读书报告之一(现代风险投资组合理论简介).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
读书报告之二现代风险投资组合理论简介
孙贞贞吕世超刘伟峰
一、马科维茨投资组合模型介绍
美国经济学家哈里·马科维茨(Harry Markowitz)1952年首次提出投资组合理论(Portfolio Theory),并进行了系统、深入和卓有成效的研究,他因此获得了1990年诺贝尔经济学奖, 主要贡献:投资组合优化计算、有效边界。该理论包含两个重要内容:均值-方差分析方法和投资组合有效边界模型。在证券市场中,马科维茨投资组合理论在实践中被证明是行之有效的,并且被广泛应用于组合选择和资产配置。
从狭义的角度来说,投资组合是规定了投资比例的有价证券的投资方案,当然,单只证券也可以当作特殊的投资组合。人们进行投资,本质上是在不确定性的收益和风险中进行选择。投资组合理论用均值—方差来刻画这两个关键因素。所谓均值,是指投资组合的期望收益率,它是单只证券的期望收益率的加权平均,权重为相应的投资比例。当然,股票的收益包括分红派息和资本增值两部分。所谓方差,是指投资组合的收益率的方差。我们把收益率的标准差称为波动率,它刻画了投资组合的风险。
人们在证券投资决策中应该怎样选择收益和风险的组合呢?这正是投资组合理论研究的中心问题。投资组合理论研究“理性投资者”如何选择优化投资组合。所谓理性投资者,是指这样的投资者:他们在给定期望风险水平下对期望收益进行最大化,或者在给定期望
收益水平下对期望风险进行最小化。另外,对于风险的度量也是人们所关注的。
马考维茨经过大量观察和分析,他认为若在具有相同回报率的两个证券之间进行选择的话,任何投资者都会选择风险小的。这同时也表明投资者若要追求高回报必定要承担高风险。同样,出于回避风险的原因,投资者通常持有多样化投资组合。马考维茨从对回报和风险的定量出发,系统地研究了投资组合的特性,从数学上解释了投资者的避险行为,并提出了投资组合的优化方法。
一个投资组合是由组成的各证券及其权重所确定。因此,投资组合的期望回报率是其成分证券期望回报率的加权平均。除了确定期望回报率外,估计出投资组合相应的风险也是很重要的。投资组合的风险是由其回报率的标准方差来定义的。这些统计量是描述回报率围绕其平均值变化的程度,如果变化剧烈则表明回报率有很大的不确定性,即风险较大。
从投资组合方差的数学展开式中可以看到投资组合的方差与各成分证券的方差、权重以及成分证券间的协方差有关,而协方差与任意两证券的相关系数成正比。相关系数越小,其协方差就越小,投资组合的总体风险也就越小。因此,选择不相关的证券应是构建投资组合的目标。另外,由投资组合方差的数学展开式可以得出:增加证券可以降低投资组合的风险。
基于回避风险的假设,马考维茨建立了一个投资组合的分析模型,其要点为:
(1)投资组合的两个相关特征是期望回报率及其方差。
(2)投资将选择在给定风险水平下期望回报率最大的投资组合,或在给定期望回报率水平下风险最低的投资组合。
(3)对每种证券的期望回报率、方差和与其他证券的协方差进行估计和挑选,并进行数学规划(mathematical programming),以确定各证券在投资者资金中的比重。
马科维茨投资组合模型是建立在单目标规划的基础上的,投资者固定一个目标使另一个目标达到最优。然而,理性的投资者总是追求收益尽可能的大、风险尽可能小的投资组合,根据投资者的这一意愿,可以建立多目标证券投资组合模型,或者考虑组合投资中组合投资结构、总净现值、总净现值率和加权平均资本成本的多目标优化问题。
在现代的行为证券组合理论中,所建立的行为证券组合投资决策模型仅具有理论价值,无法应用于组合投资管理实践;另外其求解算法过于复杂,以至于无法解决大规模行为组合投资决策问题。考虑到因素模型能将各种证券的收益和固定的几个因素的变化联系起来,可以建立多因素行为的投资模型;另外,由于投资对象较多,导致了证券组合投资决策模型的求解算法过于复杂,因而对其求解算法的研究是必要的,有确定性的算法也有模糊算法以及神经网络算法。
二、投资组合理论的应用
投资组合理论为有效投资组合的构建和投资组合的分析提供了
重要的思想基础和一整套分析体系,其对现代投资管理实践的影响主要表现在以下4个方面:
1.马科维茨首次对风险和收益这两个投资管理中的基础性概念进行了准确的定义,从此,同时考虑风险和收益就作为描述合理投资目标缺一不可的两个要件(参数)。
在马科维茨之前,投资顾问和基金经理尽管也会顾及风险因素,但由于不能对风险加以有效的衡量,也就只能将注意力放在投资的收益方面。马科维茨用投资回报的期望值(均值)表示投资收益(率),用方差(或标准差)表示收益的风险,解决了对资产的风险衡量问题,并认为典型的投资者是风险回避者,他们在追求高预期收益的同时会尽量回避风险。据此马科维茨提供了以均值—方差分析为基础的最大化效用的一整套组合投资理论。
2.投资组合理论关于分散投资的合理性的阐述为基金管理业的存在提供了重要的理论依据。
在马科维茨之前,尽管人们很早就对分散投资能够降低风险有一定的认识,但从未在理论上形成系统化的认识。
投资组合的方差公式说明投资组合的方差并不是组合中各个证券方差的简单线性组合,而是在很大程度上取决于证券之间的相关关系。单个证券本身的收益和标准差指标对投资者可能并不具有吸引力,但如果它与投资组合中的证券相关性小甚至是负相关,它就会被纳入组合。当组合中的证券数量较多时,投资组合的方差的大小在很大程度上更多地取决于证券之间的协方差,单个证券的方差则会居于次要地位。因此投资组合的方差公式对分散投资的合理性不但提供了理论上的解释,而且提供了有效分散投资的实际指引。
3.马科维茨提出的“有效投资组合”的概念,使基金经理从过去一直关注于对单个证券的分析转向了对构建有效投资组合的重视。
自50年代初,马科维茨发表其著名的论文以来,投资管理已从过去专注于选股转为对分散投资和组合中资产之间的相互关系上来。事实上投资组合理论已将投资管理的概念扩展为组合管理。从而也就使投资管理的实践发生了革命性的变化。
4.马科维茨的投资组合理论已被广泛应用到了投资组合中各主要资产类型的最优配置的活动中,并被实践证明是行之有效的。三、投资组合理论在应用上的问题
马科维茨的投资组合理论不但为分散投资提供了理论依据,而且也为如何进行有效的分散投资提供了分析框架。但在实际运用中,马科维茨模型也存在着一定的局限性。
1.马科维茨模型所需要的基本输入包括证券的期望收益率、方差和两两证券之间的协方差。当证券的数量较多时,基本输入所要求的估计量非常大,从而也就使得马科维茨的运用受到很大限制。因此,马科维茨模型目前主要被用在资产配置的最优决策上。
2.数据误差带来的解的不可靠性。马科维茨模型需要将证券的期望收益率、期望的标准差和证券之间的期望相关系数作为已知数据作为基本输入。如果这些数据没有估计误差,马科维茨模型就能够保证得到有效的证券组合。但由于期望数据是未知的,需要进行统计估计,因此这些数据就不会没有误差。这种由于统计估计而带来的数据