算法分析及设计及案例习题解析

合集下载

(整理版)几种常见的算法案例分析

(整理版)几种常见的算法案例分析

几种常见的算法案例分析算法不仅是数学及其应用的重要的组成局部,也是计算机科学的重要根底,其中算法的重要思想在几种常见的算法例案中得以较好的表达。

本文从几种常见算法案例出发,来探究一下算法的内涵。

一、辗转相除法所谓辗转相除法,就是对于给定的两个数,用较大的数除以较小的数,假设余数不为零,那么将余数和较小的数构成新的一对数,继续上面的除法,直到大数被小数除尽,那么这时的较小的数就是原来两个数的最大公约数。

例1. 写出求两个正数,()a b a b >的最大公约数的一个算法。

算法设计:第一步:输入两个正整数,()a b a b >;第二步:把a b ÷的余数赋予r ;第三步:如果0r ≠,那么把b 赋予a ,把r 赋予b ,转到第二步;否那么转到第四步;第四步:输入最大公约数b 。

程序框图下列图所示:用伪代码表示:input “a=,b=〞;a,bdo r=mod(a,b)a=bb=rloop until r=0print bend二、更相减损术所谓更相减术,就是对于给定的两个数,以其中较大的数减去较小的数,然后将差和较小的数构成一对新数,再用较大的数减去较小的数,反复执行此步骤,直到差数和较小的数相等,此时相等的两个数就是原两个数的最大公约数。

在我国古代的<<九章算术>>中有这样的描述“约分术曰:可半者半之,不可半者会置分母分子之数,以少减多,更相损减,求其等也,以等数约之。

〞意思是说如果分母、分子都是偶数,那么先除以2;如果不全是偶数,便将分子与分母互减,以少减多,直到得出最大公约数为止,用最大公约数约分子与分母,便可使分数最简。

如果两个数都是偶数,也不除以2,直接求最大公约数。

这是一种多么奇妙的方法啊,我们古代人在许多方面都比西方先进,这是值得我们自豪的。

以上题为例,算法可以这样来设计:第一步:输入两个正整数,()a b a b >;第二步:假设a 不等于b ,那么执行第三步;否那么执行第五步;第三步:把a b -的差赋予r ;第四步:如果b r >,那么把b 的值赋予a ,否那么把r 的值赋予a ,执行第二步; 第五步:输出最大公约数b 。

算法设计与分析习题答案

算法设计与分析习题答案

算法设计与分析习题答案算法设计与分析是计算机科学中一个重要的领域,它涉及到算法的创建、优化以及评估。

以下是一些典型的算法设计与分析习题及其答案。

习题1:二分查找算法问题描述:给定一个已排序的整数数组,编写一个函数来查找一个目标值是否存在于数组中。

答案:二分查找算法的基本思想是将数组分成两半,比较中间元素与目标值的大小,如果目标值等于中间元素,则查找成功;如果目标值小于中间元素,则在左半部分继续查找;如果目标值大于中间元素,则在右半部分继续查找。

这个过程会不断重复,直到找到目标值或搜索范围为空。

```pythondef binary_search(arr, target):low, high = 0, len(arr) - 1while low <= high:mid = (low + high) // 2if arr[mid] == target:return Trueelif arr[mid] < target:low = mid + 1else:high = mid - 1return False```习题2:归并排序算法问题描述:给定一个无序数组,使用归并排序算法对其进行排序。

答案:归并排序是一种分治算法,它将数组分成两半,分别对这两半进行排序,然后将排序好的两半合并成一个有序数组。

```pythondef merge_sort(arr):if len(arr) > 1:mid = len(arr) // 2left_half = arr[:mid]right_half = arr[mid:]merge_sort(left_half)merge_sort(right_half)i = j = k = 0while i < len(left_half) and j < len(right_half): if left_half[i] < right_half[j]:arr[k] = left_half[i]i += 1else:arr[k] = right_half[j]j += 1k += 1while i < len(left_half):arr[k] = left_half[i]i += 1k += 1while j < len(right_half):arr[k] = right_half[j]j += 1k += 1arr = [38, 27, 43, 3, 9, 82, 10]merge_sort(arr)print("Sorted array is:", arr)```习题3:动态规划求解最长公共子序列问题问题描述:给定两个序列,找到它们的最长公共子序列。

北大屈婉玲算法分析与设计 习题解答2

北大屈婉玲算法分析与设计 习题解答2

101i 的个数仓储问题作业二1.x i =0,1是货柜i 的个数,仓储问题:max nx l 1∑∑=n ii i 令C [k ,y ]是只允许装前k 个货柜,库房长度为y 时的最大收益1,0,1=≤=i i i ix L x l 1],1[],[k L l y y k C y k C k ⎨⎧>−−−<−=1],1[}],1[],,1[max{l y C l y l l y k C y k C kk k =⎩≥≥+1伪码略.W (n )=O (nD )33. 作业调度与01背包问题类似使用动态规划方法0-1背包问题类似,使用动态规划方法. 令N j (d )表示对作业集{1,2,…,j },结束时间为d 的最优调度的效益那么效益,那么)(}))((),(max{)(11≥+−=−−j t d v j t d N d N d N j j j j 1)()()(1⎧≤<=−dt v j t d d N d N j j 0)1(0)()(11>⎩⎨>=d d t d N 自底向上计算,存储使用备忘录。

可以使用标记函数B (j )记录使得N j (d )达到最大是否N j (d )=N j −1(d ). 如果不等,B (j )=1,0.3否则为0.时间W (n )=O (nD )输入:加工时间伪码Job(t ,v ,D )t [1..n ],效益v [1..n ],结束时间D 输出:最优效益N [n,D ],标记函数B ,解是{k | B [k ]=1}1.for 1to −1. for d ←1 to t [1]12. N [1,d ]←0, B [1] ←03. for d ←t [1] to D4. N [1,d ]←v [1], B [1]←15. for k ←2 to n6for 1to 6. for d ←1 to D7. N [k ,d ]←N [k −1,d ]8.8. B [k ]←09. if d ≥t [k ] and N [k −1,d −t [k ]]+v [k ]>N [k −1,d ]10. then N [k ,d ]←N [k −1,d −t [k ]]+v [k ]411. B [k ]←14014. 双约束0-1背包问题种物品背包重量限制为m [i ,j ,k ]表示使用前i 种物品,背包重量限制为j ,容积为k 时的最大价值+−−−−=}],,1[],,,1[max{],,[v c k w j i m k j i m k j i m i i i <<−=≥≥or ],,1[],,[and c k w k i m k i m c k w j i i⎨⎧≥≥=111and ],,1[c k w j v k j m j j j i i ⎩<<11or 0c k w j 5W (n )= O (nWV )55.合并数组问题0n-1i j k k+110i jn -16递推公式X {合并问题含有整数个数⎧={x 0,x 1,…, x n -1},X ij 表示{x i ,…,x j }合并问题,含有整数个数是n ij ,完成这些合并所需要最少的比较次数记作m [i ,j ]⎪⎪<+++∑=<≤j i a j k m k i m j i l l j k i ]},1[],[{max ⎪⎪⎨>++++=∑∑=−=−≤≤j i a a j n k m k i m j i m j l n l n k i 11]},mod )1[(],[{max ],[⎩<≤l i l jk 00m [i,i ]= 0i=0,2,…,n -1]}mod )1(,[{max 10n n i i m m n i −+=−≤≤7T (n )=O (n 3)标记函数s [i ,j ]记录使m [i ,j ] 取得最小值的k。

算法设计和分析习题答案解析1_6章

算法设计和分析习题答案解析1_6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

OpenJudge算法设计与分析习题解答

OpenJudge算法设计与分析习题解答

1、硬币面值组合描述使用1角、2角、5角硬币组成n 角钱。

设1角、2角、5角的硬币各用了a、b、c个,列出所有可能的a, b, c组合。

输出顺序为:先按c的值从小到大,若c相同则按b的值从小到大。

输入一个整数n(1 <= n <= 100),代表需要组成的钱的角数。

输出输出有若干行,每行的形式为:i a b c第1列i代表当前行数(行数从001开始,固定3个字符宽度,宽度不足3的用0填充),后面3列a, b, c分别代表1角、2角、5角硬币的个数(每个数字固定12个字符宽度,宽度不足的在左边填充空格)。

样例输入样例输出源代码:#include<stdio.h>#include<stdlib.h>int main(){int t=1;int i,j,k;int n;scanf("%d",&n);int A=n,B=n/2,C=n/5;for(i=0;i<=C;i++){for(j=0;j<=B;j++){for(k=0;k<=A;k++){if(i*5+j*2+k*1==n){printf("%03d%12d%12d%12d\n",t,k,j,i);t++;}}}}getchar();return 0;}2、比赛排名描述5名运动员参加100米赛跑,各自对比赛结果进行了预测:A说:E是第1名。

B说:我是第2名。

C说:A肯定垫底。

D说:C肯定拿不了第1名。

E说:D应该是第1名。

比赛结束后发现,只有获第1名和第2名的选手猜对了,E不是第2名和第3名,没有出现名次并列的情况。

请编程判断5位选手各是第几名。

输入无输出输出要求:按ABCDE的顺序输出5行,其中第1行是A的名次,第2行是B的名次,第3行是C的名次,第4行是D的名次,第5行是E的名次。

样例输入样例输出源代码:#include<stdio.h>int main(){printf("5\n");printf("2\n");printf("1\n");printf("3\n");printf("4\n");return 0;}3、鸡兔同笼描述一个笼子里面关了鸡和兔子(鸡有2只脚,兔子有4只脚,没有例外)。

算法设计与分析试题及答案

算法设计与分析试题及答案

1. 按分治策略求解棋盘覆盖问题时,对于如图所示的24×24的特殊棋盘,共需要多少个L 型骨牌;并在棋盘上填写L 型骨牌的覆盖情况。

2. 假设有7个物品,给出重量和价值。

若这些物品均不能被分割,且背包容量M =140,使用回溯方法求解此0-1背包问题。

请画出状态空间搜索树。

3. 假设有7个物品,它们的重量和价值如下表所示。

若这些物品均可以被分割,且背包容量M=140,使用贪心算法求解此背包问题。

请写出求解策略和求解过程。

W (35,30,50,60,40,10,25)p (10,40,30,50,35,40,30)4. 在给出的电路板中,阴影部分是已作了封锁标记的方格,请按照队列式分支限界法在图中确定a 到b 的最短布线方案,要求布线时只能沿直线或直角进行,在图中标出求得最优解时各方格情况。

5. 画出字符表的哈夫曼编码对应的二叉树。

6. 已知1()*()i i k k ij r r A a +=,k =1,2,3,4,5,6,r 1=5,r 2=10,r 3=3,r 4=8,r 5=5,r 6=20,r 7=6,求矩阵链积A 1×A 2×A 3×A 4×A 5×A 6的最佳求积顺序。

7. 给出城市网络图,售货员要从城市1出发,经过所有城市回到城市1,画出该问题的解空间树,描述出用优先队列式分支限界法求解时的搜索情况。

表示出优先队列、当前扩展结点等的变化情况。

8. 依据优先队列式分支限界法,求从s 点到t 点的单源最短路径,画出求得最优解的解空间树。

一、假设有7个物品,它们的重量和价值如下表所示。

若这些物品均不能被分割,且背包容量M=150,使用回溯方法求解此背包问题。

请写出状态空间搜索树(20分)。

答:按照单位效益从大到小依次排列这7个物品为:FBGDECA 。

将它们的序号分别记为1~7。

则可生产如下的状态空间搜索树。

其中各个节点处的限界函数值通过如下方式求得:【排序1分】5x =6x =7x =17分,每个节点1分】a .1501154040305035190.62540-++++⨯=7(1,1,1,1,,0,0)8b. 1501154040305030177.560-++++⨯=7(1,1,1,1,0,,0)12c .4040305010170++++=(1,1,1,1,0,0,1)d. 1501054040303530167.560-++++⨯=3(1,1,1,0,1,,0)4e. 150130404050353017560-++++⨯=1(1,1,0,1,1,,0)3f. 1501304040503510170.7135-++++⨯=4(1,1,0,1,1,0,)7g. 40405030160+++=(1,1,0,1,0,1,0)h. 1501404040353010146.8535-++++⨯=2(1,1,0,0,1,1,)7i.1501254030503530167.560-++++⨯=5(1,0,1,1,1,,0)12 j. 1501454030503530157.560-++++⨯=1(0,1,1,1,1,,0)12在Q 1处获得该问题的最优解为(1,1,1,1,0,0,1),背包效益为170。

算法设计与分析的一些实例分析

算法设计与分析的一些实例分析

实验一递归与分治策略一、实验目的:熟练掌握递归与分治策略的思想并应用其解决实际问题。

二、递归与分治策略思想基本思想:将要求解的较大规模的问题分割成k个更小规模的子问题。

对这k个子问题分别求解。

如果子问题的规模仍然不够小,则再划分为k个子问题,如此递归的进行下去,直到问题规模足够小,很容易求出其解为止。

实验题目(1-2):找出从自然数1,2,…,n中任取r个数的所有组合。

算法思想:当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。

这就将求m个数中取k个数的组合问题转化成求m-1个数中取k-1个数的组合问题。

设函数引入工作数组a[ ]存放求出的组合,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。

第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未确定组合的其余元素,继续递归去确定;或已确定了组合的全部元素,输出这个组合。

问题描述:找出从自然数1、2、……、n中任取r个数的所有组合。

例如n=5,r=3的所有组合为:(1)5、4、3 (2)5、4、2 (3)5、4、1(4)5、3、2 (5)5、3、1 (6)5、2、1(7)4、3、2 (8)4、3、1 (9)4、2、1(10)3、2、1分析所列的10个组合,可以采用这样的递归思想来考虑求组合函数的算法。

设函数为void find(int m,int k)为找出从自然数1、2、……、m中任取k个数的所有组合。

当组合的第一个数字选定时,其后的数字是从余下的m-1个数中取k-1数的组合。

这就将求m个数中取k 个数的组合问题转化成求m-1个数中取k-1个数的组合问题。

设函数引入工作数组a[ ]存放求出的组合的数字,约定函数将确定的k个数字组合的第一个数字放在a[k]中,当一个组合求出后,才将a[ ]中的一个组合输出。

第一个数可以是m、m-1、……、k,函数将确定组合的第一个数字放入数组后,有两种可能的选择,因还未去顶组合的其余元素,继续递归去确定;或因已确定了组合的全部元素,输出这个组合。

算法分析若干实例问题解析

算法分析若干实例问题解析

最小长度电路板排列问题问题描述小长度电路板排列问题是大规模电子系统设计中提出的实际问题。

该问题的提法是: 将n块电路板以最佳排列方案插入带有n个插槽的机箱中。

n块电路板的不同的排列方式对应于不同的电路板插入方案。

设B={1,2,…,n }是n块电路板的集合。

集合L={ N1 ,N2 ,…,Nm }是n块电路板的m个连接块。

其中每个连接块Ni 是B的一个子集,且Ni 中的电路板用同一根导线连接在一起。

连接块的长度是指该连接块中第1 块电路板到最后1 块电路板之间的距离。

试设计一个分支限界法找出所给n个电路板的最佳排列,使得m个连接块中最大长度达到最小。

例:如图,设n=8, m=5,给定n块电路板及其m个连接块:B={1, 2, 3, 4, 5, 6, 7, 8},N1={4, 5, 6},N2={2, 3},N3={1, 3},N4={3, 6},N5={7, 8};这8块电路板两个可能的排列如图所示:在最小长度电路板排列问题中,连接块的长度是指该连接块中第1 块电路板到最后1 块电路板之间的距离。

例如在左图示的电路板排列中,连接块N4的第1 块电路板在插槽3 中,它的最后1块电路板在插槽6中,因此N4的长度为3。

同理N2的长度为2。

图中连接块最大长度为3。

试设计一个分支限界法找出所给n个电路板的最佳排列,使得m个连接块中最大长度达到最小。

输入数据:第一行有2 个正整数n和m。

接下来的n 行中,每行有m个数。

第k行的第j个数为0 表示电路板k不在连接块j 中,1 表示电路板k在连接块j中。

输出数据为计算出的电路板排列最小长度与相应的排列方式。

Sample Input8 51 1 1 1 10 1 0 1 00 1 1 1 01 0 1 1 01 0 1 0 01 1 0 1 00 0 0 0 10 1 0 0 1Sample Output45 4 3 16 2 8 7可用策略电路板排列问题是NP难问题,因此不大可能找到解此问题的多项式时间算法。

算法设计与分析习题解答

算法设计与分析习题解答

算法设计与分析习题解答第一章作业1.证明下列Ο、Ω和Θ的性质1)f=Ο(g)当且仅当g=Ω(f)证明:充分性。

若f=Ο(g),则必然存在常数c1>0和n0,使得?n≥n0,有f≤c1*g(n)。

由于c1≠0,故g(n) ≥ 1/ c1 *f(n),故g=Ω(f)。

必要性。

同理,若g=Ω(f),则必然存在c2>0和n0,使得?n≥n0,有g(n) ≥ c2 *f(n).由于c2≠0,故f(n) ≤ 1/ c2*f(n),故f=Ο(g)。

2)若f=Θ(g)则g=Θ(f)证明:若f=Θ(g),则必然存在常数c1>0,c2>0和n0,使得?n≥n0,有c1*g(n) ≤f(n) ≤ c2*g(n)。

由于c1≠0,c2≠0,f(n) ≥c1*g(n)可得g(n) ≤ 1/c1*f(n),同时,f(n) ≤c2*g(n),有g(n) ≥ 1/c2*f(n),即1/c2*f(n) ≤g(n) ≤ 1/c1*f(n),故g=Θ(f)。

3)Ο(f+g)= Ο(max(f,g)),对于Ω和Θ同样成立。

证明:设F(n)= Ο(f+g),则存在c1>0,和n1,使得?n≥n1,有F(n) ≤ c1 (f(n)+g(n))= c1 f(n) + c1g(n)≤ c1*max{f,g}+ c1*max{f,g}=2 c1*max{f,g}所以,F(n)=Ο(max(f,g)),即Ο(f+g)= Ο(max(f,g))对于Ω和Θ同理证明可以成立。

4)log(n!)= Θ(nlogn)证明:由于log(n!)=∑=ni i 1log ≤∑=ni n 1log =nlogn ,所以可得log(n!)= Ο(nlogn)。

由于对所有的偶数n 有,log(n!)= ∑=ni i 1log ≥∑=nn i i 2/log ≥∑=nn i n 2/2/log ≥(n/2)log(n/2)=(nlogn)/2-n/2。

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解

算法设计与分析常见习题及详解⽆论在以后找⼯作还是⾯试中,都离不开算法设计与分析。

本博⽂总结了相关算法设计的题⽬,旨在帮助加深对贪⼼算法、动态规划、回溯等算法的理解。

1、计算下述算法执⾏的加法次数:输⼊:n =2^t //t 为整数输出:加法次数 k K =0while n >=1 do for j =1 to n do k := k +1 n = n /2return k解析:第⼀次循环执⾏n次加法,第⼆次循环执⾏1/2次加法,第三次循环执⾏1/次加法…因此,上述算法执⾏加法的次数为==2n-12、考虑下⾯每对函数 f(n) 和 g(n) ,如果它们的阶相等则使⽤Θ记号,否则使⽤ O 记号表⽰它们的关系解析:前导知识:,因为解析:,因为解析:,因为解析:解析:3、在表1.1中填⼊ true 或 false解析:利⽤上题的前导知识就可以得出。

2=21/4n +n +21n +41...+1n +n −n +21n −21n +41....−1f (n )=(n −2n )/2,g (n )=6n1<logn <n <nlogn <n <2n <32<n n !<n ng (n )=O (f (n ))f (n )=Θ(n ),g (n )=2Θ(n )f (n )=n +2,g (n )=n n 2f (n )=O (g (n ))f (n )=Θ(n ),g (n )=Θ(n )2f (n )=n +nlogn ,g (n )=n nf (n )=O (g (n ))f (n )=Θ(nlogn ),g (n )=Θ(n )23f (n )=2(log ),g (n )=n 2logn +1g (n )=O (f (n ))f (n )=log (n !),g (n )=n 1.05f (n )=O (g (n ))4、对于下⾯每个函数 f(n),⽤f(n) =Θ(g(n))的形式,其中g(n)要尽可能简洁,然后按阶递增序排列它们(最后⼀列)解析:最后⼀个⽤到了调和公式:按阶递增的顺序排列:、、、、、、、、、(n −2)!=Θ((n −2)!)5log (n +100)=10Θ(logn )2=2n Θ(4)n 0.001n +43n +31=Θ(n )4(lnn )=2Θ(ln n )2+3n logn =Θ()3n 3=n Θ(3)n log (n !)=Θ(nlogn )log (n )=n +1Θ(nlogn )1++21....+=n1Θ(logn )=∑k =1nk 1logn +O (1)1++21....+n 15log (n +100)10(lnn )2+3n logn log (n !)log (n )n +10.001n +43n +313n 22n (n −2)!5、求解递推⽅程前导知识:主定理前导知识:递归树:例⼦:递归树是⼀棵节点带权的⼆叉树,初始递归树只有⼀个结点,标记为权重W(n),然后不断进⾏迭代,最后直到树种不再含有权为函数的结点为⽌,然后将树根结点到树叶节点的全部权值加起来,即为算法的复杂度。

计算机算法设计和分析习题及答案解析

计算机算法设计和分析习题及答案解析

计算机算法设计与分析习题及答案一.选择题1、二分搜索算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法2、下列不是动态规划算法基本步骤的是 A ;A、找出最优解的性质B、构造最优解C、算出最优解D、定义最优解3、最大效益优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法4. 回溯法解旅行售货员问题时的解空间树是 A ;A、子集树B、排列树C、深度优先生成树D、广度优先生成树5.下列算法中通常以自底向上的方式求解最优解的是B ;A、备忘录法B、动态规划法C、贪心法D、回溯法6、衡量一个算法好坏的标准是 C ;A 运行速度快B 占用空间少C 时间复杂度低D 代码短7、以下不可以使用分治法求解的是 D ;A 棋盘覆盖问题B 选择问题C 归并排序D 0/1背包问题8. 实现循环赛日程表利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法9.下面不是分支界限法搜索方式的是D ;A、广度优先B、最小耗费优先C、最大效益优先D、深度优先10.下列算法中通常以深度优先方式系统搜索问题解的是D ;A、备忘录法B、动态规划法C、贪心法D、回溯法11.备忘录方法是那种算法的变形; BA、分治法B、动态规划法C、贪心法D、回溯法12.哈夫曼编码的贪心算法所需的计算时间为B ;A、On2nB、OnlognC、O2nD、On13.分支限界法解最大团问题时,活结点表的组织形式是B ;A、最小堆B、最大堆C、栈D、数组14.最长公共子序列算法利用的算法是B;A、分支界限法B、动态规划法C、贪心法D、回溯法15.实现棋盘覆盖算法利用的算法是A ;A、分治法B、动态规划法C、贪心法D、回溯法16.下面是贪心算法的基本要素的是C ;A、重叠子问题B、构造最优解C、贪心选择性质D、定义最优解17.回溯法的效率不依赖于下列哪些因素 DA.满足显约束的值的个数B. 计算约束函数的时间C.计算限界函数的时间D. 确定解空间的时间18.下面哪种函数是回溯法中为避免无效搜索采取的策略BA.递归函数 B.剪枝函数 C;随机数函数 D.搜索函数19. D是贪心算法与动态规划算法的共同点;A、重叠子问题B、构造最优解C、贪心选择性质D、最优子结构性质20. 矩阵连乘问题的算法可由 B 设计实现;A、分支界限算法B、动态规划算法C、贪心算法D、回溯算法21. 分支限界法解旅行售货员问题时,活结点表的组织形式是 A ;A、最小堆B、最大堆C、栈D、数组22、Strassen矩阵乘法是利用A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法23、使用分治法求解不需要满足的条件是 A ;A 子问题必须是一样的B 子问题不能够重复C 子问题的解可以合并D 原问题和子问题使用相同的方法解24、下面问题 B 不能使用贪心法解决;A 单源最短路径问题B N皇后问题C 最小生成树问题D 背包问题25、下列算法中不能解决0/1背包问题的是 AA 贪心法B 动态规划C 回溯法D 分支限界法26、回溯法搜索状态空间树是按照 C 的顺序;A 中序遍历B 广度优先遍历C 深度优先遍历D 层次优先遍历27.实现合并排序利用的算法是A ;A、分治策略B、动态规划法C、贪心法D、回溯法28.下列是动态规划算法基本要素的是D ;A、定义最优解B、构造最优解C、算出最优解D、子问题重叠性质29.下列算法中通常以自底向下的方式求解最优解的是 B ;A、分治法B、动态规划法C、贪心法D、回溯法30.采用广度优先策略搜索的算法是A ;A、分支界限法B、动态规划法C、贪心法D、回溯法31、合并排序算法是利用 A 实现的算法;A、分治策略B、动态规划法C、贪心法D、回溯法32、背包问题的贪心算法所需的计算时间为 BA、On2nB、OnlognC、O2nD、On33.实现大整数的乘法是利用的算法C ;A、贪心法B、动态规划法C、分治策略D、回溯法34.0-1背包问题的回溯算法所需的计算时间为AA、On2nB、OnlognC、O2nD、On35.采用最大效益优先搜索方式的算法是A;A、分支界限法B、动态规划法C、贪心法D、回溯法36.贪心算法与动态规划算法的主要区别是B;A、最优子结构B、贪心选择性质C、构造最优解D、定义最优解37. 实现最大子段和利用的算法是B ;A、分治策略B、动态规划法C、贪心法D、回溯法38.优先队列式分支限界法选取扩展结点的原则是 C ;A、先进先出B、后进先出C、结点的优先级D、随机39.背包问题的贪心算法所需的计算时间为 B ;A、On2nB、OnlognC、O2nD、On40、广度优先是A 的一搜索方式;A、分支界限法B、动态规划法C、贪心法D、回溯法41. 一个问题可用动态规划算法或贪心算法求解的关键特征是问题的 B ;A、重叠子问题B、最优子结构性质C、贪心选择性质D、定义最优解42.采用贪心算法的最优装载问题的主要计算量在于将集装箱依其重量从小到大排序,故算法的时间复杂度为 B ;A 、On2nB 、OnlognC 、O2nD 、On43. 以深度优先方式系统搜索问题解的算法称为 D ;A 、分支界限算法B 、概率算法C 、贪心算法D 、回溯算法44. 实现最长公共子序列利用的算法是B ;A 、分治策略B 、动态规划法C 、贪心法D 、回溯法45. Hanoi 塔问题如下图所示;现要求将塔座A 上的的所有圆盘移到塔座B 上,并仍按同样顺序叠置;移动圆盘时遵守Hanoi 塔问题的移动规则;由此设计出解Hanoi 塔问题的递归算法正确的为:B46. 动态规划算法的基本要素为 CA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用 47. 能采用贪心算法求最优解的问题,一般具有的重要性质为: AA. 最优子结构性质与贪心选择性质 B .重叠子问题性质与贪心选择性质C .最优子结构性质与重叠子问题性质 D. 预排序与递归调用48. 回溯法在问题的解空间树中,按 D 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先49. 分支限界法在问题的解空间树中,按 A 策略,从根结点出发搜索解空间树;A.广度优先B. 活结点优先C.扩展结点优先D. 深度优先50. 程序块 A 是回溯法中遍历排列树的算法框架程序;A.B. C. D. 51. 常见的两种分支限界法为DA. 广度优先分支限界法与深度优先分支限界法;B. 队列式FIFO 分支限界法与堆栈式分支限界法;C. 排列树法与子集树法;D. 队列式FIFO 分支限界法与优先队列式分支限界法;1.算法的复杂性有 时间 复杂性和 空间 ;2、程序是 算法用某种程序设计语言的具体实现;3、算法的“确定性”指的是组成算法的每条 指令 是清晰的,无歧义的;4. 矩阵连乘问题的算法可由 动态规划 设计实现;5、算法是指解决问题的 一种方法 或 一个过程 ;6、从分治法的一般设计模式可以看出,用它设计出的程序一般是 递归算法 ;7、问题的 最优子结构性质 是该问题可用动态规划算法或贪心算法求解的关键特征;8、以深度优先方式系统搜索问题解的算法称为 回溯法 ;9、计算一个算法时间复杂度通常可以计算 循环次数 、 基本操作的频率 或计算步; Hanoi 塔A. void hanoiint n, int A, int C, int B{ if n > 0{ hanoin-1,A,C, B;moven,a,b; hanoin-1, C, B, A; }} B. void hanoiint n, int A, int B, int C { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }C. void hanoiint n, int C, int B, int A { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } }D. void hanoiint n, int C, int A, int B { if n > 0 { hanoin-1, A, C, B; moven,a,b; hanoin-1, C, B, A; } } void backtrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1; swapxt, xi; } } void backtrack int t { if t>n outputx;elsefor int i=0;i<=1;i++ { xt=i; if legalt backtrackt+1; } }void backtrack int t { if t>n outputx; else for int i=0;i<=1;i++ { xt=i; if legalt backtrackt-1; } }voidbacktrack int t{ if t>n outputx; else for int i=t;i<=n;i++ { swapxt, xi; if legalt backtrackt+1;}}10、解决0/1背包问题可以使用动态规划、回溯法和分支限界法,其中不需要排序的是动态规划 ,需要排序的是回溯法 ,分支限界法 ;11、使用回溯法进行状态空间树裁剪分支时一般有两个标准:约束条件和目标函数的界,N皇后问题和0/1背包问题正好是两种不同的类型,其中同时使用约束条件和目标函数的界进行裁剪的是 0/1背包问题 ,只使用约束条件进行裁剪的是 N皇后问题 ;12、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;13、矩阵连乘问题的算法可由动态规划设计实现;14.贪心算法的基本要素是贪心选择性质和最优子结构性质 ;15. 动态规划算法的基本思想是将待求解问题分解成若干子问题 ,先求解子问题 ,然后从这些子问题的解得到原问题的解;16.算法是由若干条指令组成的有穷序列,且要满足输入、输出、确定性和有限性四条性质;17、大整数乘积算法是用分治法来设计的;18、以广度优先或以最小耗费方式搜索问题解的算法称为分支限界法 ;19、贪心选择性质是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别;20.快速排序算法是基于分治策略的一种排序算法;21.动态规划算法的两个基本要素是. 最优子结构性质和重叠子问题性质 ;22.回溯法是一种既带有系统性又带有跳跃性的搜索算法;23.分支限界法主要有队列式FIFO 分支限界法和优先队列式分支限界法;24.分支限界法是一种既带有系统性又带有跳跃性的搜索算法;25.回溯法搜索解空间树时,常用的两种剪枝函数为约束函数和限界函数 ;26.任何可用计算机求解的问题所需的时间都与其规模有关;27.快速排序算法的性能取决于划分的对称性 ;28.所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到 ;29.所谓最优子结构性质是指问题的最优解包含了其子问题的最优解 ;30.回溯法是指具有限界函数的深度优先生成法 ;31.用回溯法解题的一个显着特征是在搜索过程中动态产生问题的解空间;在任何时刻,算法只保存从根结点到当前扩展结点的路径;如果解空间树中从根结点到叶结点的最长路径的长度为hn,则回溯法所需的计算空间通常为 Ohn ;32.回溯法的算法框架按照问题的解空间一般分为子集树算法框架与排列树算法框架;33.用回溯法解0/1背包问题时,该问题的解空间结构为子集树结构;34.用回溯法解批处理作业调度问题时,该问题的解空间结构为排列树结构;35.旅行售货员问题的解空间树是排列树 ;三、算法填空1.背包问题的贪心算法void Knapsackint n,float M,float v,float w,float x{//重量为w1..n,价值为v1..n的 n个物品,装入容量为M的背包//用贪心算法求最优解向量x1..nint i; Sortn,v,w;for i=1;i<=n;i++ xi=0;float c=M;for i=1;i<=n;i++{if wi>c break;xi=1;c-=wi;}if i<=n xi=c/wi;}2.最大子段和: 动态规划算法int MaxSumint n, int a{int sum=0, b=0; //sum存储当前最大的bj, b存储bjfor int j=1; j<=n; j++{ if b>0 b+= aj ;else b=ai; ; //一旦某个区段和为负,则从下一个位置累和 ifb>sum sum=b;}return sum;}3.贪心算法求活动安排问题template<class Type>void GreedySelector int n, Type s, Type f, bool A{A1=true;int j=1;for int i=2;i<=n;i++if si>=fj{ Ai=true;j=i;}else Ai=false;}4.快速排序template<class Type>void QuickSort Type a, int p, int r{if p<r{int q=Partitiona,p,r;QuickSort a,p,q-1; //对左半段排序QuickSort a,q+1,r; //对右半段排序}}5. 回溯法解迷宫问题迷宫用二维数组存储,用'H'表示墙,'O'表示通道int x1,y1,success=0; //出口点void MazePathint x,int y{//递归求解:求迷宫maze从入口x,y到出口x1,y1的一条路径mazexy=''; //路径置为if x==x1&&y==y1 success=1; //到出口则成功else{if mazexy+1=='O' MazePathx,++y;//东邻方格是通路,向东尝试if success&&mazex+1y=='O' MazePath++x,y;//不成功且南邻方格是通路,向南尝试if success&&mazexy-1=='O' MazePathx,--y;//不成功且西邻方格是通路,向西尝试if success&&mazex-1y=='O' MazePath--x,y;//不成功且北邻方格是通路,向北尝试}if success mazexy=''; //死胡同置为}四、算法设计题1. 给定已按升序排好序的n个元素a0:n-1,现要在这n个元素中找出一特定元素x,返回其在数组中的位置,如果未找到返回-1;写出二分搜索的算法,并分析其时间复杂度;template<class Type>int BinarySearchType a, const Type& x, int n{//在a0:n中搜索x,找到x时返回其在数组中的位置,否则返回-1Int left=0; int right=n-1;While left<=right{int middle=left+right/2;if x==amiddle return middle;if x>amiddle left=middle+1;else right=middle-1;}Return -1;}时间复杂性为Ologn2. 利用分治算法写出合并排序的算法,并分析其时间复杂度void MergeSortType a, int left, int right{if left<right {//至少有2个元素int i=left+right/2; //取中点mergeSorta, left, i;mergeSorta, i+1, right;mergea, b, left, i, right; //合并到数组bcopya, b, left, right; //复制回数组a}}算法在最坏情况下的时间复杂度为Onlogn;3.N皇后回溯法bool Queen::Placeint k{ //检查xk位置是否合法for int j=1;j<k;j++if absk-j==absxj-xk||xj==xk return false;return true;}void Queen::Backtrackint t{if t>n sum++;else for int i=1;i<=n;i++{xt=i;if 约束函数 Backtrackt+1;}}4.最大团问题void Clique::Backtrackint i // 计算最大团{ if i > n { // 到达叶结点for int j = 1; j <= n; j++ bestxj = xj;bestn = cn; return;}// 检查顶点 i 与当前团的连接int OK = 1;for int j = 1; j < i; j++if xj && aij == 0 // i与j不相连{OK = 0; break;}if OK { // 进入左子树xi = 1; cn++;Backtracki+1;xi = 0; cn--; }if cn+n-i>bestn { // 进入右子树xi = 0;Backtracki+1; }}5. 顺序表存储表示如下:typedef struct{RedType rMAXSIZE+1; //顺序表int length; //顺序表长度}SqList;编写对顺序表L进行快速排序的算法;int PartitionSqList &L,int low,int high //算法10.6b{//交换顺序表L中子表L.rlow..high的记录,枢轴记录到位,并返回其所在位置, //此时在它之前后的记录均不大小于它.int pivotkey;L.r0=L.rlow; //用子表的第一个记录作枢轴记录pivotkey=L.rlow.key; //枢轴记录关键字while low<high //从表的两端交替地向中间扫描{while low<high&&L.rhigh.key>=pivotkey --high;L.rlow=L.rhigh; //将比枢轴记录小的记录移到低端while low<high&&L.rlow.key<=pivotkey ++low;L.rhigh=L.rlow; //将比枢轴记录大的记录移到高端}L.rlow=L.r0; //枢轴记录到位return low; //返回枢轴位置}void QSortSqList &L,int low,int high{//对顺序表L中的子序列L.rlow..high作快速排序int pivotloc;if low<high //长度>1{pivotloc=PartitionL,low,high; //将L.rlow..high一分为二QSortL,low,pivotloc-1; //对低子表递归排序,pivotloc是枢轴位置 QSortL,pivotloc+1,high; //对高子表递归排序}}void QuickSortSqList &L{//对顺序表L作快速排序QSortL,1,L.length; }。

北大屈婉玲算法分析与设计 习题解答3

北大屈婉玲算法分析与设计 习题解答3

作业三1.点覆盖问题解使用贪心法按照贪心法从x1取起. 第一个区间是[x1,x1+1]顺序考察后面的点假设最后个落入该区间的点顺序考察后面的点,假设最后一个落入该区间的点是xk, x k<x1+1, x k+1>x1+1. 下个区间从x k+1开始,即[x k+1,x k+1+1].按照这样直到所有的点落入最后一个区间为止.按照这样直到所有的点落入最后个区间为止.T(n)=O(n).122.文件存储问题解将p i 从小到大排列,即p 1≤p 2≤…≤p n . 然后按照1,2,…,n 的次序将它们依次存入磁盘. 下面证明正确性.序将它们依次存磁盘下面明正确性假设最优解I 存j 个文件,其存储次序为i 1, i 2, … , i j ,j ≤n . 若,,…{1,2,…,{i 1, i 2, … i j }≠{1, 2, … , j },必有某个i t >j ,且有某个1≤k ≤j ,k ∉{i 1, i 2, … i j }. ,*I 交换i t 与k , 得到的解I 占用的存储空间与I 占用空间的差I *I 减少了一个标号大于j .t i k i k p p I S I S t <≤−=−由于,0)(*)(也是最优解,但是它比I 减少了个标号大于j 的文件. 经过至多j 次交换,就可以得到最优解{1,2,…,j }. )=)=)2复杂度W (n )O (n log n )+O (n )O (n log n ).3. 找零钱问题:{1,p,p2,…,p n},找零钱问题{1方法一.方法yn=0, 只有1种钱,贪心法对任意显然得到最优解. 假设对于任意n种币值,贪心法都得到最优解,考虑n+1种币值{1, p, p, ... , p}.根据点定理,{12n}根据一点定理w n−1=w n=1,p n=p n−1⋅p−δ,δ=0.于是w+G−(δ) =1<p= p w−n n1n1成立,从而贪心法得到最优解.时间W(n)=O(min{n,log y})log344. 进程测试问题把进程按截止时间排序把按截时间排序取第一个进程的截止时间作为第一个测试点顺序检查能够被这个点测试的进程(开始时间小于等于测试点),直到找到下个不能被测试到的进等于测试点)直到找到下一个不能被测试到的进程为止. 取这个进程的截止时间作为下一个测试点.…,直到检查完所有的进程为止直到检查完所有的进程为止时间W(n)=O(n log n)45H ff5. Huffman编码H: 0,:10,HG: 10,F: 110,1110GE: 1110,D: 11110, EFC: 111110, :1111110,DB: 1111110,A: 1111111ABC5证明设数列面明∑kf 1, f 2, … 为Fibonacci 数列,下面证明证对k 归纳.21+=≤k i i f f 当k =1时,f 1<f 3显然为真. 时命题成立则时有假设k =n 时命题成立,则k =n +1时,有1+=+≤+=∑nn 所以命题对于k =n +1成立. 于是对任意正整数k 成立. 312111++++==∑n n n n i i i i f f f f f f 根据这个结果,前k 个字符合并后子树的权不大于6第k +2个Fibonnaci 数. 它将继续与第k +1个字符合并。

算法设计与分析+习题参考答案

算法设计与分析+习题参考答案

算法设计与分析+习题参考答案5..证明等式gcd(m,n)=gcd(n,m mod n)对每⼀对正整数m,n都成⽴.Hint:根据除法的定义不难证明:●如果d整除u和v, 那么d⼀定能整除u±v;●如果d整除u,那么d也能够整除u的任何整数倍ku.对于任意⼀对正整数m,n,若d能整除m和n,那么d⼀定能整除n和r=m mod n=m-qn;显然,若d能整除n和r,也⼀定能整除m=r+qn和n。

数对(m,n)和(n,r)具有相同的公约数的有限⾮空集,其中也包括了最⼤公约数。

故gcd(m,n)=gcd(n,r)6.对于第⼀个数⼩于第⼆个数的⼀对数字,欧⼏⾥得算法将会如何处理?该算法在处理这种输⼊的过程中,上述情况最多会发⽣⼏次?Hint:对于任何形如0<=m并且这种交换处理只发⽣⼀次.7.a.对于所有1≤m,n≤10的输⼊, Euclid算法最少要做⼏次除法?(1次)b. 对于所有1≤m,n≤10的输⼊, Euclid算法最多要做⼏次除法?(5次)gcd(5,8)习题1.21.(农夫过河)P—农夫W—狼G—⼭⽺C—⽩菜2.(过桥问题)1,2,5,10---分别代表4个⼈, f—⼿电筒4. 对于任意实系数a,b,c, 某个算法能求⽅程ax^2+bx+c=0的实根,写出上述算法的伪代码(可以假设sqrt(x)是求平⽅根的函数)算法Quadratic(a,b,c)//求⽅程ax^2+bx+c=0的实根的算法//输⼊:实系数a,b,c//输出:实根或者⽆解信息D←b*b-4*a*cIf D>0temp←2*ax1←(-b+sqrt(D))/tempx2←(-b-sqrt(D))/tempreturn x1,x2else if D=0 return –b/(2*a)else return “no real roots”else //a=0if b≠0 return –c/belse //a=b=0if c=0 return “no real numbers”else return “no real roots”5.描述将⼗进制整数表达为⼆进制整数的标准算法a.⽤⽂字描述b.⽤伪代码描述解答:a.将⼗进制整数转换为⼆进制整数的算法输⼊:⼀个正整数n输出:正整数n相应的⼆进制数第⼀步:⽤n除以2,余数赋给Ki(i=0,1,2...),商赋给n第⼆步:如果n=0,则到第三步,否则重复第⼀步第三步:将Ki按照i从⾼到低的顺序输出b.伪代码算法DectoBin(n)//将⼗进制整数n转换为⼆进制整数的算法//输⼊:正整数n//输出:该正整数相应的⼆进制数,该数存放于数组Bin[1...n]中i=1while n!=0 do {Bin[i]=n%2;n=(int)n/2;i++;}while i!=0 do{print Bin[i];i--;}9.考虑下⾯这个算法,它求的是数组中⼤⼩相差最⼩的两个元素的差.(算法略) 对这个算法做尽可能多的改进.算法MinDistance(A[0..n-1])//输⼊:数组A[0..n-1]//输出:the smallest distance d between two of its elements习题1.31.考虑这样⼀个排序算法,该算法对于待排序的数组中的每⼀个元素,计算⽐它⼩的元素个数,然后利⽤这个信息,将各个元素放到有序数组的相应位置上去.a.应⽤该算法对列表‖60,35,81,98,14,47‖排序b.该算法稳定吗?c.该算法在位吗?解:a. 该算法对列表‖60,35,81,98,14,47‖排序的过程如下所⽰:b.该算法不稳定.⽐如对列表‖2,2*‖排序c.该算法不在位.额外空间for S and Count[]4.(古⽼的七桥问题)习题1.41.请分别描述⼀下应该如何实现下列对数组的操作,使得操作时间不依赖数组的长度. a.删除数组的第i 个元素(1<=i<=n)b.删除有序数组的第i 个元素(依然有序) hints:a. Replace the i th element with the last element and decrease the array size of 1b. Replace the ith element with a special symbol that cannot be a value of the array ’s element(e.g., 0 for an array of positive numbers ) to mark the i th position is empty. (―lazy deletion ‖)第2章习题2.17.对下列断⾔进⾏证明:(如果是错误的,请举例) a. 如果t(n )∈O(g(n),则g(n)∈Ω(t(n)) b.α>0时,Θ(αg(n))= Θ(g(n)) 解:a. 这个断⾔是正确的。

《算法设计与分析》递归算法典型例题

《算法设计与分析》递归算法典型例题

算法递归典型例题实验一:递归策略运用练习三、实验项目1.运用递归策略设计算法实现下述题目的求解过程。

题目列表如下:(1)运动会开了N天,一共发出金牌M枚。

第一天发金牌1枚加剩下的七分之一枚,第二天发金牌2枚加剩下的七分之一枚,第3天发金牌3枚加剩下的七分之一枚,以后每天都照此办理。

到了第N天刚好还有金牌N枚,到此金牌全部发完。

编程求N和M。

(2)国王分财产。

某国王临终前给儿子们分财产。

他把财产分为若干份,然后给第一个儿子一份,再加上剩余财产的1/10;给第二个儿子两份,再加上剩余财产的1/10;……;给第i 个儿子i份,再加上剩余财产的1/10。

每个儿子都窃窃自喜。

以为得到了父王的偏爱,孰不知国王是“一碗水端平”的。

请用程序回答,老国王共有几个儿子?财产共分成了多少份?源程序:(3)出售金鱼问题:第一次卖出全部金鱼的一半加二分之一条金鱼;第二次卖出乘余金鱼的三分之一加三分之一条金鱼;第三次卖出剩余金鱼的四分之一加四分之一条金鱼;第四次卖出剩余金鱼的五分之一加五分之一条金鱼;现在还剩下11条金鱼,在出售金鱼时不能把金鱼切开或者有任何破损的。

问这鱼缸里原有多少条金鱼?(4)某路公共汽车,总共有八站,从一号站发轩时车上已有n位乘客,到了第二站先下一半乘客,再上来了六位乘客;到了第三站也先下一半乘客,再上来了五位乘客,以后每到一站都先下车上已有的一半乘客,再上来了乘客比前一站少一个……,到了终点站车上还有乘客六人,问发车时车上的乘客有多少?(5)猴子吃桃。

有一群猴子摘来了一批桃子,猴王规定每天只准吃一半加一只(即第二天吃剩下的一半加一只,以此类推),第九天正好吃完,问猴子们摘来了多少桃子?(6)小华读书。

第一天读了全书的一半加二页,第二天读了剩下的一半加二页,以后天天如此……,第六天读完了最后的三页,问全书有多少页?(7)日本著名数学游戏专家中村义作教授提出这样一个问题:父亲将2520个桔子分给六个儿子。

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(二)精选全文

黄宇《算法设计与分析》课后习题解析(⼆)第2章:从算法的视⾓重新审视数学的概念2.1:(向下取整)题⽬:请计算满⾜下⾯两个条件的实数的区间解析:根据向下取整的含义,令,讨论a的取值范围即可解答:令,则可得:即:故的取值区间为:2.2: (取整函数)题⽬:证明:对于任意整数,(提⽰:将n划分为)。

解析:根据提⽰将n进⾏划分,根据取整函数的定义⽤k表⽰取整函数,即可证明;证明如下:因为对于任意整数,可划分为,则:① ;② ;综上:对于任意整数,, 得证;2.3: (斐波拉契数列)对于斐波拉契数列,请证明:1)题⽬:是偶数当且仅当n能被3整除解析:由斐波拉契数列的递归定义式,容易联想到数学归纳法;证明如下:(采⽤数学归纳法)i)当n = 1,2,3时,依次为1,1,2,符合命题;ii)假设当(k>=1)时命题均成⽴,则:① 当n = 3k+1时,是奇数,成⽴;② 当n = 3k+2时,是奇数,成⽴;③ 当 n = 3(k+1)时,是偶数,成⽴;综上:归纳可得为偶数当且仅当,得证;2)题⽬:x x =1+a (0<a <1)x =1+a (0<a <1)⌊x ⌋=1⇒⌊x ⌋=21⌊x ⌋=2⌊1+a +22a ⌋=1a +22a <1⇒0<a <−21⇒1<a +1<⇒21<x <2x (1,)2n ≥1⌈log (n +1)⌉=⌊logn ⌋+12≤k n ≤2−k +11n ≥12≤k n ≤2−k +11k +1=⌈log (2+k 1)⌉≤⌈log (n +1)⌉≤⌈log (2)⌉=k +1k +1=>⌈log (n +1)⌉=k +1k =⌊log (2)⌋≤k ⌊logn ⌋≤⌊log (2−k +11)⌋=k =>⌊logn ⌋=k n ≥1⌈log (n +1)⌉=k +1=⌊logn ⌋+1F n F n n ≤3k F =n F +n −1F =n −2F +3k F =3k −1>F 3k +1F =n F +3k +1F =3k >F 3k +2F =n F +3k +2F =3k +1>F 3k +3F n 3∣n F −n 2F F =n +1n −1(−1)n +1解析:同1)理,容易联想到数学归纳法证明如下:(采⽤数学归纳法)i)当n = 2时,, 易知成⽴;ii)假设当 n = k 时命题成⽴,① 若k = 2m, 则,当n = k+1 = 2m+1时,要证命题成⽴,即证: => ,代⼊递推式, 得:, 易知是恒等式,故命题成⽴;②当 k=2m+1时,同①理可证命题成⽴;综上:归纳可得,得证;2.4:(完美⼆叉树)给定⼀棵完美⼆叉树,记其节点数为,⾼度为,叶节点数为,内部节点数为1)题⽬:给定上述4个量中的任意⼀个,请推导出其他3个量解析:根据完美⼆叉树的结构特点易得解答:(仅以已知⾼度h推导其他三个量为例,其余同理)已知⾼度为h,可得:节点数:叶节点数:内部节点数:2)题⽬:请计算完美⼆叉树任意⼀层的节点个数:① 如果任意指定深度为的⼀层节点,请计算该层节点个数;② 如果任意指定⾼度为的⼀层节点,请计算该层节点个数;解析:根据完美⼆叉树的结构特点易得(注意节点深度和节点⾼度是互补的,相加为树⾼)解答:① ; ② ;2.5: (⼆叉树的性质)对于⼀棵⾮空的⼆叉树T,记其中叶节点的个数为,有1个⼦节点的节点个数为,有两个⼦节点的节点个数为1)题⽬:如果T是⼀棵2-tree,请证明。

算法分析与设计及案例习题解析

算法分析与设计及案例习题解析

习 题 解 析第1章1. 解析:算法主要是指求解问题的方法。

计算机中的算法是求解问题的方法在计算机上的实现。

2. 解析:算法的五大特征是确定性、有穷性、输入、输出和可行性。

3. 解析:计算n ⎢⎥⎣⎦的算法,其中n 是正整数。

可以取循环变量i 的值从1开始,算i 的平方,取平方值最接近且小于或者等于n 的i 即可。

4. 解析:可以使用反证法,设i=gcd(m, n)=gcd(n, m mod n),则设m=a*i ,n=b*i ,且a 与b 互质,这时m mod n=(a-x*b )*i ,只需要证明b 和a-x*b 互质,假设二者不互质,可以推出a 与b 不互质,因此可以得到证明。

5. 解析:自然语言描述:十进制整数转换为二进制整数采用“除2取余,逆序排列”法。

具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

流程图:如图*.1开始输入n长度len=(logn/log2)len>=0Y输出(n>>len)&1)len=len-1N结束图*.1 十进制整数转换成二进制整数流程图6. 解析:a.如果线性表是数组,则可以进行随机查找。

由于有序,因此可以进行折半查找,这样可以在最少的比较次数下完成查找。

b.如果线性表是链表,虽然有序,则只能进行顺序查找,从链表头部开始进行比较,当发现当前节点的值大于待查找元素值,则查找失败。

7. 解析:本题主要是举例让大家了解算法的精确性。

过程中不能有含糊不清或者二义性的步骤。

大家根据可行的方式总结一下阅读一本书的过程即可。

8. 解析:数据结构中介绍的字典是一种抽象数据结构,由一组键值对组成,各个键值对的键各不相同,程序可以将新的键值对添加到字典中,或者基于键进行查找、更新或删除等操作。

算法设计及分析习题答案解析1_6章

算法设计及分析习题答案解析1_6章

习题11. 图论诞生于七桥问题。

出生于瑞士的伟大数学家欧拉(Leonhard Euler ,1707—1783)提出并解决了该问题。

七桥问题是这样描述的:一个人是否能在一次步行中穿越哥尼斯堡(现在叫加里宁格勒,在波罗的海南岸)城中全部的七座桥后回到起点,且每座桥只经过一次,图1.7是这条河以及河上的两个岛和七座桥的草图。

请将该问题的数据模型抽象出来,并判断此问题是否有解。

七桥问题属于一笔画问题。

输入:一个起点输出:相同的点1, 一次步行2, 经过七座桥,且每次只经历过一次3, 回到起点该问题无解:能一笔画的图形只有两类:一类是所有的点都是偶点。

另一类是只有二个奇点的图形。

2.在欧几里德提出的欧几里德算法中(即最初的欧几里德算法)用的不是除法而是减法。

请用伪代码描述这个版本的欧几里德算法1.r=m-n2.循环直到r=02.1 m=n2.2 n=r2.3 r=m-n3 输出m3.设计算法求数组中相差最小的两个元素(称为最接近数)的差。

要求分别给出伪代码和C++描述。

//采用分治法//对数组先进行快速排序//在依次比较相邻的差#include <iostream>using namespace std;int partions(int b[],int low,int high) {图1.7 七桥问题int prvotkey=b[low];b[0]=b[low];while (low<high){while (low<high&&b[high]>=prvotkey)--high;b[low]=b[high];while (low<high&&b[low]<=prvotkey)++low;b[high]=b[low];}b[low]=b[0];return low;}void qsort(int l[],int low,int high){int prvotloc;if(low<high){prvotloc=partions(l,low,high); //将第一次排序的结果作为枢轴 qsort(l,low,prvotloc-1); //递归调用排序由low 到prvotloc-1qsort(l,prvotloc+1,high); //递归调用排序由 prvotloc+1到 high}}void quicksort(int l[],int n){qsort(l,1,n); //第一个作为枢轴,从第一个排到第n个}int main(){int a[11]={0,2,32,43,23,45,36,57,14,27,39};int value=0;//将最小差的值赋值给valuefor (int b=1;b<11;b++)cout<<a[b]<<' ';cout<<endl;quicksort(a,11);for(int i=0;i!=9;++i){if( (a[i+1]-a[i])<=(a[i+2]-a[i+1]) )value=a[i+1]-a[i];elsevalue=a[i+2]-a[i+1];}cout<<value<<endl;return 0;}4.设数组a[n]中的元素均不相等,设计算法找出a[n]中一个既不是最大也不是最小的元素,并说明最坏情况下的比较次数。

算法设计与分析答案参考

算法设计与分析答案参考

1、用 Floyd 算法求下图每一对顶点之间的最短路径长度,计算矩阵D0,D1,D2和 D3,其中 D k [i, j] 表示从顶点 i 到顶点 j 的不经过编号大于 k 的顶点的最短路径长度。

解020202072D 0306D 1305D 2305D 330510501050850850在每条边的矩阵行中依次加入顶点1,2,3,判断有无最短路径2、设有 n=2k个运动员要进行循环赛,现设计一个满足以下要求的比赛日程表:①每个选手必须与其他 n-1 名选手比赛各一次;②每个选手一天至多只能赛一次;③循环赛要在最短时间内完成。

(1)如果 n=2k,循环赛最少需要进行几天;(2)当 n=23=8 时,请画出循环赛日程表。

1234567821436587解:(1)至少要进行 n 天3412785643218765(2)如右图:567812346587214378563412876543213、对于下图使用Dijkstra算法求由顶点 a 到顶点 h 的最短路径。

b e2g212a d233218c f2h解:用 V1表示已经找到最短路径的顶点, V2表示与 V1中某个顶点相邻接且不在 V1中的顶点; E1表示加入到最短路径中的边, E2为与 V1中的顶点相邻接且距离最短的路径。

步骤V 1V2E1 E 21.{a}{b}{}{ab}2.{a,b}{d}{ab}{bd}3.{a,b,d}{c,f}{ab,bd}{dc,df}4.{a,b,d,c}{f}{ab,bd}{df}5.{a,b,c,d,f}{e}{ab,bd,dc,df}{fe}6.{a,b,c,d,e,f}{g}{ab,bd,dc,df,fe}{eg}7.{a,b,c,d,e,f,g}{h}{ab,bd,dc,df,fe,eg}{gh}8.{a,b,c,d,e,f,g,h}{}{ab,bd,de,df,fe,eg,gh}{}结果:从 a 到 h 的最短路径为a b dfe g h ,权值为18。

《算法设计与分析实用教程》习题参考解答

《算法设计与分析实用教程》习题参考解答

《算法设计与分析实用教程》习题参考解答《算法设计与分析实用教程》参考解答1-1 加减得1的数学游戏西西很喜欢数字游戏,今天他看到两个数,就想能否通过简单的加减,使最终答案等于1。

而他又比较厌烦计算,所以他还想知道最少经过多少次才能得到1。

例如,给出16,9:16-9+16-9+16-9-9-9+16-9-9=1,需要做10次加减法计算。

设计算法,输入两个不同的正整数,输出得到1的最少计算次数。

(如果无法得到1,则输出-1)。

(1)若输入两个不同的正整数a,b均为偶数,显然不可能得到1。

设x*a与y*b之差为“1”或“-1”,则对于正整数a,b经n=x+y-1次加减可得到1。

为了求n的最小值,令n从1开始递增,x在1——n中取值,y=n+1-x:检测d=x*a+y*b,若d=1或-1,则n=x+y-1为所求的最少次数。

(2)算法描述// 两数若干次加减结果为1的数学游戏#includevoid main(){long a,b,d,n,x,y;printf(" 请输入整数a,b: ");scanf("%ld,%ld",&a,&b);if(a%2==0 && b%2==0){ printf(" -1\n");return;}n=0;while(1){ n++;for(x=1;x<=n;x++){ y=n+1-x;d=x*a-y*b;if(d==1 || d==-1) // 满足加减结果为1{ printf(" n=%ld\n",n);return;}}}}请输入整数a,b: 2012,19961请输入整数a,b: 101,20136061-2 埃及分数式算法描述分母为整数分子为“1”的分数称埃及分数,试把真分数a/b 分解为若干个分母不为b 的埃及分数之和。

(1)寻找并输出小于a/b 的最大埃及分数1/c ;(2)若c>900000000,则退出;(3)若c ≤900000000,把差a/b-1/c 整理为分数a/b ,若a/b 为埃及分数,则输出后结束。

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案

算法分析与设计作业及参考答案作业题目1、请分析冒泡排序算法的时间复杂度和空间复杂度,并举例说明其在什么情况下性能较好,什么情况下性能较差。

2、设计一个算法,用于在一个已排序的整数数组中查找特定元素。

要求算法的时间复杂度为 O(log n)。

3、比较贪心算法和动态规划算法的异同,并举例说明它们在实际问题中的应用。

参考答案一、冒泡排序算法的分析冒泡排序(Bubble Sort)是一种简单的排序算法。

它重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。

1、时间复杂度最坏情况:数组完全逆序,需要进行 n(n 1) / 2 次比较和交换操作,时间复杂度为 O(n^2)。

最好情况:数组已经有序,不需要进行交换操作,只需要进行 n 1 次比较,时间复杂度为 O(n)。

平均情况:时间复杂度也为 O(n^2)。

2、空间复杂度冒泡排序只在交换元素时使用了临时变量,空间复杂度为 O(1),是一个原地排序算法。

3、性能分析性能较好的情况:当数组规模较小且接近有序时,冒泡排序的性能相对较好。

因为在这种情况下,比较和交换的次数相对较少。

性能较差的情况:当数组规模较大且无序程度较高时,冒泡排序的性能会非常差。

因为需要进行大量的比较和交换操作,时间消耗很大。

例如,对于数组 2, 1, 3, 5, 4,冒泡排序需要经过多次比较和交换才能将其排序为 1, 2, 3, 4, 5。

而对于已经有序的数组 1, 2, 3, 4, 5,冒泡排序只需要进行较少的比较操作就能确定数组已经有序。

二、在已排序数组中查找特定元素的算法设计对于在已排序的整数数组中查找特定元素,我们可以使用二分查找(Binary Search)算法。

二分查找的基本思想是:将数组从中间分成两部分,比较目标元素与中间元素的大小,如果目标元素小于中间元素,则在左半部分继续查找;如果目标元素大于中间元素,则在右半部分继续查找;如果目标元素等于中间元素,则查找成功。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解析第1章1. 解析:算法主要是指求解问题的方法。

计算机中的算法是求解问题的方法在计算机上的实现。

2. 解析:算法的五大特征是确定性、有穷性、输入、输出和可行性。

3. 解析:计算的算法,其中n是正整数。

可以取循环变量i的值从1开始,算i的平方,取平方值最接近且小于或者等于n的i即可。

4. 解析:可以使用反证法,设i=gcd(m, n)=gcd(n, m mod n),则设m=a*i,n=b*i,且a与b互质,这时m mod n=(a-x*b)*i,只需要证明b和a-x*b互质,假设二者不互质,可以推出a与b不互质,因此可以得到证明。

5. 解析:自然语言描述:十进制整数转换为二进制整数采用“除2取余,逆序排列”法。

具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为0时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。

流程图:如图*.1图*.1 十进制整数转换成二进制整数流程图6. 解析:a.如果线性表是数组,则可以进行随机查找。

由于有序,因此可以进行折半查找,这样可以在最少的比较次数下完成查找。

b.如果线性表是链表,虽然有序,则只能进行顺序查找,从链表头部开始进行比较,当发现当前节点的值大于待查找元素值,则查找失败。

7. 解析:本题主要是举例让大家了解算法的精确性。

过程中不能有含糊不清或者二义性的步骤。

大家根据可行的方式总结一下阅读一本书的过程即可。

8. 解析:数据结构中介绍的字典是一种抽象数据结构,由一组键值对组成,各个键值对的键各不相同,程序可以将新的键值对添加到字典中,或者基于键进行查找、更新或删除等操作。

由于本题已知元素唯一,因此大家可以据此建立一个自己的字典结构。

实现字典的方法有很多种:•最简单的就是使用链表或数组,但是这种方式只适用于元素个数不多的情况下;•要兼顾高效和简单性,可以使用哈希表;•如果追求更为稳定的性能特征,并且希望高效地实现排序操作的话,则可以使用更为复杂的平衡树。

在字典之上的主要操作可以有:创建操作,添加操作,删除操作,查找操作,以及必要的字典维护操作。

第2章1. 解析:根据本章所述,递归算法和非递归算法的数学分析方法分为5个步骤。

2. 解析:本题相当于对多项式找“主项”,也就是在除去常系数外,影响函数值递增速度最快的项。

a) 22310()n n n θ+∈b) 22(2)10n n n θ+∈ c) 121()c nθ+∈,c 为常数 d) 32log (log )n n θ∈e) 10log 3()nn θ∈3. 解析:本题中如果手套分左右手,则最优情况选2只,最差情况选12只。

本题中如果手套不分左右手,则最优情况仍然选2只,最差情况选4只。

从本题的初衷推测设置题目应该是分左右手的手套,在考虑颜色的情况下,选择一双进行匹配。

4. 解析:本题的一般解法可以使用高等数学中求二者比值的极限来确定结果。

a) 相同 b) 第一个小 c) 二者相同 d) 第一个大 e) 二者相同 f) 第一个小 5. 解析:6. 解析:参见本章例2.7。

第3章1. 解析:蛮力法主要依靠问题的定义,采用简单直接的求解方法。

由此决定了蛮力法是解决问题的最简单也是最普遍的算法,同时其经常作为简单问题求解的方法和衡量其他算法的依据。

2. 解析:2,6,1,4,5,3,2选择排序:|2 6 1 4 5 3 2i=0: min最后得2,交换二者。

1 |62 4 53 2 i=1: min最后得2,交换二者。

1 2 |6 4 5 3 2i=2: min最后得6,交换二者。

1 2 2 |4 5 3 6 i=3: min最后得5,交换二者。

1 2 2 3 |5 4 6 i=4: min最后得5,交换二者1 2 2 3 4 |56i=5: min最后得5。

1 2 2 3 4 5 |6结束。

冒泡排序:2 6 1 4 53 22 1 4 53 2 |6 i=0: 最大值6就位。

1 2 4 3 2 |5 6 i=1:第二大值5就位。

1 2 3 2 |4 5 6 i=2:第三大值4就位。

1 2 2 |3 4 5 6 i=3:第四大值3就位。

1 2 |2 3 4 5 6 i=4:第五大值2就位。

1 |2 23456 i=5:第六大值2就位,剩余的1也就位,排序结束。

3. 解析:选择排序不稳定,如3.1.1节例子:4,4,2。

冒泡排序稳定。

4. 解析:如2题例子,到i=4时就没有发生交换的活动了。

这时可以在冒泡排序的交换部分加入一个布尔变量,如本次循环中没有发生交换,则以后的扫描就可以不进行。

5. 解析:如果n个点共线,则其最近对只需要考察相邻的点对,因此在对点进行按行坐标排序后,只需要两两计算相邻两点距离,就可以找到最近对。

6. 解析:所有的过程与寻找二维空间中的最近点对类似,只是计算距离的公式变为:sqrt((p1.x-p2.x)*(p1.x-p2.x)+(p1.y-p2.y)*(p1.y-p2.y)+(p1.z-p2.z)*(p1.z-p2.z) 使用循环计算任意两个点之间的距离,然后记录最小值即可。

类似的,如果推广到n维空间,需要考虑空间中任意两点的距离计算公式,同样计算每两个点之间的距离,并记录最小距离即可。

7. 解析:a) 线段的凸包为本身,极点为两个端点。

b) 正方形的凸包为本身,极点为四个顶点。

c) 正方形的边界不是凸包,凸包为正方形(包括边界和部)。

d) 直线的凸包为本身,没有极点。

8. 解析:哈密顿回路的穷举查找算法,首选选择起点(图中任意一个点开始),之后不断寻找下一个点,下一个点应该满足:1) 不在已经走过的点中;2)与上一个点有直连路径。

如果这样能找到回到起点的路径,并且遍历所有点,则为一条哈密顿回路。

然后依次进行下一个可行点的选择。

9. 解析:生成给定元素的一个排列,通过连续比较它们之间的元素,检查它们是否符合排序的要求。

如果符合就停止,否则重新生成新的排列。

最差情况生成排列的个数是!n,每趟连续元素比较次数为n-1次。

所以效率类型为O n n 。

(!*(1))第4章1. 解析:假定把16枚硬币上网例子看作一个大的问题。

(1)把这一问题分成两个小问题,随机选择8个硬币作为第一组称为A组,剩下的8个硬币作为第二组称为B组;这样,就把16个硬币的问题分成两个8个银币的问题来解决;(2)判断A组和B组中是否有伪币,可以使用仪器比较A组硬币和B组硬币的重量;假如两组硬币重量相等,则可以判断伪币不存在;假如两组硬币重量不相等,则存在伪币,并且可以判断它位于较轻的那一组硬币中;(3)假设B是轻的那一组,因此再把它分成两组,每组有4个硬币,称其中一组为B1,另一组为B2,比较这两组,肯定有一组轻一些,假设B1轻,则伪币在B1中,再将B1分为两组,每组有两个硬币,称其中一组为B1a,另一组为B1b。

比较这两组,可以得到一个较轻的组,由于这个组织有两个硬币,因此不必再细分。

比较组中两个硬币的重量,可以立即知道哪个硬币轻一些,轻币就是要找的伪币;最终,比较次数为4次。

2. 解析:逆序对是指在序列{a0,a1,a2...a n}中,若a i<a j(i>j),则(a i,a j)上一对逆序对。

而逆序数是指序列中逆序对的个数。

例如:1 2 3是顺序,则逆序数是0;1 3 2中(2,3)满足逆序对的条件,所以逆序数只有1;3 2 1中(1,2)(1,3)(2,3)满足逆序对,所以逆序是3。

由定义不能想象,序列n的逆序数围在[0,n*(n-1)/2],其中顺序时逆序数为0,完全逆序时逆序数是n*(n-1)/2。

对于一个数组s将其分为2个部分s1和s2,求s1和s2的逆序对个数,再求s1和s2合并后逆序对的个数:这个过程与merge排序的过程是一样的,可以使用merge排序求得。

代码如下://a为字符数组,len为字符数组的长度int number = 0; //number表示逆序对的个数void copy(char *dest, char *src, int l, int r){while(l <= r){dest[l] = src[l]; l++;}void mergeSort(char *a, int size){char *b = (char*)malloc(sizeof(char) * size);mergePass(a, b, 0, size - 1);free(b);}void mergePass(char *a, char *b, int l, int r) {int m;if(l < r){m = (l + r) / 2;mergePass(a,b,l,m);mergePass(a,b,m+1,r);merge(a,b,l,m,r);copy(a,b,l,r);}}void merge(char *a, char *b, int l, int m, int r) {int i = l, j = m + 1;while( i <= m && j <= r){if(a[i] <= a[j]) b[l++] = a[i++];else{b[l++] = a[j++];number += m-i+1;}while(i <= m) b[l++] = a[i++];while(j <= r) b[l++] = a[j++];}3. 解析:当序列A[1..n]中的元素的个数n=2时,通过直接比较即可找出序列的第2大元素。

当n>2时,先求出序列A[1..n-1]中的第1大元素x1和第2大元素x2;然后,通过2次比较即可在三个元素x1,x2和A[n]中找出第2大元素,该元素即为A[1..n]中的第2大元素。

SecondElement (A[low..high], max1, max2){ //假设主程序中调用该过程条件为high-low>=2if(high-low==2){ if(A[low]<A[high]) { max2=A[low]; max1=A[high]; }else { max2=A[high]; max1=A[low]; }}else{ SecondElement (A[low .. high],x1,x2);if(x1<=A[n]) {max2=max1; max1=A[n];}elseif(x2>=A[n]) {max2=x2; max1=x1;}else {max2=A[n]; max1=x1;}}}该算法的时间复杂度满足如下递归方程:T(n)=T(n-1)+2; T(2)=1。

相关文档
最新文档