能被7、11、13整除的数
最全的能被特殊数7、11、13等整除的数的判别法
一、特殊数字的整除。
1、能被3、9整除的数:数位之和能被3、9整除(注意消倍)。
例:76935、3165493能否被3整除?例:1349982、367594737能否被9整除?2、能被2、5整除:末位上的数字能被2、5整除。
能被4、25整除:末两位的数字所组成的数能被4、25整除。
能被8、125整除:末三位的数字所组成的数能被8、125整除。
3、能被7整除的数:1)割尾法。
故133可以被7整除。
2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被7整除。
例如判断1798638345能否被7整除?3)末三位上数字所组成的数与末三位以前的数字所组成数之差绝对值能被7整除。
例如判断69272、13275能否被7整除?4、能被11整除的数:1)割尾法。
若将一个整数的个位数字截去,再从余下的数中,减去个位数的1倍,如果差是11的倍数,则原数能被11整除。
如果差太大或心算不易看出是否为11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如判断6259能否被11整除?2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被11整除。
例如判断55138028、44142405能否被11整除?3)该数的奇数位数字和减去偶数位数字和所得的差的绝对值能被11整除。
例如判断55138028、44142405能否被11整除?4)注意:奇数位数首位单独为一节。
5)末三位上数字所组成的数与末三位以前的数字所组成的数之差绝对值能被11整除。
例如判断44528能否被11整除?5、能被13整除的数:1)末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。
例如判断5005、73853能否被13整除?2)将它三位三位截断后,奇数段之和减去偶数段之和的差的绝对值能被13整除。
例如判断106736097、57157059能否被13整除?3)逐次去掉最后一位数字并加上末位数字的4倍后能被13整除。
第六讲 数的整除
第六讲数的整除重点点击:我们除在课本中已经学习了能被2,3,5整除的整数的特征外,还需要掌握能被7,11,13等整除的整数的特征和性质,并能熟练地运用这些性质和特征来解决数的整除问题。
例题精讲例1 研究能被7、11、13整除的数的特征。
【点拨】可以通过对458315的分析,找出能被7、11、13整除的数的特征。
458315=458×1000+315=458×1000+458-458+315=458×1001- (458-315)因为1001=7×11×13,所以458×1001一定能被7、11、13 整除,如果458 - 315的差也能被7、11、13整除,那么4 58315就能被7、11、13整除。
而458- 315恰好是这个数的末三位与末三位前面的数所组成的数的差,因为458- 315 =143,143不能被7整除,所以458315就不能被7整除;143能被11和13整除,所以458315能被11和13整除。
能被7、l1、13整除的数的特征是:如果一个数的末三位数字所表示的数与末三位前面的数字所组成的数的差(大数减小数)能被7或11或l3整除,那么这个数就能被7或11或13整除。
练一练1、判断527436能不能被7,11,13整除。
2、判断2206525321能否被7,1 1,13整除。
3、判断下面各数能否被7,11,1 3整除。
(1) 378287(2)六位数ABCABC例2一个四位数9□2 □既有约数2,又是3的倍数,同时又能被5整除。
这个四位数最大是多少?【点拨】因为这个四位数有约数2,所以这个四位数的个位数字应该是0,2,4,6,8中的一个。
又因为这个四位数能被5整除,所以这个四位数的个位数字应垓是0或5中的一个。
因此这个四位数的个位数字只能是:0即9□20。
再根据这个四位数能被3整除的特征,可知9+□+2+0=11+□能被3整除:所以是□可以是1,4,7.其中最大的数字是7,故这个最大的四位数是9720。
能被4、7、8、11、13整除的数的特征及习题
能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此,因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题。
如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。
快速判断一个数能不能被7、11、13整除
我们知道,整数被 2 3 4 5 8 9 或11 整除的特点易掌握,什么样的数能被7 整除?这可是一个难题,下面,我将介绍一些关于整数被7 整除的有趣而又有用的知识。
先从3×721 谈起。
有一个道理是很明显的。
如果有一个整数的末位数是1,这个数又比21 大的话,我们将这个数减去21,得数(它的末位数肯定是0)如果能被7 整除,先前那个数肯定也能被7整除;如果得数不能被7 整除,先前那个数肯定也不能被7 整除,即在这种情况下,判断得数能不能被7 整除,最末位上的0 可以舍去不管。
如果给定的整数的末位数不是1,而是其他数,也可以依此类推,例如给定整数末位数是6,我们可将此数减去21×6126,也即先从该整数中去掉末位数6,再从所余数中减去6×212。
由此我们得到一个一般原则:去掉末位数,再从剩下的数中减去去掉的末位数的2倍。
以考查15946 能不能被7 整除为例,去掉末位数6,再计算1594-2×6 得1582,此时,如果1582 能被7 整除,则115946 就能被7 整除;如果1582 不能被7 整除,则15946 就不能被7 整除。
继续对1582 用此法判断可得154,再作一次就得7,由于最后得到的是7(或7 的倍数),故知15946 能被7 整除。
这是一种简捷可靠的判断一个整数能不能被7 整除的方法,我们称它为“去一减二法”,它的意思就是前面说的:去掉末位一个数,再从剩下的数中减去去掉的数的2 倍。
再举一个例子,让我们来考查841945 是否能被7 整除。
我们将逐次用“去一减二法”。
结果写出来(末位数是0 时可以将0 舍去)便是:841945→84184→841→82→4。
故知841945不能被7 整除。
实际解题时,只需心算就行了,不必将上面的式子逐个写出,解题中也可以随机应变地运用一些技巧,例如,如果一眼就看出末位两位或前两位数是14,35,56,84,91 等7 的倍数时,可以直接舍去,如841945→1945→184→1,立即就可以断定841945 不能被7 整除。
被7、11、13、17、19整除的数的特征之欧阳文创编
被7、11、13、17、19整除的数的特征这个问题从不同的视角观察,可能会得到不同的答案。
也就是说,判断一个数能否被7、11、13整除,有很多方法,但最基础最常用的是:一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7、11、13整除,那么,这个多位数就一定能被7、11、13整除.比如,能被13整除的数的特征是,一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被13整除,那么,这个多位数就一定能被13整除.例如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.这个方法也同样适用于判断一个数能不能被7或11整除.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.仍以原数为例,末三位数字与前两数字的差是396,396不能被7整除,因此,283697就一定不能被7整除.还有一个方法是比较常用的:因为7×11×13=1001,因此,能被1001整除的数,能够同时被7、11、和13整除。
第二讲例8就用到这个结论。
其余的方法都没那么常用,但很多,比如:能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除。
例如:判断491678能不能被11整除。
奇位数字的和9+6+8=23 ;偶位数位的和4+1+7=12 23-12=11,因此,491678能被11整除。
这种方法叫“奇偶位差法”。
能被13整除的数的特征把一个整数的个位数字去掉,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。
如果数字仍然太大不能直接观察出来,就重复此过程。
能被71113整除的数规律
若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
能被9整除的数的规律规律:能被9整除的数,这个数的所有位上的数字的和一定能被9整除。
能被11整除的数的规律若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。
11的倍数检验法:去掉个位数,再从余下的数中,减去个位数,如果差是11的倍数,则原数能被11整除。
如果差太大或心算不易看出是否11的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断132是否11的倍数的过程如下:13-2=11,所以132是11的倍数;又例如判断10901是否11的倍数的过程如下:1090-1=1089 ,108-9=99,所以10901是11的倍数,余类推。
相当于1000除以13余-1,那么1000^2除以13余1(即-1的平方),1000^3除以13余-1,……所以对一个位数很多的数(比如:51 578 953 270),从右向左每3位隔开从右向左依次加、减,270-953+578-51=-156能被13整除,则原数能被13整除什么样的数能被7和11和13整除???有什么规律是分开来的三个问题还是同时被这三个整除?若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。
能被7 11 13整除的数规律
能被七整除得数规律若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。
如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。
例如,判断133就是否7得倍数得过程如下:13-3×2=7,所以133就是7得倍数;又例如判断6139就是否7得倍数得过程如下:613—9×2=595 ,59-5×2=49,所以6139就是7得倍数,余类推。
能被9整除得数得规律规律:能被9整除得数,这个数得所有位上得数字得与一定能被9整除。
能被11整除得数得规律若一个整数得奇位数字之与与偶位数字之与得差能被11整除,则这个数能被11整除.11得倍数检验法:去掉个位数,再从余下得数中,减去个位数,如果差就是11得倍数,则原数能被11整除。
如果差太大或心算不易瞧出就是否11得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止.例如,判断132就是否11得倍数得过程如下:13-2=11,所以132就是11得倍数;又例如判断10901就是否11得倍数得过程如下:1090—1=1089,108-9=99,所以10901就是11得倍数,余类推.被13整除得数规律相当于1000除以13余-1,那么1000^2除以13余1(即-1得平方),1000^3除以13余-1,……所以对一个位数很多得数(比如:51578 953270),从右向左每3位隔开从右向左依次加、减,270—953+578—51=—156能被13整除,则原数能被13整除什么样得数能被7与11与13整除???有什么规律就是分开来得三个问题还就是同时被这三个整除?若一个整数得个位数字截去,再从余下得数中,减去个位数得2倍,如果差就是7得倍数,则原数能被7整除。
如果差太大或心算不易瞧出就是否7得倍数,就需要继续上述「截尾、倍大、相减、验差」得过程,直到能清楚判断为止。
7、11、13整除判定法则
7、11、13的整除判定法则华图教育邹维丽在公务员考试数学运算这部分中,不少题目通过适当运用数的整除性质就可快速选出答案,这就要求考生对数的整除判断法则要熟练掌握。
下面我们先给出一些特殊数的整除判定基本法则:一、能被2、4、8、5、25、125 整除的数的数字特性能被2 (或5)整除的数,末位数字能被2(或5)整除;能被4 (或25)整除的数,末两位数字能被4(或25)整除;能被8 (或125)整除的数,末三位数字能被8(或125)整除;一个数被2(或5)除得的余数,就是其末位数字被2(或5)除得的余数一个数被4(或25)除得的余数,就是其末两位数字被4(或25)除得的余数一个数被8(或125)除得的余数,就是其末三位数字被8(或125)除得的余数二、能被3、9 整除的数的数字特性能被3(或9)整除的数,各位数字和能被3(或9)整除。
一个数被3(或9)除得的余数,就是其各位相加后被3(或9)除得的余数。
三、能被7 整除的数的数字特性能被7 整除的数,其末一位的两倍与剩下的数之差为7的倍数。
能被7 整除的数,其末三位数与剩下的数之差,能被7 整除。
四、能被11 整除的数的数字特性能被11 整除的数,奇数位的和与偶数位的和之差,能被11 整除。
能被11 整除的数,其末三位数与剩下的数之差,能被11 整除。
五、能被13 整除的数的数字特性能被13 整除的数,其末三位数与剩下的数之差,能被13 整除。
从上述表述中,我们发现7、11、13有一个相同的整除判断法则,就是判断其末三位与剩下的数之差,那么,为什么7、11、13有相同的整除判断法则呢?事实上,这一规律源自经典分解1001=7×11×13。
下面我们利用1001=7×11×13来证明能被7整除的数,其末三位数与剩下的数之差,能被7整除。
设abcd为超过三位的数,其中b, c, d分别为百位数、十位数、个位数,则abcd a bcd=+,1000为了凑出1001,我们将1000a写成1001a a-,于是我们有=+=-+=+-100010011001()abcd a bcd a a bcd a bcd a因为1001能被7整除,所以,若bcd a-能被7 整除,则上式右边能被7整除,。
六年下册奥数试题-数的整除特征(二)全国通用(含答案)
第2讲数的整除特征(二)知识网络上一章我们已经学习了被2、3、5、8、9、25、125等整除的数的特征和一些整除的基本性质,但作为奥林匹克竞赛仅仅掌握以上知识还不够,这一讲继续学习有关数的整除知识。
(1)能被7、11和13整除的数的特征:如果一个数的末三位数字所表示的数与末三以前的数字所表示的差(一定要大数减小数)能被7、11或13整除,那么这个数就能被7、11或13整除。
(2)能被11整除的数的特征还有:一个数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是11的倍数。
重点·难点同学们在牢记上面整除的数的特征的同时,重点应弄清楚能被7、11、13整除的数为什么有上面的特征。
学法指导上面数的整除特征可以结合例子理解。
例如:443716,判断它能否被7、11、13整除的方法是:716-443=273。
因为273能被7整除,所以443716能被7整除;因为273不能被11整除,所以443716不能被11整除;因为273能被13整除,所以443716能被13整除。
记忆要理论联系实际。
经典例题[例1]用1、9、8、8这四个数字能排成几个被11除余8的四位数?思路剖析能被11整除的数的特征是这个数的奇位数字之和与偶位数字之和的差能被11整除。
一个数要能被11除余8,那么这样的数加上3后,就能被11整除了,于是得到被11除余8的数的特征是:将偶位数字相加得到一个和数,再将奇位数字相加再加上3,得到另一个和数,如果这两个和数之差能被11整除,那么这个数就是被11除余8的数。
解答要把1、9、8、8排成被11除余8的四位数,可以把这四个数字分成两组,每组两个数字,其中一组作为千位和十位数,它们的和记作p,另外一组作为百位和个位数,它们之和加上3记作q,且p和q的差能被11整除,满足要求的分组只可能是p=1+8=9,q=(9+8)+3=20,q-p=20-9=11,所以1988是被11除余8的四位数。
第七讲 数的整除(二)
五年级秋季培优第七讲数的整除(二)这一讲我们重点掌握能被7,11,13整除的数的特征。
1.能被11整除的数的特征:如果一个自然数的奇数位上的数字和与偶数位上的数字和的差(大数减小数)能被11整除,那么这个数就能被11整除,否则就不能。
2.能被7,11,13整除的数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7,11或13整除,那么这个数就能被7,11或13整除,否则就不能。
由1001=7×11×13,知1001被7,11或13整除。
并熟记77=7×11;91=7×13;143=11×13。
3.被互质的两个数同时整除的数的特征:两个数互质指如果两个自然数只有公因数1,这两个数称为互质数。
如果一个自然数能同时被两个互质的数整除,那么这个数一定能被这两个互质的数的乘积整除;反之,如果一个自然数能被两个互质数的乘积整除,则这个数一定能被这两个互质的数整除。
典例精讲例1一个六位数2356□□是22的倍数,那么这个六位数可能是多少?【思路点拨】因为22=11×2,既然六位数2356□□是22的倍数,那么这个六位数就应该同时是2和11的倍数。
然后根据可以被2和11整除的数的特征进行判断,即可解题。
【详细解答】例2根据能被7,11,13整除的数的特征,判断2206525321能否被7,11,13整除。
【思路点拨】根据被7,11,13整除的数的特征,末三位数字所表示的数321,末三位之前的数所表示的数字所表示的数为2206525,两者之差为2206525-321=2206204.这个差能否被7,11,13整除,还不容易看出,必须继续利用被7,11,13整除的数的特征,对上述的差2206204再进行判断。
方法与前面一样,2206-204=2002,2-2=0,由于0能被7,11,13整除,所以2206525321能被7,11,13整除。
一个数被整除的判断方法
一个数被整除的判断方法:被4整除:则这个数能被4整除.被6整除:若一个整数能被2和3整除,则这个数能被6整除.能被7,11或13整除的数的特征:一个数的末三位数与末三位以前的数字之差能被7,11或13整除。
则这个数能被7,11或13整除。
被25整除:后二位数字如果是25的倍数,那么这个数就是25的倍数.被125整除:后三位数字如果是125的倍数,那么这个数就是125的倍数.被8整除:若一个整数的未尾三位数能被8整除,则这个数能被8整除. 被9整除:若一个整数的各位数字之和能被9整除,这个整数能被9整除.被17整除:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.被19整除:若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大继续上述「截尾、倍大、相加、验差」的过程。
被23(或29)整除:若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除(或29)整除:如6938801,末四位为8801,8801-693×5=5336,而5336÷23=232,能被23整除。
所以6938801也能被23整除。
一个数被整除的判断方法:被4整除:则这个数能被4整除.被6整除:若一个整数能被2和3整除,则这个数能被6整除.能被7,11或13整除的数的特征:一个数的末三位数与末三位以前的数字之差能被7,11或13整除。
则这个数能被7,11或13整除。
被25整除:后二位数字如果是25的倍数,那么这个数就是25的倍数.被125整除:后三位数字如果是125的倍数,那么这个数就是125的倍数.被8整除:若一个整数的未尾三位数能被8整除,则这个数能被8整除. 被9整除:若一个整数的各位数字之和能被9整除,这个整数能被9整除.被17整除:若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.被19整除:若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大继续上述「截尾、倍大、相加、验差」的过程。
最新能被1—31整除的数的特征资料
能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。
能被3整除:各个数位的和,是3的倍数。
能被5整除:个位为0或5。
能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。
例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。
例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。
能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。
方法3:奇数位的和减去偶数位的和,差是11的倍数。
能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。
能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。
方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。
能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。
方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。
能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。
能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。
能被3、7、11、13、17、19、23整除的数的特征
能被3、7、11、13、17、19、23等整除的数的特征能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除. 例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。
(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。
(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
能被1—31整除的数的特征
能被1—31整除的数的特征能被质数整除的数的特征(1—31)7-2 11-1 13+4 17-5 19+2 23+7 29+3 31-3能被2整除:偶数。
能被3整除:各个数位的和,是3的倍数。
能被5整除:个位为0或5。
能被7整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的2倍,差是7的倍数。
例如,6139是否7的倍数?613-9×2=595,59-5×2=49,所以6139是7的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是7的倍数。
例如,6139是否7的倍数?139-6=133,所以6139是7的倍数。
能被11整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数,差是11的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是11的倍数。
方法3:奇数位的和减去偶数位的和,差是11的倍数。
能被13整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的4倍,和是13的倍数。
方法2(能被7、11、13整除相同):末三位数与非末三位数的差,是13的倍数。
能被17整除:方法1(能被7—31的质数的整除类似):非个位数减去个位数的5倍,差是17的倍数。
方法2(能被17、19整除类似):末三位数与3倍的非末三位数的差,是17的倍数。
能被19整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的2倍,和是19的倍数。
方法2(能被17、19整除类似):末三位数与7倍的非末三位数的差,是19的倍数。
能被23整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的7倍,和是23的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是23的倍数。
能被29整除:方法1(能被7—31的质数的整除类似):非个位数加上个位数的3倍,和是29的倍数。
方法2(能被23、29整除相同):末四位数与5倍的非末四位数的差,是29的倍数。
能被4、7、8、11、13整除的数的特征及习题
能被4、7、8、11、13整除的数的特征及其它一、被4或25整除的数的特征如果一个数的末两位数能被4或25整除,那么,这个数就一定能被4或25整除.例如:4675=46×100+75由于100能被25整除,100的倍数也一定能被25整除,4600与75均能被25整除,它们的和也必然能被25整除.因此,一个数只要末两位数能被25整除,这个数就一定能被25整除.又如: 832=8×100+32由于100能被4整除,100的倍数也一定能被4整除,800与32均能被4整除,它们的和也必然能被4整除.因此, 因此,一个数只要末两位数字能被4整除,这个数就一定能被4整除.二、被7整除的数的特征方法1、(适用于数字位数少时)一个数割去末位数字,再从留下来的数中减去所割去数字的2倍,这样,一次次减下去,如果最后的结果是7的倍数(包括0),那么,原来的这个数就一定能被7整除.例如:判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。
方法2、(适用于数字位数在三位以上)一个多位数的末三位数与末三位以前的数字所组成的数之差,如果能被7整除,那么,这个多位数就一定能被7整除.如判断数280679末三位数字是679,末三位以前数字所组成的数是280,679-280=399,399能被7整除,因此280679也能被7整除。
此法也适用于判断能否被11或13整除的问题.如:283679的末三位数字是679,末三位以前数字所组成的数是283,679-283=396,396能被11整除,因此,283679就一定能被11整除.如:判断383357能不能被13整除.这个数的未三位数字是357,末三位以前的数字所组成的数是383,这两个数的差是:383-357=26,26能被13整除,因此,383357也一定能被13整除.方法3、首位缩小法,在首位或前几位,减于7的倍数。
整除
能被100以内质数整除的数的特征为了培养学生对数学学习的兴趣,提高学生自主探究的欲望,培养学生的思维能力。
在学生学了《因数与倍数》后,我突然灵感一来,何不让学生探究能被7、11、13、…整除的特征呢?于此我设计了一节课。
上课时我先要求所有学生任意写出一个多位数,然后用写出的这个数减去这个多位数各个数字之和,把所得的差隐瞒一个数字让老师来猜,隐瞒的数字是几。
你们说能猜出来吗?学生:肯定的回答不可能!我们写得数又不会相同。
教师:那就试一试就知道了。
学生:“我算的是四位数,其中三个数字652__(板述)请问隐瞒的数字?”教师:是5。
学生:对。
学生:“我算的是三位数,其中二个数字82__(板述)请问隐瞒的数字?”教师:是8。
学生:对。
学生:“我算的是七位数,其中六个数字825624__(板述)请问隐瞒的数字?”教师:不是0就是9。
学生:对。
(学生兴趣盎然。
)学生:老师这是为什么吗?教师:你们要想知道为什么那就来看你们的得数:6525、828、8256240或8256249;它们的数字和是18、18、27、36,都是9的倍数。
如此秘诀是:因为任意一个多位数减去这个多位数各个数所得的差是9的倍数;而被9整除的数的特征:一个数的各位数字之和能被9整除。
我们已经知道能被2或5整除的数的特征:这个数的末一位数字能被2或5整除。
能被4或25整除的数的特征:这个数的末两位数字所表示的数能被4或25整除。
这个数的末三位数字所表示的数能被8或125整除。
能被9或3整除的数的特征:一个数的各位数字之和能被9或3整除。
今天就来探究能被7、11、13、…整除的数的特征:要探究能被7、11、13、…整除的数的特征。
先必须与它们有倍数关系的数入手。
如:7的倍数:0、7、14、21、35、42、49、56、63、70、77…;通过观察发现一个整数的个位数字扩大2倍与这个数去掉个位数字后的数的差(得到差后可重复进行),若最后结果能被7整除,则该数就能被7整除。
能被3、7、11、13、17、19、23整除的数的特征
能被3、7、11、13、17、19、23等整除的数的特征能被11整除的数的特征把一个数由右边向左边数,将奇位上的数字与偶位上的数字分别加起来,再求它们的差,如果这个差是11的倍数(包括0),那么,原来这个数就一定能被11整除.例如:判断491678能不能被11整除.—→奇位数字的和9+6+8=23—→偶位数位的和4+1+7=12 23-12=11因此,491678能被11整除.这种方法叫"奇偶位差法".除上述方法外,还可以用割减法进行判断.即:从一个数里减去11的10倍,20倍,30倍……到余下一个100以内的数为止.如果余数能被11整除,那么,原来这个数就一定能被11整除.又如:判断583能不能被11整除.用583减去11的50倍(583-11×50=33)余数是33, 33能被11整除,583也一定能被11整除.(1)1与0的特性:1是任何整数的约数,即对于任何整数a,总有1|a.0是任何非零整数的倍数,a≠0,a为整数,则a|0.(2)能被2整除的数的特征若一个整数的末位是0、2、4、6或8,则这个数能被2整除。
(3)能被3整除的数的特征若一个整数的数字和能被3整除,则这个整数能被3整除。
(4) 能被4整除的数的特征若一个整数的末尾两位数能被4整除,则这个数能被4整除。
(5)能被5整除的数的特征若一个整数的末位是0或5,则这个数能被5整除。
(6)能被6整除的数的特征若一个整数能被2和3整除,则这个数能被6整除。
(7)能被7整除的数的特征若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。
如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。
例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
能被7、11和13整除的数
一个数末三位数字所表示的数与末三位以前的数字所表示的数的差(以大减小),能被7、11、13整除,这个数就能被7、11、13整除。
例如:128114,由于128-114=14,14是7的倍数,所以128114能被7
整除。
94146,由于146-94=52,52是13的倍数,所以94146能被13整除。
64152由于152-64=88,88是11的倍数,所以64152能被11整除。
能被11整除的数,还可以用“奇偶位差法”来判定。
一个数奇位上的数之和与偶位上的数之和相减(以大减小),所得的差是0或是11的倍数时,这个数就能被11整除。
例如:64152,奇位上的数之和是6+1+2=9,偶位上的数之和是4+5=9,
9-9=0,判断出64152它能被11整除。
能被3和9整除的数
一个数各个数位上的数的和能被3或9整除,这个数就能被3或9整除。
7+4+1+6=18,18能被3整除,也能被9整除,所以7416能被3整除,也能被9整除。
再如:5739各个数位上的数之和是:
5+7+3+9=24,24能被3整除,但不能被9整除,所以5739能被3整除,而不能被9整除。