等式,我们可以使用变形法进行求解。
根据不等式的性质,通过变形等式的形式,将不等式转化为容易求解的形式。
3. 绝对值法:对于含有绝对值的不等式,我们可以使用绝对值法进行求解。
根据绝对值的性质,将绝对值表达式拆成两个不等式,然后对应相等部分进行求解。
三、综合运用方法在解决高考数学中的复数方程与不等式难题时,我们往往需要综合运用多种方法。
通过观察方程或不等式的特点,选择适当的方法进行求解,并在求解过程中注意运算的准确性和规范性。
总结:通过以上介绍的方法,我们可以有效地解决高考数学中的复数方程与不等式难题。
在解题过程中,我们需要充分理解数学规律和性质,熟练掌握相应的解题技巧。
同时,我们还需要注重练习和实践,通过大量的题目来提高自己的解题能力。
相信只要我们用心去学习和实践,掌握这些方法并灵活运用,解决高考数学中的复数方程与不等式难题将不再成为难题。
高考数学如何快速解决复杂的不等式问题
高考数学如何快速解决复杂的不等式问题不等式问题在高考数学中占据重要的位置,解决复杂的不等式问题需要灵活运用相关的数学知识和技巧。
本文将介绍一些方法和策略,帮助同学们快速解决复杂的不等式问题。
一、一元一次不等式一元一次不等式是最简单的不等式问题之一,其解的思路与方程类似。
首先,将不等式中的常数项移项,使得不等式变为等式,并写出其解集;然后,根据不等号的性质确定解集的范围。
例如,对于不等式2x+3>5,可以将常数项移项得到2x>2,然后除以2得到x>1,即解集为(1,+∞)。
二、一元二次不等式一元二次不等式在高考数学中出现频率较高,解决这类不等式问题可以使用图像法、开口方向法和根判别法等方法。
1. 图像法:将一元二次不等式转化为一元二次方程,并绘制出关于x的二次函数图像。
通过观察函数图像与x轴的位置关系,确定不等式的解集。
例如,对于不等式x^2-4x+3<0,可以将其转化为方程x^2-4x+3=0,求得方程的根x=1和x=3,在图像上标出这两个根,并观察函数图像在根之间的部分与x轴的位置关系,确定解集为(1,3)。
2. 开口方向法:将一元二次不等式转化为标准形式,并确定开口的方向。
例如,对于不等式2x^2+5x+3>0,可以通过求解方程2x^2+5x+3=0,得到方程的根x=-1和x=-3/2,再观察二次曲线的开口方向,确定解集为(-∞,-3/2)∪(-1,+∞)。
3. 根判别法:对于一元二次不等式ax^2+bx+c(a>0),通过求解方程ax^2+bx+c=0,得到方程的两个根x1和x2。
根据二次函数的凹凸性,确定解集的范围。
例如,对于不等式x^2+6x+9>0,方程的根为x=-3,因为a=1>0,所以二次曲线开口向上,根据函数图像与x轴的关系,确定解集为(-∞,-3)∪(-3,+∞)。
三、绝对值不等式绝对值不等式是高考数学中常见的一类问题,可以通过分情况讨论的方法求解。
高考数学中的不等式求解方法
高考数学中的不等式求解方法数学中的不等式是我们学习的一个重要知识点,它不仅在我们的学习中经常出现,在日常生活中也有着广泛的应用。
高考数学中的不等式求解方法更是需要我们深入研究的一个方向。
在这篇文章中,我将向大家介绍几种高考数学中常用的不等式求解方法,希望能帮助大家在数学高考中取得好成绩。
一、一次不等式的求解方法一次不等式是我们学习中最基础的不等式,通式为ax+b>0。
它的求解方法十分简单,只需要把这个不等式看成一个一元一次方程即可。
将b移到等式的另一边,然后用x将a除掉即可得到x>b/a。
这个结果就是不等式的根。
如果不等式的系数a小于零,则根的符号需要取反。
二、二次不等式的求解方法二次不等式的求解方法则要复杂一些。
它的方程应该长这样:ax²+bx+c>0。
这个不等式可以通过方程的根来求解。
如果我们把这个不等式看成一个一元二次方程,那么它的解就是x1和x2的值。
让我们来看一个例子。
假设我们有一个二次不等式5x²-5x+1>0。
我们需要求的是这个不等式的根。
根据二次函数的求根公式,我们可以得出:Δ=b²-4ac=25-20=5x1=(-b+√Δ)/2a=(5+√5)/10x2=(-b-√Δ)/2a=(5-√5)/10因为不等式中的系数是正数,我们只需要关注其中一个根x1。
所以,我们得到了这个不等式的根,x>x1。
这就是这个不等式的解。
三、分式不等式的求解方法分式不等式是高考数学中比较复杂的一个不等式形式,它的形式可以写成f(x)/g(x)>0。
其中,f(x)和g(x)都是多项式函数。
它的求解方法采用分段法进行。
具体的步骤如下:1. 找出f(x)和g(x)的所有零点,也就是它们的根。
2. 根据这些零点将数轴分成几个部分。
3. 接下来,我们需要对每一个分段分别进行判断。
首先将f(x)和g(x)的符号标记在分段的两个端点上。
如果f(x)和g(x)的符号相同,那么这个分段就符合不等式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学不等式解题方法技巧Newly compiled on November 23, 2020不等式应试技巧总结1、不等式的性质:(1)同向不等式可以相加;异向不等式可以相减:若,a b c d >>,则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减;(2)左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d>); (3)左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或>4)若0ab >,a b >,则11a b <;若0ab <,a b >,则11a b>。
【例】(1)对于实数c b a ,,中,给出下列命题:①22,bc ac b a >>则若;②b a bc ac >>则若,22;③22,0b ab a b a >><<则若;④ba b a 11,0<<<则若;⑤ba ab b a ><<则若,0; ⑥b a b a ><<则若,0;⑦bc b a c a b a c ->->>>则若,0;⑧11,a b a b>>若,则0,0a b ><。
其中正确的命题是______(答:②③⑥⑦⑧);(2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______(答:137x y ≤-≤);(3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______(答:12,2⎛⎫-- ⎪⎝⎭) 2. 不等式大小比较的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量或放缩法 ;(8)图象法。
其中比较法(作差、作商)是最基本的方法。
【例】(1)设0,10>≠>t a a 且,比较21log log 21+t t a a 和的大小(答:当1a >时,11log log 22a a t t +≤(1t =时取等号);当01a <<时,11log log 22a a t t +≥(1t =时取等号));(2)设2a >,12p a a =+-,2422-+-=a a q ,试比较q p ,的大小(答:p q >); (3)比较1+3log x 与)10(2log 2≠>x x x 且的大小(答:当01x <<或43x >时,1+3log x >2log 2x ;当413x <<时,1+3log x <2log 2x ;当43x =时,1+3log x =2log 2x )3. 利用重要不等式求函数最值时,你是否注意到:“一正二定三相等,和定积最大,积定和最小”这17字方针。
【例】(1)下列命题中正确的是A 、1y x x =+的最小值是2 B、2y =的最小值是2 C 、423(0)y x x x =-->的最大值是2- D 、423(0)y x x x=-->的最小值是2-(答:C );(2)若21x y +=,则24x y +的最小值是______(答:(3)正数,x y 满足21x y +=,则yx 11+的最小值为______(答:3+); 4.常用不等式有:(12211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) ;(2)a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号);(3)若0,0a b m >>>,则b b m a a m+<+(糖水的浓度问题)。
【例】如果正数a 、b 满足3++=b a ab ,则ab 的取值范围是_________(答:[)9,+∞)5、证明不等式的方法:比较法、分析法、综合法和放缩法(比较法的步骤是:作差(商)后通过分解因式、配方、通分等手段变形判断符号或与1的大小,然后作出结论。
). 常用的放缩技巧有:211111111(1)(1)1n n n n n n n n n-=<<=-++-- 【例】(1)已知c b a >>,求证:222222ca bc ab a c c b b a ++>++ ;(2) 已知R c b a ∈,,,求证:)(222222c b a abc a c c b b a ++≥++;(3)已知,,,a b x y R +∈,且11,x y a b>>,求证:x y x a y b >++; (4)若a 、b 、c 是不全相等的正数,求证:lg lg lg lg lg lg 222a b b c c a a b c +++++>++; (5)已知R c b a ∈,,,求证:2222a b b c +22()c a abc a b c +≥++;(6)若*n N ∈(1)n +<n ;(7)已知||||a b ≠,求证:||||||||||||a b a b a b a b -+≤-+; (8)求证:2221111223n++++<。
6.简单的一元高次不等式的解法:标根法:其步骤是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴上,从最大根的右上方依次通过每一点画曲线;并注意奇穿过偶弹回;(3)根据曲线显现()f x 的符号变化规律,写出不等式的解集。
【例】(1)解不等式2(1)(2)0x x -+≥。
(答:{|1x x ≥或2}x =-);(2)不等式(0x -≥的解集是____(答:{|3x x ≥或1}x =-);(3)设函数()f x 、()g x 的定义域都是R ,且()0f x ≥的解集为{|12}x x ≤<,()0g x ≥的解集为∅,则不等式()()0f x g x >的解集为______(答:(,1)[2,)-∞+∞);(4)要使满足关于x 的不等式0922<+-a x x (解集非空)的每一个x 的值至少满足不等式08603422<+-<+-x x x x 和中的一个,则实数a 的取值范围是______.(答:81[7,)8) 7.分式不等式的解法:分式不等式的一般解题思路是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。
解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。
【例】(1)解不等式25123x x x -<---(答:(1,1)(2,3)-); (2)关于x 的不等式0>-b ax 的解集为),1(+∞,则关于x 的不等式02>-+x b ax 的解集为____________(答:),2()1,(+∞--∞ ).8.绝对值不等式的解法:(1)分段讨论法(最后结果应取各段的并集):【例】解不等式|21|2|432|+-≥-x x (答:x R ∈); (2)利用绝对值的定义;(3)数形结合;【例】解不等式|||1|3x x +->(答:(,1)(2,)-∞-+∞)(4)两边平方:【例】若不等式|32||2|x x a +≥+对x R ∈恒成立,则实数a 的取值范围为______。
(答:4{}3) 9、含参不等式的解法:求解的通法是“定义域为前提,函数增减性为基础,分类讨论是关键.”注意解完之后要写上:“综上,原不等式的解集是…”。
注意:按参数讨论,最后应按参数取值分别说明其解集;但若按未知数讨论,最后应求并集.【例】(1)若2log 13a <,则a 的取值范围是__________(答:1a >或203a <<); (2)解不等式2()1ax x a R ax >∈-(答:0a =时,{|x 0}x <;0a >时,1{|x x a>或0}x <;0a <时,1{|0}x x a<<或0}x <) 提醒:(1)解不等式是求不等式的解集,最后务必有集合的形式表示;(2)不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值。
如关于x 的不等式0>-b ax 的解集为)1,(-∞,则不等式02>+-bax x 的解集为__________(答:(-1,2))11.含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.【例】设2()13f x x x =-+,实数a 满足||1x a -<,求证:|()()|2(||1)f x f a a -<+12.不等式的恒成立,能成立,恰成立等问题:不等式恒成立问题的常规处理方式(常应用函数方程思想和“分离变量法”转化为最值问题,也可抓住所给不等式的结构特征,利用数形结合法)1).恒成立问题若不等式()A x f >在区间D 上恒成立,则等价于在区间D 上()min f x A >若不等式()B x f <在区间D 上恒成立,则等价于在区间D 上()max f x B <【例】(1)设实数,x y 满足22(1)1x y +-=,当0x y c ++≥时,c 的取值范围是______(答:)1,+∞);(2)不等式a x x >-+-34对一切实数x 恒成立,求实数a 的取值范围_____(答:1a <);(3)若不等式)1(122->-x m x 对满足2≤m 的所有m 都成立,则x 的取值范围_____(答:(712-,312+)); (4)若不等式na n n 1)1(2)1(+-+<-对于任意正整数n 恒成立,则实数a 的取值范围是_____(答:3[2,)2-);(5)若不等式22210x mx m -++>对01x ≤≤的所有实数x 都成立,求m 的取值范围.(答:12m >-) 2). 能成立问题若在区间D 上存在实数x 使不等式()A x f >成立,则等价于在区间D 上()max f x A >;若在区间D 上存在实数x 使不等式()B x f <成立,则等价于在区间D 上的()min f x B <.【例】已知不等式a x x <-+-34在实数集R 上的解集不是空集,求实数a 的取值范围______(答:1a >)3). 恰成立问题若不等式()A x f >在区间D 上恰成立, 则等价于不等式()A x f >的解集为D ; 若不等式()B x f <在区间D 上恰成立, 则等价于不等式()B x f <的解集为D .。