利用MATLAB分析圆环电流的磁场分布
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
根据 圆环 电流 的 电流 分 布特 点 , 知在 图 1 以 轴上 某 点 为 圆 可 中
结果 也具有 普遍 性 。因此有 :
图1 圆环电流磁场分析用图
心 、 面半 行 于 环 电 流 的 圆周 上 各 点 的 磁 场 大 小 布 同 , l j 应 1 圆 甘 万 司表 丕也 亥 l , 么 P点 阳 坐 环 力 ( , Z 明 _那 J 0, J
[ 关键词]圆环 电流;磁场 ; 1. ; MA1 B 符号积分 ; A 三维绘图
[ 中图分类号】0 —3 4 9 [ 文献标识码】A [ 文章编号]10 —18 (000 —02 —0 08 7X 2 1)1 00 4
毕 奥一萨 伐尔定 律是 以实验 为基础经 过科学抽 象而得 到 的 , 描述 的是 电流元 在 空 间任 一点 产 生 的磁感 应 强度 。原则上 利用 毕奥一 萨伐尔 定律并结 合 磁感 应 强度 叠加 原 理 , 以计 算任 意 形状 的 电流所 产 生 的磁 场 。 可 本 文 主要讨论 圆环 电流所 产生 的磁场分 布情况 , 用 M T A 利 A L B软件 进行 计算 , 绘制磁 场 分布 的 三维 曲线 , 并 最
f =R*z o(i)(R.! . +z —2 *cssa/ ( ^+x t : . *R*X o(i ) . .) *cssa ) 15 ; t
g =R*z i(i ) ( R. +x +z —2 *s sa / ( n t . . *R*X o(i ) . .) *cs sa ) 15 ; t h=R*( R—X o(i )/ ( +x +z^ —2 *cssa ) ( R. t . . 2 *R* *cssa ) 15 ; x o(i ) . .) t
=
7+ .
7 : +Y z , 7+ =R(oOT+s O )其 中 R为圆环 电流半径 ) cs i ( n ,
d : c 号 s 0-Y=a 一n + s 。 肋[s + )+n + ) R(s C y o ( i ]  ̄ i O ( y 9 O 盯)
[ 收稿 日 ]20 — 8 8 期 09 0 —1 [ 作者 简介]王玉梅 (95 ,女 ,山西芮城人 ,陕西理工学院物理 系讲师,从事大学物理教 学与研究。 ]7 一)
-
20 ・
2 1 利用 M T A . A L B进行积 分计算
・
对 于 ()() ()可利用 MA L B中的符 号积分 进行 积分运算 [ 下面是 计算 的程序 代码 。 1、2 、3 , TA 2, 2 】 刚1 l s R=1 ; sa x Z i R t % 定 义 saxzR为变 量 i、、、 t %计 算 中圆环半 径 R取为 l m
第 2 卷第 1 9 期
V0 . 9 N0 1 12 .
长 春师范 学院学报 ( 自然科 学版 )
Ju o C aghnN ra U i rt N t a Si c } om ̄ f hncu o l n e i{ a r c ne m v sy u l e
21 年 2月 00
程 序运行 后 :
B =一2*( lpi ( *(/ 1 ' + 2 x El tK 2 1 ( +x 、+2* ) )(/ ) ic 2 x *x 12 )*x2 lp c ( ^ 一El tE 2*( / 1 ii 1 ( +x2+z ^ 2+2*x )
*x 12 ) " — )(/ ) *x 2*El t K 2*(/ I " + +2*x *x 12 )*x lpi ( 2 lpi ( ic 1 ( +x 2 ) )(/ ) +El t K 2*(/ I ^ " ic 1 ( +x 2+z 2+2 *x *x 12 )*z ) )( / ) ' 2一E itE 2*(/ 1 " +z +2*x *x 12 ) lpi ( Up c ( i 1 ( +x 2 ^ 2 ) )(/ ) +El t K 2*(/ 1 ^ ' ic 1 ( +x2+z 2+2*
d O 言=A /
=
=z l 4 o
盯
, =
l Rl c  ̄[
4 s0 ( - i R-xo ) ] z n y+ cs - . Ok
'
o Rd  ̄ l p cos 3 4
3
』 =
z
…s . 伽
t 3 nd . s 00 zi
4盯 oR l
() 1
B : n f s ,, p ;y a g sa02 i; z n h sa02 i; x i (, i 02 i B :h( , i ,, t t a ) t t p B =i( , i ,, ) t t p %计算积分 )
在计 算 积分时 , 对各式 中 的系数 可不 考虑 , 因为 该系数并 不会影 响磁 场 的分布特 征 。
后 对结 果进 行讨论 。
1 圆环 电流在 空 间任一点 的磁场 分布
如 图 1 示 , 据毕奥一 萨伐 尔定律 , 一 电流元 f P点产 生 所 根 任 在
z)
的 磁感应强度 d O 言:' /丝 t
,
[其 中 和 分 别 为 P点 相 对 于坐标 1 3
原 点和 电流元 f 的位矢 ,” r为电流元 2 相对 于坐标原点 的位矢 。
F b. 01 e 2 0
利 用 MA L B分析 圆环 电流 的磁 场 分布 TA
王 玉梅 ,孙 庆龙
( 陕西 理工学 院物理 系 ,陕西汉 中
[ 摘
730 ) 203
要]根据毕奥一萨伐尔定律推导出圆环电流磁 场分 布的积分表示 ,利用 M T A A L B的符号积 分给
出计算结果 ,并绘制磁场分布 的三维曲线 。在数值结果 中选取一些代表点讨论磁场 的分布规律。
() 2
d - z m d By- o 6
zi , y j y s 日B = n
=
Rl O po I c
4盯
3
、
尺一
=』 =
( 一 r  ̄ 2 2 2 R cs . :/x +z +R -2 xo0
’ 杀I MA I R{ l 用 T A 井行 杀 4.I 舅 - - ̄r 1 - i
结果 也具有 普遍 性 。因此有 :
图1 圆环电流磁场分析用图
心 、 面半 行 于 环 电 流 的 圆周 上 各 点 的 磁 场 大 小 布 同 , l j 应 1 圆 甘 万 司表 丕也 亥 l , 么 P点 阳 坐 环 力 ( , Z 明 _那 J 0, J
[ 关键词]圆环 电流;磁场 ; 1. ; MA1 B 符号积分 ; A 三维绘图
[ 中图分类号】0 —3 4 9 [ 文献标识码】A [ 文章编号]10 —18 (000 —02 —0 08 7X 2 1)1 00 4
毕 奥一萨 伐尔定 律是 以实验 为基础经 过科学抽 象而得 到 的 , 描述 的是 电流元 在 空 间任 一点 产 生 的磁感 应 强度 。原则上 利用 毕奥一 萨伐尔 定律并结 合 磁感 应 强度 叠加 原 理 , 以计 算任 意 形状 的 电流所 产 生 的磁 场 。 可 本 文 主要讨论 圆环 电流所 产生 的磁场分 布情况 , 用 M T A 利 A L B软件 进行 计算 , 绘制磁 场 分布 的 三维 曲线 , 并 最
f =R*z o(i)(R.! . +z —2 *cssa/ ( ^+x t : . *R*X o(i ) . .) *cssa ) 15 ; t
g =R*z i(i ) ( R. +x +z —2 *s sa / ( n t . . *R*X o(i ) . .) *cs sa ) 15 ; t h=R*( R—X o(i )/ ( +x +z^ —2 *cssa ) ( R. t . . 2 *R* *cssa ) 15 ; x o(i ) . .) t
=
7+ .
7 : +Y z , 7+ =R(oOT+s O )其 中 R为圆环 电流半径 ) cs i ( n ,
d : c 号 s 0-Y=a 一n + s 。 肋[s + )+n + ) R(s C y o ( i ]  ̄ i O ( y 9 O 盯)
[ 收稿 日 ]20 — 8 8 期 09 0 —1 [ 作者 简介]王玉梅 (95 ,女 ,山西芮城人 ,陕西理工学院物理 系讲师,从事大学物理教 学与研究。 ]7 一)
-
20 ・
2 1 利用 M T A . A L B进行积 分计算
・
对 于 ()() ()可利用 MA L B中的符 号积分 进行 积分运算 [ 下面是 计算 的程序 代码 。 1、2 、3 , TA 2, 2 】 刚1 l s R=1 ; sa x Z i R t % 定 义 saxzR为变 量 i、、、 t %计 算 中圆环半 径 R取为 l m
第 2 卷第 1 9 期
V0 . 9 N0 1 12 .
长 春师范 学院学报 ( 自然科 学版 )
Ju o C aghnN ra U i rt N t a Si c } om ̄ f hncu o l n e i{ a r c ne m v sy u l e
21 年 2月 00
程 序运行 后 :
B =一2*( lpi ( *(/ 1 ' + 2 x El tK 2 1 ( +x 、+2* ) )(/ ) ic 2 x *x 12 )*x2 lp c ( ^ 一El tE 2*( / 1 ii 1 ( +x2+z ^ 2+2*x )
*x 12 ) " — )(/ ) *x 2*El t K 2*(/ I " + +2*x *x 12 )*x lpi ( 2 lpi ( ic 1 ( +x 2 ) )(/ ) +El t K 2*(/ I ^ " ic 1 ( +x 2+z 2+2 *x *x 12 )*z ) )( / ) ' 2一E itE 2*(/ 1 " +z +2*x *x 12 ) lpi ( Up c ( i 1 ( +x 2 ^ 2 ) )(/ ) +El t K 2*(/ 1 ^ ' ic 1 ( +x2+z 2+2*
d O 言=A /
=
=z l 4 o
盯
, =
l Rl c  ̄[
4 s0 ( - i R-xo ) ] z n y+ cs - . Ok
'
o Rd  ̄ l p cos 3 4
3
』 =
z
…s . 伽
t 3 nd . s 00 zi
4盯 oR l
() 1
B : n f s ,, p ;y a g sa02 i; z n h sa02 i; x i (, i 02 i B :h( , i ,, t t a ) t t p B =i( , i ,, ) t t p %计算积分 )
在计 算 积分时 , 对各式 中 的系数 可不 考虑 , 因为 该系数并 不会影 响磁 场 的分布特 征 。
后 对结 果进 行讨论 。
1 圆环 电流在 空 间任一点 的磁场 分布
如 图 1 示 , 据毕奥一 萨伐 尔定律 , 一 电流元 f P点产 生 所 根 任 在
z)
的 磁感应强度 d O 言:' /丝 t
,
[其 中 和 分 别 为 P点 相 对 于坐标 1 3
原 点和 电流元 f 的位矢 ,” r为电流元 2 相对 于坐标原点 的位矢 。
F b. 01 e 2 0
利 用 MA L B分析 圆环 电流 的磁 场 分布 TA
王 玉梅 ,孙 庆龙
( 陕西 理工学 院物理 系 ,陕西汉 中
[ 摘
730 ) 203
要]根据毕奥一萨伐尔定律推导出圆环电流磁 场分 布的积分表示 ,利用 M T A A L B的符号积 分给
出计算结果 ,并绘制磁场分布 的三维曲线 。在数值结果 中选取一些代表点讨论磁场 的分布规律。
() 2
d - z m d By- o 6
zi , y j y s 日B = n
=
Rl O po I c
4盯
3
、
尺一
=』 =
( 一 r  ̄ 2 2 2 R cs . :/x +z +R -2 xo0
’ 杀I MA I R{ l 用 T A 井行 杀 4.I 舅 - - ̄r 1 - i