数学:1.1 轴对称与轴对称图形教案3(苏科版八年级上)
数学:1.1轴对称与轴对称图形课件(苏科版八年级上)
)
■下列图形中对称轴最多的是( A.圆 B.正方形 C.角 D.线段
)
■下列图案是几种名车的标志,在这 几个图案中是轴对称图形的共有( )
雪佛兰
三菱 雪铁龙 丰田
A.1个
B.2个
C. 3个
D.4个
■下列图形是不是轴对称图形?如果 是轴对称图形的,说出对称轴的条数.
欣赏大自然风景, 说说图中的对称轴.
1.1 轴对称与轴对称图形
青州市黄楼初中
赵玲玲
教材的编写意图
教材从具体到抽象,从感性到理性,从 实践到理论,再用实践检验理论,层次分 明,循序渐进地指导学生认识自然界和日 常生活中具有轴对称性质的事物,使学生 进一步认识前面所学的平面图形的本质特 征。
教学目标
根据大纲的要求和教材的特点,结合八年级学生 的实际水平,本节课可确定如下教学目标: (1)通过观察操作,认识轴对称和轴对称图 形的特点,掌握轴对称和轴对称图形的概念。 (2)能准确判断哪些事物是轴对称图形,能找 出轴对称图形的对称轴。 (3)弄清轴对称和轴对称图形的区别和联系 (4)通过观察,培养学生的抽象思维和空间想 象能力。 (5)结合教材和联系生活实际培养学生的学 习兴趣和热爱生活的情感。
想一想
手在镜中的像有什么变化?
哪些英文字母在镜中的像与原字母一样? 哪些发生了改变?说说它们的对称性。
Hale Waihona Puke A H O VB C D E F G I J K L M N P Q R S T U W X Y Z
小结:
一:什么是轴对称,什么是轴对称图形 二:怎样画对称轴,怎样找对称点
三:生活中的轴对称和轴对称图形
说 学 说学法 法
根据学法指导自主性和差异性原则,让学 生在“观察一操作一概括一检验一应用” 的学习过程中,自主参与知识的发生、发 展、形成的过程,使学生掌握知识。
苏科版八年级数学上册《轴对称的性质》评课稿
苏科版八年级数学上册《轴对称的性质》评课稿一、课程背景与设计目的1.1 课程背景本节课是苏科版八年级数学上册的一部分,主要讲解轴对称的性质。
轴对称是一项重要的数学概念,对学生的几何思维能力和问题解决能力的培养具有重要作用。
1.2 设计目的通过本节课的学习,旨在帮助学生: - 理解轴对称的定义和性质; - 掌握判断图形是否具有轴对称性质的方法; - 进一步培养学生的几何思维和观察分析能力; - 提升学生的问题解决能力和学习兴趣。
二、教学内容及重点2.1 教学内容本节课的教学内容主要包括: - 轴对称的定义和性质; - 轴对称图形的特点和判断方法。
2.2 教学重点本节课的教学重点主要包括: - 理解轴对称的概念和性质;- 掌握判断轴对称图形的方法。
三、教学过程3.1 导入与目标呈现在课程开始前,通过提问和回顾前一节课的知识,引导学生了解平面上图形的对称性质,并提出本节课的学习目标。
3.2 概念讲解与示例演示在概念讲解环节中,首先给出轴对称的定义,即图形中存在一条直线,使得图形绕这条线旋转180度后与原来位置重合。
随后,给出一些常见的轴对称图形示例,并与学生一起讨论其性质和判断方法。
3.3 练习与巩固为了帮助学生巩固所学知识,设计一系列练习题,包括简单的判断题和具体图形的轴对称性质判断。
通过学生的主动参与和答题讨论,加深对轴对称概念的理解和应用能力。
3.4 拓展与应用在本节课的拓展环节,引导学生将轴对称的概念应用到实际生活中,例如对称的建筑物、物体和图案等。
通过观察和思考,培养学生对轴对称的敏感度和观察分析能力。
3.5 归纳与总结在课程的最后,通过与学生一起进行课堂总结,归纳轴对称的性质和判断方法。
并鼓励学生思考其他数学几何概念与轴对称的关联,拓展数学思维。
四、教学手段和教学资源4.1 教学手段本节课采用多种教学手段,包括但不限于: - 提问与回答;- 示范演示; - 组织讨论; - 学生互动。
4.2 教学资源教学资源准备包括但不限于: - 平面几何教材和教辅资料;- 课堂展示板、黑板和白板; - 学生纸和书写工具。
八年级数学苏科版上册 第二单元《 单元复习》教学设计 教案
轴对称图形复习课学习目标1、回顾和整理本章所学知识,用自己喜欢的方式进行总结和归纳,构建本章知识结构框架,使所学知识系统化。
2、进一步巩固和掌握轴对称性质和简单的轴对称图形-----线段、角、等腰三角形、等边三角形、等腰梯形的性质,并能运用这些性质解决问题。
学习重点:轴对称图形的性质,以及运用于解题教学难点:有条理地表达,熟练地运用已知结论解决问题学习过程一、知识点网络轴对称一个图形沿着某一条直线折叠,如果它能够与另一个图形______,那么就说这两个图形成轴对称。
这条直线就是______.两个图形中的对应点叫做 .轴对称图形一个图形沿着某条直线对折,如果直线两旁的部分能够完全_____ ,那么就称这个图形是轴对称图形。
轴对称与轴对称图形之间有什么区别?又有什么联系?轴对称的性质1、关于轴对称的图形全等。
2、如果两个图形成轴对称,那么对称轴是对称点连线的垂直平分线。
3、轴对称图形中,两条成轴对称的线段的“走向”只有两种可能:互相平行或它们所在直线的交点在对称轴上。
设计轴对称图案图案的对称不但要求图形对称外,有时颜色也“对称”。
线段的对称轴线段是轴对称图形,它有两条对称轴:它的垂直平分线与它本身所在的直线。
线段垂直平分线的性质线段的垂直平分线上的点到线段两端的距离相等线段垂直平分线的判定到线段两端距离相等的点,在这条线段的垂直平分线上。
角的对称轴角是轴对称图形,角平分线所在直线是它的对称轴。
角平分线的性质角平分线上的点到角的两边距离相等。
角平分线的判定角的内部到角的两边距离相等的点,在这个角的平分线上。
二、专题复习专题一 轴对称的性质【例1】如图(1)所示,△ABC 和△A ′B ′C ′关于直线MN 对称,△A ″B ″C ″和△A ′B ′C ′关于直线EF 对称. (1)画直线EF 。
(2)用全等符号写出与△ABC 全等的三角形。
(3)连接AA ′,CC ′,AA ′与直线MN 有什么位置关系?AA ′与CC ′有什么位置关系?专题二 线段的轴对称性【例2】如图,在△ABC 中, ∠ACB=900,AB 的垂直平分线交BC 于E,垂足为D,∠CAE:∠EAB=2:1,则∠B=___ .ABCABCABC图M NECB专题三 角的轴对称性如图:在中,∠B=90°,BC=18cm ,AD 是角平分线,且BD :CD=1:2,则点D 到AC 的距离是______cm.三、课堂小结本节课重点复习了以下知识点和应用 1、轴对称的概念、性质和应用。
第一章轴对称图形复习教学案(1)(苏科版八年级上)
2、轴对称图形的对称轴的条数( )
(A)只有一条 (B)2条 (C)3条 (D)至少一条
3、下列图形中,不是轴对称图形的是( )
A.两条相交直线B.线段
C.有公共端点的两条相等线段D.有公共端点的两条不相等线段
4、到三角形的三个顶点距离相等的点是( )
A.三条角平分线的交点B.三条中线的交点
1)当MN满足什么条件时,将长方形ABED以MN为折痕翻折,翻折后能使C点恰好和A点重合;
2)梯形ABMN的面积与梯形CDNM的面积相等吗?为什么?
24、已知直线 及其两侧两点A、B,如图.
(1)在直线 上求一点P,使PA=PB;
(2)在直线 上求一点Q,使 平分∠AQB.
第23题
25、在矩形ABCD中,将△ABC绕AC对折至△AEC位置,CE与AD交于点F,如图.试说明EF=DF.
18、如图,己知AB=AC,DE垂直平分AB交AC、AB于D、E两点,若AB=12cm,BC=10cm,∠A=49º,求△BCE的周长和∠EBC的度数.
19、“西气东输”是造福子孙后代的创世工程,现有两条高速公路l1、l2和两个城镇A、B(如图),准备建一个燃气控制中心站P,使中心站到两条公路距离相等,并且到两个城镇等距离,请你画出中心站的位置。(保留画图痕迹,不写画法)
7、如图,A、B是安达公路边两个新建的居民小区,某镇需在公路边增加一个公共汽车站,这个公共汽车站建在什么位置,才能使两个小区到车站的路程一样,找出汽车站的位置并说明理由。
8、点Q在∠AOB的平分线上,QA⊥OA于A,QB⊥OB于B,则AQ=____ ,理由是_____________________________________。
苏科版八年级数学教师教材分析轴对称与轴对称图形
教师教材分析记录教材版本苏教版年级八课题轴对称与轴对称图形一、本章知识概括分析:本章从现实生活中的图形入手,研究轴对称及其基本性质,并利用这些知识探索线段、角、等腰三角形等一些简单图形的轴对称性,并了解了线段的垂直平分线、角平分线的性质及等腰三角形的特征和识别,能利用轴对称进行图案设计,进而感知数学美。
由于轴对称性在现实生活中有着广泛的应用,所以,通过本章的学习也能为今后能更好的适应社会奠定基础。
二、本章内容的重点与难点:1.重点:(1)轴对称与轴对称图形的区别和联系(2)线段垂直平分线以及角平分线的应用(3)等腰三角形的性质及识别(3)动手操作,画轴对称图形。
2.难点:理解轴对称及轴对称图形的性质设计简单的轴对称图形。
三、本章教学环节的突破:1.在学习§2.1轴对称与轴对称图形时,我认为要从实际生活中的图形出发,充分利用结合学生已有的经验,并注意联系生活中的实例去区分轴对称和轴对称图形:一定要让学生理解他们的概念,有什么相同之处和不同之处,让学生清楚相同之处就是都是一条对称轴,并且这条对称轴两旁的部分都能够完全重合;不同之处是轴对称图形是指一个图形,而成轴对称的图形是指两个图形。
如果对于这两个概念理解的不透彻,就会对这两个概念产生混淆而出现理解错误,这也是§2.1中教师要重点讲解之处。
2.在学习§2.2轴对称的性质。
这节中轴对称的性质是重点,是必须让学生掌握的。
要真正理解轴对称的性质最好就是让学生多动手画图,从画图中去思考理解。
在掌握轴对称性质的同时一定让学生理解“对应点到对称轴的距离相等”与“对应线段相等”的区别。
画对称轴图形是学习的一个难点。
要突破这个难点关键是找一些特殊的对称点,例如,线段的端点,角的顶点等,然后顺次连接对称点,得到对称线段组成的图形就是对称图形。
3. §2.3设计轴对称图案。
学习本节内容时,让学生根据要求设计出优美的轴对称图形,感知对称性的特点,并培养学生的动手能力。
苏科版初中八年级数学上册第二章《轴对称图形》PPT课件
●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
(3)连接AE、BG, AE与BG平行吗?为什么? 解:(3)平行. 因为 A和E,B和G是关于直线 l 的对称点, 所以 l⊥AE ,l⊥BG. 所以 AE ∥BG.
●A
l E●
C●
● D H●
●F
●B
G●
2.2 轴对称的性质(1)
所以 线段OA、OA′重合,
即
O是AA′的中点.
因为 ∠1=∠2 且 ∠1+∠2=180°,
所以 ∠1=∠2=90°.
所以 l 垂直且平分AA′.
2.2 轴对称的性质(1)
垂直并且平分一条线段的直线,叫做这条线段的垂 直平分线(midpoint perpendicular).
如图,直线 l 交线段AB于点O, ∠1=90°,AO=BO,
(1) (3)
(2) (4)
2.2 轴对称的性质(1)
活动一:
如图所示,把一张纸折叠后,用针扎一个孔;
再把纸展开,两针孔分别记为点A、点A′,折
痕记为l ;连接AA′,AA′与l相交于点O .
你有什么发现 (小组交流)?
l
●
l
AO
A′
●
●
2.2 轴对称的性质(1)
l
12
A●
o
● A′
因为 把纸沿折痕 l 折叠时,点A、A′重合,
3.轴对称图形中的对称线段所在直线的交点在对称 轴上或对称线段所在直线互相平行.
2.2 轴对称的性质(2)
思考:
如图,点A、B、 C都在方格纸的格点上, 请你再找一个格点D, 使点A、B、C、D组成 一个轴对称图形.
八(上)数学第2章《轴对称图形》教案(含答案)
八(上)数学第2章《轴对称图形》教案(含答案)一.轴对称图形二.镜面对称三.轴对称的性质四.作图-轴对称变换五.翻折变换(折叠问题)六.利用轴对称设计图案七.角平分线的性质八.线段垂直平分线的性质九.等腰三角形的性质十.等腰三角形的判定十一.等腰三角形的判定与性质十二.等边三角形的性质十三.等边三角形的判定十四.等边三角形的判定与性质十五.含30度角的直角三角形十六.直角三角形斜边上的中线一.轴对称图形(共6小题)(1)轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.(2)轴对称图形是针对一个图形而言的,轴对称图形的对称轴可以是一条,也可以是多条甚至无数条.(3)常见的轴对称图形:等腰三角形,矩形,正方形,等腰梯形,圆等等.1.下列图形中,不是轴对称图形的是()A.B.C.D.2.下列银行的标识中,是轴对称图形的是()A.中国建设银行B.招商银行C.交通银行D.中国农业银行3.下列四个图形中,是轴对称图形的有()A.4个B.3个C.2个D.1个4.线段、正三角形,平行四边形、菱形中,只是轴对称图形的是.5.平行四边形,长方形,等边三角形,半圆这几个几何图形中,对称轴最多的是.6.如图,3×3方格图中,将其中一个小方格的中心画上半径相等的圆,使整个图形为轴对称图形,这样的轴对称图形共有个.二.镜面对称(共4小题)1、镜面实质上是无数对对应点的对称,连接对应点的线段与镜面垂直并且被镜面平分,即镜面上有每一对对应点的对称轴.2、关于镜面问题动手实验是最好的办法:写在透明纸上,从反面看到的结果就是镜面反射的结果.1.如图,课间休息时,小新将镜子放在桌面上,无意间看到镜子中有一串数字,原来是桌旁墙面上张贴的同学手机号码中的几个数字,请问镜子中的数字对应的实际数字是.2.如图,从镜子中看到一钟表的时针和分针,此时的实际时刻是.3.开车时,从后视镜中看到后面一辆汽车车牌号的后四位数是“”,则该车号牌的后四位应该是.4.室内墙壁上挂一平面镜,小明在平面镜内看到他背后墙上时钟的示数如图所示,则这时的实际时间应是()A.3:20B.3:40C.4:40D.8:20三.轴对称的性质(共10小题)(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.1.下列说法错误的是()A.关于某直线成轴对称的两个图形一定能完全重合B.线段是轴对称图形C.全等的两个三角形一定关于某直线成轴对称D.轴对称图形的对称轴至少有一条2.如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G 在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.3.如图,在Rt△ABC中,∠BAC=90°,∠B=50°,AD⊥BC,垂足为D,△ADB与△ADB'关于直线AD对称,点B的对称点是点B',则∠CAB'的度数为()A.10°B.20°C.30°D.40°4.如图,△ABC和△ADE关于直线l对称,已知AB=15,DE=10,∠D=70°.求∠B的度数及BC、AD的长度.5.如图,△ABC与△DEF关于直线l对称,BE交l于点O,则下列说法不一定正确的是()A.AC=DF B.BO=EO C.AD⊥l D.AB∥EF第5题第6题第7题第8题6.如图,在3×3的网格中,与△ABC成轴对称,顶点在格点上,且位置不同的三角形有()A.5个B.6个C.7个D.8个7.如图,P为∠AOB内一点,分别画出点P关于OA,OB的对称点P1,P2,连接P1P2.交OA于点M,交OB于点N.若P1P2=5cm,则△PMN的周长为.8.如图,在△ABC中,∠A=45°,∠B=60°,AB=4,P是BC边上的动点(不与B,C重合),点P关于直线AB,AC的对称点分别为M,N,则线段MN长的取值范围是.9.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD=°;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则△PMN的周长为.10.如图,分别以△ABC的边AB,AC所在直线为对称轴作△ABC的对称图形△ABD和△ACE,∠BAC=150°,线段BD与CE相交于点O,连接BE、ED、DC、OA,有如下结论:①∠EAD=90°;②∠BOE=60°;③OA 平分∠BOC;其中正确的结论个数是()A.0个B.3个C.2个D.1个四.作图-轴对称变换(共6小题)几何图形都可看做是由点组成,我们在画一个图形的轴对称图形时,也是先从确定一些特殊的对称点开始的,一般的方法是:①由已知点出发向所给直线作垂线,并确定垂足;②直线的另一侧,以垂足为一端点,作一条线段使之等于已知点和垂足之间的线段的长,得到线段的另一端点,即为对称点;③连接这些对称点,就得到原图形的轴对称图形.1.如图,在平面直角坐标系中,A(2,4),B(3,1),C(﹣2,﹣1).(1)在图中作出△ABC关于x轴的对称图形△A1B1C1,并写出点A1,B1,C1的坐标;(2)求△ABC的面积.2.已知,在10×10网格中建立如图所示的平面直角坐标系,△ABC是格点三角形(三角形的顶点是网格线的交点).(1)画出△ABC关于y轴对称的△A1B1C1;(2)画出△A1B1C1向下平移5个单位长度得到的△A2B2C2;(3)若点B的坐标为(4,2),请写出点B经过两次图形变换的对应点B2的坐标.3.如图,方格纸上每个小正方形的边长均为1个单位长度,点A、B都在格点上(两条网格线的交点叫格点).(1)作出三角形ABC关于直线MN对称的三角形A1B1C1.(2)说明三角形A2B2C2可以由三角形A1B1C1经过怎样的变换而得到?(要说明变换过程)4.已知:如图,方格图中每个小正方形的边长为1,点A、B、C、M、N都在格点上.(1)画出△ABC关于直线MN对称的△A1B1C1.(2)在直线MN上找点P,使|PB﹣P A|最大,在图形上画出点P的位置,并直接写出|PB﹣P A|的最大值.5.△ABC在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为1个单位长度.△ABC关于y轴对称图形为△A1B1C1,画出△A1B1C1.6.在平面直角坐标系xOy中,△ABC的位置如图所示.(1)顶点A关于x轴对称的点的坐标A'(,),顶点C先向右平移3个单位,再向下平移2个单位后的坐标C'(,);(2)将△ABC的纵坐标保持不变,横坐标分别乘﹣1得△DEF,请你直接画出图形;(3)在平面直角坐标系xOy中有一点P,使得△ABC与△PBC全等,这样的P点有个.(A点除外)五.翻折变换(折叠问题)(共8小题)1、翻折变换(折叠问题)实质上就是轴对称变换.2、折叠的性质:折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.1.将一张长方形纸片按如图所示折叠,如果∠1=65°,那么∠2等于.2.如图,E是AB边上的中点,将△ABC沿过E的直线折叠,使点A落在BC上F处,折痕交边AC于点D,若△ABC的周长为8,则△DEF的周长等于()A.4+B.8C.4D.6第2题第3题第4题3.将一张长方形纸条折成如图所示的形状,BC为折痕,若∠DBA=80°,则∠ABC等于()A.40°B.50°C.60°D.70°4.如图,将矩形纸条ABCD折叠,折痕为EF,折叠后点C,D分别落在点C′,D′处,D′E与BF交于点G.已知∠BGD′=30°,则∠α的度数是()A.30°B.45°C.74°D.75°5.如图1,在长方形纸片ABCD中,E点在边AD上,F、G分别在边AB、CD上,分别以EF、EG为折痕进行折叠并压平,点A、D的对应点分别是点A′和点D′,若ED′平分∠FEG,且ED′在∠A′EF内部,如图2,设∠A′ED'=n°,则∠FEG的度数为(用含n的代数式表示).32.如图,图①是一个四边形纸条ABCD,其中AB∥CD,E,F分别为边AB,CD上的两点,且∠BEF=27°,将纸条ABCD沿EF所在的直线折叠得到图②,再将图②中的四边形BCFM沿DF所在直线折叠得到图③,则图③中∠EFC的度数为.6.如图已知,把一张长方形纸片ABCD沿EF折叠后ED与BC的交点为G,D、C分别在M、N的位置上.有下列结论:①EF平分∠MED;②∠2=2∠3;③∠1+∠3=90°;④∠1+2∠3=180°其中一定正确的结论有.(填序号)7.如图,∠ACB=90°,AC=6,BC=8,将边AC沿CE翻折,使点A落在AB上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则线段B′F的长为()A.B.C.D.六.利用轴对称设计图案(共6小题)利用轴对称设计图案关键是要熟悉轴对称的性质,利用轴对称的作图方法来作图,通过变换对称轴来得到不同的图案.1.如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是.2.如图,在等边三角形网格中,已有两个小等边三角形被涂黑,若再将图中其余小等边三角形涂黑一个,使涂色部分构成一个轴对称图形,则有种不同的涂法.3.如图所示,在4×4的正方形网格中,我们称每个小正方形的顶点为“格点”,以格点为顶点的三角形叫做“格点三角形”.△ABC是一个格点三角形,请你在图1,图2,图3中分别画出一个与△ABC成轴对称的格点三角形,并将所画三角形涂上阴影.(注:所画的三个图不能重复.)4.如图所示的图形是一个轴对称图形,且每个角都是直角,小明用n个这样的图形,按照如图(2)所示的方法玩拼图游戏,两两相扣,相互间不留空隙.(1)用含a、b的式子表示c;(2)当n=2时,求小明拼出来的图形总长度;(用含a、b的式子表示)(3)当a=4,b=3时,小明用n个这样的图形拼出来的图形总长度为28,求n的值.5.如图,是由4×4个大小完在一样的小正方形组成的方格纸,其中有两个小正方形是涂黑的,请再选择三个小正方形并涂黑,使图中涂黑的部分成为轴对称图形.并画出它的一条对称轴(如图例.画对一个得1分)6.如图,在4×4正方形网格中,将图中的2个小正方形涂上阴影,若再从其余小正方形中任选一个也涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么符合条件的小正方形共有()A.7个B.8个C.9个D.10个七.角平分线的性质(共11小题)角平分线的性质:角的平分线上的点到角的两边的距离相等.注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE1.在正方形网格中,∠AOB的位置如图所示,则点P、Q、M、N中在∠AOB的平分线上是()A.P点B.Q点C.M点D.N点第1题第2题第3题第4题2.如图,在△ABC中,∠ACB的外角平分线与∠ABC的外角平分线相交于点D.则下列结论正确的是()A.AD平分BC B.AD平分∠CAB C.AD平分∠CDB D.AD⊥BC3.如图,AD∥BC,∠ABC的平分线BP与∠BAD的平分线AP相交于点P,作PE⊥AB于点E,若PE=2.5,则两平行线AD与BC间的距离为()A.3B.4C.5D.64.已知:DA平分∠CAB,DB平分∠ABC,DE⊥AB于点E,△ABC的周长是12,面积是6,则DE的长是.5.如图,△ABC中,∠ACB=90°,AB=10cm,BC=6cm,若点P从点A出发以每秒1cm的速度向点C运动,设运动时间为t秒(t>0).(1)若点P恰好在∠ABC的角平分线上,求出此时t的值;(2)若点P使得PB+PC=AC时,求出此时t的值.6.已知:如图,BP、CP分别是△ABC的外角平分线,PM⊥AB于点M,PN⊥AC于点N.求证:P A平分∠MAN.7.如图,△ABC中,AB=2.5cm,AC=6cm,BC=6.5cm,∠ABC与∠ACB的角平分线相交于点P,过点P作PD ⊥BC,垂足为点D,则线段PD的长为cm.8.如图,△AOB的外角∠CAB,∠DBA的平分线AP,BP相交于点P,PE⊥OC于E,PF⊥OD于F,下列结论:(1)PE=PF;(2)点P在∠COD的平分线上;(3)∠APB=90°﹣∠O,其中正确的有()A.0个B.1个C.2个D.3个9.如图,在Rt△ABC中,∠C=90°,AD是∠BAC的平分线,若AC=3,BC=4,则S△ABD:S△ACD为()A.5:4B.5:3C.4:3D.3:410.如图,AB∥CD,BE和CE分别平分∠ABC和∠BCD,AD过点E,且与AB互相垂直,点P为线段BC上一动点,连接PE.若AD=8,则PE的最小值为()A.8B.6C.5D.411.在△ABC中,∠ABC与∠ACB的平分线相交于点P.(1)如图①,若∠BPC=α,则∠A=;(用α的代数式表示,请直接写出结论)(2)如图②,作△ABC外角∠MBC、∠NCB的角平分线交于点Q,试探究∠Q与∠BPC之间的数量关系,并说明理由;(3)如图③,延长线段CP、QB交于点E,△CQE中,存在一个内角等于另一个内角的2倍,求∠A的度数.八.线段垂直平分线的性质(共12小题)(1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.(2)性质:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.1.如图,点E,F,G,Q,H在一条直线上,且EF=GH,我们知道按如图所作的直线l为线段FG的垂直平分线.下列说法正确的是()A.l是线段EH的垂直平分线B.l是线段EQ的垂直平分线C.l是线段FH的垂直平分线D.EH是l的垂直平分线2.若P是△ABC所在平面内的点,且P A=PB=PC,则下列说法正确的是()A.点P是△ABC三边垂直平分线的交点B.点P是△ABC三条角平分线的交点C.点P是△ABC三边上高的交点D.点P是△ABC三边中线的交点3.在正方形网格中,△ABC的位置如图所示,且顶点在格点上,在△ABC内部有E、F、G、H四个格点,到△ABC 三个顶点距离相等的点是()A.点E B.点F C.点G D.点H第3题第4题第5题4.如图,在△ABC中,AC=10,AB的垂直平分线交AB于点M,交AC于点D,△BDC的周长为18,则BC的长为()A.4B.6C.8D.105.如图,在△ABC中,DE是边AB的垂直平分线,垂足为E,交BC边于D点,若AC=5cm,△ADC的周长为17cm,则BC的长为()A.7cm B.10cm C.12cm D.22cm6.如图,在△ABC中,∠BAC=80°,AB边的垂直平分线交AB于点D,交BC于点E,AC边的垂直平分线交AC 于点F,交BC于点G,连接AE,AG.则∠EAG的度数为()A.15°B.20°C.25°D.30°7.如图,在△ABC中,BD平分∠ABC,BC的垂直平分线交BD于点E,连接CE,若∠A=60°,∠ACE=24°,则∠ABE的度数为()A.24°B.30°C.32°D.48°8.如图,在直角△ABC中,已知∠ACB=90°,AB边的垂直平分线交AB于点E,交BC于点D,且∠BAD=15°,BD=18cm,则AC的长是cm.9.如图,△ABC中,∠ABC=30°,∠ACB=50°,DE、FG分别为AB、AC的垂直平分线,E、G分别为垂足.(1)直接写出∠BAC的度数;(2)求∠DAF的度数,并注明推导依据;(3)若△DAF的周长为20,求BC的长.10.已知如图,点A、点B在直线l异侧,以点A为圆心,AB长为半径作弧交直线l于C、D两点.分别以C、D 为圆心,AB长为半径作弧,两弧在l下方交于点E,连结AE.(1)根据题意,利用直尺和圆规补全图形;(2)证明:l垂直平分AE.11.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.12.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=.九.等腰三角形的性质(共6小题)(1)等腰三角形的概念:有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.1.如果等腰三角形两边长是4cm和8cm,那么它的周长是()A.16 cm B.20cm C.21 cm D.16或20cm2.如图,为了让电线杆垂直于地面,工程人员的操作方法通常是:从电线杆DE上一点A往地面拉两条长度相等的固定绳AB与AC,当固定点B,C到杆脚E的距离相等,且B,E,C在同一直线上时,电线杆DE就垂直于BC.工程人员这种操作方法的依据是()A.等边对等角B.垂线段最短C.等腰三角形“三线合一”D.线段垂直平分线上的点到这条线段两端点的距离相等3.等腰三角形的两边长分别为a、b,且a、b满足|2a﹣3b﹣7|+(2a+3b﹣13)2=0,等腰三角形的周长为()A.7B.11或7C.11D.7或104.如图,△ABC是等腰三角形,点O是底边BC上任意一点,OE、OF分别与两边垂直,等腰三角形的腰长为6,面积为15,则OE+OF的值为()A.5B.7.5C.9D.105.已知,等腰三角形的一边是3,另一边是方程+=1的解,则这个三角形的周长是()A.10B.11C.10或11D.7或86.如果等腰三角形的一个内角为50°,那么其它两个内角为()A.50°,80°B.65°,65°C.50°,65°D.50°,80°或65°,65°十.等腰三角形的判定(共11小题)判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等.【简称:等角对等边】说明:①等腰三角形是一个轴对称图形,它的定义既作为性质,又可作为判定办法.②等腰三角形的判定和性质互逆;③在判定定理的证明中,可以作未来底边的高线也可以作未来顶角的角平分线,但不能作未来底边的中线;④判定定理在同一个三角形中才能适用.1.如图所示的方格纸中,每个方格均为边长为1的小正方形,我们把每个小正方形的顶点称为格点,现已知A、B、C、D都是格点,则下列结论中正确的是()A.△ABC、△ABD都是等腰三角形B.△ABC、△ABD都不是等腰三角形C.△ABC是等腰三角形,△ABD不是等腰三角形D.△ABC不是等腰三角形,△ABD是等腰三角形2.如图,在△ABC中,∠BAC=120°,∠B=40°,边AB的垂直平分线与边AB交于点E,与边BC交于点D.(1)求∠ADC的度数;(2)求证:△ACD为等腰三角形.3.如图,在△ABC中,AB=AC=8,AB的垂直平分线交AB于点D,交AC于点E.(1)若BE﹣EC=2,求CE的长;(2)若∠A=36o,求证:△BEC是等腰三角形.4.下面叙述不可能是等腰三角形的是()A.有两个内角分别为75°,75°的三角形B.有两个内角分别为110°和40°的三角形C.有一个外角为100°,一个内角为50°的三角形D.有一个外角为140°,一个内角为100°的三角形5.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数不可能为()A.120°B.75°C.60°D.30°35.在证明等腰三角形的判定定理“等角对等边”,即“如图,已知:∠B=∠C,求证:AB=AC”时,小明作了如下的辅助线,下列对辅助线的描述正确的有()①作∠BAC的平分线AD交BC于点D②取BC边的中点D,连接AD③过点A作AD⊥BC,垂足为点D④作BC边的垂直平分线AD,交BC于点DA.1个B.2个C.3个D.4个36.Rt△ABC中,∠ACB=90°,∠A=60°,在直线BC上取一点P使得△P AB是等腰三角形,则符合条件的点P 有个.37.如图,在△ABC中,AB=AC,点D是BC边上的中点,G是AC边上一点,过G作EF⊥BC,交BC于点E,交BA的延长线于点F.(1)求证:AD∥EF;(2)求证:△AFG是等腰三角形.38.如图是5×5的正方形方格图,点A,B在小方格的顶点上,要在小方格的项点确定一点C,连接AC和BC,使△ABC是等腰三角形,则方格图中满足条件的点C的个数是()A.4B.5C.6D.739.如图,关于△ABC,给出下列四组条件:①△ABC中,AB=AC;②△ABC中,∠B=56°,∠BAC=68°;③△ABC中,AD⊥BC,AD平分∠BAC;④△ABC中,AD⊥BC,AD平分边BC.其中,能判定△ABC是等腰三角形的条件共有()A.1组B.2组C.3组D.4组40.如图,已知∠MON,在边ON上顺次取点P1,P3,P5…,在边OM上顺次取点P2,P4,P6…,使得OP1=P1P2=P2P3=P3P4=P4P5…,得到等腰△OP1P2,△P1P2P3,△P2P3P4,△P3P4P5…(1)若∠MON=30°,可以得到的最后一个等腰三角形是;(2)若按照上述方式操作,得到的最后一个等腰三角形是△P3P4P5,则∠MON的度数α的取值范围是.十一.等腰三角形的判定与性质(共15小题)1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线【“三线合一”】,3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.1.用一条长为18的绳子围成一个等腰三角形.(1)若等腰三角形有一条边长为4,它的其它两边是多少?(2)若等腰三角形的三边长都为整数,请直接写出所有能围成的等腰三角形的腰长.2.在Rt△ABC中,∠ACB=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多可画几个?()A.9个B.7个C.6个D.5个3.如图,△ABC是等腰三角形,AB=AC,∠A=20°,BP平分∠ABC;点D是射线BP上一点,如果点D满足△BCD是等腰三角形,那么∠BDC的度数是.4.如图,点G在CA的延长线上,AF=AG,AD⊥BC,GE⊥BC.求证:AD平分∠BAC.证明:∵AF=AG(已知),∴∠AGF=∠AFG().∵AD⊥BC,GE⊥BC(已知),∴∠ADC=∠GEC=90°().∴AD∥GE().∴∠CAD=(两直线平行,同位角相等).∠BAD=∠AFG().∴∠CAD=∠BAD(等量代换).∴AD平分∠BAC().5.如图,在△ABC中,AB=AC,D是BC边上的中点,连结AD,BE平分∠ABC交AC于点E,过点E作EF∥BC 交AB于点F.(1)若∠C=36°,求∠BAD的度数.(2)求证:FB=FE.6.如图,在△ABC中,AB=AC,BO、CO分别平分∠ABC、∠ACB,DE经过点O,且DE∥BC,DE分别交AB、AC于D、E,则图中等腰三角形的个数为()A.2B.3C.4D.57.如图,△ABC中,∠ABC与∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论,其中正确的有()①△BDF是等腰三角形;②DE=BD+CE;③若∠A=50°,则∠BFC=115°;④DF=EF.A.1个B.2个C.3个D.4个8.如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D,点E是AB的中点,连结DE.(1)求证:△ABD是等腰三角形;(2)求∠BDE的度数.9.如图,在△ABC中,AB=AC,BD平分∠ABC交AC于点D,BE⊥BD,DE∥BC,BE与DE交于点E,DE交AB于点F.(1)若∠A=56°,求∠E的度数;(2)求证:BF=EF.10.(1)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作EF∥BC交AB、AC于点E、F,试猜想EF、BE、CF之间有怎样的关系,并说明理由;(2)如图,若将图①中∠ACB的平分线改为外角∠ACD的平分线,其它条件不变,请直接写出EF、BE、CF 之间的关系.11.如图,在△ABC中,AB=AC,∠BAC=36°,BD是∠ABC的平分线,交AC于点D,E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF,求证:(1)EF⊥AB;(2)△ACF为等腰三角形.12.如图,在四边形ABCD中,AB∥CD,∠ABC的平分线交CD的延长线于点E,F是BE的中点,连接CF并延长交AD于点G.(1)求证:CG平分∠BCD.(2)若∠ADE=110°,∠ABC=52°,求∠CGD的度数.13.在△ABC中,点E,点F分别是边AC,AB上的点,且AE=AF,连接BE,CF交于点D,∠ABE=∠ACF.(1)求证:△BCD是等腰三角形.(2)若∠A=40°,BC=BD,求∠BEC的度数.14.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.15.如图,△ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?十二.等边三角形的性质(共7小题)(1)等边三角形的定义:三条边都相等的三角形叫做等边三角形,等边三角形是特殊的等腰三角形.①它可以作为判定一个三角形是否为等边三角形的方法;②可以得到它与等腰三角形的关系:等边三角形是等腰三角形的特殊情况.(2)等边三角形的性质:等边三角形的三个内角都相等,且都等于60°.等边三角形是轴对称图形,它有三条对称轴;它的任意一角的平分线都垂直平分对边,三边的垂直平分线是对称轴.1.如图,在△ABC中,点D,E在边上,DE∥BC,若△ADE是等边三角形,AD=2,BD=3,则△ABC的周长为()A.6B.9C.15D.182.如图,已知等边△ABC的周长是12,点P是三角形内的任意一点,PD∥AB,PE∥BC,PF∥AC,则PD+PE+PF 的值是()A.12B.8C.4D.33.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.第3题第4题第5题4.如图,在四边形ABCD中,AB=BC=CD,∠ABC=160°,∠BCD=80°,△PDC为等边三角形,则∠ADC的度数为()A.70°B.75°C.80°D.85°5.如图,在Rt△ABC中,∠ACB=90°,AB=4,以AC为边在△ABC外作等边三角形△ACD,连接BD.则BD 的最大值是.6.如图,△ABC是等边三角形,BC=BD,∠BAD=20°,则∠BCD的度数为()A.50°B.55°C.60°D.65°7.如图,在等边△ABC中,BD=2DC,DE⊥BE,CE,AD相交于点P,则()A.AP>AE>EP B.AE>AP>EP C.AP>EP>AE D.EP>AE>AP十三.等边三角形的判定(共9小题)(1)由定义判定:三条边都相等的三角形是等边三角形.(2)判定定理1:三个角都相等的三角形是等边三角形.(3)判定定理2:有一个角是60°的等腰三角形是等边三角形.说明:若已知或能求得三边相等则用定义来判定;若已知或能求得三个角相等则用判定定理1来证明;若已知等腰三角形且有一个角为60°,则用判定定理2来证明.1.如图,在△ABC中,∠A=120°,AB=AC,D是BC的中点,DE⊥AB,DF⊥AC,点E,F为垂足,求证:△DEF是等边三角形.2.如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连结BD,则△ABD是三角形.3.已知,在△ABC中,AB=AC,如图,(1)分别以B,C为圆心,BC长为半径作弧,两弧交于点D;(2)作射线AD,连接BD,CD.根据以上作图过程及所作图形,下列结论中错误的是()A.∠BAD=∠CAD B.△BCD是等边三角形C.AD垂直平分BC D.S四边形ABDC=AD•BC4.下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有(填序号).5.已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.6.如果三角形的三边a、b、c适合(a2﹣2ac)(b﹣a)=c2(a﹣b),则a、b、c之间满足的关系是;有同学分析后判断△ABC是等边三角形,你的判断是.7.下列三角形:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个外角(每个顶点处各取一个外角)都相等的三角形;④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有()A.①②③④B.①②④C.①③D.②③④8.等边△ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ,问△APQ是什么形状的三角形?试说明你的结论.9.如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C顺时针旋转60°得△ADC,。
苏科版数学八年级上册 2.2 轴对称的性质 教案
第一章轴对称图形轴对称和轴对称图形班级姓名学号教学目标:1、认识轴对称与轴对称图形;2、会画出对称轴,找出对称点;3、能设计简单轴对称图案、标志;教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、情境创设:活动一:将一张矩形的纸对折,用针在纸上扎出简单的图形或数字,将纸打开铺平.仔细观察回答下列问题:1.纸上的图案有什么关系?2.找出图形中的两组对应点,并连接,看看你连接的的线段与对称轴之间有什么关系?3.在扎字中的对应线段,对应角又有什么样的关系?由此可得:把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中的对应点叫做对称点做一做1用一张半透明的纸描出图所示的星形图,然后用不同的方式对折,用直尺画出折痕,看看这颗星有多少条对称轴.做一做2请你标出图中A、B、C三点的对称点A1、B1、C1.我们再看图中的两组图形.试一试把一张纸对折,然后从折叠处剪出一个图形,想一想展开后会是一个什么样的图形?观察图10.1.1中的各个图形,它们都是对称图形.这些图形有什么特点呢?如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.图10.1.1轴对称与轴对称图形的区别与联系.区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合.联系:两部分都完全重合,都有对称轴,都有对称点.二、例题示范:例1 下列汉字,如果用一样粗细的笔写出来,哪些是轴对称图形?是轴对称图形的,有几条对称轴?大小口中朋木三、课堂小结:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形.四、课后作业:P9 1,2,3五、教学后记:【课后作业】1.下列图形中一定是轴对称图形的是()A、梯形B、直角三角形C、角D、平行四边形2.观察下列各种图形,判断是不是轴对称图形.3、下列图形中,哪一些是轴对称图形?哪一些不是轴对称图形?如果是轴对称图形,请画出对称轴.(1)(2)(3)4、图中三角形4与哪些三角形成轴对称?整个图形中有几条对称轴?5、 下面图形中,哪些是轴对称图形,哪些不是轴对称图形?6、下面哪一个选项的右边图形与左边图形成轴对称?A.B. C.7、在图形中标出点A 、B 和C 关于直线l 的对称点.8、右图是从镜中看到的一串数字,这串数字应为 .8题)。
初中数学轴对称教案
初中数学轴对称教案初中数学轴对称教案作为一名默默奉献的教育工作者,就有可能用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。
那么教案应该怎么写才合适呢?下面是小编收集整理的初中数学轴对称教案,欢迎大家借鉴与参考,希望对大家有所帮助。
初中数学轴对称教案1教学目标:1、认识对称现象,初步理解对称轴和轴对称图形的含义,掌握判断一个图形是否是轴对称图形的方法。
2、经历观察、操作、想象、交流等活动,感知现实世界中普遍存在的对称现象,发展空间观念。
3、体验到生活中处处有数学,获得成功的喜悦,培养学生的探究精神和美感。
教学重点:认识对称现象和轴对称图形的特点。
教学难点:掌握识别轴对称图形的方法。
教具准备:多媒体课件、实物图片等。
教学过程:一、谈话引入,激发兴趣1、说说在游乐场喜欢玩的项目,出示主题图,引导学生观察。
2、从蝴蝶形状的风筝引出“对称”二、合作探究,学习新知(一)观察图形,认识对称1、观察几幅对称图形,引导学生感悟对称。
2、说一说生活中的对称现象(二)动手操作,认识轴对称图形1、猜一猜:出示几幅轴对称图形,猜一猜它们是怎么来的。
2、动手操作,剪出轴对称图形(1)师示范剪一件上衣的过程:折一折、画一画、剪一剪。
(2)生动手剪出自己喜欢的轴对称图形。
(3)交流展示学生的作品3、认识对称轴(1)看一看,摸一摸,说一说(2)画一画:师示范画出对称轴,然后学生自己画,再交流。
4、初步理解轴对称图形(1)说一说轴对称图形的特点,初步理解轴对称图形。
(2)议一议:讨论判断轴对称图形的方法(对折后完全重合才是轴对称图形)。
(3)举一举身边的轴对称图形的例子。
三、巩固练习,拓展延伸1、判一判:哪些是轴对称图形。
2、猜一猜:出示轴对称图形的一半,猜出它是什么图形。
3、折一折、画一画、数一数:长方形、正方形、圆形各有几条对称轴。
四、课堂总结通过这节课的学习,你有什么收获?五、欣赏轴对称图形的美丽初中数学轴对称教案2教学目标:1.知识目标:使学生通过观察、操作,初步认识轴对称现象,并能在方格纸上画出简单的轴对称图形。
轴对称图形教案设计(精选13篇)
轴对称图形教案设计(精选13篇)轴对称图形教案设计第1篇教学目标知道轴对称物体及轴对称图形,明了轴对称图形的概念。
能判断已知图形是否是轴对称图形,会判断常用的平面图形是不是轴对称图形,并能找出有几条对称轴。
通过操作,培养学生的动手操作能力,向学生渗透美的教育。
教学重点轴对称图形的意义及会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。
教学难点会判断哪些图形是轴对称图形,并能找出常用平面图形的对称轴。
教学方法课前准备自主学习式;小黑板、投影片教学设计思路一、实物导入由轴对称物体向轴对称图形过渡。
举例:生活中的轴对称物体和常见的轴对称图形。
揭示轴对称图形的概念,特点及判断方法。
二、寻找对称轴1、出示一组图形,判断是否是轴对称图形。
通过操作寻找对称轴。
2、学生动手操作,寻找常用平面图形的对称轴。
三、巩固练习出示图形进行判断,并找对称轴。
轴对称图形教案设计第2篇课题:复习圆、轴对称图形,数学教案-复习圆、轴对称图形。
教学目标:1、使学生进一步掌握相关图形的特征及运算。
2、使学生的空间观念和想象能力得到培养。
教学重点:公式及计算。
教学难点:技能技巧。
教具准备:小黑板幻灯机教学过程一、基本训练:1、口算:在听算本上听算《口算卡片》(38)。
(1)统计3分钟以内做完的同学加以表扬,然后指名报答案。
(2)全班统一核对,老师选重点点拨,集体订正。
2、口答:指名回答上一节课所学知识。
解答百分数应用题应该注意什么?二、进行新课:1、复习圆的概念。
设计如下问题:(1)圆的圆心是如何确定的?(2)什么是半径、直径,同一个圆的半径和直径有什么关系?(3)不同的圆有不同的圆周率吗?(4)什么是圆的周长?什么是圆的面积?2、复习圆的周长和面积的计算:(1)做143页的第11题。
(2)集体讲评,让学生说一说圆周长的计算公式及面积的计算公式。
(3)教师和学生一起回忆公式推导过程,小学数学教案《数学教案-复习圆、轴对称图形》。
苏科版数学八年级上册2.1《轴对称与轴对称图形》说课稿
苏科版数学八年级上册2.1《轴对称与轴对称图形》说课稿一. 教材分析苏科版数学八年级上册2.1《轴对称与轴对称图形》这一节的内容,是在学生已经掌握了平面几何的基本知识的基础上进行讲解的。
本节内容主要让学生了解轴对称的概念,理解轴对称图形的性质,并能运用轴对称的知识解决一些实际问题。
教材通过丰富的实例,引导学生探索轴对称图形的性质,从而培养学生的观察能力、思考能力和解决问题的能力。
二. 学情分析八年级的学生已经具备了一定的几何知识,对平面几何的基本概念和性质有一定的了解。
但是,对于轴对称的概念和性质,他们可能还比较陌生。
因此,在教学过程中,我需要从学生的实际出发,通过生动的实例和直观的图形,引导学生理解和掌握轴对称的概念和性质。
三. 说教学目标1.知识与技能目标:让学生了解轴对称的概念,理解轴对称图形的性质,并能运用轴对称的知识解决一些实际问题。
2.过程与方法目标:通过观察、思考、交流和总结,培养学生的观察能力、思考能力和解决问题的能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作意识和勇于探索的精神。
四. 说教学重难点1.教学重点:轴对称的概念,轴对称图形的性质。
2.教学难点:轴对称图形的性质的运用,解决实际问题。
五. 说教学方法与手段1.教学方法:采用问题驱动法、讨论法、实例教学法等。
2.教学手段:利用多媒体课件,展示直观的图形和实例,帮助学生理解和掌握轴对称的概念和性质。
六. 说教学过程1.导入新课:通过一个生活中的实例,引导学生思考和探索轴对称的概念。
2.讲解与演示:讲解轴对称的概念,并通过多媒体课件展示直观的图形和实例,让学生理解和掌握轴对称的概念。
3.探索与交流:引导学生通过小组合作,探索轴对称图形的性质,并通过交流和讨论,总结出轴对称图形的性质。
4.巩固与拓展:通过一些练习题,让学生运用轴对称的知识解决实际问题,巩固所学知识,并拓展学生的思维。
5.小结与反思:让学生总结本节课所学的知识,反思自己的学习过程,发现问题,提高自己。
苏科版初中数学八年级上册精品教案第一章 轴对称图形
义务教育基础课程初中教学资料第一章轴对称图形1.1 轴对称和轴对称图形教学目标:1、经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念;2、能够认识轴对称和轴对称图形,并能找出对称轴;3、知道轴对称和轴对称图形的区别和联系;4、欣赏现实生活中的轴对称图形,体会轴对称在现实生活中的广泛应用和它的丰富的文化价值。
教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、创设情境:动手操作:用一张正方形的纸片,二、新课讲解:1、观察、思考:(投影片)P4 4幅图,观察下列四幅图形,你能发现它们有什么共同特征,说出来与同学交流。
如果把一个图形沿着某一条直线折叠后,能够与另一个图形重合,那么这两个图形关于这条直线成轴对称这条直线叫做对称轴,两个图形中的对应点叫做对称点。
2、动手试一试:观察课本第4页几幅图中,画出它们对称轴。
3、探索思考:如果把一个图形沿着一条直线折叠,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
动手画出第5页几幅图片的对称轴。
说说你所熟悉的图形是否是轴对称图形,对称轴是什么?与同学讨论、交流,同小组互相补充。
轴对称图形:圆、正方形、长方形、菱形、等腰梯级、等腰三角形、角、线段等。
学生口述对称轴的位置。
4、讨论、交流:轴对称与轴对称图形的区别与联系。
区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合。
联系:两部分都完全重合,都有对称轴,都有对称点。
5、观察、思考:镜像特征:哪些字母在镜中的像与原字母一样?哪些发生了改变?说说它们的对称轴;手在镜中的像有什么变化?说说生活中的轴对称和轴对称图形。
6、欣赏大自然风景(倒影)并说说它们的对称轴的位置。
三、课堂练习:1、P1 22、动手制作一轴对称标志(校运会)四、本节课的收获:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形。
苏科版数学八年级上册2.4《线段、角的轴对称性》教学设计1
苏科版数学八年级上册2.4《线段、角的轴对称性》教学设计1一. 教材分析苏科版数学八年级上册2.4《线段、角的轴对称性》是学生在学习了轴对称的概念和性质的基础上进一步研究线段和角的对称性。
这一节的内容主要包括线段的轴对称性、角的轴对称性以及如何寻找线段和角的轴对称线。
教材通过丰富的图形和实例,引导学生探究和发现轴对称的性质,从而培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在学习本节内容之前,已经掌握了轴对称的基本概念和性质,能够识别和判断一个图形是否是轴对称的。
但是,对于如何寻找线段和角的轴对称线,以及如何应用轴对称的性质解决实际问题,部分学生可能还存在一定的困难。
因此,在教学过程中,需要关注学生的学习情况,针对性地进行指导和帮助。
三. 教学目标1.理解线段和角的轴对称性,掌握寻找线段和角的对称轴的方法。
2.能够运用轴对称的性质解决实际问题,提高解决问题的能力。
3.培养学生的观察能力、推理能力和合作能力。
四. 教学重难点1.重点:线段和角的轴对称性,寻找线段和角的对称轴的方法。
2.难点:如何运用轴对称的性质解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生观察、思考和发现轴对称的性质。
2.利用图形和实例,直观地展示线段和角的轴对称性,帮助学生理解和掌握。
3.运用小组合作的学习方式,鼓励学生相互交流、讨论,共同解决问题。
4.注重练习和反馈,及时发现和纠正学生的错误,提高学生的解题能力。
六. 教学准备1.准备相关的图形和实例,用于展示和解释线段和角的轴对称性。
2.设计一些练习题,帮助学生巩固所学知识。
3.准备黑板和粉笔,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)通过一个简单的轴对称图形,引导学生回顾轴对称的基本概念和性质。
提问:你们知道什么是轴对称吗?轴对称有哪些性质?2.呈现(15分钟)展示一些线段和角的图形,让学生观察和思考它们是否具有轴对称性。
提问:你们能找出这些线段和角的轴对称线吗?3.操练(10分钟)让学生分组合作,每组选择一个线段或角,尝试找出它的对称轴。
苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》
苏科版数学八年级上册教学设计《2-1轴对称与轴对称图形》一. 教材分析《2-1轴对称与轴对称图形》这一节内容是苏科版数学八年级上册的重要内容之一。
主要介绍了轴对称的概念,轴对称图形的性质以及如何寻找生活中的轴对称图形。
通过这一节的学习,学生能够了解并掌握轴对称的基本概念和性质,能够识别和画出常见的轴对称图形,提高他们的观察能力和审美能力。
二. 学情分析八年级的学生已经具备了一定的几何基础知识,对图形的认识和观察能力有一定的提高。
但是,对于轴对称的概念和性质,他们可能还比较陌生,需要通过具体的实例和活动来理解和掌握。
此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养和提高。
三. 教学目标1.了解轴对称的概念,掌握轴对称的性质。
2.能够识别和画出常见的轴对称图形。
3.培养学生的观察能力,提高他们的空间想象能力和逻辑思维能力。
四. 教学重难点1.轴对称的概念和性质的理解和掌握。
2.轴对称图形的识别和画法。
五. 教学方法1.采用问题驱动的教学方法,通过提问引导学生思考和探索。
2.利用具体的实例和活动,让学生通过观察和实践来理解和掌握轴对称的概念和性质。
3.采用小组合作的学习方式,培养学生的合作意识和团队精神。
六. 教学准备1.准备相关的实例和图片,用于讲解和展示轴对称的概念和性质。
2.准备一些实际的图形,让学生进行观察和操作。
3.准备黑板和粉笔,用于板书和讲解。
七. 教学过程1.导入(5分钟)通过提问的方式引导学生思考和探索轴对称的概念。
例如,问学生:“你们在生活中有没有见过一些物体或图形,它们的一侧和另一侧是完全相同的?”让学生结合自己的生活经验来理解和认识轴对称。
2.呈现(10分钟)利用具体的实例和图片,向学生讲解和展示轴对称的概念和性质。
可以举例说明一些常见的轴对称图形,如蝴蝶、飞机、枫叶等,让学生观察和分析它们的特点,引导他们发现和总结轴对称的性质。
3.操练(15分钟)让学生分组进行观察和操作,每组提供一些实际的图形,让学生尝试识别和画出它们的轴对称图形。
八上 1.1 轴对称和轴对称图形
第一章轴对称图形--- [ 教案]1.1 轴对称和轴对称图形班级姓名学号教学目标:1、认识轴对称与轴对称图形;2、会画出对称轴,找出对称点;3、能设计简单轴对称图案、标志;教学重点:正确辨认轴对称图形,画出它们的对称轴;教学难点:设计简单轴对称图案;教学过程:一、情境创设:活动一:将一张矩形的纸对折,用针在纸上扎出简单的图形或数字,将纸打开铺平.仔细观察回答下列问题:1.纸上的图案有什么关系?2.找出图形中的两组对应点,并连接,看看你连接的的线段与对称轴之间有什么关系?3.在扎字中的对应线段,对应角又有什么样的关系?由此可得:把一个图形沿着一条直线折叠,如果它能够与另一个图形重合,那么称这两个图形关于这条直线对称,也称这两个图形成轴对称,这条直线叫对称轴,两个图形中的对应点叫做对称点做一做1用一张半透明的纸描出图所示的星形图,然后用不同的方式对折,用直尺画出折痕,看看这颗星有多少条对称轴.做一做2请你标出图中A、B、C三点的对称点A1、B1、C1.我们再看图中的两组图形.试一试把一张纸对折,然后从折叠处剪出一个图形,想一想展开后会是一个什么样的图形?观察图10.1.1中的各个图形,它们都是对称图形.这些图形有什么特点呢?如果沿某条直线对折,对折的两部分是完全重合的,那么就称这样的图形为轴对称图形,这条直线叫做这个图形的对称轴.图10.1.1轴对称与轴对称图形的区别与联系.区别:轴对称是指两个图形沿某直线对折能够完全重合,而轴对称图形是指一个图形的两个部分能完全重合.联系:两部分都完全重合,都有对称轴,都有对称点.二、例题示范:例1 下列汉字,如果用一样粗细的笔写出来,哪些是轴对称图形?是轴对称图形的,有几条对称轴?大小口中朋木三、课堂小结:1、什么是轴对称和轴对称图形;2、如何画出对称轴、如何找对称点?3、生活中的轴对称和轴对称图形.四、课后作业:P9 1,2,3五、教学后记:。
《轴对称》教学设计(通用6篇)
《轴对称》教学设计(通用6篇)《轴对称》教学设计(通用6篇)在教学工作者开展教学活动前,总不可避免地需要编写教学设计,借助教学设计可以让教学工作更加有效地进行。
那么应当如何写教学设计呢?以下是小编收集整理的《轴对称》教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
《轴对称》教学设计1一、教学设计理念本课的教学充分利用多媒体教学手段有机地整合丰富的生活资源,充分调动学生学习的积极性,使学生在兴趣盎然中展开学习,在美的感受中积极探索,在互动评议中形成学习能力,努力地探索解决问题的方法,大胆地发表自己的观点。
旨在让学生经历“做数学”的全过程,使学生的知识技能、学习能力及情感意志得到统一和谐的发展。
二、教学对象分析我班有53名学生,其中男生20人,女生33人。
因一至四年级数学教师换得较为频繁,学生的数学基础和学习数学的能力一般,少数学生有浓厚的兴趣。
学生在以前的学习中,初步感知了生活中的对称、平移和旋转现象,初步认识了轴对称图形,能在方格纸上画简单的轴对称图形或画出一个简单图形沿水平或垂直方向平移后的图形。
三、教学内容分析“轴对称”是六年制五年级下学期的教学内容,是在第一学段学习基础上的进一步扩展和提高。
让学生进一步认识图形的轴对称,探索图形成轴对称的特征和性质,学习在方格纸上画出一个图形的轴对称图形,发展空间观念。
教材的编排,首先注意利用学生已有知识引导学生探索新知识,例如,探索图形成轴对称的特征和性质,先让学生复习轴对称图形和画对称轴,再让学生观察轴对称图形的特征和画出一个轴对称图形的另一半,从而使学生在已有知识的基础上加深对轴对称图形特征的认识。
其次,加强直观教学图形的特征,例如利用多媒体手段的优势,化静为动,让学生明确轴对称的含义。
第三,设计大量的活动,帮助学生理解图形的性质和变换,发展空间观念。
不仅设计了画一画,剪一剪等操作活动,而且还设计了需要学生想象、猜测和推理进行的探究活动。
例如,第4页的做一做,让学生把纸对折后先画一画,再想象剪出来的形状,最后实际剪一剪验证,从而使学生的空间想象力和思维能力得到锻炼。
轴对称和轴对称图形教案
轴对称和轴对称图形教案轴对称和轴对称图形教案篇1教学内容两个图形关于某条直线成对称的概念及画图。
教学目的1、使同学把握两个图形关于一条直线对称的概念。
2、使同学把握关于一条直线对称的两个图形的性质和判定,并会画出一个点的对称点。
3、培育同学“因有用而学习,和学了之后是为了将来用”这一思想预备4、渗透对称美,对同学进行美育训练教学重点两个图形关于某条直线对称的概念为重点教学过程一、复习提问什么叫线段垂直平分线,它的性质定理和逆定理是什么?二、引入新课由线段垂直平分线的定义引入新课,如图1,EF⊥AB于C点,且AC=CB,若沿着直线EF 对折,由于EF⊥AC,则CB将与CA重合,且CB=CA,点B也落在点A上,又如图2和图3,把轴线一旁的图形沿轴折叠,它与轴线另一旁的图形也能重合、这样的图形是一种特别位置的图形,是我们今日要学习的新课、(一)新课:板书课题--轴对称和轴对称图形1、定义:把一个图形沿着某条直线折叠,假如它能够与另一个图形重合,那么就说这两个图形关于这条直线对称、这条直线叫对称轴,两个图形关于直线对称也称轴对称、再由同学举一些他们熟识的例子,如人体的两耳、两眼、两手等等、但要留意必需有一条直线为轴,才能说它们关于这条直线对称、2、性质:由定义引出性质、定理1:关于某条直线对称的两个图形是全等形、如图4,⊥ABC和⊥ABC关于MN对称,则⊥ABC⊥⊥ABC、此时A和A,B和BC和C分别是对应点,称为对称点、沿直线MN折叠后,A与A,B与B,C与C分别重合、连AA、BB、CC 则必有MN⊥AA且平分AA,同样MN⊥BB,平分BB,MN⊥CC平分CC,得到第2共性质、定理2:两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线、老师提问:能不能说两个全等三角形就是关于一条直线成轴对称呢?——不能、由此引出必需有一个判定定理、老师再问,定理2的逆命题怎么说、逆命题:假如两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称、如图4,线段AA,BB,CC均被直线MN垂直平分,则⊥ABC和⊥ABC关于直线MN对称、此逆命题成立,做为判定定理、(二)应用举例:例1 :如图5,直线l及直线l外一点P、求作:点P',使它与点P关于直线l对称由同学依据判定定理的'要求想出作法,并写出作法、再问,若点P在直线l上怎么办?—由同学答出此时P点关于直线l的对称点就是P点本身、例2:已知:如图6,MN垂直平分线段AB、CD,垂足分别是E、F、求证:AC=BD,⊥ACD=⊥BDC、老师启发同学用对称关系来证、已知MN垂直平分AB和CD,可得AC和BD关于MN对称,所以AC=BD,若沿MN翻折B点与A点重合,D点与C点重合,BD与AC重合,DF与FC重合,所以⊥ACD=⊥BDC (三)小结:今日学习了两个图形关于一条直线对称的定义、性质和判定,要把握好它的概念、三、作业1、思索下列问题(1)什么样的两个图形叫做关于某条直线对称?什么叫做对称点、对称轴?(2)成轴对称的两个图形有什么性质?(3)除定义外,有什么方法可以判定两个图形成轴对称?2、举出一些成轴对称的图形的实例、3、已知:如图,两点A、B、求作:直线l,使A、B关于l对称、此题要求写出作法、4、已知⊥ABC⊥⊥A'B'C',那么⊥ABC与⊥A'B'C'肯定关于某直线对称吗?假如⊥ABC与⊥A'B'C'关于直线l对称,那么它们全等吗?为什么?轴对称和轴对称图形教案篇2一、教材分析本节内容是苏科版数学八班级上册第一章第一节第1课时,本节立足于同学已有的生活阅历和初步的数学活动经受,从观看生活中的轴对称现象开头,从整体的角度熟悉轴对称的特征;同时与图形的三种运动(平移、翻折、旋转)之一的“翻折”有着不行分割的联系,通过对这一节课的学习,既可以让同学感受图形的三种基本运动中“翻折”在几何学问中的作用,又为同学后继学习对称变换、中心对称和中心对称图形及平行四边形的相关学问等做好充分预备;同时这一节也是联系数学与生活的桥梁。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东海县横沟中学
一、教案设计说明:
本课时设计的教学内容属于苏科版八年级(上)第一章轴对称图形中第一节轴对称与轴对称图形的教学内容,重点研究轴对称与轴对称图形的概念,为学习和研究轴对称的性质、设计轴对称图案、线段角的轴对称性、等腰三角形的轴对称性和等腰梯形的轴对称性奠定基础。
在教学设计中,根据本节课的特点,共设计了三个活动,首先创设情景,展示图片,让学生感知对称,通过对章前图的说明和本章内容的简要介绍,明确本章研究的内容并引入新课;通过学生自带图片的展示和剪纸活动,让学生动手操作、积极参与,体验数学活动的乐趣;通过学生的观察思考、相互交流、表述特征,引导学生自主学习,培养学生的观察能力、合作意识以及用数学语言表述的能力;通过对轴对称和轴对称图形的比较思考,明确它们的联系和区别,进一步认识其本质特征;通过及时练习、自主小结、独立作业,进一步巩固所学知识。
本节教学力求充分体现教学内容的基础性、教学方法的灵活性、学生学习的主体性、教师教学的主导性,在学习活动中,学生主动参与、认真观察、比较思考、动手操作、合作交流、大胆表述,充分体现学生是学习的主人,教师是学习活动的组织者、引导者和合作者。
二、“§1.1轴对称与轴对称图形”教案
●教学目标:
【知识与技能目标】
1、理解轴对称与轴对称图形的概念。
2.了解轴对称与轴对称图形的对称轴及对称点。
3.了解轴对称与轴对称图形的区别和联系。
【过程与方法目标】
1.通过学习轴对称与轴对称图形的区别和联系,进一步发展学生抽象概括能力。
2.通过轴对称与轴对称图形的学习,让学生关注生活,学会观察、增强交流。
3.经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
【情感态度与价值观目标】
1.在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值.
2.通过轴对称与轴对称图形的学习,激发学生学习欲望,主动参与数学学习活动。
●教学重点:
由具体情境抽象出轴对称与轴对称图形的概念.
●教学难点:
比较观察轴对称与轴对称图形之间的区别与联系。
●教学方法:
观察、讨论、交流,自主探究法
●教具准备:
1、搜集轴对称图形图片、剪纸、折纸等.
2.小剪刀一把,纸片2----3张,墨水1瓶。
●教学过程设计:
教师活动
)下面有4个汽车标致图案,其中是轴
①②③④
、②③④B、①③④
(4)数的运算中会有一些有趣的对称形式,如12×231=132×21,仿照这一形式,写出下列等式,并演算:12×462=
18×891= 。
(5)小强站在镜前,从镜中看到镜子对面墙上挂着的电子表,其读数如图所示,
●教学后记:
1.通过这节课的学习,学生对轴对称和轴对称图形有了较为准确的理解,但学生的观察能力、语言表达能力还有待提高。
2.经历观察生活中的轴对称现象和轴对称图形,探索它们的共同特征的活动过程,发展空间观念。
3.在欣赏现实生活中的轴对称图形之美时,体会轴对称在现实生活中的广泛运用和它的丰富的文化价值.
三、教学反思
通过本节课的教学,效果很好,特别是这节课的教案设计发挥了很大的作用,在教学过程中,我根据这个教案的设计,首先进行创设情境,通过活动,发现学生很容易被激发兴趣,从而增强对本节课的知识的探求欲,在具体探索过程中,学生积极参与活动,和组内同学进行了热烈地讨论交流且勇于思考,这样学生在交流中互相启发,相互激励,发展和完善自我。
真正地达到了培养他们的合作精神的目的,由“学数学”向“做数学”过渡,提高了学生“做数学”的兴趣和能力;通过学生之间对话、师生对话,使知识在对话中生成,在交流中重组,在共享中拓展;通过讨论得出结果,体验讨论式学习的好处,享受成功的喜悦,也培养了学生综合分析问题的能力。
但是在这节课讲授过程中,也有不尽如人意的地方,主要体现在之前教案设计没有充分考虑到,如让学生尝试用自己的语言描述这些实物、图片的共同特征.有些学生就没有很好地贯彻老师的意图,只是简单地说了一下,没有认真地去思考,没有用自己的语言去认真的组织;还有学生的动手操作能力不够强,这一点在教案设计中没有好好的去研究。
总之这个教案设计是成功的,我将在以后的教案设计中认真地去
总结,去完善,使得课堂教学能顺利的开展下去。