弹簧与物块的分离问题----教师版

合集下载

弹簧作用下物体之间相互分离的条件

弹簧作用下物体之间相互分离的条件

弹簧作用下物体之间相互分离的条件轻质弹簧作用下相互接触的两个物体(其中一个物体与弹簧的一端相连)分离的临界条件是:两个物体仍保持接触、且加速度相同,但没有弹力作用.据此易知弹簧可能处于原长、伸长或压缩状态.现逐一介绍. 1. 物体分离时,弹簧恢复原长【例1】 如图1所示,一根原长为L 的轻质弹簧,下端固定在水平桌面上,上端固定一个质量为m 的物体A ,A 静止时弹簧的压缩量为ΔL 1,在A 上再放一个质量也是m 的物体B ,待A 、B 静止后,在B 上施加一个竖直向下的力F ,使弹簧再缩短ΔL 2(ΔL 2>2ΔL 1).这时弹簧的弹性势能为E P .突然撤去力F ,则B 脱离A 向上飞出的瞬间,弹簧的长度应为____________,这时B 的速度为___________. 分析:确定A 、B 分离时弹簧的状态是解题关键. 因为A 、B 即将分离时有:AB N =0,且A B a a =, ①B a g =,向下 ②A A Am g k xa m ±⋅∆=,向下 ③弹簧伸长时取“+”,压缩时取“-” 图1解①-③得:0x ∆=,即A 、B 分离时,弹簧恢复原长. (特殊地:当0A a =时,弹簧处于压缩状态,A 、B 尚未分离.)解答:由上述分析知A 、B 分离时,弹簧恢复原长,弹簧的长度为L.设A 、B 分离时的共同速度为v ,从撤去F 到A 、B 将要分离的过程中,由机械能守恒定律得:21212(2)2P E v mg l l =+∆+∆(2m )解得122(2)PE v g l l m=-∆+∆. 2. 物体分离时,弹簧处于压缩状态【例2】如图2所示,物体A 静止在台秤的秤盘B 上,A 的质量为10.5,A m kg =B 的质量为 1.5B m kg =,弹簧质量不计,劲度系数800k =N/m.现给A 施加一个竖直向上的力F ,使它向上做匀加速直线运动,已知力F 在开始的t =0.2s 内是变力,此后是恒力,求F 的最小值和最大值各是多少?分析:确定A 、B 分离时弹簧的状态是解题关键.因为A 、B 即将分离时有:AB N =0,且A B a a =, ① 图2A A A F m ga m -=,向上 ② B B Bk x m ga m ⋅∆-=,向上③解①-③得:BAFm x km ∆=,即A 、B 分离时,弹簧处于压缩状态. 特殊地:(1)当0B m =时,有0x ∆=,即A 、B 分离时,弹簧恢复原长.(2)当0B a =时,弹簧的压缩量为0x ∆=B m gk,此前A 、B 已经分离.(因为物体分离时弹簧的压缩量BA Fm x km ∆=>A B A m g m km ⋅=B m g k=0x ∆)解答:由题意知t =0.2s 时A 、B 分离,由上述分析知A 、B 分离时弹簧处于压缩状态,设F 刚作用时弹簧的压缩量为1x ,A 、B 即将分离时弹簧的压缩量为2x ,此时两者加速度均为a ,力F 的最小值和最大值分别设为min F 和max F ,则:A 、B 静止时,由平衡条件得:()10A B kx m m g -+=, ① F 刚作用时其值最小,由牛顿第二定律得:()nin A B F m m a =+, ② A 、B 即将分离时,F 最大,对A 和B 由牛顿第二定律得:max ,A A F m g m a -= ③ 2B B kx m g m a -=, ④又21212x x at -=, ⑤ 解①-⑤得:26/a m s =,72nin F =N, max 168F =N. ⑦3. 物体分离时,弹簧处于伸长状态【例3】如图3所示,劲度系数为k 的轻弹簧一端固定,另一端与滑块B 相连,B 静止在水平导轨上,弹簧处在原长状态.另一质量与B 相同的滑块A ,从导轨上的P 点以某一初速度向B 滑行,当A 滑过距离1l 时,与B 相碰,碰撞时间极短,碰后A 、B 紧贴在一起运 图3动,但互不粘连.已知最后A 恰好返回出发点P 并停止.滑块A 和B 与导轨的滑动摩擦因数分别为A μ和B μ,运动过程中弹簧最大压缩量为2l ,若A μ>B μ,求A 从P 出发时的初速度0v .分析:确定A 、B 分离时弹簧的状态是解题关键. 因为A 、B 即将分离时有:AB N =0,且A B a a =,①A A a g μ=,向左 ②B B B Bm g k xa m μ±⋅∆=,向左③弹簧伸长时取“+”,压缩时取“-”解①-③得:()A B B m gx kμμ±-∆=,即物体分离时,弹簧可能处于三种状态:(1) 若A μ>B μ,物体分离时,弹簧处于伸长状态(特殊地:①0B μ=时,x ∆伸=A B m g kμ,物体开始分离;②B a =0时,弹簧处于压缩状态,A 、B 没有分离);(2) 若A μ=B μ(含A μ=B μ=0),物体分离时,弹簧处于原长状态; (3) 若A μ<B μ,物体分离时,弹簧处于压缩状态(特殊地:A μ=0时,B B m gx kμ∆=,此时0B a =, A 、B 开始分离)解答:令A 、B 质量皆为m ,A 刚接触B 时速度为1v (碰前), 由功能关系得:121202121mgl mv mv μ=-,① A 、B 碰撞过程中动量守恒,令碰后A 、B 共同运动的速度为.2v 则212mv mv =,②碰后A 、B 先一起向左运动,接着A 、B 一起被弹回,由上述分析知:若A μ>B μ,物体分离时,弹簧处于伸长状态,伸长量()A B B m gx kμμ-∆=,③设A 、B 分离时的共同速度为3v ,在A 、B 碰后到分离之前的过程中,由功能关系得:222232111(2)(2)()(2)222A B m v m v k x mg l x μμ⎡⎤-+∆=++∆⎢⎥⎣⎦,④A 、B 分离后,A 单独向右滑到P 点停下,由功能关系得:2311()2A mv mg l x μ=-∆,⑤ 解①-⑤得 2202128()10()A B A A B mg v gl gl kμμμμμ=++--. ⑥综上所述,物体分离时,弹簧处于何种状态,不能一概而论,应具体问题具体分析.最简单的处理方法是:首先确定物体分离时未与弹簧相连的那个物体的加速度大小和方向,就可知道与弹簧相连的另一物体的加速度大小和方向,从而可以迅速地确定弹簧的状态.完练习题1. 2018年河南高考试题第15题。

专题04 连接体模型--2024届新课标高中物理模型与方法(原卷版)

专题04 连接体模型--2024届新课标高中物理模型与方法(原卷版)

2024版新课标高中物理模型与方法专题04连接体模型目录【模型一】平衡中的连接体模型 (1)1.轻杆连接体问题 (1)2.轻环穿杆问题 (2)【模型二】绳杆弹簧加速度问题模型 (4)1.悬绳加速度问题 (5)2.类悬绳加速度问题 (5)【模型三】轻绳相连加速度相同的连接体 (10)【模型四】板块加速度相同的连接体模型 (13)【模型五】轻绳绕滑轮加速度相等----“阿特伍德机”模型 (17)【模型六】弹簧木块分离问题模型 (20)【模型七】“关联速度与机械能守恒”连接体模型 (25)1.绳、杆末端速度分解四步 (25)2.绳杆末端速度分解的三种方法 (25)3.轻绳相连的物体系统机械能守恒模型 (26)方法二、力乘力臂法对m1、m2受力分析,三力平衡可构成矢量三角形,根据正弦定理以整体为研究对象,以圆心为转动轴,两圆弧的支持力的力臂均为零,以整体为研究对象,整体受重力和两圆弧的支持力,根据三力平衡必共点,因此整体的重心必过圆心正::根据等腰三角形有:θ1=θ2联立解得m1g sinα=m2g sinβ2=sinβ:sinα轻环穿杆问题F NA.9∶16B.C.3∶4D.、A.需要知道刚性细杆的长度与球面半径的关系C.不需要其他条件,有12:F F=【模型演练3】(2023·山西·高三统考阶段练习)A.2cm B.【模型演练4】(2023春·四川成都所示,底座支点记为O点,车的右臂,一根钢索连接底座与止.已知左臂OA与水平面的夹角为A.tanθB.tan【模型演练6】如图所示,质量小球B相连。

今用与水平方向成M、m相对位置保持不变,(1)运动过程中轻绳与水平方向的夹角(2)木块与水平杆间的动摩擦因数(3)当α为多大时,使小球和木块一起向右匀速运动的拉力最小?【模型演练7】如图所示,一根粗糙的水平横杆上套有处于静止状态,现将两环距离变小后书本仍处于静止状态,则A.杆对A环的支持力变大C.杆对A环的力不变【模型二】绳杆弹簧加速度问题模型【模型要点】1.悬绳加速度问题水平加速中的悬绳倾斜加速中的悬绳注意“发飘”多悬绳θm①绳竖直θ=0,a=0,μ=tanα②绳垂直θ=α,a=gsinα,μ=0③绳水平a=g/sinα,向上减速μ=cotαmαaθm θmgTxyαmgTxyF NαθmgTxyFa=g·tanθT=mg/cosθ加速度大小与质量无关,与偏角有关T=mgcosα/cos(θ-α)T=mgsinθ+macosθF N=mgcosθ-masinθa>g·cotα发飘:F N=0T=T=mg/cosθF=mg·tanθ-maa>g·tanθ发飘:F=0T=2.类悬绳加速度问题光滑斜面车上物体光滑圆弧车中物体车上死杆车中土豆车上人mθa mθamθa死杆ma θmgF NxyθmgF NxymgFxymgFxymgFxyF Nf加速度a=g·tanθ支持力F N=mg/cosθ加速度a=g·tanθ支持力F N=mg/cosθ杆对球的弹力其它土豆对黑土豆的作用力车对人的作用力【模型演练1】(2023·湖北襄阳·襄阳四中校考模拟预测)如图,一辆公共汽车在水平公路上做直线运动,用细线悬挂车顶上,车厢底板上放一箱苹果,苹果箱和苹果的总质量为A.汽车一定向右做匀减速直线运动B.车厢底板对苹果箱的摩擦力水平向右C.苹果箱中间一个质量为m的苹果受到合力为D.苹果箱中间一个质量为m的苹果受到周围其他苹果对它的作用力大小为A.mg,竖直向上C.m gtanθ,水平向右【模型演练3】(2023·全国·高三专题练习)连,并随P一起沿钢索下滑,下滑过程中,轻绳始终与钢索是垂直的,不计空气阻力,则(A.球Q的加速度大小与重力加速度的大小相等B.球Q所受重力的功率保持不变C.球Q的机械能守恒D.球Q动量变化的方向竖直向下A.沿着杆加速下滑C.沿着杆减速下滑【模型演练5】.(2023·A.3∶1B【模型演练6】.(2023定在小车上的水平横杆,物块A.F f1∶F f2=1∶2B.F f2∶F f3=1∶2C.F f3∶F f4=1∶2D.tanα=2tanθ【模型演练7】.(2023秋·山西运城·高三康杰中学校考期末)如图所示,在倾角为30°的光滑斜面上,一质量为3m的小车在沿斜面向下的外力F作用下沿斜面下滑,小车支架上用细绳悬挂一质量为m的小球,若在小车下滑的过程中,连接小球的轻绳恰好水平,则外力F的大小为(重力加速度为g)()A.6mg B.5mg C.4mg D.3mg【模型演练7】.(2023秋·上海黄浦·高三上海外国语大学附属大境中学校考期末)在静止的小车内,用细绳a和b系住一个小球,绳a与竖直方向成θ角,拉力为a F,绳b为水平状态,拉力为b F,如图所示,现让小车从静止开始向左做匀加速运动,此时小球相对于车厢的位置仍保持不变,则两根细绳的拉力变化情况是()A.a F变小,b F不变B.a F不变,b F变大C.a F变小,b F变大D.a F不变,b F变小【模型演练8】.(2023春·上海长宁·高三专题练习)如图所示,固定在小车上的支架的斜杆与竖直杆的夹角为θ,在斜杆下端固定有质量为m的小球,重力加速度为g,下列关于杆对球的作用力F的判断中,正确的是()A .小车静止时,cos F mg =B .小车静止时,sin F mg =C .小车向左以加速度a 加速运动时,则D .小车向右以加速度a 加速运动时,则【模型演练9】.(2023·山东木块上固定一轻质支架,支架末端用丝线悬挂一质量为对静止共同运动。

弹簧分离问题经典题目

弹簧分离问题经典题目

弹簧分离问题经典题目1. 如图所示,光滑水平地面上,可视为质点的两滑块A 、B 在水平外力的作用下紧靠在一起压缩弹簧,弹簧左端固定在墙壁上,此时弹簧的压缩量为x 0,以两滑块此时的位置为坐标原点建立如图所示的一维坐标系,现将外力突然反向并使B 向右做匀加速运动,下列关于外力F 、两滑块间弹力F N 与滑块B 的位移x 变化的关系图象可能正确的是( )解析:设A 、B 向右匀加速运动的加速度大小为a ,根据牛顿第二定律,对整体有F +k (x 0-x )=(m A +m B )a ,可得F =kx +(m A +m B )a -kx 0,若(m A +m B )a =kx 0,得F =kx ,则F 与x 成正比,F -x 图象可能是过原点的直线,对A 有k (x 0-x )-F N =m A a ,得F N =-kx +kx 0-m A a ,可知F N -x 图象是向下倾斜的直线,当F N =0时A 、B 开始分离,此后B 做匀加速运动,F 不变,则A 、B 开始分离时有x =x 0-m A ak<x 0。

答案 BD2. 如图所示,一劲度系数为k 的轻质弹簧上端固定,下端连一质量为m 的物块A ,A 放在质量也为m 的托盘B 上,用N 表示B 对A 的作用力,x 表示弹簧的伸长量.初始时,在竖直向上的力F 作用下,系统静止,且弹簧处于自然状态(x =0).现改变力F 的大小,使B 以g2的加速度匀加速向下运动(g 为重力加速度,空气阻力不计).此过程中N 或F 随x 变化的图像正确的是图中的( )答案:D3. 如图所示,质量均为m=500g 的木块A 、B 叠放在一起,轻弹簧的劲度为k=100N/m ,上、下两端分别和B 与水平面相连。

原来系统处于静止。

现用竖直向上的拉力F 拉A ,使它以a=2.0m/s 2的加速度向上做匀加速运动。

求:(1)经过多长时间A 与B 恰好分离?(2)上述过程中拉力F 的最小值F 1和最大值F 2各多大? (3)刚施加拉力F 瞬间A 、B 间压力多大? (4)画出F 分别随位移和时间的函数图像。

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读

高中物理经典问题---弹簧类问题全面总结解读一:专题训练题1、一根劲度系数为k,质量不计的轻弹簧,上端固定,下端系一质量为m 的物体,有一水平板将物体托住,并使弹簧处于自然长度。

如图7所示。

现让木板由静止开始以加速度a(a <g =匀加速向下移动。

求经过多长时间木板开始与物体分离。

分析与解:设物体与平板一起向下运动的距离为x 时,物体受重力mg ,弹簧的弹力F=kx和平板的支持力N 作用。

据牛顿第二定律有:mg-kx-N=ma 得N=mg-kx-ma当N=0时,物体与平板分离,所以此时k a g m x )(-=因为221at x =,所以kaa g m t )(2-=。

2、如图8所示,一个弹簧台秤的秤盘质量和弹簧质量都不计,盘内放一个物体P 处于静止,P 的质量m=12kg ,弹簧的劲度系数k=300N/m 。

现在给P 施加一个竖直向上的力F ,使P 从静止开始向上做匀加速直线运动,已知在t=0.2s 内F 是变力,在0.2s 以后F 是恒力,g=10m/s 2,则F 的最小值是 ,F 的最大值是 。

.分析与解:因为在t=0.2s 内F 是变力,在t=0.2s 以后F 是恒力,所以在t=0.2s 时,P 离开秤盘。

此时P 受到盘的支持力为零,由于盘和弹簧的质量都不计,所以此时弹簧处于原长。

在0_____0.2s 这段时间内P 向上运动的距离:x=mg/k=0.4m 因为221at x =,所以P 在这段时间的加速度22/202s m tx a == 当P 开始运动时拉力最小,此时对物体P 有N-mg+F min =ma,又因此时N=mg ,所以有F min =ma=240N.当P 与盘分离时拉力F 最大,F max =m(a+g)=360N.3.如图9所示,一劲度系数为k =800N/m 的轻弹簧两端各焊接着两个质量均为m =12kg 的物体A 、B 。

物体A 、B 和轻弹簧竖立静止在水平地面上,现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4s 物体B 刚要离开地面,设整个过程中弹簧都处于弹性限度内,取g =10m/s 2 ,求:(1)此过程中所加外力F 的最大值和最小值。

高中物理中的弹簧问题归类(教师版)

高中物理中的弹簧问题归类(教师版)

有关弹簧的题目在高考中几乎年年出现,由于弹簧弹力是变力,学生往往对弹力大小和方向的变化过程缺乏清晰的认识,不能建立与之相关的物理模型并进行分类,导致解题思路不清、效率低下、错误率较高.在具体实际问题中,由于弹簧特性使得与其相连物体所组成系统的运动状态具有很强的综合性和隐蔽性,加之弹簧在伸缩过程中涉及力和加速度、功和能、冲量和动量等多个物理概念和规律,所以弹簧试题也就成为高考中的重、难、热点, 一、“轻弹簧”类问题在中学阶段,凡涉及的弹簧都不考虑其质量,称之为“轻弹簧”,是一种常见的理想化物理模型.由于“轻弹簧”质量不计,选取任意小段弹簧,其两端所受张力一定平衡,否则,这小段弹簧的加速度会无限大.故轻弹簧中各部分间的张力处处相等,均等于弹簧两端的受力.弹簧一端受力为F ,另一端受力一定也为F ,若是弹簧秤,则弹簧秤示数为F .【例1】如图3-7-1所示,一个弹簧秤放在光滑的水平面上,外壳质量m 不能忽略,弹簧及挂钩质量不计,施加水平方向的力1F 、2F ,且12F F >,则弹簧秤沿水平方向的加速度为 ,弹簧秤的读数为 .【解析】 以整个弹簧秤为研究对象,利用牛顿运动定律得: 12F F ma -=,即12F F a m-= 仅以轻质弹簧为研究对象,则弹簧两端的受力都1F ,所以弹簧秤的读数为1F .说明:2F 作用在弹簧秤外壳上,并没有作用在弹簧左端,弹簧左端的受力是由外壳内侧提供的. 【答案】12F F a m-=1F 二、质量不可忽略的弹簧【例2】如图3-7-2所示,一质量为M 、长为L 的均质弹簧平放在光滑的水平面,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各部分的受力情况. 【解析】 弹簧在水平力作用下向右加速运动,据牛顿第二定律得其加速度Fa M=,取弹簧左部任意长度x 为研究对象,设其质量为m 得弹簧上的弹力为:x x F xT ma M F L M L === 【答案】x x T F L= 三、弹簧的弹力不能突变(弹簧弹力瞬时)问题弹簧(尤其是软质弹簧)弹力与弹簧的形变量有关,由于弹簧两端一般与物体连接,因弹簧形变过程需要一段时间,其长度变化不能在瞬间完成,因此弹簧的弹力不能在瞬间发生突变. 即可以认为弹力大小和方向不变,与弹簧相比较,轻绳和轻杆的弹力可以突变.【例3】如图3-7-3所示,木块A 与B 用轻弹簧相连,竖直放在木块C 上,三者静置于地面,A B C 、、的质量之比是1:2:3.设所有接触面都光滑,当沿水平方向迅速抽出木块C 的瞬时,木块A 和B 的加速度分别是A a = 与B a =【解析】由题意可设A B C 、、的质量分别为23m m m 、、,以木块A 为研究对象,抽出木块C 前,木块A 受到重力和弹力一对平衡力,抽出木块C 的瞬时,木块A 受到重力和弹力的大小和方向均不变,故木块A 的瞬时加速度为0.以木块A B 、为研究对象,由平衡条件可图 3-7-2图 3-7-1图 3-7-3高中物理中的弹簧问题归类知,木块C 对木块B 的作用力3CB F mg =.以木块B 为研究对象,木块B 受到重力、弹力和CB F 三力平衡,抽出木块C 的瞬时,木块B 受到重力和弹力的大小和方向均不变,CB F 瞬时变为0,故木块C 的瞬时合外力为3mg ,竖直向下,瞬时加速度为1.5g . 【答案】0说明:区别于不可伸长的轻质绳中张力瞬间可以突变.ﻫ【例4】如图3-7-4所示,质量为m 的小球用水平弹簧连接,并用倾角为030的光滑木板AB 托住,使小球恰好处于静止状态.当AB 突然向下撤离的瞬间,小球的加速度为 ( )A.0 B.大小为23g ,方向竖直向下C.大小为23g ,方向垂直于木板向下 D. 大小为23g , 方向水平向右 【解析】 末撤离木板前,小球受重力G 、弹簧拉力F 、木板支持力N F 作用而平衡,如图3-7-5所示,有cos N mgF θ=. 撤离木板的瞬间,重力G 和弹力F 保持不变(弹簧弹力不能突变),而木板支持力N F 立即消失,小球所受G 和F 的合力大小等于撤之前的N F (三力平衡),方向与N F 相反,故加速度方向为垂直木板向下,大小为23cos N F g a g m θ=== 【答案】 C.四、弹簧长度的变化问题设劲度系数为k 的弹簧受到的压力为1F -时压缩量为1x -,弹簧受到的拉力为2F 时伸长量为2x ,此时的“-”号表示弹簧被压缩.若弹簧受力由压力1F -变为拉力2F ,弹簧长度将由压缩量1x -变为伸长量2x ,长度增加量为12x x +.由胡克定律有: 11()F k x -=-,22F kx =. 则:2121()()F F kx kx --=--,即F k x ∆=∆说明:弹簧受力的变化与弹簧长度的变化也同样遵循胡克定律,此时x ∆表示的物理意义是弹簧长度的改变量,并不是形变量.【例5】如图3-7-6所示,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了 ,物块1的重力势能增加了 .【解析】由题意可知,弹簧2k 长度的增加量就是物块2的高度增加量,弹簧2k 长度的增加量与弹簧1k 长度的增加量之和就是物块1的高度增加量.由物体的受力平衡可知,弹簧2k 的弹力将由原来的压力12()m m g +变为0,弹簧1k 的弹力将由原来的压力1m g 变为拉力2m g ,弹力的改变量也为12()m m g + .所以1k 、2k 弹簧的伸长量分别图 3-7-4图 3-7-5图 3-7-6为:1211()m m g k +和1221()m m g k + 故物块2的重力势能增加了221221()m m m g k +,物块1的重力势能增加了21121211()()m m m g k k ++ 【答案】221221()m m m g k + 21121211()()m m m g k k ++ 五、弹簧形变量可以代表物体的位移弹簧弹力满足胡克定律F kx =-,其中x 为弹簧的形变量,两端与物体相连时x 亦即物体的位移,因此弹簧可以与运动学知识结合起来编成习题.【例6】如图3-7-7所示,在倾角为θ的光滑斜面上有两个用轻质弹簧相连接的物块A B 、,其质量分别为A B m m 、,弹簧的劲度系数为k ,C 为一固定挡板,系统处于静止状态,现开始用一恒力F 沿斜面方向拉A 使之向上运动,求B 刚要离开C 时A 的加速度a 和从开始到此时A 的位移d (重力加速度为g ).【解析】 系统静止时,设弹簧压缩量为1x ,弹簧弹力为1F ,分析A 受力可知:11sin A F kx m g θ==解得:1sin A m g x kθ=在恒力F 作用下物体A 向上加速运动时,弹簧由压缩逐渐变为伸长状态.设物体B 刚要离开挡板C 时弹簧的伸长量为2x ,分析物体B 的受力有:2sin B kx m g θ=,解得2sin B m g x kθ=设此时物体A 的加速度为a ,由牛顿第二定律有:2sin A A F m g kx m a θ--=解得:()sin A B AF m m g a m θ-+=因物体A 与弹簧连在一起,弹簧长度的改变量代表物体A 的位移,故有12d x x =+,即()sin AB m m g d kθ+= 【答案】()sin A B m m g d kθ+=六、弹力变化的运动过程分析弹簧的弹力是一种由形变决定大小和方向的力,注意弹力的大小与方向时刻要与当时的形变相对应.一般应从弹簧的形变分析入手,先确定弹簧原长位置、现长位置及临界位置,找出形变量x 与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,弹性势能也是与原长位置对应的形变量相关.以此来分析计算物体运动状态的可能变化.结合弹簧振子的简谐运动,分析涉及弹簧物体的变加速度运动,往往能达到事半功倍的效果.此时要先确定物体运动的平衡位置,区别物体的原长位置,进一步确定物体运动为简谐运动.结合与平衡位置对应的回复力、加速度、速度的变化规律,很容易分析物体的运动过程.【例7】如图3-7-8所示,质量为m 的物体A 用一轻弹簧与下方地面上质量也为m 的物体B 相连,开始时A 和B 均处于静止状态,此时弹簧压缩量为0x ,一条不可伸长的轻图 3-7-7绳绕过轻滑轮,一端连接物体A 、另一端C 握在手中,各段绳均刚好处于伸直状态,物体A 上方的一段绳子沿竖直方向且足够长.现在C 端施加水平恒力F 使物体A 从静止开始向上运动.(整个过程弹簧始终处在弹性限度以内).(1)如果在C 端所施加的恒力大小为3mg ,则在物体B 刚要离开地面时物体A 的速度为多大? (2)若将物体B 的质量增加到2m ,为了保证运动中物体B 始终不离开地面,则F 最大不超过多少?【解析】 由题意可知,弹簧开始的压缩量0mgx k =,物体B 刚要离开地面时弹簧的伸长量也是0mgx k=.(1)若3F mg =,在弹簧伸长到0x 时,物体B 离开地面,此时弹簧弹性势能与施力前相等,F 所做的功等于物体A 增加的动能及重力势能的和. 即:201222F x mg x mv ⋅=⋅+得: 022v gx =(2)所施加的力为恒力0F 时,物体B 不离开地面,类比竖直弹簧振子,物体A 在竖直方向上除了受变化的弹力外,再受到恒定的重力和拉力.故物体A 做简谐运动.在最低点有:001F mg kx ma -+=,式中k 为弹簧劲度系数,1a 为在最低点物体A 的加速度. 在最高点,物体B 恰好不离开地面,此时弹簧被拉伸,伸长量为02x ,则: 002(2)k x mg F ma +-= 而0kx mg =,简谐运动在上、下振幅处12a a =,解得: 032mgF =也可以利用简谐运动的平衡位置求恒定拉力0F .物体A 做简谐运动的最低点压缩量为0x ,最高点伸长量为02x ,则上下运动中点为平衡位置,即伸长量为所在处.由002x mg k F +=,解得: 032mg F =. 【答案】022gx32mgﻫ说明: 区别原长位置与平衡位置.和原长位置对应的形变量与弹力大小、方向、弹性势能相关,和平衡位置对应的位移量与回复大小、方向、速度、加速度相关.七.与弹簧相关的临界问题ﻫ 通过弹簧相联系的物体,在运动过程中经常涉及临界极值问题:如物体速度达到最大;弹簧形变量达到最大时两个物体速度相同;使物体恰好要离开地面;相互接触的物体恰好要脱离等.此类问题的解题关键是利用好临界条件,得到解题有用的物理量和结论. 【例8】如图3-7-9所示,A B 、两木块叠放在竖直轻弹簧上,已知木块A B 、的质量分别为0.42kg 和0.40kg ,弹簧的劲度系数100/k N m =,若在A 上作用一个竖直向上的力F ,使A 由静止开始以20.5/m s 的加速度竖直向上做匀加速运动(210/g m s =)求: ﻫ(1) 使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A B 、分离的过程中,弹簧的弹性势能减少了0.248J ,求这一过程中F 对木块做的功.【解析】 此题难点在于能否确定两物体分离的临界点.当0F =(即不加竖直向上F 力)时,设木块A B 、叠放在弹簧上处于平衡时弹簧的压缩量为x ,有: ()A B kx m m g =+,即()AB m m gx k+= ① 对木块A 施加力F ,A 、B 受力如图3-7-10所示,对木块A 有: A A F N m g m a +-= ②对木块B 有: 'B B kx N m g m a --= ③ﻫ可知,当0N ≠时,木块A B 、加速度相同,由②式知欲使木块A 匀加速运动,随N 减小F 增大,当0N =时, F 取得了最大值m F ,即: () 4.41m A F m a g N =+=图 3-7-9又当0N =时,A B 、开始分离,由③式知,弹簧压缩量'()B kx m a g =+,则()'B m a g x k+=④ 木块A 、B 的共同速度:22(')v a x x =- ⑤由题知,此过程弹性势能减少了0.248P P W E J ==ﻫ设F 力所做的功为F W ,对这一过程应用功能原理,得: 21()()(')2F A B A B P W m m v m m g x x E =+++--联立①④⑤⑥式,且0.248P E J =,得:29.6410F W J -=⨯【答案】(1) 4.41m F N = 29.6410F W J -=⨯【例9】如图3-7-11所示,一质量为M 的塑料球形容器,在A 处与水平面接触.它的内部有一直立的轻弹簧,弹簧下端固定于容器内部底部,上端系一带正电、质量为m 的小球在竖直方向振动,当加一向上的匀强电场后,弹簧正好在原长时,小球恰好有最大速度.在振动过程中球形容器对桌面的最小压力为0,求小球振动的最大加速度和容器对桌面的最大压力. 【解析】 因为弹簧正好在原长时小球恰好速度最大,所以有:=qE mg ① 小球在最高点时容器对桌面的压力最小,有:=kx Mg ②此时小球受力如图3-7-12所示,所受合力为qE kx mg F -+= ③ 由以上三式得小球的加速度mMg a =.显然,在最低点容器对桌面的压力最大, 由振动的对称性可知小球在最低 点和最高点有相同的加速度, 解以上式子得:Mg kx =所以容器对桌面的压力为:Mg kx Mg F N 2=+=. 【答案】Mgm2Mg 八、弹力做功与弹性势能的变化问题弹簧伸长或压缩时会储存一定的弹性势能,因此弹簧的弹性势能可以与机械能守恒规律综合应用,我们用公式212P E kx =计算弹簧势能,弹簧在相等形变量时所具有的弹性势能相等一般是考试热点. 弹簧弹力做功等于弹性势能的减少量.弹簧的弹力做功是变力做功,一般可以用以下四种方法求解: (1)因该变力为线性变化,可以先求平均力,再用功的定义进行计算; (2)利用F x -图线所包围的面积大小求解; (3)用微元法计算每一小段位移做功,再累加求和; (4)根据动能定理、能量转化和守恒定律求解.由于弹性势能仅与弹性形变量有关,弹性势能的公式高考中不作定量要求,因此,在求弹力做功或弹性势能的改变时,一般从能量的转化与守恒的角度来求解.特别是涉及两个物理过程中的弹簧形变量相等时,往往弹性势能的改变可以抵消或替代求解.图 3-7-10图 3-7-11图 3-7-12【例10】如图3-7-13所示,挡板P 固定在足够高的水平桌面上,物块A 和B 大小可忽略,它们分别带有A Q +和B Q +的电荷量,质量分别为A m 和B m .两物块由绝缘的轻弹簧相连,一个不可伸长的轻绳跨过滑轮,一端与B 连接,另一端连接轻质小钩.整个装置处于场强为E 、方向水平向左的匀强电场中,A 、B 开始时静止,已知弹簧的劲度系数为k ,不计一切摩擦及A 、B 间的库仑力, A 、B 所带电荷量保持不变,B 不会碰到滑轮.(1)若在小钩上挂质量为M 的物块C 并由静止释放,可使物块A 对挡板P 的压力恰为零,但不会离开P ,求物块C 下降的最大距离h .(2)若C 的质量为2M ,则当A 刚离开挡板P 时, B 的速度多大?【解析】 通过物理过程的分析可知,当物块A 刚离开挡板P 时,弹力恰好与A所受电场力平衡,弹簧伸长量一定,前后两次改变物块C 质量,在第(2)问对应的物理过程中,弹簧长度的变化及弹性势能的改变相同,可以替代求解.设开始时弹簧压缩量为1x ,由平衡条件1B kx Q E =,可得1B Q Ex k= ①设当A 刚离开挡板时弹簧的伸长量为2x ,由2A kx Q E =,可得: 2A Q Ex k= ②故C 下降的最大距离为: 12h x x =+ ③ 由①②③三式可得: ()A B Eh Q Q k=+ ④ﻫ(2)由能量守恒定律可知,物块C 下落过程中,C 重力势能的减少量等于物块B 电势能的增量和弹簧弹性势能的增量以及系统动能的增量之和. 当C 的质量为M 时,有:B MgH Q Eh E =+∆弹 ⑤当C 的质量为2M 时,设A 刚离开挡板时B 的速度为v ,则有:212(2)2B B MgH Q Eh E M m v =+∆++弹 ⑥ 由④⑤⑥三式可得A 刚离开P 时B 的速度为: 2()(2)A B B MgE Q Q v k M m +=+ ⑦【答案】(1)()A B Eh Q Q k=+(2)2()(2)A B B MgE Q Q v k M m +=+ﻫ【例11】如图3-7-14所示,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,物体A B 、都处于静止状态.一不可伸长的轻绳一端绕过轻滑轮连接物体A ,另一端连接一轻挂钩.开始时各段绳都处于伸直状态,物体A 上方的一段绳沿竖直方向.现给挂钩挂一质量为2m 的物体C 并从静止释放,已知它恰好能使物体B 离开地面但不继续上升.若将物体C 换成另一质量为12()m m +的物体D ,仍从上述初始位置由静止释放,则这次物体B 刚离地时物体D 的速度大小是多少?已知重力加速度为g【解析】 开始时物体A B 、静止,设弹簧压缩量为1x ,则有:11kx m g =悬挂物体C 并释放后,物体C 向下、物体A 向上运动,设物体B 刚要离地时弹簧伸长量为2x ,有22kx m g =B 不再上升表明此时物体A 、C 的速度均为零,物体C 己下降到其最低点,与初状态相比,由机械能守恒得弹簧弹性势能的增加量为:212112()()E m g x x m g x x ∆=+-+物体C 换成物体D 后,物体B 离地时弹簧势能的增量与前一次相同,由能量关系得:图 3-7-13 图 3-7-1422211211211211()()()()22m m v m v m m g x x m g x x E ++=++-+-∆联立上式解得题中所 求速度为: 2112122()(2)m m m g v m m k+=+ 【答案】2112122()(2)m m m g v m m k+=+ﻫ说明: 研究对象的选择、物理过程的分析、临界条件的应用、能量转化守恒的结合往往在一些题目中需要综合使用. 九、弹簧弹力的双向性弹簧可以伸长也可以被压缩,因此弹簧的弹力具有双向性,亦即弹力既可能是推力又可能是拉力,这类问题往往是一题多解.【例12】如图3-7-15所示,质量为m 的质点与三根相同的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,已知弹簧a b 、对质点的作用力均为F ,则弹簧c 对质点作用力的大小可能为 ( )A、0 B 、F mg + C、F mg - D 、mg F -【解析】 由于两弹簧间的夹角均为0120,弹簧a b 、对质点作用力的合力仍为F ,弹簧a b 、对质点有可能是拉力,也有可能是推力,因F 与mg 的大小关系不确定,故上述四个选项均有可能.正确答案:A BCD 【答案】 ABCD十、弹簧振子弹簧振子的位移、速度、加速度、动能和弹性势能之间存在着特殊关系,弹簧振子类问题通常就是考查这些关系,各物理量的周期性变化也是考查的重点.【例13】如图3-7-16所示,一轻弹簧与一物体组成弹簧振子,物体在同一竖直线上的A B 、间做简谐运动, O 点为平衡位置;C 为AO 的中点,已知OC h =,弹簧振子周期为T ,某时刻弹簧振子恰好经过C 点并向上运动,则从此时刻开始计时,下列说法中正确的是 ( )A 、4T t =时刻,振子回到C 点 B 、2Tt ∆=时间内,振子运动的路程为4h C 、38T t =时刻,振子的振动位移为0 D、38Tt =时刻,振子的振动速度方向向下【解析】 振子在点A C 、间的平均速度小于在点C O 、间的平均速度,时间大于8T,选项A C 、错误;经2T振子运动O 点以下与点C 对称的位置,总路程为4h ,选项B 正确;经38Tt =振子在点O B 、间向下运动,选项D 正确.【答案】 B D十一、弹簧串、并联组合弹簧串联或并联后劲度系数会发生变化,弹簧组合的劲度系数可以用公式计算,高中物理不要求用公式定量分析,但弹簧串并联的特点要掌握:弹簧串联时,每根弹簧的弹力相等;原长相同的弹簧并联时,每根弹簧的形变量相等.【例14】 如图3-7-17所示,两个劲度系数分别为12k k 、的轻弹簧竖直悬挂,下端用图 3-7-16 图 3-7-15光滑细绳连接,并有一光滑的轻滑轮放在细线上;滑轮下端挂一重为G 的物体后滑轮下降,求滑轮静止后重物下降的距离.【解析】 两弹簧从形式上看似乎是并联,但因每根弹簧的弹力相等,故两弹簧实为串联;两弹簧的弹力均2G,可得两弹簧的伸长量分别为112G x k =,222G x k =,两弹簧伸长量之和12x x x =+,故重物下降的高度为:1212()24G k k x h k k +== 【答案】1212()4G k k k k +十二、通电的弹簧【例15】如图3-7-18所示装置中,将金属弹簧的上端固定,下端恰好浸入水银,水银与电源负极相连,弹簧上端通过开关S 与电源正极相连.当接通开关S 后,弹簧的运动情况如何?【解析】 通电弹簧相邻两匝线圈相互平行且电流同向,两匝线圈相互吸引,从而使弹簧收缩;弹簧收缩后下端离开水银,切断了电流吸引力消失,弹簧又向下恢复原长,与水银面接触而接通电路,然后又在吸引力作用下收缩.如此反复,弹簧就不断地上下振动. 十三、物体沿弹簧螺旋运动【例16】如图3-7-19所示,长度为L 的光滑钢丝绕成高度为H 的弹簧,将弹簧竖直放置.一中间有孔的小球穿过钢丝并从弹簧的最高点A 由静止释放,求经多长时间小球沿弹簧滑到最低点B .【解析】 小球沿光滑弹簧下滑时机械能守恒,可以假想在不改变弹簧上各处倾角的条件下将弹簧拉成一条倾斜直线,如图3-7-20所示,小球沿此直线下滑的时间与题中要求的时间相等.小球沿直线下滑的加速度为sin a g θ= 由几何知识可得:sin HL θ=;由位移公式可知:212L at =,联立上式解得:2t L gH= 【答案】2LgH十四、生产和生活中的弹簧弹簧在生产和生活中有着广泛的应用,近几年高考中也出现了不少有关弹簧应用方面的试题.【例17】如图3-7-21所示表示某同学在科技活动中自制的电子秤原理,利用电压表示数来指示物体质量,托盘与电阻可忽略的弹簧相连,托盘与弹簧的质量均不计,滑动变阻器的滑动头与弹簧上端连接;当托盘中没放物体且S 闭合时,电压表示数为零.设变阻器的总电阻为R 、总长度为L ,电源电动势为E 、内阻为r ,限流电阻阻值为0R ,弹簧劲度系数为k ,不计一切摩擦和其他阻力.(1)推导出电压表示数x U 与所称物体质量m 的关系式. (2)由(1)结果可知,电压表示数与待测物体质量不成正比、不便于进行刻度.为使电压表示数与待测物体质量成正比,请利用原有器材进行改进并完成电路原理图,推导出电压表示数x U 与待测物体质量m 的关系式.【解析】(1)设变阻器上端至滑动头的长度为x ,据题意得:mg kx =,x xR R L =,0x x x R U E R R r=++图 3-7-18图 3-7-20图 3-7-21 图 3-7-19解得:0()x mgREU mgR kL R r =++(2)改进后的电路如图3-7-22所示,则有:mg kx =,x xR R L=,解得: 0()x mgREU kL R R r =++ 【答案】(1)0()x mgREU mgR kL R r =++(2)0()x mgREU kL R R r =++图 3-7-22。

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结

高中物理重点经典力学问题----弹簧问题方法归类总结高考要求:轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用及能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视.弹簧类命题突破要点1.弹簧的弹力是一种由形变而决定大小和方向的力.当题目中出现弹簧时,要注意弹力的大小与方向时刻要与当时的形变相对应.在题目中一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化.2.因弹簧(尤其是软质弹簧)其形变发生改变过程需要一段时间,在瞬间内形变量可以认为不变.因此,在分析瞬时变化时,可以认为弹力大小不变,即弹簧的弹力不突变.3.在求弹簧的弹力做功时,因该变力为线性变化,可以先求平均力,再用功的定义进行计算,也可据动能定理和功能关系:能量转化和守恒定律求解.同时要注意弹力做功的特点:W k=-(kx22-kx12),弹力的功等于弹性势能增量的负值.弹性势能的公式E p=kx2,高考不作定量要求,可作定性讨论.因此,在求弹力的功或弹性势能的改变时,一般以能量的转化与守恒的角度来求解.下面就按平衡、动力学、能量、振动、应用类等中常见的弹簧问题进行分析一、与物体平衡相关的弹簧问题1.(1999年,全国)如图示,两木块的质量分别为m1和m2,两轻质弹簧的劲度系数分别为k1和k2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧.在这过程中下面木块移动的距离为( )A.m1g/k1B.m2g/k2C.m1g/k2D.m2g/k2此题是共点力的平衡条件与胡克定律的综合题.题中空间距离的变化,要通过弹簧形变量的计算求出.注意缓慢上提,说明整个系统处于一动态平衡过程,直至m1离开上面的弹簧.开始时,下面的弹簧被压缩,比原长短(m1 + m2)g/k2,而m l刚离开上面的弹簧,下面的弹簧仍被压缩,比原长短m2g/k2,因而m2移动△x=(m1 + m2)·g/k2 - m2g /k2=m l g/k2.此题若求m l移动的距离又当如何求解?参考答案:C2.(1996全国)如图所示,倔强系数为k1的轻质弹簧两端分别与质量为m1、m2的物块1、2拴接,倔强系数为k2的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态。

2022-2023学年北京海淀高三(上)期中物理(教师版)

2022-2023学年北京海淀高三(上)期中物理(教师版)

2022北京海淀高三(上)期中物理2022.11第一部分本部分共10题,共30分。

1.如图1所示两个完全相同的物块1和物块2之间用轻弹簧连接,用一根不可伸长的轻软细绳悬挂在天花板上并保持静止。

剪断细绳的瞬间。

物块1和物块2加速度的大小分别为a1和a2。

已知重力加速度为g,下列说话正确的是A.a1=g B.a1>gC.a2=0D.a2>g2.图2为一个地球仪绕与其“赤道面”垂直的“地轴”匀速转动的示意图。

Q点和P点位于同一条“经线”上,Q点和M点位于“赤道”上,O为球心。

下列说法正确的是A.Q、P的线速度大小相等B.Q、M的角速度大小相等C.P、M的向心加速度大小相等D.P、M的向心加速度方向均指向O3.图3为一列沿x轴传播的简谐横波在某时刻的图像,此时x=3m处质点的速度沿y轴正方向。

下列说法正确的是A.该列简谐横波沿x轴正方向传播B.该时刻,x=2m处的质点速度最大C.该时刻,x=4m处的质点加速度最大D.经过1个周期,x=6m处的质点沿x轴移动了8m4.某同学将一支圆珠笔绑在一根细绳的下端,细绳的上端用胶布固定在地铁的竖直扶手上。

地铁沿平直轨道运动,在某段时间内,细绳和笔相对车厢静止,该同学用手机拍摄的一张照片如图4所示,照片的拍摄方向跟地铁前进方向垂直。

由此判断该地铁在此段时间内,可能A.向左加速驶出地铁站B.向左减速驶入地铁站C.向右加速驶出地铁站D.向右减速驶入地铁站5.如图5所示,水平面上有3个完全相同的物块,A、B和C,它们在水平推力F的作用下沿水平面一起加速运动。

设它们与水平间的动摩擦因数均为μ,运动过程中物块A与B之间的作用力大小为F1、物块B和C之间的作用力大小为F2。

下列说法正确的是A.若μ=0,则F1=2F2B.若μ=0,则F1=3F2C.若μ≠0,则F1=2F2D.若μ≠0,则F1=3F26.如图6所示,在倾角为θ的斜面上,质量为m的物块受到沿斜面向上的恒力F的作用,沿斜面以速度v匀速上升了高度ℎ。

5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)

5、力与直线运动:弹簧问题-2021-2022年度高考尖子生培优专题(解析版)

5、力与直线运动:弹簧问题一.两类模型(1)刚性绳(或接触面)——不发生明显形变就能产生弹力的物体,剪断(或脱离)后,其弹力立即消失,不需要形变恢复时间.(2)弹簧(或橡皮绳)——两端同时连接(或附着)有物体的弹簧(或橡皮绳),特点是形变量大,其形变恢复需要较长时间,在瞬时性问题中,其弹力的大小往往可以看成保持不变.2、求解瞬时加速度问题时应抓住“两点”(1)物体的受力情况和运动情况是时刻对应的,当外界因素发生变化时,需要重新进行受力分析和运动分析.(2)加速度可以随着力的突变而突变,而速度的变化需要一个过程的积累,不会发生突变.二、动态变化问题力与运动的关系:力→加速度→速度变化→(运动状态变化)(1)分析物体的运动性质,要从受力分析入手,先求合力,然后根据牛顿第二定律分析加速度的变化。

(2)速度增大或减小取决于加速度和速度方向间的关系,和加速度的大小没有关系。

(3)加速度如何变化取决于物体的质量和合外力,与物体的速度没有关系。

三、临界问题物体分离的临界条件时两物体间相互作用力为0例1、(2021·山东泰安模拟)如图,质量为1.5 kg的物体A静止在竖直的轻弹簧上,质量为0.5 kg的物体B由细线悬挂在天花板上,B与A刚好接触但不挤压.现突然将细线剪断,则剪断后瞬间A、B间的作用力大小为(g取10 m/s2)( )A.0 B.2.5 NC.5 N D.3.75 N【解析】当细线剪断瞬间,细线的弹力突然变为零,则B物体的重力突然作用到A上,此时弹簧形变仍不变,对AB整体受力分析受重力G=(m A+m B)g=20 N,弹力为F=m A g=15 N,由牛顿第二定律G-F=(m A+m B)a,解得a=2.5 m/s2,对B受力分析,B受重力和A对B的弹力F1,对B有m B g-F1=m B a,可得F1=3.75 N,D选项正确.【答案】 D针对训练1. (多选)如图所示,质量为m的小球被一根橡皮筋AC和一根绳BC系住,当小球静止时,橡皮筋处在水平方向上.下列判断中正确的是( )A .在AC 被突然剪断的瞬间,BC 对小球的拉力不变B .在AC 被突然剪断的瞬间,小球的加速度大小为g sin θC .在BC 被突然剪断的瞬间,小球的加速度大小为g cos θD .在BC 被突然剪断的瞬间,小球的加速度大小为g sin θ【解析】:选BC .设小球静止时BC 绳的拉力为F ,AC 橡皮筋的拉力为T ,由平衡条件可得:F cos θ=mg ,F sin θ=T ,解得:F =mgcos θ,T =mg tan θ.在AC 被突然剪断的瞬间,BC 上的拉力F 也发生了突变,小球的加速度方向沿与BC 垂直的方向且斜向下,大小为a =mg sin θm=g sin θ,B 正确,A 错误;在BC 被突然剪断的瞬间,橡皮筋AC 的拉力不变,小球的合力大小与BC 被剪断前拉力的大小相等,方向沿BC 方向斜向下,故加速度a =Fm=gcos θ,C 正确,D 错误.【答案】 BC针对训练2、(多选)如图所示,在水平地面上的箱子内,用细线将质量均为m 的两个球a 、b 分别系于箱子的上、下两底的内侧,轻质弹簧两端分别与球相连接,系统处于静止状态时,弹簧处于拉伸状态,下端细线对箱底的拉力为F ,箱子的质量为M ,则下列说法正确的是(重力加速度为g )( )A .系统处于静止状态时地面受到的压力大小为(M +2m )g -FB .系统处于静止状态时地面受到压力大小为(M +2m )gC .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g +FD .剪断连接球b 与箱底的细线的瞬间,地面受到的压力大小为(M +2m )g【解析】 系统处于静止状态时,对整体进行受力分析,由平衡条件可得,地面对整体的支持力F N =(M +2m )g ,由牛顿第三定律可知地面受到的压力大小为(M +2m )g ,选项B 正确,A 错误;剪断连接球b 与箱底的细线瞬间,球b 向上加速运动,地面受到的压力大小为(M +2m )g +F ,选项C 正确,D 错误。

高中物理-弹簧问题

高中物理-弹簧问题

弹簧问题轻弹簧是不考虑弹簧本身的质量和重力的弹簧,是一个理想模型,可充分拉伸与压缩。

无论轻弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零。

弹簧读数始终等于任意一端的弹力大小。

弹簧弹力是由弹簧形变产生,弹力大小与方向时刻与当时形变对应。

一般应从弹簧的形变分析入手,先确定弹簧原长位置,现长位置,找出形变量x与物体空间位置变化的几何关系,分析形变所对应的弹力大小、方向,以此来分析计算物体运动状态的可能变化。

性质1、轻弹簧在力的作用下无论是平衡状态还是加速运动状态,各个部分受到的力大小是相同的。

其伸长量等于弹簧任意位置受到的力和劲度系数的比值。

性质2、两端与物体相连的轻质弹簧上的弹力不能在瞬间突变——弹簧缓变特性;有一端不与物体相连的轻弹簧上的弹力能够在瞬间变化为零。

性质3、弹簧的形变有拉伸和压缩两种情形,拉伸和压缩形变对应弹力的方向相反。

分析弹力时,在未明确形变的具体情况时,要考虑到弹力的两个可能的方向。

弹簧问题的题目类型1、求弹簧弹力的大小、形变量(有无弹力或弹簧秤示数)2、求与弹簧相连接的物体的瞬时加速度3、在弹力作用下物体运动情况分析(往往涉及到多过程,判断v S a F变化)4、有弹簧相关的临界问题和极值问题除此之外,高中物理还包括和弹簧相关的动量和能量以及简谐振动的问题1、弹簧问题受力分析受力分析对象是弹簧连接的物体,而不是弹簧本身找出弹簧系统的初末状态,列出弹簧连接的物体的受力方程。

(灵活运用整体法隔离法);通过弹簧形变量的变化来确定物体位置。

(高度,水平位置)的变化弹簧长度的改变,取决于初末状态改变。

(压缩——拉伸变化)参考点,F=kx 指的是相对于自然长度(原长)的改变量,不一定是相对于之前状态的长度改变量。

抓住弹簧处于受力平衡还是加速状态,弹簧两端受力等大反向。

合力恒等于零的特点求解。

注:如果a相同,先整体后隔离。

隔离法求内力,优先对受力少的物体进行隔离分析。

2、瞬时性问题题型:改变外部条件(突然剪断绳子,撤去支撑物)针对不同类型的物体的弹力特点(突变还是不突变),对物体做受力分析3、动态过程分析三点分析法(接触点,平衡点,最大形变点)竖直型:水平型:明确有无推力,有无摩擦力。

河南省郑州市高考物理复习 难点1 弹簧问题练习-人教版高三全册物理试题

河南省郑州市高考物理复习 难点1 弹簧问题练习-人教版高三全册物理试题

难点1 弹簧问题弹簧分为轻弹簧〔m=0〕和重弹簧(m ≠0),轻弹簧所受合外力一定为零,各匝之间弹力一样,重弹簧放在光滑的水平面上处于平衡状态时各匝之间的相互作用力才相等;轻弹簧两端连有物体时弹力不突变,假设其中一端突然与物体脱离或弹簧断开,如此弹力突变为零,物体碰撞轻弹簧没有机械能的损失,碰撞与弹簧相连的轻质物体也不会有机械能的损失。

一般的弹簧都可认为是软弹簧,是否轻弹簧题目中会说明。

脱离问题中弹簧的状态:〔1〕物体与弹簧脱离时弹簧一定处于原长,〔2〕仅靠弹簧弹力将两物体弹出,那么这两个物体必然是在弹簧原长时分开的;〔3〕除了弹簧弹力,还有其它外力作用而使相互接触的两物体别离,那么两个物体别离时弹簧不一定是原长。

〔弹簧和所连接的物体质量不计别离时是弹簧的原长,但质量考虑时一定不是弹簧的原长,〕可看成连接体.弹性势能的表达式221kx E P =不要求应用,牵涉到弹性势能的问题时,往往是第一种情景弹簧形变量与第二种情景形变量一样,或者用变力做功的方法求出221kx E P = 一.轻弹簧和重弹簧1. 如下列图,一个弹簧秤放在光滑的水平面上,外壳质量m不能忽略,弹簧与挂钩质量不计,施水平方向的力F 1和称外壳上的力F 2,且F 1>F 2,如此弹簧秤沿水平方向的加速度为________ ,弹簧秤的读数为 _______2.如下列图,一质量为M 、长为L 的均质弹簧平放在光滑的水平面上,在弹簧右端施加一水平力F 使弹簧向右做加速运动.试分析弹簧上各局部的受力情况.二.静力学中的弹簧3.如下列图,质量为m 的质点与三根一样的轻弹簧相连,静止时相邻两弹簧间的夹角均为0120,弹簧a b 、对质点的作用力均为F ,如此弹簧c 对质点作用力的大小可能为 ( )A .FB .F+mgC .F-mgD .F+2mgFm N f m 4.如下列图,两个劲度系数分别为k1和k2的轻质弹簧竖直悬挂,弹簧下端用光滑细绳连接,并有一光滑的轻滑轮放在细绳上.当滑轮下端挂一重为G 的物体时,滑轮下滑一段距离,如此如下结论正确的有〔 〕A .两弹簧的伸长量相等B .两弹簧的弹力不一定相等B .C .重物下降的距离为D .重物下降的距离为 5.如下列图,劲度系数为1k 的轻质弹簧两端分别与质量为1m 、2m 的物块1、2拴接,劲度系数为2k 的轻质弹簧上端与物块2拴接,下端压在桌面上(不拴接),整个系统处于平衡状态.现将物块1缓慢地竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了_________________ ,物块1的重力势能增加了________________.6.如下列图,用完全一样的轻弹簧A 、B 、C 将两个一样的小球连接并悬挂,小球处于静止状态,弹簧A 与竖直方向的夹角为30o ,弹簧C 水平,如此弹簧A 、C 的伸长量之比为A .4:3 B.3:4 C. 1:2 D. 2:17.如下列图,质量分别为12m m 、两个物体通过轻弹簧连接,在力F 的作用下一起沿水平方向做匀速直线运动〔1m 在地面,2m 在空中〕,力F 与水平方向成θ角.如此1m 所受支持力N 和摩擦力f 正确的答案是〔 〕A. 12sin N m g m g F θ=+-B. 12cos N m g m g F θ=+-C. cos f F θ=D. sin f F θ=.三.动力学中的弹簧问题8.如下列图,一轻质弹簧竖直立在水平地面上,弹簧一端固定在地面上。

两物体分离的临界问题

两物体分离的临界问题

恒力。分离瞬时,A、B加速度仍相等,设A、
B与C相距为L2,则kL qB22qCmBgsi3 n0 0mBa∴L2=3m

L2
L1
1 2
at2
故 t=1s
二、处于变速运动状态的两物体分离
这类问题两物体相接触,开始两物体一起 以相同加速度运动,但两物体即将分离时相互 作用的弹力消失,其中某物体由于所受合力改 变而使其加速度发生变化,因两物体加速度不 同导致两物体发生分离。
向下运动,它们到达最低点后又向上运动.
已知C 的质量为m 时,把它从距A 高H 处 释放,则最终能使B 刚好要离开地面.若C 的质量为m/2,要使B 始终不离开地面, 则释放时,C 距A 的高度h不能超过多少?
类题3:(2005年全国理综Ⅲ卷)如图所示,
在倾角为θ的光滑斜面上有两个用轻质弹簧相
连接的物块A、B,它们的质量分别为mA、mB, 弹簧的劲度系数为k,C为一固定挡板。系统处一
小结:
两物体间分离时应抓住以下几点:
①两物体简化为质点,所处位置相同; ②两者间无弹力作用; ③两者速度相同; ④两者加速度相同。
静止状态,现开始用一恒力F沿斜面方向拉物块
A使之向上运动,求物块B刚要离开C时物块A
的加速度a和从开始到此时物块A的位移d,重
力加速度为g。
F
A
C

二、两类典型例题
一、与地面或与固定档板分离
二、处于变速运动状态的两物体分离
【例2】如图,均可视为质点的三个物体A、B、C在
倾角为30º的光滑斜面上,A与B紧靠在一起,C紧靠 在固定档板上,质量分别为mA=0.43kg, mB= 0.20kg, mC =0.50kg,其中A不带电,B、C的电 量分别为qB=+2.0×10-5C、 qC=+7.0×10-5C 且 保持不变,开始时三个物体皆能保持静止。现给A施 加一平行于斜面向上的力F,使A作加速度a=2.0m/s2 的匀加速直线运动,经过时间t,力F变为恒力。已知

弹簧与物块的分离问题----教师版

弹簧与物块的分离问题----教师版

“弹簧与物块的分离”模型模型建构:两个物体与弹簧组成的系统。

两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。

【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。

〖解析〗物体应在弹簧的原长处分离。

由于水平面光滑,当弹簧从压缩状态回到自然伸长位置时,一直加速运动。

当它刚刚回到平衡位置时,物块B 受的弹力为阻力,开始减速。

而物块A 不受外力做匀速直线运动。

v A ≥v B此时A 、B 分离。

【体验1】但是如果物体与地面之间是不光滑的,题目条件如模型1。

试讨论分离条件。

〖解析〗假设A 、B 在某一位置分离,此时刻两物体的相互作用力为零F AB =0同时,两物体的加速度相同。

则A A a g μ=;B B B kx a g m μ=+所以()A B g x kμμ-=讨论:(1)如果A μ等于B μ或均为零;x 等于零。

两物体在O 点分离;(2)如果A μ大于B μ,x 大于零,两物体在O 点的右侧分离;(3)如果A μ小于B μ,x 大于零,两物体的分离点在O 点的左侧。

图1 A B O〖点评〗两物体分离的条件是:相互间的弹力F N =0等于零;两物体瞬时加速度相等。

【模型2】竖直面上“弹簧与木块的分离”模型如图2所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,重物何时与木板分离〖解析〗当物体分离时,物体间的弹力F N =0物块只受重力,物块的加速度为g ,木板的加速度也为g弹簧的状态应为原长,即弹簧恢复原长时,二者分离此时物块与薄板有共同的加速度。

从动力学的角度可以得到,竖直方向的弹簧类问题两物体的分离点是在弹簧的原长处。

机械能守恒定律专题4-弹簧-教师版

机械能守恒定律专题4-弹簧-教师版

机械能守恒定律专题4 弹簧类问题例题1、如图所示,在轻弹簧的下端悬挂一个质量为m的小球A,若将小球A从弹簧原长位置由静止释放,小球A能够下降的最大高度为h。

若将小球A换为质量为3m的小球B,仍从弹簧原长位置由静止释放,则小球B下降h时的速度为(重力加速度为g,不计空气阻力。

)(B)A.B.C.D.试题分析:小球A下降h过程,根据动能定理,有mgh-W1=0;小球B下降h过程,根据动能定理,有,联立解得v=.选项B正确。

例题2、如图所示,轻质弹簧的劲度系数为k,下面悬挂一个质量为m的砝码A,手持木板B托住A缓慢向上压弹簧,至某一位置静止.此时如果撤去B,则A的瞬时加速度为1.6g现用手控制B使之以a=0.4g的加速度向下做匀加速直线运动.求:(1):砝码A能够做匀加速运动的时间?(2):砝码A做匀加速运动的过程中,弹簧弹力对它做了多少功?木板B对它的支持力做了多少功?小题1:小题2:(1)设初始状态弹簧压缩量为x1则kx1+mg=m×可得x1=……………(1分)当B以匀加速向下运动时,由于a<g,所以弹簧在压缩状态时A、B不会分离,分离时弹簧处于伸长状态. ……(2分)设此时弹簧伸长量为x2,则mg-kx2= m×可得x2=(1分)A匀加速运动的位移s=x1+x2=(1分)s=解得: …(2分)(2)∵x1=x2∴这一过程中弹簧对物体A的弹力做功为0…………(3分)A、B分离时(2分)由动能定理得:…(2分)代入得:(2分)例题3、如图甲,质量为m的小木块左端与轻弹簧相连,弹簧的另一端与固定在足够大的光滑水平桌面上的挡板相连,木块的右端与一轻细线连接,细线绕过光滑的质量不计的轻滑轮,木块处于静止状态.在下列情况中弹簧均处于弹性限度内,不计空气阻力及线的形变,重力加速度为g.(1)图甲中,在线的另一端施加一竖直向下的大小为F的恒力,木块离开初始位置O由静止开始向右运动,弹簧开始发生伸长形变,已知木块过P点时,速度大小为v,O、P两点间距离为s.求木块拉至P点时弹簧的弹性势能;(2)如果在线的另一端不是施加恒力,而是悬挂一个质量为M的物块,如图乙所示,木块也从初始位置O 由静止开始向右运动,求当木块通过P点时的速度大小.(1)用力F拉木块至P点时,设此时弹簧的弹性势能为E P,根据功能关系有Fs=E P+1/2mv2…①代入数据可解得:E P=Fs-1/2mv2…(2)悬挂钩码M时,当木块运动到P点时,弹簧的弹性势能仍为E p,设木块的速度为v′,由机械能守恒定律得:Mgs=E P+1/2(m+M)v′2…③联立②③解得v′=√(mv2+2(Mg-F)s)/(M+m)例题4、如图,质量为m1的物体A 经一轻质弹簧与下方地面上的质量为m2的物体B 相连,弹簧的劲度系数为k , A 、B 都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩.开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向.现在挂钩上挂一质量为m3的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升.若将C 换成另一个质量为(m1+ m3)的物体D ,仍从上述初始位置由静止状态释放,则这次B 刚离地时D的速度的大小是多少?已知重力加速度为g解析:开始时,A、B 静止,设弹簧压缩量为1x,有11gkx m=挂C并释放后,C向下运动,A 向上运动,设B刚要离地时弹簧伸长量为2x,有22kx m g=B不再上升,表示此时A 和C的速度为零,C已降到其最低点.由机械能守恒,与初始状态相比,弹簧弹性势能的增加量为312112=m()()E g x x m g x x∆+-+C换成D后,当B刚离地时弹簧势能的增量与前一次相同,由能量关系得311311211211()()()()2222m mυmυm m g x x m g x x E++=++-+-∆联立解得211213()(2)2m m m gυ=m m k++例题5、如图,一个倾角θ=30°的光滑直角三角形斜劈固定在水平地面上,顶端连有一轻质光滑定滑轮。

北京市高三物理一轮专题复习 弹簧问题-人教版高三全册物理试题

北京市高三物理一轮专题复习 弹簧问题-人教版高三全册物理试题

专题弹簧问题知识导图轻弹簧是一种理想化的物理模型,以轻质弹簧为载体,设置复杂的物理情景,考查力的概念,物体的平衡,牛顿定律的应用与能的转化与守恒,是高考命题的重点,此类命题几乎每年高考卷面均有所见,应引起足够重视。

2016年第11题18分考查弹簧做功与弹性势能问题2014年第6题8分考查弹簧的瞬时性问题模型2013年第11题18分考查弹簧的临界问题与做功问题2011年第6题8分考查弹力的计算与瞬时性问题教学目标1.通过本节课的学习,让学生加深弹簧问题的几个考点,学会每个考点对应的解题方法。

2.让学生认识到弹簧问题的共性:不能突变;弹簧问题一定要找到几个临界点。

3.提升学生综合分析物理问题能力,学会用动量能量的观点解决物理问题。

题型分类与方法点拨类型一弹簧的伸长量和弹力的计算方法点拨:这类题一般以单一问题出现,涉与到的知识点是胡克定律:F=kx . 解题的主要关键是找弹簧原长位置。

例题1:如下列图,劲度系数为 k2的轻质弹簧竖直固定在桌面上,上端连一质量为 m 的物块,另一劲度系数为 k 1的弹簧的上端 A 缓慢向上提,当提到下端弹簧的弹力大小恰好等于23mg 时,求 A 点上提的高度。

精华提炼:练习1如下列图,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上〔但不拴接〕,整个系统处于平衡状态,现缓慢向上提上面的木块,直到它刚离开上面弹簧。

在这过程中下面木块移动的距离为〔 〕 A.m 1g k 1 B.m 2g k 1 C.m 1g k 2 D.m 2g k 2练习2. 一个长度为L 的轻弹簧,将其上端固定,下端挂一个质量为m 的小球时,弹簧的总长度变为2L 。

现将两个这样的弹簧按如下列图方式连接,A 、B 两小球的质量均为m ,如此两小球平衡时,B 小球距悬点O 的距离为〔不考虑小球的大小〕 ( )A. 3LB. 4LC. 5LD. 6L类型二 瞬时性问题方法点拨:这类问题主要考查弹簧弹力不能发生突变这一特性。

【高中物理】动量守恒定律的应用之弹簧类问题 课件 高二物理人教版(2019)选择性必修第一册

【高中物理】动量守恒定律的应用之弹簧类问题 课件 高二物理人教版(2019)选择性必修第一册
D. S1 -S2=S3
5.如图,在光滑水平面上放着质量分别为m和2m的A、B两个物块,现用
外力缓慢向左推B使弹簧压缩,此过程中推力做功W。然后撤去外力,
则( CD )
A.从开始到A离开墙面的过程中,墙对A的冲量为0
B.当A离开墙面时,B的动量大小为

C. A离开墙面后,弹簧的最大弹性势能为
接在一起,竖直放置在水平地面上,物体A处于静止状态,在A的正上方
h高处有一质量也为m的小球C。现将小球C由静止释放,C与A发生碰撞
后立刻粘在一起,弹簧始终在弹性限度内,忽略空气阻力,重力加速度
为g。要使碰后物体B被拉离地面,h至少为多大?
解析:对 C 自由下落过程,由机械能守恒得:
1
mgh= mv02,解得:v0= 2gh
在钢板上并与钢板一起向下运动 x0 后到达最低点 Q。
下列说法正确的是( BC )
A.物块与钢板碰后的速度为 2gh
2gh
B.物块与钢板碰后的速度为
2
h
C.从 P 到 Q 的过程中,弹性势能的增加量为 mg(2x0+ )
2
D.从 P 到 Q 的过程中,弹性势能的增加量为 mg(2x0+h)
10.如图所示,质量均为m的A、B两物体通过劲度系数为k的轻质弹簧拴
*11.(2022全国乙卷)如图(a),一质量为m的物块A与轻质弹簧连接,静
止在光滑水平面上:物块B向A运动,t=0时与弹簧接触,到t=2t0时与弹簧分
离,第一次碰撞结束,A、B的v-t图像如图(b)所示。已知从t=0到t=t0时间
内,物块A运动的距离为0.36v0t0。A、B分离后,A滑上粗糙斜面,然后滑
v
t
请你在同一幅图中画出两者的速度时间图像

高三物理冲刺教案9:有关弹簧问题的分析

高三物理冲刺教案9:有关弹簧问题的分析

高三物理冲刺教案9:有关弹簧问题的分析高考趋势展望弹簧类问题历来是学生学习的难点,在近几年的高考中时有出现.从高考考查的特点看,涉及弹簧类问题多是一些综合性较强、物理过程又比较复杂的问题,一般要用动量守恒定律、能量守恒定律及其他力学规律解决.根据高考对此类问题考查的特点,在第二阶段的复习中,应弄清弹簧与其关联物之间存在的力、运动状态、动量或者机械能之间的联系,正确分析弹簧关联物的运动情况,恰当选取物理规律进行计算.由于此类问题涉及力学规律较多,有利于考查考生综合分析问题的能力,在未来的高考中仍将是十分重要的考查点.知识要点整合在有关弹簧类问题中,要特别注意弹簧及关联物体具有如下特点:1.弹簧上的弹力是变力,弹力的大小随弹簧的形变量发生变化.2.只有一端有关联物体,另一端固定的弹簧,当弹簧伸长到最长或压缩到最短时,物体速度最小(为零),弹簧的弹性势能最大,此时,也是联系物体的速度方向发生改变的时刻.若关联物与接触面间光滑,当弹簧恢复原长时,物体速度最大,弹性势能为零.若关联物与接触面间粗糙,物体速度最大时弹力与摩擦力平衡,此时弹簧并没有恢复原长,弹性势能也不为零.3.两端均有关联物的弹簧,弹簧伸长到最长或压缩到最短时,相关联物体的速度一定相等,弹簧具有最大的弹性势能;当弹簧恢复原长时,相关联物体的速度相差最大,弹簧对关联物体的作用力为零.若物体再受阻力时,弹力与阻力相等时,物体速度最大.精典题例解读[例1]如图1-9-1所示,一轻弹簧一端系在墙上O点,自由伸长到B点,今将一质量为m的小物体靠着弹簧,将弹簧压缩到A点,然后释放,小物体能在水平面上运动到C点静止,AC距离为s,若将小物体系在弹簧上,在A点由静止释放,则小物体将做阻尼运动到最后静止,设小物体通过的总路程为l,则下列答案正确的是图1-9-1A.s>lB.s=lC.s<lD.以上A、B答案都有可能【解析】物体不系在弹簧上时,由A运动到C的过程中,水平方向只受弹力及滑动摩擦力,由能量守恒定律可知:弹簧的弹性势能E p全部转化成热能(通过克服摩擦力做功)即:F f·s=E p. ①若物体系在弹簧上做阻尼运动时,水平方向受力与前面相同,只不过随运动方向的不同,摩擦力方向不同,但大小恒定且与上一种情况下相等,摩擦力始终做负功,由能量守恒定律可知:弹簧的弹性势能也要通过物体克服摩擦阻力做功而转化成热能.由于水平面不光滑,物体可能停在B点以外的位置,此时弹力不为零,但地面对物体的静摩擦力与之平衡而静止.此时,弹簧仍具有弹性势能E p′,所以有F f·l=E p-E p′②又E p′>0 ③由①②③式可得:l<s.故答案A正确.物体也有可能停在B点,此时弹力为零,地面对物体的摩擦力也为零,弹簧的弹性势能E p′=0. ④由①②④式可得:l=s.故答案B正确.综合以上分析:本题答案选D.小结:本题没有复杂定量的计算,主要是通过定性的分析及简单的推导即可确定正确答案,但是要正确求解本题,除有关的基本知识,如弹簧问题、物体受力问题、运动情况需熟知外,对整个物理过程的分析也是很重要的.特别是,系住物体与不系住物体相比,两种情况下有哪些相同之处,又有哪些不同的地方,特别要搞清楚,系住物体使物体做阻尼振动时,为什么有可能停在B 点,也有可能停在B 点以外的位置,这是解决本题的关键所在.[例2]如图1-9-2所示,两物体原来静止质量m 1=2m 2,两物体与水平面的摩擦因数为μ2= 2μ1,当烧断细线后,弹簧恢复到原长时,两物体脱离弹簧时的速度均不为零,则图1-9-2A.两物体在脱离弹簧时速率最大B.两物体在刚脱离弹簧时速率之比v 1/v 2=1/2C.两物体的速率同时达到最大值D.两物体在弹开后同时达到静止【解析】 m 1物体受到的摩擦力F 1=μ1m 1g ,m 2物体受到的摩擦力F 2=μ2m 2g . 所以:11222121221121=⨯⨯==g m g m g m g m F F μμμμ m 1和m 2组成的系统所受合外力为零,系统动量守恒,即:m 1v 1-m 2v 2=0.所以2121=v v 即在运动中的任何时刻,二者的速度比都是1/2,并且同时达到最大值,故B 、C 正确.当弹力大于摩擦力时,物体做加速运动,弹力小于摩擦力时,物体做减速运动,所以弹力等于摩擦力时,速率最大,故A 项错.离开弹簧后,物体只受摩擦力.根据动量定理得:-μmgt =0-mv .所以t ∝μv 所以:111221122121=⨯=⋅=μμv v t t ,同时静止.故D 项正确. 综合以上分析:本题正确答案B 、C 、D.小结:1.本题中的m 1、m 2物体都受摩擦力,一般情况下m 1、m 2组成的系统动量是不守恒的.但通过具体计算却发现系统的合外力仍为零,可由动量守恒定律求解速度,这是本题的一个特点.2.由于物体均受摩擦力作用,所以,只有物体所受合外力为零,即弹簧弹力等于摩擦力大小时速度最大.而不是弹簧恢复原长时速度最大,这是本题的又一个特点.[例3]如图1-9-3所示,A 、B 两物体的质量分别是m 1=5 kg ,m 2=3 kg.它们在光滑水平面上沿同一直线向右运动,速度分别为v 1=5 m/s,v 2=1 m/s.当A 追上B 后,与B 上固定的质量不计的弹簧发生相互作用.弹簧被压缩后再伸长,把A 、B 两物体弹开,已知A 、B 两物体作用前后均沿同一直线运动,弹簧压缩时未超过弹簧的弹性限度.图1-9-3求:(1)AB 相互作用后的最终速度各是多少?(2)碰撞中弹簧具有的最大弹性势能是多少?【解析】 A 、B 相互作用过程中系统水平方向的动量守恒,系统无机械能损失,机械能守恒,由此可解得A 、B 最终速度.当A 、B 两物体速度相同时弹簧的压缩量最大,弹簧具有最大弹性势能.(1)以AB 为系统,在碰撞过程中所受合外力为零,总动量守恒,则有:(取运动方向为正向) m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ① 又AB 相互作用时,只有弹力做功,机械能守恒. 即作用前后的动能守恒有:21m 1v 12+21m 2v 22=21m 1v 1′2+21m 2v 2′2 ②把以上两式移项变形为: m 1(v 1-v 1′)=m 2(v 2′-v 2) ③ m 1(v 12-v 1′2)=m 2(v 2′2-v 22) ④ ③④两式相除得:v 1+v 1′=v 2+v 2′ 所以v 2′=v 1+v 1′-v 2⑤将⑤式代入①式得:m 1v 1+m 2v 2=m 1v 1′+m 2(v 1+v 1′-v 2) 所以碰后A 的速度 v 1′=21221212)(m m v m v m m ++-=351325)35(+⨯⨯+⨯- m/s=2 m/sv 1′方向水平向右将v 1′代入⑤式得:v 2′=v 1+v 1′-v 2=5+2-1=6 m/s 即碰后B 的速度是v 2′=6 m/s v 2′方向水平向右.(2)A 相对B 静止时,弹簧压缩最短,弹性势能最大,这时A 、B 速度相同,根据动量守恒定律得: m 1v 1+m 2v 2=(m 1+m 2)v 所以共同运动的速度 v =351355212211+⨯+⨯=++m m v m v m m/s=3.5 m/s由机械能守恒定律有:p 221222211)(212121E v m m v m v m +⋅+=+ 所以弹簧的最大弹性势能E p =21m 1v 12+21m 2v 22-21(m 1+m 2)·v 2 =21×5×52 J+21×3×12 J-21×(5+3)×3.52 J=15 J. 小结:这是一道综合题,要同时用到能量守恒和动量守恒来解题,所以分析清楚物理过程,判定守恒定律各自成立的条件是解题的重点更是难点.另外弄清何时弹性势能最大也是一个关键.应用强化训练1.质量为m 的物体静止于光滑水平桌面上的A 点如图1-9-4所示,现用水平恒力F 分别通过细绳和轻质弹簧把物体由A 点从静止拉到B 点.两种情况下水平恒力所做的功分别为W 1和W 2,物体到B 点时具有的动能分别为E k1和E k2,则它们之间的关系为图1-9-4A.W1=W2,E k1=E k2B.W1>W2,E k1>E k2C.W1<W2,E k1<E k2D.W1<W2,E k1=E k2【解析】由于弹簧发生形变,第2种情况在F的方向上通过的位移大,所以W1<W2.物体在两种情况下通过的位移相同,且由于轻弹簧发生形变的时间可以忽略,即认为在弹簧右端施恒力F后,弹簧立即发生相应的形变,使弹簧作用于A的拉力瞬间变为和F相等,故可以认为在物体发生相同的位移情况下,外力对物体做的功相同,所以由动能定理知E k1=E k2,故正确答案为D.【答案】D2.劲度系数为k的轻质弹簧,上端固定,下端拴一个小球,静止时球距地面高为h,用手竖直拉球使之着地,若从静止开始释放小球(弹簧始终在弹性限度内)则:①刚释放小球时,小球所受合外力大小为kh②小球运动到离地面高为h时其动量最大③小球上升到最大高度时,加速度大小一定等于g④小球上升到最大高度时,弹簧的弹性势能一定等于0以上说法正确的是A.①②B.③④C.①③D.②④【解析】球静止时,设弹簧被拉长h0,如图示:受两个力:则kh0=mg当球被拉着地后,弹力F=k(h+h0)所以球所受合力F合=F-mg=k(h+h0)-kh0=kh故①正确.当球又回升到离地面高为h的平衡位置时,向上的合力为零,再向上升,合力方向向下,开始减速,所以高为h处球的动量最大,故②正确.又因为不知h0与h的具体关系,故③④两种说法是错误的,而③④两种说法只有在h=h0时才正确,所以本题答案选A.【答案】A3.如图1-9-5所示:一弹簧一端系在墙上O点,自由伸长到B点,今将一小物体m连在弹簧上,并压缩到A点然后释放,小物体能运动到C点静止,物体与水平地面的动摩擦因数恒定,试判断下列说法正确的是图1-9-5A.物体从A到B速度越来越大,从B到C速度越来越小B.物体从A到B速度越来越小,从B到C加速度不变C.物体从A到B,先加速后减速,从B到C一直做减速运动D.物体在B点所受合外力为零【解析】物体在从A向B运动时受四个力作用,如图(1)所示竖直方向是一对平衡力.图(1)图(2)又因为到B点时,弹力F=0.故合力就等于F f,与运动方向正相反,所以,到B点以前就已经开始做减速运动了,只有在AB间某一点F=F f时,F合=0,加速度等于零,速度达到最大.越过B点后,物体受力如图(2)示.即合力F合=F f+F,故B到C,一直做减速运动,故选项C正确.【答案】C4.如图1-9-6所示,质量相同的木块A、B用轻弹簧连接置于光滑的水平面上,开始弹簧处于自然状态.现用水平恒力F推木块A,则从加上力F后到弹簧第一次被压缩到最短的过程中图1-9-6A.两木块速度相同时,加速度a A=a BB.两木块速度相同时,加速度a A>a BC.两木块加速度相同时,速度v A<v BD.两木块加速度相同时,速度v A>v B【解析】在此运动过程中,整体看,AB一块向右做匀加速直线运动,但分隔开看,A、B是先相互靠近后又远离,在相互靠近的过程中,v A>v B,靠到最近时,v A=v B,以后又要分离,即a A<a B,才会使v A<v B,它们再相互远离,故A、B错误.因为在上述过程中,a A逐渐减小,a B逐渐增加,当靠到最近时,有v A=v B.a A <a B.所以a A=a B时,v A>v B,故C错误,D正确.【答案】D5.如图1-9-7所示,在粗糙斜面顶端固定轻弹簧的一端,另一端挂一物体,物体在A点处于平衡状态.现用平行于斜面向下的力拉物体,第一次直接拉到B点;第二次将物体先拉到C点,再回到B点,在这两次过程中有:图1-9-7①重力势能的改变量相等②弹性势能的改变量相等③摩擦力对物体做的功相等④弹簧弹力对物体做的功相等以上正确的是 A.①②③ B.①②④ C.①③④ D.②③④ 【解析】 将物体直接由A 拉到B ,与先拉到C 点再回到B 不同之处是所走路程不同,相同之处是初末位置都相同.而重力、弹簧弹力做功只与初末位置有关与路径无关,只有摩擦力做功与路径有关.故①②④说法正确,说法③错误,故答案为B.【答案】 B6.如图1-9-8所示,在一个足够大的光滑平面内,两个质量相同的木块中间用一轻质弹簧相连,开始时弹簧处于原长,两木块都静止,若瞬间给木块A 一个向右的冲量作用后,A 、B 两物体开始运动,在它们的整个运动过程中,以下说法中错误..的是图1-9-8A.在任意时刻A 、B 两木块的加速度大小均相等B.弹簧压缩到最短时系统的总动能最小C.弹簧恢复到原长时A 、B 两木块的速度相同D.弹簧伸长到原长时B 木块的动量与开始时A 木块的动量相同【解析】 A 、B 两物体质量相同,在任一时刻弹簧对它们的作用力大小相等,加速度大小相等,A 、B 相互作用过程中机械能保持不变(等于开始时A 的动能),弹簧压缩到最短时,弹性势能最大,系统的总动能最小,当弹簧的压缩量最大、弹簧的伸长量最大时,A 、B 两木块的速度相同,故C 错.当弹簧伸长到原长时,由系统的动量守恒和机械能守恒,可解得B 的速度等于开始时A 的速度,故B 的动量等于开始时A 的动量,D 对.【答案】 C7.如图1-9-9所示,劲度系数为k 的轻弹簧的一端固定于O 点,另一端连着质量为m 的小球,今用手托着小球使弹簧处于原长,第一次手缓慢地向下移动,最后手脱离小球时小球静止,在此过程中,手对小球做功大小为W ;第二次在弹簧处于原长时,让手突然离开小球,当小球通过上次的静止位置时,其动能为______.图1-9-9【解析】 第一次运动,由动能定理得: W G -W 弹-W =0第二次运动,由动能定理得:0k -=-E W W G 弹两次运动中:W G =W G ′,W 弹=W 弹′ 故E k =W . 【答案】 W8.如图1-9-10所示,一长L =4.8 m 的轻车厢静止于光滑水平轨道上,固定于车厢地板上的击发器A 自车厢中部以v 0=2 m/s 的速度(对地)将质量为m 1=1 kg 的物体沿车厢内光滑地板弹出,与另一质量m 2=1 kg的物体碰撞并粘合在一起,此时m 2恰好与一端固定于车厢上的水平放置的弹簧接触,弹簧长度l =0.3 m ,车厢和击发器的总质量为M =2 kg ,则相互作用过程中弹簧具有的最大弹性势能E pm =______.图1-9-10【解析】 击发器弹出m 1的过程中,总动量守恒,取v 0方向为正向,则m 1v 0-Mv =0所以v =m/s 1m/s 22101=⨯=⋅v M m m 1与m 2碰撞中总动量守恒.则m 1v 0=(m 1+m 2)·v 所以v =1112101+=+m m v m ×2 m/s=1 m/sm 1、m 2整体压缩弹簧到最短的过程中,设共同运动的速度是v ′,m 1、m 2及车厢整体动量守恒,机械能守恒.则有:21(m 1+m 2)v 2+21Mv 2=E pm +21(m 1+m 2+M )v ′2 ①取v 方向为正,则:(m 1+m 2)v -Mv =(m 1+m 2+M )v ′②由①②得:v ′=0. E pm =21(m 1+m 2)v 2+21Mv 2=21×2×12 J+21×2×12 J=2 J【答案】 2 J9.如图1-9-11所示,轻弹簧的两端与两物块(质量分别为m 1、m 2)连在一起,m 1=1 kg,m 2=2 kg ,将m 1、m 2放在光滑的水平面上,弹簧自然伸长时,m 1静止在A 点,m 2靠墙,现用水平力F 推m 1使弹簧压缩一段距离后静止,此过程中力F 做功为4.5 J.当F 撤去后,求:图1-9-11(1)m 1在运动过程中的最大速度. (2)m 2在运动过程中的最大速度.(3)m 1在越过A 点后速度最小时弹簧的弹性势能.【解析】 (1)压缩弹簧的过程中外力做的功,即增加的弹性势能. 由题意知:E pm =4.5 Jm 1在弹开的过程中,回到A 点时动能最大,最大速度为v 1,此过程中机械能守恒,则 E pm =21m 1v 12 所以v 1=15.4221pm ⨯=m E m/s=3 m/s(2)以后弹簧被拉长,m 2开始向右加速,m 1开始减速,当弹簧再次恢复原长时,m 2速度最大设为v 2,此过程中m 1、m 2总动量守恒,总机械能守恒,则有:m 1v 1′+m 2v 2=m 1v 1 ①21m 1v ′21+21m 2v 22=21m 1v 12 ②①②两式联立可得:v 2=32v 1=2 m/s(3)m 1越过A 点后,一直减速当弹簧再次被压缩到最短时,设m 1、m 2有共同速度v ″,即为m 1的最小速度.此过程m 1、m 2及弹簧总动量守恒,总机械能守恒.则有:m 1v 1=(m 1+m 2)v ″ ③21m 1v 12=21(m 1+m 2)v ″2+E pm ′ ④③④联立:v ″=1 m/sE pm ′=21m 1v 12-21(m 1+m 2)v ″2 =21×1×32 J-21×(1+2)×12 J=3 J【答案】 (1)3 m/s (2)2 m/s (3)E pm ′=3 J10.如图1-9-12所示,质量M =4 kg 的木滑板B 静止放在光滑水平面上.滑板右端固定着一根轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A 之间的动摩擦因数μ=0.2;而弹簧自由端C 到弹簧固定端D 所对应的滑板表面是光滑的.可视为质点的小木块A 质量m =1 kg ,原来静止于滑板的左端.当滑板B 受水平向左的恒力F =14 N 作用时间t 后撤去,这时木块A 恰好到达弹簧的自由端C 处.假设A 、B 间的最大静摩擦力跟滑动摩擦力相等.g 取10 m/s 2,试求:图1-9-12(1)水平恒力F 的作用时间t .(2)木块A 压缩弹簧过程中弹簧的最大弹性势能.【解析】 (1)在F 作用的过程中,B 除受F 作用外,还受A 对B 的滑动摩擦力F f 1作用,A 受B 对A 的滑动摩擦力F f 2作用如图所示,且F f 1与F f 2大小相等方向相反.由牛顿第二定律得: 对A :μmg =ma A 得a A =μg=2 m/s 2. 对B :F -μmg =Ma B 得a B =41012.014⨯⨯-=-M mg F μ m/s 2=3 m/s 2. 由运动学公式有:s A =21a A t 2 s B =21a B t 2又s B -s A =L 所以21(a B -a A )t 2=L解得t =235.022-⨯=-A B a a L s=1 s(2)由(1)得v A =a A t =2 m/s ,v B =a B t =3 m/s.木块压缩弹簧的过程中,A 、B 及弹簧的总机械能守恒.总动量守恒,弹簧压缩到最短时,二者速度相等,弹性势能最大,则有:21mv A 2+21Mv B 2=21(m +M )v 2+E pm mv A +Mv B =(m +M )v 联立解得:v =2.8 m/sE pm =21mv A 2+21Mv B 2-21(m +M )v 2 =21×1×22+21×4×32-21×(1+4)×2.82 J=20 J-19.6 J =0.4 J【答案】 (1)1 s (2)0.4 J 教学参考链接由于本专题中题目所讨论的问题,一般多涉及物体受力、运动、做功、物体动量及能量发生变化等多个知识点,综合性较强,物理过程较多且复杂,物理情景较为隐蔽,特别是弹力为变力,中学物理中又未给出弹力做功和弹性势能的计算方法,更增加了该部分题目的难度.所以对此类问题的处理关键是紧紧抓住弹簧受力特点,建立清晰的物理图景:物体各做什么性质的运动,各过程中能量的转化方向,物体最终所处的运动状态,物体各运动过程所遵守的规律等,再注意弹簧处于最长和最短状态时物体运动的特点,就可以化整为零,化难为易.如本专题例1侧重于物体与弹簧栓接与不栓接两种情况下物理情景不同的分析,例2紧紧抓住系统受力特点进行讨论,例3更充分利用了弹簧问题中一般情况下所遵守的动量守恒和机械能守恒特点,使问题顺利解决.三个例题难度虽不太大,但抓住了弹簧问题的特点,介绍了处理弹簧问题的一般方法.再复杂的弹簧问题,也只能是上述过程的综合或重复,处理方法也只是增加一些类似方程而已.。

2023北京人大附中高三10月月考物理(教师版)

2023北京人大附中高三10月月考物理(教师版)

2023北京人大附中高三10月月考物理说明:本试卷18道题,共7页,共100分。

考试时长90分钟第一部分本部分共10题,每题3分,共30分。

在每题给出的四个选项中,有的题只有一个选项是正确的,有的题有多个选项是正确的。

全部选对的得3分,选不全的得2分,有选错或不答的得0分。

把正确的答案填涂在答题纸上。

1. 如图所示,一只小鸟沿着较粗的均匀树枝从右向左缓慢爬行,在小鸟从A运动到B的过程中()A. 树枝对小鸟的合作用力先减小后增大B. 树枝对小鸟的摩擦力先减小后增大C. 树枝对小鸟的弹力先减小后增大D. 树枝对小鸟的弹力先增大后减小2. 外出研学中,小明同学观察到农民用手抛撒谷粒进行播种,他发现,如图(a)所示,某次抛出的谷粒中有两颗的运动轨迹如图(b)所示,其轨迹在同一竖直平面内,抛出点均为O,且轨迹交于P点,抛出时谷粒1和谷粒2的初速度分别为和v2,其中v1方向水平,v2方向斜向上。

忽略空气阻力,关于两谷粒在空中的运动,下列说法正确的是()A. 谷粒1的加速度小于谷粒2的加速度B. 谷粒2在最高点的速度小于v1C. 两谷粒从O到P的运动时间相等D. 谷粒1从O到P的平均速度大3. 如图所示,圆盘在水平面内以角速度ω绕中心轴匀速转动,圆盘上距轴r处的P点有一质量为m的小物体随圆盘一起转动。

某时刻圆盘突然停止转动,小物体由P点滑至圆盘上的某点停止。

下列说法正确的是()A. 圆盘停止转动前,小物体所受摩擦力的方向沿运动轨迹切线方向B. 圆盘停止转动前,小物体运动一圈所受摩擦力的冲量大小为2m r ωC. 圆盘停止转动后,小物体沿圆盘半径方向运动D. 圆盘停止转动后,小物体整个滑动过程所受摩擦力的冲量大小为m r ω4. 某实验小组测得在竖直方向飞行的无人机飞行高度y 随时间t 的变化曲线如图所示,E 、F 、M 、N 为曲线上的点,EF 、MN 段可视为两段直线,其方程分别为426y t =-和2140y t =-+。

高一物理弹簧问题教师版

高一物理弹簧问题教师版

弹簧专题一、基本概念规律1.弹簧弹力的大小可根据胡克定律计算(在弹性限度内),即F=kx,其中x是弹簧的形变量。

2.高中研究的弹簧都是轻弹簧(不计弹簧自身的质量)。

3.不论弹簧处于何种运动状态(静止、匀速或变速),轻弹簧两端所受的弹力一定等大反向。

4.弹簧的弹力属于接触力,弹簧两端必须都与其它物体接触才可能有弹力。

如果弹簧的一端和其它物体脱离接触,或处于拉伸状态的弹簧突然被剪断,那么弹簧两端的弹力都将立即变为零。

5.解决与弹簧相关的问题,一定要抓住几个关键状态:原长、平衡位置、初末形变量。

把这些关键状态的图形画出来,找到定性和定量的关系,进行分析。

1—3单选,4和5多选1.如图所示装置中,各小球的质量均相同,弹簧和细线的质量均不计,一切摩擦忽略不计,平衡时各弹簧的弹力分别为F1、F2、F3,其大小关系是( )A.F1=F2=F3 B.F1=F2<F3 C.F1=F3>F2 D.F3>F1>F21.A2.如图所示,弹簧的劲度系数为k,小球的重力为G,平衡时球在A位置。

现在用力F将小球向下拉长x至B位置,则此时弹簧的弹力为()A.kxB.kx+GC.G-kx D 以上都不对2.分析:球在A位置时弹簧已经伸长了(令它为△x),这样有F =k(△x+x)=k?△x+kx,因球在A位置平衡,即:G=k△x 所以F =G+kx故选B.3.[2016·黄石联考] 如图所示,两个弹簧的质量忽略不计,劲度系数分别为k1、k2,它们一端固定在质量为m的物体上,另一端分别固定在P、Q上,当物体平衡时,上面的弹簧(劲度系数为k2)处于原长.若把物体的质量换为2m,当物体再次平衡时(弹簧的总长度不变,且弹簧均在弹性限度内),物体的位置比第一次平衡时的位置下降了x,则x为(重力加速度为g)( )A.mgk1+k2B.k1k2(k1+k2)mgC.2mgk1+k2D.k1k22(k1+k2)mg3.A 分析:设mg时,k1压缩量为x,有k1x=mg2mg时,设又压缩了Δx,有k1(x+Δx)+k2Δx=2mg,将k1x=mg代入,即可得Δx=mg/(k1+k2)4.如图所示,a、b、c为三个物体,M、N为两个轻质弹簧,R为跨过光滑定滑轮的轻绳,它们连接如图所示并处于平衡状态()A.有可能N处于拉伸状态而M处于压缩状态B.有可能N处于压缩状态而M处于拉伸状态C.有可能N处于不伸不缩状态而M处于拉伸状态D.有可能N处于拉伸状态而M处于不伸不缩状态4.分析:1,可能M 被压缩,提供一些弹力支持a的部分重力,绳子有拉力,则N处于拉伸状态。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“弹簧与物块的分离”模型模型建构:两个物体与弹簧组成的系统。

两个物体在运动到某一位置时就会分开,那么这个位置就是物体间的分离点。

【模型】弹簧与物块的分离【特点】①都要建立动力学方程;②分离条件是:相互作用的弹力F N =0 这个问题可以分成两类“模型”:【模型1】水平面上“弹簧与木块的分离”模型如图1,B 与弹簧相连,而A 、B 是紧靠在一起的两个物体,当弹簧原来处于压缩状态,如果地面是光滑的,则物体A 、B 在向左运动的过程中A 、B 何时分离。

〖解析〗物体应在弹簧的原长处分离。

由于水平面光滑,当弹簧从压缩状态回到自然伸长位置时,一直加速运动。

当它刚刚回到平衡位置时,物块B 受的弹力为阻力,开始减速。

而物块A 不受外力做匀速直线运动。

v A ≥v B此时A 、B 分离。

【体验1】但是如果物体与地面之间是不光滑的,题目条件如模型1。

试讨论分离条件。

〖解析〗假设A 、B 在某一位置分离,此时刻两物体的相互作用力为零F AB =0 同时,两物体的加速度相同。

则A A a g μ=;B B B kx a g m μ=+所以()A B g x kμμ-=讨论:(1)如果A μ等于B μ或均为零;x 等于零。

两物体在O 点分离;(2)如果A μ大于B μ,x 大于零,两物体在O 点的右侧分离;(3)如果A μ小于B μ,x 大于零,两物体的分离点在O 点的左侧。

〖点评〗两物体分离的条件是:相互间的弹力F N =0等于零;两物体瞬时加速度相等。

【模型2】竖直面上“弹簧与木块的分离”模型如图2所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,重物何时与木板分离?〖解析〗当物体分离时,物体间的弹力F N =0物块只受重力,物块的加速度为g ,木板的加速度也为g弹簧的状态应为原长,即弹簧恢复原长时,二者分离此时物块与薄板有共同的加速度。

从动力学的角度可以得到,竖直方向的弹簧类问题两物体的分离点是在弹簧的原长处。

模型典案:图1 A B O图2 mM【典案1】A 、B 两木块叠放在竖直轻弹簧上,如图3所示,已知木块A 、B 质量分别为0.42 kg 和0.40 kg ,弹簧的劲度系数k=100 N/m ,若在木块A 上作用一个竖直向上的力F ,使A 由静止开始以0.5 m/s 2的加速度竖直向上做匀加速运动(g=10 m/s 2)(1)使木块A 竖直做匀加速运动的过程中,力F 的最大值;(2)若木块由静止开始做匀加速运动,直到A 、B 分离的过程中,弹簧的弹性势能减少了0.248 J ,求这一过程F 对木块做的功。

〖解析〗(1)设A 、B 叠放在弹簧上处于平衡时弹簧的压缩量为x有k x =(m A +m B )g ,所以x =(m A +m B )g/k ①对A 施加向上的F 力,分析A 、B 受力如图4对A :F+F N -m A g=m A a ②对B :kx′-F N -m B g=m B a′ ③可知,当F N ≠0时,AB 有共同加速度a=a′,由②式知欲使A 匀加速运动,随F N 减小F 增大,当F N =0时,F 取得了最大值F m ,即F m =m A (g+a )=4.41 N(2)又当F N =0时,A 、B 开始分离,由③式知,此时弹簧压缩量kx′=m B (a+g ) 即x′=m B (a+g )/k ④AB 共同速度 v 2=2a (x-x′) ⑤由题知,此过程弹性势能减少了W P =E P =0.248 J设F 做功W F ,对这一过程应用动能定理或功能原理W F +E P -(m A +m B )g (x-x′)=21(m A +m B )v 2 ⑥ 联立①④⑤⑥,且注意到E P =0.248 J可知,W F =9.64×10-2 J〖点评〗此题命题意图是考查对物理过程、状态的综合分析能力。

难点和失分点在于能否通过对此物理过程的分析后,确定两物体分离的临界点,即当弹簧作用下的两物体加速度、速度相同且相互作用的弹力F N =0时 ,恰好分离。

【案例2】如图5所示,轻弹簧上端固定,下端连接一质量为m 的重物,先由托盘托住m ,使弹簧比自然长度缩短L ,然后由静止开始以加速度a 匀加速向下运动。

已知a<g ,弹簧劲度系数为k ,求经过多少时间托盘M 将与m 分开?【解析】当托盘与重物分离的瞬间,托盘与重物虽接触但无相互作用力,此时重物只受到重力和弹簧的作用力在这两个力的作用下,当重物的加速度也为a 时,重物与托盘恰好分离。

由于a<g ,故此时弹簧必为伸长状态。

m Ma m 图5图3 图4然后由牛顿第二定律和运动学公式求解:根据牛顿第二定律得:mg kx ma -= ①由①得:()x m g a k-= 由运动学公式有:212L x at += ②联立①②式有:()212kL m g a at k +-= ③ 解得:()2kL m g a x ka+-⎡⎤⎣⎦= 〖点评〗本题属于牛顿运动定律中的临界状态问题。

求解本类题型的关键是找出临界条件,同时还要能从宏观上把握其运动过程,分析出分离瞬间弹簧的状态。

我们还可这样探索:若将此题条件改为a g ,情况又如何呢?【典例3】如图6所示,一劲度系数为k=800 N / m 的轻弹簧两端各焊接着两个质量均为m=12 kg 的物体A 、和B ,物体A 、B 和轻弹簧竖立静止在水平地面上。

现要加一竖直向上的力F 在上面物体A 上,使物体A 开始向上做匀加速运动,经0.4 s 物体B 刚要离开地面。

设整个过程中弹簧都处于弹性限度内,取g=10 m / s 2,求:(1)此过程中所加外力F 的最大值和最小值。

(2)此过程中外力F 所做的功。

[解析](1)A 原静止时,设弹簧压缩x 1,由受力平衡和胡克定律有:kx 1=mg------------① 物体A 向上做匀加速运动,开始时弹簧的压缩形变量最大,向上的弹力最大,则所需外力F 最小,设为F 1由牛顿第二定律:F 1+kx 1—mg =ma -----------②当B 刚要离地时,弹簧由缩短变为伸长,此时弹力变为向下拉A ,则所需外力F 最大,设为F 2对B :kx 2=mg ------------③对A :F 2-kx 2-mg=ma -----------④由位移公式对A 有:22121at x x =+ ----------⑤ 又t=0.4s------⑥由①②③④⑤⑥可得:a=3.75m/s 2 F 1=45N F 2=285N(2)0.4 s 末的速度:v=at=3.75×0.4 m / s=1.5 m / s 对A 全程由动能定理得:W F -mg (x 1+x 2)=mv 2图6解得:W F =49.5 J也可用能量守恒求解:在力作用的0.4s 内,在初末状态有x 1=x 2,所以弹性势能相等,由能量守恒知,外力做了功,将其它形式的能转化为系统的重力势能和动能。

即:【典案4】如图7质量为m A =10kg 的物块A 与质量为m B =2kg 的物块放在倾角为300光滑斜面上,处于静止状态,轻弹簧一端与物块B 连接,另一端与固定档板连接,弹簧的劲度系数为K=400N/m ,现给物块A 施加一个平行与斜面向上的力F ,使物块A 沿斜面向上做匀加速直线运动,已知力F 在前0.2s 内是变力,0.2s 后为恒力,求力F 的最大值和最小值。

(g=10m/s 2)【解析】原系统处于静止状态,则M 与m 受合外力为零,设此时弹簧压缩量为x o 即:(m+M)gsin300=kx 0则: x 0=0.15m 由静止开始向上匀加速运动,m 与M 在0~0.2S内整体向上有共同的加速度a .设经时间为t ,则在t 内m 与M 上升位移为S : S=21at 2 ①在0~0.2S 内以m 与M 为整体:F+K(X 0-S)-(m+M)gsin300=(m+M)a ②当t=0.2s 时 s=21a×(0.2)2=0.02a ③ 由①、②、③得: F+(0.15-O.02a)×400-60=(m+M)a ④分析可知在0.2s 后F 为恒力,此状况只有m 与M 分离可存在在t=0.2s后,对m有:F-mgsin300=ma,(此时力F也为t=0.2s瞬间的力) F=(g/2+a)m ⑤由④⑤得:a=5m/s2.分析可知F最小力应是在t=0时,即:Fmin =(m+M)a=(2+10) ×5=60N在t=0.2s 以后力有最大值即: F max =(g/2+a) ×m=(10/2+5) ×10=100N【典案5】质量为M=6Kg 的小车放在光滑的水平面上,物块A 和B 的质量均为m=2Kg 且均放在小车的光滑水平底板上,物块A 和小车右侧壁用一根轻弹簧连接,不会分离,如图8所示,物块A 和B 并排靠在一起,现用力向右压B 并保持小车静止,使弹簧处于压缩状态,在此过程中外力做功270J 。

撤去外力,当A 和B 分开后,在A 达到小车底板的最左端位置之前,B 已从小车左端抛出,求:(1)B 与A 分离时,小车的速度多大?(2)从撤去外力至B 与A 分离时,A 对B做了多少功? (3)假设弹簧伸到最长时B 已离开小车。

A 仍在车上,则此时弹簧的弹性势能是多大?〖解析〗(1)分析可知A 、B 分离时应在弹簧恢复为原长时,此时AB 有共同速度为图7 图8v 1,设车速为v 2,接触面均光滑,动量守恒,取向右为正,O=Mv 2-2mv 1 ①又机械能守恒:EP =2221Mv +21221mv ② 由①②得:v 1=9m/s ,v 2=6m/s ③(2)A 对B 做的功应为B的动能增量:∴WB =EBK =2121mv -0=81J ④ (3)A 与B 分离后,A 的速度不变,弹力对A与M作负功。

弹簧最长时,令A的速度为v3,A 与M 有共同速度,动量再次守恒,有:取向右为正: Mv 2-mv 1=(M+m)v 3 ⑤第二次机械能守恒:()2321v m M ++EP/=189J ⑥ 由③⑤⑥得:/P E =168.75J模型体验:【体验1】用木板托住物体m ,并使得与m 连接的弹簧处于原长,手持木板M 向下以加速度a (a<g )做匀加速运动,如图9。

求物体m 与木板一起做匀加速运动的时间。

〖解析〗m 在与M 一起向下做匀加速运动过程中,m 受到弹簧的弹力不断增大,板M 对m 的支持力不断减小,重力保持不变。

m 与板M 分离的条件为板M 对m 的支持力F N 恰好为零,且此时m 与M运动的加速度恰还相等。

设:m 与M 分离经历t 时间,弹簧伸长为x : mg -kx =ma解得:x =ka g m )(- 又因为:x =21at 2 所以t =aa g m )(2- 【体验2】如图10所示,轻质弹簧上面固定一块质量不计的薄板,在薄板上放重物,用手将重物向下压缩到一定程度后,突然将手撤去,则重物将被弹簧弹射出去,则在弹射过程中(重物与弹簧脱离之前)重物的运动情况是 ( )A.一直加速运动 B .匀加速运动C.先加速运动后减速运动 D .先减速运动后加速运动【解析】物体的运动状态的改变取决于所受合外力.所以,对物体进行准确的受力分析是解决此题的关键,物体在整个运动过程中受到重力和弹簧弹力的作用.刚放手时,弹力大于重力,合力向上,物体向上加速运动,但随着物体上移,弹簧形变量变小,弹力随之变小,合力减小,加速度减小;当弹力减至与重力相等的瞬间,合力为零,加速度为零,此时物体的速度最大;此后,弹力继续减小,物体受到的合力向下,物体做减速运动,当弹簧恢复原a 图9 图10长时,二者分离.正确答案:C【体验3】如图11所示,一根轻质弹簧两端与质量分别为m 1 和m 2的木块相连,竖直放置在水平地面上。

相关文档
最新文档