应用光学课件 (7)[41页]
合集下载
应用光学课件-PPT
4)若视阑为长方形或正方形,其线视场按对角线计算。
5)入射窗、出射窗、视阑之间得相互共轭关系。
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
例:有一光学系统,透镜O1、O2得口径D1=D2=50mm,焦距 f1′= f2′=150mm,两透镜间隔为300mm,并在中间置一光 孔O3,口径D3=20mm,透镜O2右侧150mm处再置一光孔O4,口 径D4=40mm,平面物体处于透镜O1左侧150mm处。求该系统 得孔径光阑、入瞳、出瞳、视场光阑、入窗、出窗得位 置与大小。
两正薄透镜组L1与L2得焦距分别为100mm与50mm,通光口径 分别为60mm与30mm,两透镜之间得间隔为50mm,在透镜L2之 前30mm处放置直径为40mm得光阑,问 1)当物体在无穷远处时,孔径光阑为哪个? 2)当物体在L1前方300mm处时,孔径光阑为哪个?
4、说明: 1)物体位置改变,原孔阑可能失去控制轴上点孔径角得作用,要重复上述 三个步骤确定孔阑。
工具显微镜中(β 准确)被测物得像与刻度尺相比较,可测物之长度。
物体不论处于何位 置,发出得主光线 都不随物体位置得 移动而变化;读出 刻尺面上光斑得中 心示值,即可求出 准确得象高。
三、 象方远心光路
1、 概念: 某些大地测量仪器或投影仪器中,为了消除像平面与标尺分划刻
线面不重合而引起得测量误差,在物镜得物方焦平面上加入一个光 阑作为孔径光阑,出瞳则位于像方无穷远,称为“像方远心光路”。 2、 应用:
3)物点在无限远时,各光孔像中,直径最小者即为入瞳。入瞳对应得实际 光孔即为孔径光阑。
例:有两个薄透镜L1与L2 ,焦距分别为90mm与30mm,孔径分 别为60mm与40mm,相隔50mm,在两透镜之间,离L2为 20mm处放置一直径为10mm得圆光阑,试对L1前120mm处 得轴上物点求孔阑、入瞳、出瞳得位置与大小。
5)入射窗、出射窗、视阑之间得相互共轭关系。
大家应该也有点累了,稍作休息
大家有疑问得,可以询问与交流
10
例:有一光学系统,透镜O1、O2得口径D1=D2=50mm,焦距 f1′= f2′=150mm,两透镜间隔为300mm,并在中间置一光 孔O3,口径D3=20mm,透镜O2右侧150mm处再置一光孔O4,口 径D4=40mm,平面物体处于透镜O1左侧150mm处。求该系统 得孔径光阑、入瞳、出瞳、视场光阑、入窗、出窗得位 置与大小。
两正薄透镜组L1与L2得焦距分别为100mm与50mm,通光口径 分别为60mm与30mm,两透镜之间得间隔为50mm,在透镜L2之 前30mm处放置直径为40mm得光阑,问 1)当物体在无穷远处时,孔径光阑为哪个? 2)当物体在L1前方300mm处时,孔径光阑为哪个?
4、说明: 1)物体位置改变,原孔阑可能失去控制轴上点孔径角得作用,要重复上述 三个步骤确定孔阑。
工具显微镜中(β 准确)被测物得像与刻度尺相比较,可测物之长度。
物体不论处于何位 置,发出得主光线 都不随物体位置得 移动而变化;读出 刻尺面上光斑得中 心示值,即可求出 准确得象高。
三、 象方远心光路
1、 概念: 某些大地测量仪器或投影仪器中,为了消除像平面与标尺分划刻
线面不重合而引起得测量误差,在物镜得物方焦平面上加入一个光 阑作为孔径光阑,出瞳则位于像方无穷远,称为“像方远心光路”。 2、 应用:
3)物点在无限远时,各光孔像中,直径最小者即为入瞳。入瞳对应得实际 光孔即为孔径光阑。
例:有两个薄透镜L1与L2 ,焦距分别为90mm与30mm,孔径分 别为60mm与40mm,相隔50mm,在两透镜之间,离L2为 20mm处放置一直径为10mm得圆光阑,试对L1前120mm处 得轴上物点求孔阑、入瞳、出瞳得位置与大小。
应用光学_非球面ppt课件
03.06.2020
.
17
2.1 两镜系统的理论基础
➢ 为便于对两反射镜系统有个完整的了解,从三级像差理论出 发,选择合理的参数,推导出各种消像差条件,从而使设计 两镜系统有全球应用的理论指导。
➢2.1.1 基本结构形式
➢主镜与次镜都是二次曲 面,表达式为:
h1
h2
y22R0x-(1-e2)x2
l2
y2 = 2REx -(1-E2)x2
➢ 与上式比较,得:
RE(1-e2R )01-e2 ,
2Eee22-1
➢ 由于0< e2 <1,故E2一定是负值。
➢ 写以上方程中,以y2+z2代替y2,即得扁椭球面方程。
03.06.2020
.
14
1.3 二次曲面的非球面度
➢ 非球面度 指非球面表面和一个比较球面在沿光轴方向的 偏差。一般希望非球面度尽可能小, 因此, 要选择一个最佳 比较球面:一个与非球面在顶点与边缘接触的球面。
03.06.2020
.
4
二、二次曲面(圆锥曲面)
➢ 实际光学系统在很多情况下用到二次曲面即能满足要求,且 其检验相对方便,故从工艺角度考虑,应尽量采用之。
➢ 二次曲线方程有四种表达形式:
y
➢形式 1
x2 a2
y2 b2
1
(椭圆及双曲)线
o
x
y2 2px (抛物线)
➢ 参数a、b为椭圆或双曲线的长半轴和短半轴,p为抛物线的 焦点到的距离,也是抛物线顶点的曲率半径。
➢ 将顶点移到新位置O,有:
x=x-a, y=b-y,或:x=x+a, y=b-y
代入原方程,并将y与x对换,得:
(x-b)2=2R0(y+a)-(1-e2)(y+a)2
应用光学 ppt课件
当光线遇到障碍物时会发生光的衍射现象,从而偏离光线的直线 传播。
衍射
双折射
梯度折射率
2.2 光的独立传播定律
在光相交的区域可能发生叠加,甚至发生干涉。不管是哪一种情 况,在光离开相交区域后,光波继续沿着既定的方向向前传播,该 光波身上找不到其他光波对其产生的任何影响,此现象称为光的独 立传播定律。
1.1.2 电磁波谱
400~760nm
380~760nm 390~780nm
1nm 103 μm 106 mm 109 m
1.1.2 电磁波谱
在电磁波谱里,可见光大约在380~760nm之间,按波长从长到 短依次分别呈现红、橙、黄、绿、蓝、靛、紫等七种颜色。这七种 色光其实分界并不完全准确,因为两种色光之间的界限本身就不明 显,过渡是一种渐进的过程。
色光 红 橙 黄 绿
范围/nm 640-760 600-640 550-600 480-550
色光 蓝 靛 紫
范围/nm 450-480 430-450 380-430
1.1.3 可见光
可见光(Visible light)是波 长大约在380~760nm之间的波 段范围,由于人眼对此波段的 光线敏感,可以引起视网膜的 感光,传递到大脑后,经过大 脑处理后可以分辨出光线的颜 色及与光线相关的物体。
则光的折射定律(Snell law, refraction law of light)可以表示为
1.折射光线也在入射面内; 2.入射角和折射角正弦之比为一个常数,与入射角大小无关。
sin I sin I ' n12
其中为 n12 比例常数
2.4 光的折射定律
海市蜃楼的形成
2.5 光路可逆
光的反射定律和折射定律一个直接的应用就是光路可逆。光在空 间传播时,在光学系统中行进,无外乎有三种情况:
衍射
双折射
梯度折射率
2.2 光的独立传播定律
在光相交的区域可能发生叠加,甚至发生干涉。不管是哪一种情 况,在光离开相交区域后,光波继续沿着既定的方向向前传播,该 光波身上找不到其他光波对其产生的任何影响,此现象称为光的独 立传播定律。
1.1.2 电磁波谱
400~760nm
380~760nm 390~780nm
1nm 103 μm 106 mm 109 m
1.1.2 电磁波谱
在电磁波谱里,可见光大约在380~760nm之间,按波长从长到 短依次分别呈现红、橙、黄、绿、蓝、靛、紫等七种颜色。这七种 色光其实分界并不完全准确,因为两种色光之间的界限本身就不明 显,过渡是一种渐进的过程。
色光 红 橙 黄 绿
范围/nm 640-760 600-640 550-600 480-550
色光 蓝 靛 紫
范围/nm 450-480 430-450 380-430
1.1.3 可见光
可见光(Visible light)是波 长大约在380~760nm之间的波 段范围,由于人眼对此波段的 光线敏感,可以引起视网膜的 感光,传递到大脑后,经过大 脑处理后可以分辨出光线的颜 色及与光线相关的物体。
则光的折射定律(Snell law, refraction law of light)可以表示为
1.折射光线也在入射面内; 2.入射角和折射角正弦之比为一个常数,与入射角大小无关。
sin I sin I ' n12
其中为 n12 比例常数
2.4 光的折射定律
海市蜃楼的形成
2.5 光路可逆
光的反射定律和折射定律一个直接的应用就是光路可逆。光在空 间传播时,在光学系统中行进,无外乎有三种情况:
《应用光学》全套PPT48页
《应用光学》全套
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
6、律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
应用光学课件新
n1, 2
n2 n1
有
•通常所说的介质的折射率实际上是该介质对于 空气 的相对折射率 •光密介质和光疏介质
应用光学讲稿
课堂练习:判断光线如何折射
I1 空气 n=1 水 n=1.33 I2
I1
玻璃 n=1.5
空气 n=1
应用光学讲稿
I1
c 空气 n小 玻璃 n大 空气 n小 玻璃 n大
应用光学讲稿
c n v
应用光学讲稿
相对折射率与绝对折射率之间的关系 相对折射率:
n 1, 2 =
υ1 υ2
C
第一种介质的绝对折射率: 第二种介质的绝对折射率:
所以
n1 =
n2 =
υ1
C
υ2
n 1, 2 =
n2
n1
应用光学讲稿
用绝对折射率表示的折射定律
由
sin I1 n2 v1 sin I 2 n1 v2 sin I1 v1 n2 n1, 2 sin I 2 v2 n1
n2 sin I 0 n1
应用光学讲稿
2、发生全反射的条件
必要条件: n1>n2 由光密介质进入光
疏介质 充分条件: I1>I0 入射角大于全反射角
n2 sin I 0 n1
1870年,英国科学家丁达尔全反射实验
应用光学讲稿
当光线从玻璃射向与空气接触的表面时,玻 璃的折射率不同、对应的临界角不同。
条对称轴线 C2 C1
C4 C3 光轴
应用光学讲稿
名词概念
• 物点:入射光线的交点 • • 实物点:实际入射光线的交点 虚物点:入射光线延长线的交点
• 像点:出射光线的交点
• • 实像点:出射光线的实际交点 虚像点:出射光线延长线的交点
应用光学课件完整版
由一点A发出的光线经过光学系统后聚交或近似的聚 交在一点A′,则A为物点, A′为物点A通过光学系统 所成的像点。物与象之间的对应关系称为“共轭”。
一个物点,总是发出同心光束,与球面波相对应; 一个像点,理想情况应该由球面波对应的同心光束汇交 而成,称这种像点为完善像点。
3. 成完善象的条件 发光体每一物点发出球面波,通过光学系统后仍为
反射定律可表示为 I I ''
4. 光的折射定律
折射定律可归结为:入射光线、折射光线和投射点
的法线三者在同一平面内,入射角的正弦与折射角正弦
之比与入射角大小无关,而与两介质性质有关。对一定 波长的光线,在一定温度和压力的条件下,该比值为一
常数,等于折射光线所在介质的折射率与入射光线所在
介质折射率之比。
0 i arcsin n12 n2 2 n0
n0 =1
n0 sin i n1 cos ic n12 n22
5. 费马原理(光程极值原理)
1)光程— 光在介质中经过的几何路程l与该介质折射率n的乘积。
s=n • l
均匀介质
m层均匀介质
连续变化的非均匀介质
s=n • l=c • t
m
s
波面可分为:平面波、球面波、任意曲面波。 波面法线方向即为光传播方向。
光源
光线
波面
5. 光束— 与波面对应的法线集合。
同心光束— 波面为球面,聚于一点。 发散光束— 光线在前进方向上无相交趋势。 会聚光束— 光线在前进方向上有相交趋势。
平行光束— 波面为平面。 象散光束— 波面为曲面,不聚于一点。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
一个物点,总是发出同心光束,与球面波相对应; 一个像点,理想情况应该由球面波对应的同心光束汇交 而成,称这种像点为完善像点。
3. 成完善象的条件 发光体每一物点发出球面波,通过光学系统后仍为
反射定律可表示为 I I ''
4. 光的折射定律
折射定律可归结为:入射光线、折射光线和投射点
的法线三者在同一平面内,入射角的正弦与折射角正弦
之比与入射角大小无关,而与两介质性质有关。对一定 波长的光线,在一定温度和压力的条件下,该比值为一
常数,等于折射光线所在介质的折射率与入射光线所在
介质折射率之比。
0 i arcsin n12 n2 2 n0
n0 =1
n0 sin i n1 cos ic n12 n22
5. 费马原理(光程极值原理)
1)光程— 光在介质中经过的几何路程l与该介质折射率n的乘积。
s=n • l
均匀介质
m层均匀介质
连续变化的非均匀介质
s=n • l=c • t
m
s
波面可分为:平面波、球面波、任意曲面波。 波面法线方向即为光传播方向。
光源
光线
波面
5. 光束— 与波面对应的法线集合。
同心光束— 波面为球面,聚于一点。 发散光束— 光线在前进方向上无相交趋势。 会聚光束— 光线在前进方向上有相交趋势。
平行光束— 波面为平面。 象散光束— 波面为曲面,不聚于一点。
1. 共轴球面系统的结构参量: 各球面半径:r1 、 r2 …… rk-1 、 rk 相邻球面顶点间隔:d1 、 d2 …… dk-1 各球面间介质折射率:n1 、 n2 …… nk-1 、 nk n 、 k+1
应用光学课件
O1 O2
I2
θ
M β
N B
θ
应用: 应用:测距机中用双平面镜代替单个平面镜 角镜, 角镜,棱镜
应用光学讲稿
§4 - 4
棱镜和棱镜的展开
一、用棱镜代替平面镜的优缺点
棱镜: 棱镜:利用光线在介质内部的反射来改变光线方向的光学零件 优点:光能损失少 优点: 坚固耐久, 坚固耐久,不易损坏 易于安装固定 缺点: 缺点:体积重量较大 对材料要求高 受环境影响较大
y P o z 物像大小相等, 物像大小相等,形状不同 物空间右手坐标对应像空间左手坐标 x x’ z’
y’ o’
分别迎着z 坐标面时, 分别迎着 、 z ’看xy、x’y’坐标面时,当x按逆时针方向转到 看 坐标面时 按逆时针方向转到 y,x’按顺时针方向转到 ;物像这种对应关系称为“镜像” 按顺时针方向转到y’ 物像这种对应关系称为“镜像” , 按顺时针方向转到
应用光学讲稿
三、对棱镜的要求 1、棱镜展开后应该是一块平行玻璃板 、 2、如果棱镜位于会聚光束中,光轴必须和棱 、如果棱镜位于会聚光束中, 镜的入射及出射表面相垂直。 镜的入射及出射表面相垂直。
应用光学讲稿
四、典型棱镜展开举例
B 1、直角棱镜 、 在平行光路中使用
在平行光路中只需满平第一个条件: 展开开后成平行玻璃板即 AB//AC′ 则∠ ABC = ∠ A′CB Q ∠ A′CB 是∠ ACB 折过过去的,二者相等 ∴ ∠ ABC = ∠ ACB 只要两要两角相等就能 AB//AC′,不一定 为45°, ∠ A 也不一定为直角。
应用光学讲稿
结论: 结论:
A
物像位置相对平面镜对称, 物像位置相对平面镜对称,物像 大小相等 实物成虚像,虚物成实像。 实物成虚像,虚物成实像。 D 单个平面镜对物点能成理想像, 单个平面镜对物点能成理想像, O O’
应用光学课件
有渐晕时,斜光束的宽度不单由孔径光阑的口径确定, 有渐晕时,斜光束的宽度不单由孔径光阑的口径确定,而且还 与其余光学零件或光阑的口径有关
应用光学讲稿
§5-2 望远系统中成像光束的选择 一、双目望远镜
1、光学系统图 、 视放大率: 视放大率: Г=6 成像范围(视场角):2ω=8°30’ 成像范围(视场角):2 =8° ): 出瞳直径: 出瞳直径: 出瞳距离: 出瞳距离: 物镜焦距: 物镜焦距: 目镜焦距: 目镜焦距: D´=5mm l´z≥11mm f´物=108mm f´目=18mm
10 (1) tg ω = ,所以 240
(2)
1 ω = arctg 即为物方视角。 24
1 ω ′ = arctg 即为像方视角。 3
10 tg ω ′ = ,所以 30
(3)出瞳是孔径光阑在系统像空间所成的像,对目镜来说:
l = −240 mm − 30 mm = − 270 mm
应用光学讲稿
出瞳:是光能最集中的地方, 出瞳:是光能最集中的地方,为了看清整个视场 眼睛的瞳孔应该和出瞳重合。 ,眼睛的瞳孔应该和出瞳重合。 对出瞳距离必须有一定的要求,一般仪器大于6毫米, 对出瞳距离必须有一定的要求,一般仪器大于 毫米, 毫米 对于军用仪器,要大一些,可能大于20毫米 毫米。 对于军用仪器,要大一些,可能大于 毫米。 出瞳直径的大小,直接与像的亮暗有关 出瞳直径的大小, 问题:是否出瞳直径越大越好,出瞳距离越长越好? 问题:是否出瞳直径越大越好,出瞳距离越长越好?
应用光学讲稿
二 光阑概念 1、孔径光阑(Aperture Stop) 、孔径光阑( ) 光束口径的光阑 2、视场光阑(Field Stop) 、视场光阑( ) 限制成像范围的光阑 底片框 3、消杂光光阑(False 、消杂光光阑( Light Stop) )
应用光学讲稿
§5-2 望远系统中成像光束的选择 一、双目望远镜
1、光学系统图 、 视放大率: 视放大率: Г=6 成像范围(视场角):2ω=8°30’ 成像范围(视场角):2 =8° ): 出瞳直径: 出瞳直径: 出瞳距离: 出瞳距离: 物镜焦距: 物镜焦距: 目镜焦距: 目镜焦距: D´=5mm l´z≥11mm f´物=108mm f´目=18mm
10 (1) tg ω = ,所以 240
(2)
1 ω = arctg 即为物方视角。 24
1 ω ′ = arctg 即为像方视角。 3
10 tg ω ′ = ,所以 30
(3)出瞳是孔径光阑在系统像空间所成的像,对目镜来说:
l = −240 mm − 30 mm = − 270 mm
应用光学讲稿
出瞳:是光能最集中的地方, 出瞳:是光能最集中的地方,为了看清整个视场 眼睛的瞳孔应该和出瞳重合。 ,眼睛的瞳孔应该和出瞳重合。 对出瞳距离必须有一定的要求,一般仪器大于6毫米, 对出瞳距离必须有一定的要求,一般仪器大于 毫米, 毫米 对于军用仪器,要大一些,可能大于20毫米 毫米。 对于军用仪器,要大一些,可能大于 毫米。 出瞳直径的大小,直接与像的亮暗有关 出瞳直径的大小, 问题:是否出瞳直径越大越好,出瞳距离越长越好? 问题:是否出瞳直径越大越好,出瞳距离越长越好?
应用光学讲稿
二 光阑概念 1、孔径光阑(Aperture Stop) 、孔径光阑( ) 光束口径的光阑 2、视场光阑(Field Stop) 、视场光阑( ) 限制成像范围的光阑 底片框 3、消杂光光阑(False 、消杂光光阑( Light Stop) )
应用光学教学课件完整
※从上述定律可以得到光线传播的一 个重要原理—光路的可逆性原理。利 用这一原理,可以由物求像,也可以 由像求物。
• 图1-9
※光学系统 的作用之一是对物体成像,因此必须搞 清物像的基本概念和它们的关系。
※物体通过光学系统(光组)成像,光学系统(各 种光学仪器)由一系列光学零件 组成。。
※光学系统一般是轴对称的,有一条公共轴线,
全反射现象
当
一般情况下,光线射至透明介质的分界面时将发 生反射和折射现象。
光 由
由公式 n sin I n' sin I ' 可知
光
密
sin I sin I '
介 质
射
即折射光线较入射光线偏离法线
向
光
疏
sin I ' 不可能大于1,此时入射光线将不能射入
另一介质。
按照反射定律在介面上全部被反射回原介质
原点
+
-
原点
※ 原点规定:
(1)曲率半径 r ,以球面顶点O为原点,球
心C在右为正,在左为负。
E
A
C
O +r
E
A
C
-r O
(2)物方截距L 和像方截距L’ 也以顶点O为原点,到光线
与光轴交点,向右为正,向左为负。
E
A
A’
O
C
-L
+L’
E
A
A’
O
C
-L’
-L
(3)球面间隔 d 以前一个球面的顶点为原点, 向右为正,向左为负。
(在折射系统中总为正,在反射和折反系统中才有为负的情况)
O1
O2
+d
O1
O2
• 图1-9
※光学系统 的作用之一是对物体成像,因此必须搞 清物像的基本概念和它们的关系。
※物体通过光学系统(光组)成像,光学系统(各 种光学仪器)由一系列光学零件 组成。。
※光学系统一般是轴对称的,有一条公共轴线,
全反射现象
当
一般情况下,光线射至透明介质的分界面时将发 生反射和折射现象。
光 由
由公式 n sin I n' sin I ' 可知
光
密
sin I sin I '
介 质
射
即折射光线较入射光线偏离法线
向
光
疏
sin I ' 不可能大于1,此时入射光线将不能射入
另一介质。
按照反射定律在介面上全部被反射回原介质
原点
+
-
原点
※ 原点规定:
(1)曲率半径 r ,以球面顶点O为原点,球
心C在右为正,在左为负。
E
A
C
O +r
E
A
C
-r O
(2)物方截距L 和像方截距L’ 也以顶点O为原点,到光线
与光轴交点,向右为正,向左为负。
E
A
A’
O
C
-L
+L’
E
A
A’
O
C
-L’
-L
(3)球面间隔 d 以前一个球面的顶点为原点, 向右为正,向左为负。
(在折射系统中总为正,在反射和折反系统中才有为负的情况)
O1
O2
+d
O1
O2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§4.5 本章小结
掌握光阑定义。 掌握孔径光阑,入射光瞳,出射光瞳定义,三者之间关系。 掌握视场光阑,入射窗,出射窗定义,三者之间关系。 了解渐晕、渐晕光阑、渐晕系数的定义及渐晕光阑和视场光阑的 关系 掌握物方远心光路的工作原理。 了解光瞳衔接原则及其作用。
图4-2 孔径光阑对轴上点光束的限制
§4.1.1 照相系统的基本结构
图4-1 照相机系统简图
§4.1.2 概念
一、光阑:
限制成像光束的光孔或限制成像范围的光孔或框。
二、孔径光阑:
限制进入光学系统的成像光束的光孔口径的光阑。
三、视场光阑:
限制成像范围的光阑。
§4.1.3 孔径光阑的作用
1、孔径光阑对轴上点光束的限制:(图4-2) 2、孔径光阑对轴外点光束的限制(图4-3) 3、渐晕、渐晕光阑以及渐晕系数:(图4-4) 4、入瞳和出瞳:(图4-5)
图4-12a
三、物方远心光路及其特点
图4-12b
§4.3.3 场镜的应用
图4-13
一、场镜:
和像平面重合或者很靠近的透镜。
二、场镜的作用:
压低光线减小后续光路通光口径。
§4.3.4 显微镜光学系统小结
1)一般显微镜系统中,孔径光阑置于显微物镜上;一 次实像面处安装系统的视场光阑。
2)当显微镜系统用于测量长度时,为了消除误差,孔 径光阑安装在显微物镜的像方焦面处,称为“物方远心 光路”。 3)在长光路系统中,往往利用场镜达到前后系统的光 瞳衔接,以减小光学零件的口径。
4)孔径光阑的形状一般为圆形,而视场光阑的形状 为圆形或矩形等。
§4.2 望远系统中成像光束的选择
§4.2.1 望远系统的基本结构和光学数据 §4.2.2 望远系统中的光束限制 §4.2.3 望远光学系统小结
§4.2.1 望远系统中成像光束的选择
一、光学结构:(图4-7) 二、光学数据:
视角放大率:Γ 视场角:2W 出瞳直径:D’ 出瞳距离:lz’ 物镜焦距:f物’ 目镜焦距:f目’
➢ 主要内容:
§4.1 照相系统和光阑 §4.2 望远镜系统成像光束的选择 §4.3 显微镜系统中的光束限制与分析 §4.4 光学系统的景深 §4.5 本章小结
§4.1 照相系统和光阑
§4.1.1 照相系统的基本结构 §4.1.2 概念 §4.1.3 孔径光阑的作用 §4.1.4 视场光阑及入射窗、出射窗 §4.1.5 照相光学系统小结
思考题:
显微系统中,孔径光阑位于不同位置对成像和系统 结构尺寸有哪些影响?
§4.4 光学系统的景深
§4.4.1 光学系统的空间像 §4.4.2 光学系统的景深 §4.4.3 例题
§4.4.1 光学系统的空间像
一、空间的物点成像:
图4-15
二、光瞳对成像的影响:
图4-16
三、视场对成像的影响:
图4-17
§4.3 显微镜系统中的光束限制与分析
§4.3.1 简单显微镜系统的光束限制 §4.3.2 远心光路 §4.3.3 场镜的应用 §4.3.4 显微镜光学系统小结
§4.3.1 简单显微镜系统的光束限制
图4-11 显微镜系统光路
§4.3.2 远心光路
一、显微镜测长原理 二、孔径光阑的位置对测量误差的影响
当把对准平面调焦在无限远时,求其近景位置;若使远 景平面在无限远,求对准2a p
P2
2ap
2a p
例二:设ε=l’=0.00029rad,入射光瞳直径2a=10mm,
若使物镜调焦在10m处,即P=1000mm,求远景、近景深 度和位置。
1
p2 2a p
2
p2 2a p
§4.1.4 视场光阑及入射窗、出射窗
注意其共轭关系
§4.1.5 照相光学系统小结
1)照相系统根据轴外光束的像质来选择孔径光阑的 位置,大致在物镜的某个空气间隔中。(图4-6)
2)在有渐晕的情形下,轴外点光束宽度不仅由孔径 光阑的口径确定,而且还和渐晕光阑的口径有关。
3)照相光学系统中,感光底片的框子就是视场光阑。
工程光学上篇 几何光学
目录
第一章 几何光学基本定律与成像概念 第二章 理想光学系统 第三章 平面与平面系统 第四章 光学系统中的光束限制 第六章 光线的光路计算及相差理论 第七章 典型光学系统 第九章 光学系统的像质评价和像差公差
第四章 光学系统中的光速限制
实际光学系统不是理想光学系统,必须限制参与 成像的光束宽度和成像范围,以保证成像质量。
图4-7 双目望远镜系统
图4-10 光阑位置对轴外光束位置的选择
1)光阑位于(1)时, 光束上半部分参与成像。 2)光阑位于(2)时, 光束中间部分参与成像。
3)光阑位于(3)时, 光束中间部分参与成像。
图4-8 望远镜系统简化图
图4-12a 显微镜测长原理
L为测量物镜,当物镜框为孔径光阑时,由于调焦不 准,其测量存在误差。
§4.4.2 光学系统的景深
(图4-18)
一、概念:
景深Δ:成清晰像的空间深度
远景深度:远景平面距对准平面的距离
近景平面:近景平面距对准平面的距离
二、景深公式:
=1
2
4ap2 4a2 p2 2
三、正确透视条件(图4-19):
§4.4.3 例题
例一:设ε=l’=0.00029rad,入射光瞳直径2a=10mm,
§4.2.2 望远系统中的光束限制
图4-8 望远系统简化图
一、光瞳衔接原则:
前面系统的出瞳与后面系统的入瞳重合。
二、孔径光阑在不同位置处的计算:
1)物镜左侧10mm; 2)物镜上; 3)物镜右侧10mm。
三、孔径光阑处于不同位置时的成像光束:
图4-10
§4.2.3 望远光学系统小结
1)两个光学系统连用时,一般应满足光瞳衔接原则; 2)目视光学系统的出瞳一般在外,且lz’>6mm; 3)望远系统的孔径光阑大致在物镜左右; 4)若放分划板,则分划板框为望远系统的视场光阑。
就限制轴上点的光束宽度而言,孔径光阑处于什么 位置,成像并没有区别。
图4-3 孔径光阑对轴外点光束的限制
就限制轴外点的光束宽度而言,孔径光阑位置对成 像产生较大影响。
图4-4 轴外光束的渐晕
透镜的边框起到“拦光”的作用(渐晕光阑)。
渐晕系数:
K Dw D
图4-5 光阑与光阑的像
图4-6 光阑位置示意
图4-12b 显微镜测长原理(远心光路)
L为测量物镜,当孔径光阑位于像方焦平面时,可以 矫正由于调焦不准而带来的测量误差。(棕黄色为主光 线)