PLGA文献讲座

合集下载

PLGA微球载药量和包封率的影响因素及控制

PLGA微球载药量和包封率的影响因素及控制

PLGA微球载药量和包封率的影响因素及控制孙美丽;班俊峰;黄思玉;吕竹芬【摘要】Poly( D,L-lactide-co-glycolide) (PLGA) has attracted much attention due to its good biodegradable and biocompatible properties. PLGA has been shown great clinical application of controlled drug delivery systems. Focusing on the low drug loading and encapsulation efficiency of PLGA microspheres, this article reviews the variables influencing the drug loading and encapsulation efficiency, which may have significant implications for the research on the drug loading and encapsulation efficiency.%PLGA是乳酸和羟基乙酸的共聚物,具有良好的生物相容性和生物可降解性,已经广泛应用于缓控释给药系统的研究.针对目前PLGA微球存在载药量和包封率低的问题,根据国内外文献,综述了影响PLGA微球载药量和包封率的因素,包括PLGA、药物、溶剂、添加剂等方面,为研究PLGA微球载药量和包封率提供思路.【期刊名称】《广东药学院学报》【年(卷),期】2011(027)006【总页数】6页(P643-648)【关键词】聚乳酸羟基乳酸;微球;包封率【作者】孙美丽;班俊峰;黄思玉;吕竹芬【作者单位】广东药学院药物研究所;广东省药物新剂型重点实验室,广东广州510006;广东药学院药物研究所;广东省药物新剂型重点实验室,广东广州 510006;广东药学院药物研究所;广东省药物新剂型重点实验室,广东广州 510006;广东药学院药物研究所;广东省药物新剂型重点实验室,广东广州 510006【正文语种】中文【中图分类】R94聚乳酸羟基乳酸(PLGA)是乳酸和羟基乙酸按一定比例聚合而成的生物可降解高分子材料,在体内可降解为内源性物质,安全无毒。

PLGA文献讲座 ppt课件

PLGA文献讲座 ppt课件

PLGA文献讲座
PLGA文献讲座
❖ 由于PLGA微/纳米基因载体靶向性传递效 果不佳,对正常细胞毒副作用较强,导致在 临床应用中受到一定的限制。经表面靶向性 修饰的 PLGA微/纳米基因载体可有效提高基 因传递的特异性,降低治疗的副作用,临床 应用效果更佳。因此,PLGA表面靶向性修饰 也成为基因载体研究的热点。
PLGA文献讲座
PLGA文献讲座
❖PLGA表面阳离子修饰 ❖PLGA表面亲水性修饰 ❖PLGA表面靶向性修饰
PLGA文献讲座
PLGA文献讲座
❖ PLGA对pDNA的吸附效率较低,细胞转 染率相应较低,通常采用阳离子化合物 对PLGA 表面进行阳离子修饰,通过静 电作用吸附更多的pDNA,同时由于 PLGA 表面带正电荷,增强了细胞黏附 和吸收,转染率得到提高。
PLGA文献讲座
❖ 由于亲水性有机溶剂扩散快,pDNA容 易从内水相中泄漏,导致pDNA包封率 不高。
pDNA 在有机溶剂作用下结构易发生变 化甚至降解,这将严重影响pDNA的活 性,不利于后续基因表达。
PLGA文献讲座
❖ PLGA 固化成微/纳米粒后,为了保持pDNA结构
完整和生物活性,一般通过冷冻干燥法收集颗粒。
PLGA文献讲座
❖常用的阳离子聚合物主要有十六烷 基三甲基溴化铵(CATB) 、聚赖氨酸、 CHS和聚醚酰亚胺(PEI) 等,其中 CHS和PEI都带有氨基基团或类似基 团,可质子化带正电荷,从而有效 的吸附带负电的pDNA。
PLGA文献讲座
❖ PEI修饰PLGA有两种方式,一种是 表面物理吸附,另一种是化学键合。化 学键合是在催化剂条件下促使 PEI 以共 价键的方式与 PLGA结合,这种方式可 以稳定 PLGA 表面电位,增大 pDNA 吸 附效率。

硫酸庆大霉素PLGA植入剂热融挤出

硫酸庆大霉素PLGA植入剂热融挤出

Fig.1:Effect of the admixture of PEG400on the glass transition temperature of PLGA and on the extrusion temperaturemization of the release profiles have been achieved inter alia by changes of the size of the dosage forms(Siepmann et al. 2004),by addition of monomers of the polymer(Yoo et al. 2004),by variation of the molecular weight(Kanellakopoulou et al.1999),by combining PLGA with other biodegradable polymers(Schmidt et al.1995)and of course by modify-ing the drug content(Cevher et al.2007).In this study,a plasticizer(PEG400)is added in different concentration to reduce the lag-phase and to gain a prolonged constant drug release.Gentamicin sulphate is an aminoglycoside broadspectrum antibiotic,which works by binding the50S subunit of the bacte-rial ribosome and hence interrupting the protein synthesis.The antibiotic is very potent and has a high temperature stability (Wang,Liu et al.2004).It is therefore often incorporated in polymer matrices via a melting process for extended drug release (Neut et al.2001).The production of the implants was performed by hot melt extru-sion(HME),an old manufacturing processfirst used in the plastics industry.Pharmacists have increasing interests in the HME technique as an alternative production method(Crowley et al.2007).The major advantages of this technique are that no solvents are involved in the process,only a few processing steps are needed,it is a continuous and well reproducible process, there are no requirements on the compressibility of the drug and the bioavaibility of the active ingredient can be increased enor-mously if it is molecularly dispersed in the polymer(McGinity et al.2007).Furthermore,hot melt extrusion allows produc-ing the favoured release behaviour by varying the composition of the formulations or by different geometry of the formed dosage form.The main disadvantage of HME is the thermal stress the active ingredient and the polymer are exposed to dur-ing processing(Breitenbach2002).In this study,biodegradable gentamicin sulphate loaded PLGA implants were produced via HME and PEG400was admixed as plasticizer to decrease the processing temperature and to affect the drug release behaviour beneficially.2.Investigations and results2.1.Plasticizer influence on glass transitionand extrusion temperatureGentamicin sulphate has no decreasing effect on the glass tran-sition temperature of PLGA(Fig.1).Therefore PEG400was added as plasticizer to produce the implants at lower extru-sion temperatures.With increasing PEG400-concentration up Fig.2:Drug content of the batches of all formulationsFig.3:Cumulative drug release of the20%GS batches with increasing PEG400 concentration compared to Septopal®to10%the glass transition temperature decreases linearly from 43◦C to about12◦C.Accordingly,it was possible to reduce the extrusion temperature from110◦C to85◦C and consequently minimize the temperature impact on the active ingredient.Nev-ertheless,the intense decrease of the glass transition temperature up to12◦C can eventually lead to stability problems during storage.2.2.Drug content of the extrudatesAs shown in Fig.2the measured drug contents reach well the specified contents with95%confidence intervals below 1.3%and each single extrudate exhibited an encapsulation effi-ciency of85%to115%.The p-values between the batches of the formulations exceeded0.1which indicates that there were no significant differences between the batches.Two exceptions were between0.05(>0.05indicates a significant difference)and 0.1,due to small confidence intervals.Thus,it can be stated that the manufacturing process led to reproducible implants.2.3.Release of gentamicin sulphate from melt extruded implantsFig.3shows the cumulative drug release of the20%gentam-icin sulphate batches with increasing concentration of PEG400 versus one Septopal®-sphere.After a burst effect,where about 20%of the drug amount is released due to the dissolving ofFig.4:Cumulative drug release of the25%GS batches with increasing PEG400 concentration compared to Septopal®gentamicin sulphate from the outer surface,water penetrates slowly into the extrudates and lets them swell.The drug that is further dissolved by intruding water diffuses into the release medium and thus generates pores which in turn accelerate the process of water penetration and drug liberation.In addition, the steady degradation of the polymer enhances drug release. PLGA hydrolytically decomposed into different products with chain lengths with free carboxyl groups at the end,which can-not penetrate out of the extrudate due to their size.Therefore the mass changes are only attributed to the loss in drug mass. The oligomers create an acidic microclimate inside the extru-date and hence accelerate the autocatalytic degradation process of PLGA(Shenderova et al.1999).In contrary the emerged frag-ments can diffuse away from the surface,so that the acidity here is neutralized by the buffer and the degradation of the surface is not autocatalysed.So,the outer layer is stable for a longer time.When the pores on the surface reach a size,where they allow an evacuation of the polymer fragments from the inside or when the oligomers degrade to dimers and monomers so that they can penetrate outside,a critical threshold is passed and the mass loss and the erosion of the extrudates starts(McGinity and O’Donnell1997).At this point the surface of the extru-dates can collapse and release an enlarged drug amount as can be seen at the20%gentamicin sulphate batch without plasti-cizer after approximately20days.By the end of the gentamicin sulphate release the liberation slows down until the drug is released almost completely after four tofive weeks.The increas-ing polyethylene glycol concentration does not significantly affect the release behaviour of the implants.In comparison to the release profile of the Septopal®-sphere,which releases gen-tamicin sulphate by diffusion from a non-biodegradable matrix system(polymethylmethacrylate)with release kinetics accord-ing to Higuchi the20%drug batches show more sigmoidal release curves.Although these batches release well above the minimal inhibitory concentration of Staphylococcus aureus,the main pathogen of osteomyelitis(Brady et al.2006),even over thefirst two weeks(data not shown),a higher drug release especially at the beginning of the antibiotic therapy would be preferable.The batches with25%gentamicin sulphate and increasing polyethylene glycol concentration,shown in Fig.4,exhibit a higher initial rate of release.After seven days about50%of the theoretical drug amount is liberated caused by the higher drug concentration yielding more pores.However,it is followed by a constant release over approximately four weeks.During this steady drug release the swelling of the extrudate and the liber-ation of the active ingredient equilibrate resulting in zero order Fig.5:Cumulative drug release of the30%GS batches with increasing PEG400 concentration compared to Septopal®kinetics with a coefficient of determination of0.99(formulation 4and6).The25%gentamicin sulphate batches,which again do not differ significantly with increasing plasticizer content, have release profiles equivalent to the Septopal®-sphere.Three extrudates with25%gentamicin sulphate are pharmaceutically equivalent to one Septopal®-sphere(containing7.5mg GS)and bioequivalence is anticipated by these release studies although this has to be verified in vivo.The release behaviour from30%drug content batches is shown in Fig.5.Basically,gentamicin sulphate is liberated quite fast, about55%,70%and80%drug respectively is set free depending on the plasticizer content after four days.In consideration of the fact that polyethylene glycol had no impact on the release rates of the batches with lower drug content,it can be assumed that the ebbing retarding effect of the batches is caused by the decreased PLGA-concentration.Although the30%gentamicin sulphate formulations combined with0%and5%plasticizer have the same PLGA-concentration as the25%drug batches combined with5%and10%PEG400,they show a less retarded drug release rate.This can be explained by the higher content of gentamicin sulphate,generating more pores and therefore triggering faster drug liberation.2.4.Water uptake and mass lossThe water uptake of all batches,ranked according to the PLGA-concentration,is illustrated in Fig.6.It becomes apparent that the water uptake corresponds mainly to the PLGA-content indepen-dent of further formulation ingredients.With a lower polymer Fig.6:Effect of the PLGA concentration on the water uptake of the extrudatesFig.7:Influence of the drug concentration and PEG 400concentration on the massloss of the extrudatescontent a less tighter matrix system can be build up and water can more easily infiltrate the extrudate,whereby it is unimpor-tant if gentamicin sulphate or polyethylene glycol are embedded between the polymer chains and spacing them apart.The smaller the PLGA-concentration is,the faster and the more water is taken up.While the water uptake was observed to be dependent on the polymer weight fraction,the mass loss is dependent on the drug amount (Fig.7).The 20%gentamicin sulphate batches initiallyshow a mass increase,probably generated by not completely freeze dried samples.Apart from that the other formulations exhibit a mass loss according to the released amount of drug.For example the 25%drug batches have a mass loss of approx-imately 16.5%after 16days which correlates properly to the drug amount released (approx.62%of 25%drug amount equals 15.5%mass loss).The mass loss data display the dependency of the 30%batches on the plasticizer content or rather on the remaining PLGA-concentration as well as the release curves.According to the faster drug liberation a higher mass loss is vis-ible with decreasing PLGA-concentration.The erosion of the polymer starts slowly after 16days and intensifies after approx.20days,which can also be observed in the increasing drug release of the 20%gentamicin sulphate batches.2.5.SEM-pictures of the extrudatesThe morphological changes during drug release are illustrated in the scanning electron pictures.The cutting zones of the extrudates,shown in Fig.8,reveal the included spherical gen-tamicin sulphate particles in a nonporous and homogeneous matrix leaving little holes after exposure to the release medium (Figs.9and 10).In Fig.10the more structural roughness of the surface compared to Fig.9denote the incorporated polyethylene glycol in the polymer.The surface of the extrudates changes over time to less smooth and more porous.This results from the degradation and after 21days erosion of the polymer becomesvisible.Fig.8:SEM-pictures of the cutting zones of a pure PLGA-extrudate (left)and a gentamicin sulphate loaded extrudate(right)Fig.9:SEM-pictures of the surfaces of extrudates with 25%gentamicin sulphate and 0%PEG 400after 1,16and 21days (left to right)exposure to phosphate buffer pH 7.4Fig.10:SEM-pictures of the surfaces of extrudates with25%gentamicin sulphate and10%PEG400after1,16and21days(left to right)exposure to phosphate buffer pH7.4Table:Composition of the formulationsBatch no.GS(%)PEG400(%)PLGA(%) 120080 220575 3201070 425075 525570 6251065 730070 830070 9301060 3.DiscussionAlthough the admixture of plasticizer decreases the glass tran-sition temperature of PLGA with increasing concentration and therefore the extrusion temperature of the blends,drug liberation is not affected up to a specific remaining PLGA-content,which is necessary to provoke a prolonged drug release.The release pro-files of the extrudates differ depending on the drug amount from sigmoidal to exponential release curves,whereby25%gentam-icin sulphate amount lead to an initial high drug release followed by zero order kinetics over about four weeks.These formula-tions are consequently a good alternative to Septopal®without the disadvantage of a second surgery,although further in vivo investigations have to be done.4.Experimental4.1.MaterialsAs biodegradable polymer Resomer®RG503H(Boehringer Ingelheim, Ingelheim,Germany)was used.Resomer®RG503H is a poly(D,L-lactic-co-glycolic acid)with a ratio of50:50,an intrinsic viscosity of 0.32–0.44dL/g and a free carboxylic acid as end group.The antibiotic gentamicin sulphate purchased from Caelo(Hilden,Germany)was used as active ingredient.The plasticizer polyethylene glycol400was obtained by BASF(Ludwigshafen,Germany).O-Phthaldialdehyde thioglycolic acid (Merck,Darmstadt,Germany)and sodium1-heptane-sulfonate(Sigma Aldrich,Taufkirchen,Germany)were used for the analytical methods. 4.2.Methods4.2.1.Manufacture of the implantsThe manufacture of the antibiotic loaded implants was performed by hot melt extrusion.Nine formulations(Table)with a drug content of20,25and30% gentamicin sulphate and plasticizer content of0,5and10%were produced. The polymer and the active ingredient were mixed with a turbula-blender (Willy A.Bachofen AG,Basel,Switzerland)for15min and subsequently manually granulated with PEG400for at least10min.These blends were hot melt extruded by a twin screw extruder(Minilab II,Thermo Fisher Sci-entific,Karlsruhe,Germany)with a die diameter of2mm.The temperature was set as low as possible between85◦C and110◦C depending on the plasticizer content.After cooling down,extrudates of9.8to10.2mg weight were produced by cutting.4.2.2.Drug contentTo determine the encapsulation efficiency,the extrudates were individually dissolved in dichloromethane.After addition of4mL water the samples were mixed to let the active ingredient migrate to the aqueous phase for at least one hour.The gentamicin sulphate content of the aqueous phase was analysed by HPLC.For determination of gentamicin sulphate by HPLC the drug has to be derivatisated as it does not possess UV absorbing chromophores.As derivatisation agent for pre-column derivatisation with UV detection o-phthaldialdehyde(OPA)was used.The o-phthaldialdehyd reagent was prepared as described in the USP XXXI.For derivatisation1.0mL of the sample was mixed with0.4mL of o-phthaldialdehyd solution and1.1mL of isopropanol,incubated at60◦C for15min and in afinal step cooled down to room temperature.The analysis of the drug content of the prepared samples was carried out using reversed phase HPLC with a HPLC system by the Agilent Series1100(Agilent Technologies,Santa Clara,USA).As station-ary phase a Merck LiChroCart125–4mm column,filled with LiChrospher 100RP18,5␮m and a pre column LiChroChart4–4,LiChroSpher100, 5mm(all Merck KGaA,Darmstadt,Germany)were used.The mobile phase was composed of700mL methanol,25mL water,50mL glacial acetic acid (all obtained from Merck KGaA,Darmstadt,Germany)and5g sodium 1-heptane-sulfonate.Theflow rate wasfixed at1.0mL per min,the column temperature was25◦C,the injection volume was50␮L and the detection wavelength was set to330nm.4.2.3.Differential scanning calorimetryThe thermal properties of the loaded implants were analysed with a differen-tial scanning calorimeter from Perkin Elmer,Waltham,Massachusetts,USA (DSC7).Samples of approximately7mg were weighed into aluminium pans,sealed hermetically and analysed under a nitrogen atmosphere with a heating procedure from10◦C to80◦C at a scan rate of10◦C/min related to an empty reference pan.4.2.4.Scanning electron microscopyTo analyse surface morphology SEM pictures were made with a Philips XL20(Philips B.V.,Eindhoven,The Netherlands)scanning electron micro-scope.The samples werefixed on a carbonfibrefilm and sputtered with gold in an argon atmosphere at a sputter current of50mA for180s using a SCD005Sputter coater(BalTec,Balzers,Liechtenstein).4.2.5.In vitro releaseFive gentamicin sulphate loaded extrudates of approximately10mg weight of each batch or one Septopal®-sphere(containing7.5mg(w/w)genta-micin sulphate)were placed into3mL phosphate buffer pH7.4(containing 250.0mL0.2M monobasic potassium phosphate solution with393.4mL 0.1M sodium hydroxide solution)as dissolution medium.The extrudates were incubated at37◦C and horizontally shaken.At a time interval of72h starting at day one the whole dissolution medium was collected for analyzing via HPLC and replaced by fresh buffer.This procedure was repeated until no more gentamicin sulphate could be detected.4.2.6.Water uptake and mass lossTo determine the swelling and the erosion of the extrudates water uptake und mass loss were analysed.Therefore implants were weighed exactly and placed in release medium over specific time periods.The implants were weighed wet after removing the water from the surface using soft wipes.After freeze drying(freeze dryer Alpha1-4LDC-1M,Martin Christ Gefriertrocknungsanlagen GmbH,Osterode,Germany)over two days the extrudates were weighed again to investigate the mass loss.The measure-ment of the water uptake und mass loss was only possible as long as the extrudates stayed in shape.ReferencesAmbrose CG,Clyburn TA,Louden K,Joseph J,Wright J,Gulati P, Gogola GR,Mikos AG(2004)Effective treatment of osteomyelitis with biodegradable microspheres in a rabbit model.Clin Orthop Relat Res421: 293–299.Ambrose CG,Gogola GR,Clyburn TA,Raymond AK,Peng AS,Mikos AG(2003)Antibiotic microspheres:preliminary testing for potential treatment of osteomyelitis.Clin Orthop Relat Res415:279–285.Böstman O,Pihlajamäki H(2000)Clinical biocompatibility of biodegrad-able orthopaedic implants for internalfixation:a review.Biomaterials21: 2615–2621.Brady RA,Leid JG,Costerton JW,Shirtliss ME(2006)Osteomyelitis:Clin-ical overview and mechanisms of infection persistence.Clin Microbiol Newsl28:65–71.Breitenbach J(2002)Melt extrusion:from process to drug delivery technol-ogy.Eur J Pharm Biopharm54:107–117.Castro C,Evora C,Baro M,Soriano I,Sanchez E(2005)Two-month ciprofloxacin implants for multibacterial bone infections.Eur J Pharm Biopharm60:401–406.Cevher E,Orhan Z,Sensoy D,Ahiskali A,Kann PL,Sagirli O,Mulazimoglu L(2007)Sodium fusidate-poly(d,l-lactide-co-glycolide)microspheres: preparation,characterisation and in vivo evaluation of their effectiveness in the treatment of chronic osteomyelitis.J Microencapsul24:577–595. Crowley MM,Zhang F,Repka MA,Thumma S,Upadhye SB,Battu SK, McGinity JW,Martin C(2007)Pharmaceutical applications of hot-melt extrusion:part I.Drug Dev Ind Pharm33:909–926.Flick AB,Herbert JC,Goodell J,Kristiansen T(1987)Noncommer-cial fabrication of antibiotic-impregnated polymethylmethacrylate beads. Technical note.Clin Orthop Relat Res223:282–286.Friess W,Schlapp M(2002)Release mechanisms from gentamicin loaded poly(lactic-co-glycolic acid)(PLGA)microparticles.J Pharm Sci91: 845–855.Garvin K,Feschuk C(2005)Polylactide-polyglycolide antibiotic implants. Clin Orthop Relat Res437:105–110.Jain RA(2000)The manufacturing techniques of various drug loaded biodegradable poly(lactide-co-glycolide)(PLGA)devices.Biomaterials 21:2475–2490.Kanellakopoulou K,Kolia M,Anastassiadis A,Korakis T,Giamarellos-Bourboulis EJ,Andreopoulos A,Dounis E,Giamarellou H(1999)Lactic acid polymers as biodegradable carriers offluoroquinolones:an in vitro study.Antimicrob Agents Chemother43:714–716.Lazzarini L,Mader JT,Calhoun JH(2004)Osteomyelitis in long bones.J Bone Joint Surg Am86-A:2305–2318.Lew DP,Waldvogel FA(2004)ncet364:369–379. McGinity JW,O’Donnell PB(1997)Preparation of microspheres by the solvent evaporation technique.Adv.Drug Deliv Rev28:25–42. McGinity JW,Repka MA,Koleng JJ,Zhang F(2007)Hot-Melt Extrusion Technology.In:Swarbrick J(ed)Encyclopedia of phar-maceutical technology.New York,Informa Healthcare USA.3: 2004–2020.Miller RA,Brady JM,Cutright DE(1977)Degradation rates of oral resorbable implants(polylactates and polyglycolates):rate modification with changes in PLA/PGA copolymer ratios.J Biomed Mater Res11: 711–719.Neut D,van de Belt H,Stokroos I,van Horn JR,van der Mei HC,Busscher JH(2001)Biomaterial-associated infection of gentamicin-loaded PMMA beads in orthopaedic revision surgery.J Antimicrob Chemother47:885–891.Schmidt C,Wenz R,Nies B,Moll F(1995)Antibiotic in vivo/in vitro release,histocompatibility and biodegradation of gentamicin implants based on lactic acid polymers and copolymers.J Control Release37: 83–94.Shenderova A,Burke TG,Schwendeman SP(1999)The acidic microclimate in poly(lactide-co-glycolide)microspheres stabilizes camptothecins. Pharm Res16:241–248.Shive MS,Anderson JM(1997)Biodegradation and biocompatibil-ity of PLA and PLGA microspheres.Adv Drug Deliv Rev28: 5–24.Siepmann J,Faisant N,Akiki J,Richard J,Benoit JP(2004)Effect of the size of biodegradable microparticles on drug release:experiment and theory. J Control Release96:123–134.Soundrapandian C,Datta S,Sa B(2007)Drug-eluting implants for osteomyelitis.Crit Rev Ther Drug Carrier Syst24:493–545.Wahlig H,Dingeldein E,Bergmann R,Reuss K(1978)The release of gentamicin from polymethylmethacrylate beads.An experimental and pharmacokinetic study.J.Bone Joint Surg.Br.60-B:270–275.Wang G,Liu SJ,Ueng SW,Chan EC(2004)The release of cefazolin and gentamicin from biodegradable PLA/PGA beads.Int J Pharm273:203–212.Wei G,Kotoura Y,Oka M,Yamamuro T,Wada R,Hyon SH,Ikada Y(1991) A bioabsorbable delivery system for antibiotic treatment of osteomyelitis. The use of lactic acid oligomer as a carrier.J Bone Joint Surg Br73: 246–252.Yoo JY,Kim JM,Khang G,Kim MS,Cho SH,Lee HB,Kim YS(2004) Effect of lactide/glycolide monomers on release behaviors of gentamicin sulfate-loaded PLGA discs.Int J Pharm276:1–9.。

PLGA——精选推荐

PLGA——精选推荐

PLGAPLGA聚乳酸-羟基⼄酸共聚物(poly(lactic-co-glycolic acid),PLGA)由两种单体——乳酸和羟基⼄酸随机聚合⽽成,是⼀种可降解的功能⾼分⼦有机化合物,具有良好的⽣物相容性、⽆毒、良好的成囊和成膜的性能,被⼴泛应⽤于制药、医⽤⼯程材料和现代化⼯业领域。

在美国PLGA通过FDA认证,被正式作为药⽤辅料收录进美国药典。

不同的单体⽐例可以制备出不同类型的PLGA,例如:PLGA 75:25表⽰该聚合物由75%乳酸和25%羟基⼄酸组成。

所有的PLGA都是⾮定型的,其玻璃化温度在40-60 °C之间。

纯的乳酸或羟基⼄酸聚合物⽐较难溶,与之不同的是,PLGA展现了更为⼴泛的溶解性,它能够溶解于更多更普遍的溶剂当中,如:氯化溶剂类,四氢呋喃,丙酮或⼄酸⼄酯等。

破坏酯键会导致PLGA的降解,降解程度随单体⽐不同⽽有差异,⼄交酯⽐例越⼤越易降解。

也存在特例,当两种单体⽐为50:50时,降解的速度会更快,差不多需要两个⽉。

PLGA的降解产物是乳酸和羟基⼄酸,同时也是⼈代谢途径的副产物,所当它应⽤在医药和⽣物材料中时不会有毒副作⽤。

当然,乳糖缺陷者除外。

通过调整单体⽐,进⽽改变PLGA的降解时间,这种⽅法已⼴泛应⽤于⽣物医学领域中,如:⽪肤移植,伤⼝缝合,体内植⼊,微纳⽶粒等。

市售的治疗晚期前列腺癌的Lupron Depot即是⽤PLGA充当药物载体。

聚乳酸-⼄醇酸(PLGA);制备;降解Synthesis and Degradation of Poly(lactic-co-glycolic acid)Zhou Chao,YanYuhua. Biomaterials and Engineering Research Center,Wuhan University of Technology,Wuhan 430070[Abstract] Methods often used for synthesizing poly(lactic-co-glycolic acid) was described in this paper. The degradation mechanism of poly(lactic-co-glycolic acid) was also discussed.[Keywords] poly(lactic-co-glycolic acid);synthesis;degradation聚乳酸-⼄醇酸(PLGA)有良好的⽣物相容性和⽣物降解性能且降解速度可控,在⽣物医学⼯程领域有⼴泛的⽤途。

PLGA纳米_微球作为核酸载体的研究进展(1)

PLGA纳米_微球作为核酸载体的研究进展(1)

微生物学通报 DEC 20, 2009, 36(12): 1901~1908 Microbiology © 2009 by Institute of Microbiology, CAStongbao@基金项目:欧盟项目FMD-DISCONV AC(No. 226556); 家畜疫病病原生物学国家重点实验室自主研究课题(No. SKLVEB2008ZZKT008); 甘肃省自然科学基金(No. 0710RJZA082)*通讯作者:Tel: 86-931-8342537; E-mail: zhangyg@ 收稿日期:2009-06-11; 接受日期:2009-08-31专论与综述PLGA 纳米/微球作为核酸载体的研究进展王 刚 潘 丽 张永光*(中国农业科学院兰州兽医研究所 家畜疫病病原生物学国家重点实验室农业部畜禽病毒学重点开放实验室 甘肃 兰州 730046)摘 要: 生物可降解材料[poly(lactide-co-glycolide acid), PLGA]颗粒在持续释放和定位递送各种药剂包括核酸有很大的研究和应用价值。

本文综述了PLGA 作为核酸载体的制备及其用于基因载体和疫苗佐剂的研究。

关键词: PLGA, DNA, 基因治疗, 疫苗佐剂Research Progress on PLGA Nanoparticles/Microspheresas DNA CarriersWANG Gang PAN Li ZHANG Yong-Guang *(Key Laboratory of Animal Virology of Agriculture/State Key Laboratory of Veterinary Etiological Biology , Lanzhou VeterinaryResearch Institute , Chinese Academy of Agricultural Sciences , Lanzhou , Gansu 730046, China )Abstract: Biodegradable PLGA [poly(lactide-co-glycolide acid)] have shown significant potential for sus-tained and targeted delivery of several pharmaceutical agents, including DNA. We reviewed the formulating approaches of PLGA nanoparticles/microspheres as DNA carriers and utilization for gene therapy and vac-cine adjuvant.Keywords: PLGA, DNA, Gene therapy, Vaccine adjuvant 生物可降解材料PLGA 是乳酸(Lactic acid, LA)与羟基乙酸(Glycolic acid, GA)共聚合而成, 有很好的稳定性, 具有易于被吞噬细胞摄取, 通过在颗粒表面吸附相应的配体可以定位到特定的组织或器官等优点, 美国食品药品管理局(FDA)已认定PLGA 有良好的生物相容性和安全性, 已被广泛应用于人的临床医学[1,2]。

利用PLA、PGA、PLGA三种支架再生兔关节软骨

利用PLA、PGA、PLGA三种支架再生兔关节软骨

·论著·利用P L A、P G A、P L G A三种支架再生兔关节软骨陈哲峰范卫民刘峰【摘要】目的观察兔关节软骨细胞在聚乳酸(P L A),聚羟基乙酸(P G A),以及两者的共聚物P L-G A三种三维支架上的贴附和生长情况,利用组织工程技术培养工程化关节软骨。

方法多聚赖氨酸包埋P L A,P G A,P L G A三维细胞支架。

分离培养兔关节软骨细胞,体外扩增后种植到三种支架中。

在体外培养软骨细胞一支架复合物,4周终止培养,进行H E、M a s s o n组织学染色、Ⅱ型胶原免疫组织化学染色。

结果(1)体外培养发现,软骨细胞在P L G A支架材料内贴附生长良好,长期培养仍保持软骨细胞特性,其贴附生长能力,分泌Ⅱ型胶原能力较P G A,P L A支架组强。

(2)支架经过多聚赖氨酸包埋后,软骨细胞的贴附生长及分泌Ⅱ型胶原能力均较对照组好。

结论多聚赖氨酸处理的P L G A三维支架适合软骨细胞贴附生长和分泌Ⅱ型胶原,可作为软骨组织工程的细胞载体。

【关键词】软骨细胞;细胞支架;多聚赖氨酸E x p e r i m e n t a l s t u d y o n r e g e n e r a t i o n o f a r t i c u l a r c a r t i l a g e o n P L A,P G A,P L G A s c a f f o l d b y t i s s u e e n g i n e e r i n g8/5).’2K2+,,A<);2%M%+,L I UA2+,N B2E-@3M2+3*K J@3’*E27%=Q,A%@Q3<K K%1%-327/*Q E%3-1,)-+G%+,C27%=-1U+%O2@Q%3D,)-+G%+,210029,8/I)<【A b s t r a c t】O b j e c t i v e T o s t u d y t h e a b i l i t y o f p o l y l a c t i c a c i d(P L A),p o l y g l y c o l i c a c i d(P G A),P L G A i ns u p p o r t i n g t h e g r o w t ho f r a b b i t c h o n d r o c y t e s,a n d t o r e c o n s t r u c t a r t i c u l a r c a r t i l a g eb y t i s s u e e n g i n e e r i n g.M e t h o d s C o a t e dP L A,P G A,P L G Aw i t h p o l y-l-l y s i n e,f r e e c h o n d r o c y t e s i s o l a t e d f r o m r a b b i t a r t i c u l a r c a r-t i l a g ew e r e s e e d e do n t o t h r e ek i n d s o f s c a f f o l d s a f t e r e x p a n s i o nb y i nv i t r o c u l t u r e.T h e c o m p l e xo f c e l l-s c a f f o l dw a s t h e n c u l t u r e d i n v i v o.A f t e r4w e e k s o f c u l t u r e,t h e c o m p l e xw a s a s s e s s e d b y h i s t o l o g i c a l s t a i-n i n g o fH-E a n dM a s s o n.I m m u n o h i s t o c h e m i c a l a n a l y s i sw a s p e r f o r m e d t o e v a l u a t e c o l l a g e n t y p eⅡs y n t h e-s i s.R e s u l t s(1)A r t i c u l a r c h o n d r o c y t e s w e r e w e l l d i s t r i b u t e d a n d a d h e r e d t o P G A,P L G A s c a f f o l d s a n dm a i n-t a i n e d t h e i r c h a r a c t e r i s t i c s o f a r t i c u l a r c a r t i l a g e t h r o u g h o u t t h e c u l t u r e p e r i o d.(2)C h o n d r o c y t e sw e r ew e l ld i s t r i b u te d a n d a d h e r e d t o s c af f o l d s a f t e r c o a t e dw i t h p o l y-l-l y s i n e,a n d s e c r e t e dm o r e t y p eⅡc o l l ag e n i n c o n-t r a s t t o n o n-c o a t e d s c a f f o l d s.C o n c l u s i o n P L G A s c a f f o l d c o a t e dw i t h p o l y-l-l y s i n e c a n s u p p o r t t h e c h o n d r o-c y t e p r o l i f e r a t i o nw i t hm a i n t e n a n c e o f t h e i r p h e n o t y p e,a nd c a n be s u i t a b l e c a r r i e r sf o r t i s s u e e ng i n e e r i n g o fa r t i c u l a r c a r t i l a g e.【K e y w o r d s】C h o n d r o c y t e;S c a f f o l d;P o l y-l-l y s i n e[(%-+,Q9C27(,<9,9Q32005,31(8):599S601N]由于软骨自身修复能力有限,创伤等病因导致关节软骨缺损后,常继发成为骨关节炎。

PLGA纳米药物在肿瘤治疗中的应用

PLGA纳米药物在肿瘤治疗中的应用
酶体逃逸效果最佳ꎮ
肿瘤细胞内谷胱甘肽 ( GSH) 含量显著高于胞
白受体等ꎮ 根据这些蛋白的表达ꎬ叶酸( folic acidꎬ
外环境ꎬ其浓度是胞外的 100 ~ 1 000 倍 [25] ꎮ 在纳米
常被修饰在纳米粒表面ꎬ以实现主动靶向递送化疗
实现 抗 肿 瘤 药 物 在 肿 瘤 细 胞 内 的 释 放ꎮ Birhan
径利用葡萄糖ꎮ 这最终导致乳酸积累ꎬ从而使肿瘤
组织 pH ( 5. 7 ~ 6. 8 ) 较 正 常 组 织 ( pH 7. 4 ) 偏
低 [21 - 22] ꎮ 肿瘤细胞内还 有另一酸性区室ꎬ即溶酶
体ꎮ 溶酶体酸性进一步降低可达到 pH 4. 5 ~ 5. 5 [23] ꎮ
很多抗肿瘤纳米药物都被肿瘤细胞以内吞的方式摄
饰的 PLGA 纳米粒能够增强耐药细胞对化疗药物的
曹晓静等
[29]
报道了槲皮素与阿霉素联载的方
式克服乳腺癌多药耐药性ꎮ Ahmadi 等
[30]
赖于载体输送到靶细胞ꎮ 与病毒载体相比ꎬ非病毒
和控制释放ꎬ是目前核酸药物递送研究的热门领域ꎮ
报道了阿
非病毒载体借助纳米技术ꎬ依靠材料本身的正电荷
霉素和维拉帕米共载的 PLGA 纳米粒克服 P - gp 介
的方式实现ꎮ
1 1 被动靶向输送小分子化疗药物 利用实体肿
瘤血管的高通透性和滞留效应( EPR) [10] 可实现被
动靶向ꎬ使纳米药物在肿瘤部位富集ꎬ以改善组织分
布来降低毒性、提高疗效ꎮ 岳武恒等
[11]
制备了胡桃
醌 PLGA 纳米粒ꎬ并以荷载黑色素瘤的裸鼠验证其
PLGA - MNP) ꎬ并在 MCF - 7 细胞中验证了磁靶向
介绍 PLGA 递送小分子化疗药物、核酸、疫苗和多药

PLGA纳米微球作为DNA疫苗载体的研究进展

PLGA纳米微球作为DNA疫苗载体的研究进展

Abstract :Poly(lactic-c〇-glycolic acid) copolymer is a kind of nano-material with excellent bio­ compatibility and degradation capacity,As a DNA vaccine vector which release slowly and target well,it protect DNA plasmid from being broken,besides,it has many other advantages,including strong entrap­ ment and carrying ability,moreover,DNA vaccine vector can easily escape from lysosome.PLGA is a kind of DNA vaccine vector with good application prospect.Here,the characteristics of PLGA as a vector and the mechanism of immune response induced by PLGA-DNA vaccine were reviewed.
收 稿 日 期 :2020-12-31;修 回 日 期 :2021-03-08 基 金 项 目 :国 家 自 然 科 学 基 金 项 目 (31972669,81960297) 作者简介:杨坤(1994-),男 ,四川广安人,硕 士 生 ,研究方向为疫苗佐剂研制。 * 通 讯作者:魏 凡 华 ,教 授 ,E-mail :weifan-
坏 死 病 毒 D N A 疫 苗 :6" \ 2 0 1 8 年 中 国 农 业 部 批 准 的 禽 流 感 D N A 疫 苗 等 ,都 得 以 在 世 界 范 围 内 批 准 使 用。

壳聚糖修饰的PLGA纳米粒作为蛋白多肽类药物载体的研究

壳聚糖修饰的PLGA纳米粒作为蛋白多肽类药物载体的研究

2.2纳米粒的制备
采用改良溶剂挥发法制备纳米粒…]:将20mg BSA溶于0.5mL磷酸盐缓冲液(pH值为7.2)中,转 入PLGA的二氯甲烷溶液中,超声形成初乳,将初乳
转入20mL 1%PVA溶液中,再次超声形成复乳,搅拌
4h,待有机溶剂挥发后18,000r/min离心收集纳米粒, 冷冻干燥即得PLGA
NP。
2.2.1吸附法修饰纳米粒 根据前期的研究工作【11。,在上述制备PI,GA纳米 粒的过程中,0.5%PVA水溶液中含100mg CS醋酸 溶液,一起作为外水相。其余步骤和方法同前。 2.2.2共价交联法修饰纳米粒 称取100mg制备好的PI。GA NP,加入PBS(pH 5.o)中分散均匀,加入EDC活化纳米粒表面的羧基, 然后加入100mg CS,室温搅拌反应24h,离心收集纳
米粒。
*基金项目:国家重大科学研究计划资助项目(2006CB933300);新乡医学院省级重点学科开放课题资助项目(ZD200944)
收到初稿Et期:20lo—04—22 收到修改稿日期:2010 12—14 通讯作者:陈红咐,张其清
作者简介:陈红丽(1978一),女,河南安阳人,博士,讲师。师承张其清教授,从事生物医用材料和纳米药物载体的研究。
构成及键台状卷等^面的信息,PLGA NP表面来十龟 测到氨元素信号,面ADCSNP及CBCS NP均检测到 氟元素的信号(罔2)。由于所用材料中只有CS含有
万方数据




20l 1年第2期(42)卷
表1纳米粒性质表征
Table 1 Characteristic of the nanoparticles 纳米粒
壳聚糖cs是自然界存在唯一带正电荷的天然多糖具有良好的生物相容性可生物降解性和组织黏附性被用作化学药物抗体蛋白多肽及基因类药物的载体710本文以plga为载体材料以牛血清白蛋白bsa为多肽蛋白质模型药物采用溶剂挥发法制备了plga纳米粒选择cs分别采用直接吸附法修饰纳米粒adcsnp以及共价联接法修饰纳米cbcsnp粒表面对纳米粒的理化性质及bsa的包封率释药性质等进行了考察对两种方法修饰的纳米粒中bsa的构型变化比较研究为不同修饰方式制备的纳米粒作为蛋白多肽类药物载体的研究提供了参考依21主要原料与仪器plga末端未封端mw为105050山东省医疗器械研究所壳聚糖低分子量脱乙酰度85sigma牛血清白蛋白6300065000北京鼎国生物有限公司bca白检测试剂盒pierce其余试剂均为分析纯

PLGA纳米粒作为药物载体的靶向作用研究进展

PLGA纳米粒作为药物载体的靶向作用研究进展

动物医学进展,2020,41(12):96 101ProgressinVeterinaryMedicinePLGA纳米粒作为药物载体的靶向作用研究进展 收稿日期:2020 06 06 基金项目:国家自然科学基金项目(31872511) 作者简介:胡 馨(1997-),女,重庆人,硕士研究生,主要从事兽药学研究。

通讯作者胡 馨,支 慧,杨 艳,杨 杰,柴东坤,林 浪,刘云杰,宋振辉 ,封海波(西南大学动物科学学院,重庆402460) 摘 要:纳米科技在现代医学及药学的应用方面广泛发展,纳米药物载体在实现靶向性给药、缓释药物、降低药物的毒副作用等方面有重大优势。

聚乳酸 羟基乙酸聚合物(PLGA)是一种高分子有机化合物,具有生物相容性及生物可降解性,当前聚乳酸 羟基乙酸聚合物纳米粒(PLGANPs)被广泛地作为药物载体进行靶向治疗。

论文归纳总结了近年来国内外的相关文献报道,概述了PLGANPs的特点、制备方法与表征以及靶向作用的研究进展,着重讨论了PLGANPs作为药物载体在肿瘤组织、心脑血管、骨组织、免疫和基因类疾病中靶向作用的研究进展,并对未来发展前景进行了展望,为相关的科研提供参考。

关键词:聚乳酸 羟基乙酸聚合物;纳米粒;药物载体;靶向作用中图分类号:S854.53;S859.797文献标识码:A文章编号:1007 5038(2020)12 0096 06 靶向制剂是指通过局部给药的方式将药物输送至特定的组织、器官、细胞内,以提高药物的疗效和生物利用度,并减少毒副作用带来的危害。

聚乳酸 羟基乙酸聚合物[poly(lactic co glycolicacid),PLGA]是由乳酸和羟基乙酸的单体聚合而成的可降解的高分子有机化合物。

纳米粒(nanoparticles,NPs)是大小介于1nm~1000nm之间的一种固态胶体颗粒,可作为药物靶向传递的载体。

PLGA是乳酸(lacticacid,LA)与羟基乙酸(glycolicacid,GA)共聚合而成,当PLGA进入体内,通过酯键水解生成相应的单体酸、乳酸和羟基乙酸,然后经过三羧酸循环后转变成二氧化碳和水,因此该聚合物对人体无刺激性,无毒且拥有良好的生物相容性和降解性[1];PLGANPs极易于被吞噬细胞摄取,因此通过在纳米颗粒偶联吸附相应的配体可定位到需要的组织和器官。

PLGA纳米微球制备条件的优化

PLGA纳米微球制备条件的优化

PLGA纳米微球制备条件的优化聚乳酸-羟基乙酸共聚物(PLGA)为载体,二氯甲烷为有机溶剂,聚乙烯醇为乳化剂,采用水/油/水型(W1/O/W2)复乳化溶剂挥发制备载有原花青素的微球并对微球相关性质进行检测。

结果所得微球呈圆球状,微球平均粒径为10um,Zeta电位为-22.2mV,通过该方法制备的微球粒径分布较均匀,操作方便,为进一部优化包被原花青素的PLGA纳米微球提供了一定依据。

标签:原花青素;聚乳酸-羟基乙酸共聚物(PLGA);微球;乳化溶剂挥发法纳米材料作为一种可行的给药载体系统已成为可能。

聚乳酸-羟基乙酸共聚物(PLGA)作为生物可降解载体,因其具有良好的生物相容性、可生物降解性和安全性目前已被用作药物载体和生物支架,制备成纳米微球后,还可以缓慢释放包载的药物。

鉴于肿瘤发生率逐年上升,食源性药物能克服和减少化学性药物引起骨髓抑制、消化道反应、神经系统毒性等不良反应,原花青素属于黄烷-3-醇类化合物,具有抗氧化、抗炎、调节信号分子的表达、促进肿瘤细胞凋亡等抗肿瘤作用,但其生物利用度低,尤其是大分子成分(三聚体以上)吸收性差,为了提高其利用率与稳定性,本实验采用生物降解材料聚乳酸--羟基乙酸共聚物(PLGA)包裹原花青素,制备原花青素缓释微球。

尽可能保证颗粒的均一性、高包封率、高载药量、缓释性能。

1 材料与方法1.1 试剂PLGA(0%、5%、10%、20%PEG),葡萄籽原花青素,二氯甲烷,聚乙烯醇(PV A),三蒸水。

1.2 实验仪器移液枪,电子天平,超声混匀仪,磁力搅拌器,高速离心机,测微尺,激光粒度分析仪1.3 PLGA-原花青素纳米微球制备方法称取一定量葡萄籽原花青素溶于适量水中作为内水相,混匀,称取定量(PEG-)PLGA溶于二氯甲烷里作为有机相,同时配置一定浓度的PV A水溶液作为外水相,(需控制其完全溶解)将有机相和无机相混合,在超声条件下将内水相和油相混匀形成初乳,在恒温磁力搅拌器上将初乳加入到外水相中形成复乳后继续搅拌5h,然后在10000r/min下离心30min,蒸馏水洗三次,每次五分钟,之后冷冻保存。

【材料学论文】聚乳酸-乙醇酸(PLGA)的合成工艺及结构性能研究(精彩论文,免费分享!)

【材料学论文】聚乳酸-乙醇酸(PLGA)的合成工艺及结构性能研究(精彩论文,免费分享!)
The chain extension of PLGA was carried out in melt state with 2,4-toluene diisocyanate (TDI) as chain extension agent. The [η] of PLGA was increased to 2.65 times in the proper condition (NCO/OH=1∶1 mol ratio; time: 60min; temperature:160℃). The results of IR、DSC and X-Ray investigations showed that through chain-extension reaction, the TDI was introduced in PLGA chain and the Tg was moderately increased. However, the polymer is still non-crystalline.
但实际上由于乙交酯和丙交酯具有不同的竞聚率ranplga的无规程度和组成的重现性难困北京服装学院硕十学位论文以尸e格控制特别是乙交酯含量较高进行共聚时由于其竞聚率高于丙交酯易生成少量溶解性差的pga难以得到组成均一乙醇酸含量较高的rajlplga323311222开环均聚法为了得到组成均一的plga利用laga或它们的衍生物先合成六元环状交酯再开环聚合反应式12这样得到的plga通常称为交替共聚物altplgaaltplga结构规整组成固定降解性能稳定更便于应用尤其是用作药物缓释载体
若有不实之处,本人完全意识到本声明的法律结果由本人承担。
学位论文作者签名:
签字日期: 年 月 日
学位论文版权使用授权书
学位论文作者完全了解北京服装学院有关保留和使用学位论文的规定,即:研究生在 校攻读学位期间论文工作的知识产权单位属北京服装学院。学校有权保留并向国家有关部 门或机构送交论文的复印件和电子版,允许学位论文被查阅、借阅和复印;学校可以公布 学位论文的全部或部分内容公开或编入有关数据库进行检索,可以允许采用影印、缩印或 其它复制手段保存、汇编学位论文。

13.2基于PLGA纳米粒子抗肿瘤药物

13.2基于PLGA纳米粒子抗肿瘤药物

13.2基于PLGA纳⽶粒⼦抗肿瘤药物基于PLGA纳⽶粒⼦抗肿瘤药物⾼分⼦纳⽶药物根据其制备原料的来源可分为两⼤类:第⼀类为基于天然存在的⾼分⼦材料制备的纳⽶药物,包括基于蛋⽩质类:胶原(Collagen),⽩蛋⽩(Albumin),明胶(Gelatin)以及聚多糖类:琼脂糖(Agarose),透明质酸(HA),葡聚糖(Dextran),壳聚糖(Chitosan)和环糊精(Cyclodextrins)等天然材料制备的纳⽶药物,如:⽩蛋⽩结合型紫杉醇(PTX)纳⽶药物Abraxane在2005年被批准⽤于治疗转移性胰腺癌和肺癌;CRLX-101是基于环糊精的喜树碱纳⽶药物,⽬前在临床⼆期研究阶段。

第⼆类是基于⼈⼯合成的⾼分⼦材料制备的纳⽶药物,包括基于聚(丙交酯-⼄交酯)(PLGA)、聚乳酸(PLA)、聚⼄交酯(PGA)、聚⼰内酯(PCL)、聚⼄⼆醇(PEG)、聚⼄烯醇(PV A)、聚磷酸酯Poly(phosphoesters)、聚氰基丙烯酸烷基酯(PACAs)、聚原酸酯(POE)、聚酰胺Poly(amides)、聚酯酰胺(PEAs)以及聚氨基酸Poly(amino acids) 等制备的纳⽶药物,如:PEG化的脂质体阿霉素(DOX)Doxil 于1995年被US FDA 批准上市,⽤于治疗乳腺癌、卵巢癌、⾻髓瘤以及艾滋病相关性卡波西⾁瘤;基于PEG-PLA的PTX纳⽶药物Genexol-PM于2007年在韩国被批准⽤于乳腺癌、肺癌以及卵巢癌的治疗;NC-6004 (Nanoplatin) 是基于PEG-PGA的顺铂纳⽶药物,正处于临床⼀期研究阶段,另外其⽤于胰腺癌的临床三期实验也在进⾏中;NK911是基于Poly(ethylene glycol)-b-poly(aspartic acid) (PEG-PAA)的DOX前药纳⽶药物;基于PEG-PLA 的主动靶向性多西他赛(DTX)纳⽶药物BIND-014靶向到前列腺特异性膜抗原(PMSA),⽤于治疗前列腺癌、⾮⼩细胞肺癌、宫颈癌、膀胱癌以及头颈癌的研究处于临床II期。

PLGA 、壳聚糖纳米粒的制备及细胞毒性研究

PLGA 、壳聚糖纳米粒的制备及细胞毒性研究

PLGA 、壳聚糖纳米粒的制备及细胞毒性研究薛延香;詹雪灵;刘影;沈仁泽;晋冰玉;高杰【摘要】AIM:To prepare PLGA and chitosan ( CS) nanoparticles and to evaluate their cytotoxicity to periodontal ligament cells( PDLCs) .METHODS:PLGA and CS nanoparticles were prepared by emulsion solvent e-vaporation method cross-linking of CS with sodium tripolyphosphate respectively.The nanoparticles were characterized by Zetasizer 3000HS and transmission electron microscope.Passage 3 -5 PDLCs were cultured with PLGA and CS nanoparticles at 0(the control), 0.5 mg/mL, 1 mg/mL and 2 mg/mL respectively.The PDLCs were subjected to MTT assay at 24, 48, 72 h of culture.RESULTS:PLGA nanoparticles were uniform and spherical, and the mean particle size and dispersive coefficient were 188.10 ±2.86 nm and 0.55 ±0.04, respectively.CS nanoparticles were relatively uniform and aspheric, the mean particle size and dispersive coefficient were 250.97 ±30.86 nm and 0.50 ±0.07, re-spectively.The OD values of 2 mg/mL PLGA group and 1 mg/mL CS group were lower than that of the control (P<0.05) at 48 h of culture.At other times points, no significant difference was found among different groups (p>0.05).The relative growth rate of PDLCs in all groups was all higher than 85%.The toxicity grading of all groups was 0 or 1.CONCLUSION:PLGA and CS nanoparticles are nontoxic to PDLCs, according to ISO10993-5.%目的:制备大小均一的PLGA、壳聚糖纳米粒并研究其对牙周膜细胞的毒性。

PLGA微粒_纳米粒基因载体的研究进展

PLGA微粒_纳米粒基因载体的研究进展

PLGA微粒/纳米粒基因载体的研究进展曾萍1, 3, 4, 彭明利2, 徐溢1, 3, 4*(1. 重庆大学化学化工学院, 重庆 400030; 2. 重庆医科大学感染性疾病分子生物学教育部重点实验室, 重庆 400016;3. 重庆大学微纳系统及新材料技术国际研发中心, 重庆 400030;4. 重庆大学新型微纳器件与系统技术国家重点学科实验室, 重庆 400030)摘要: 生物可降解聚合物乳酸-羟基乙酸共聚物 (PLGA) 微米粒/纳米粒是一种新型的非病毒基因载体, 由于其具有安全、无免疫原性、制备容易和装载容量大等优点而引起越来越多的关注和研究, 特别是在质粒DNA (plasmid DNA, pDNA) 传递方面具有巨大的研究空间和潜在应用价值。

本文依据PLGA微米粒/纳米粒在基因载体中的研究现状, 重点综述了载体的制备工艺和表面修饰方法及其在基因治疗和基因疫苗传递等方面的应用研究进展。

关键词: 乳酸-羟基乙酸共聚物; 基因传递; 基因治疗; 表面修饰中图分类号: Q782; R945 文献标识码:A 文章编号: 0513-4870 (2010) 11-1346-08Advance in the study of poly(lactide-co-glycolide) nano/microparticlesas gene vectorZENG Ping1, 3, 4, PENG Ming-li2, XU Yi1, 3, 4*(1. Chemistry and Chemical Engineering College, Chongqing University, Chongqing 400030, China; 2. Key Laboratory of Molecular Biology of Infectious Disease, Chongqing University of Medical Science, Chongqing 400016, China; 3. International R & D Center of Micro-nano Systems and New Materials Technology, Chongqing University, Chongqing 400030, China; 4. National Key Disciplines Lab of Novel Micro-nano Devices and System Technology, Chongqing University, Chongqing 400030, China) Abstract: Biodegradable nano/microparticles of poly(D, L-lactide-co-glycolide) (PLGA) is a novel non-viral gene vector, which has many advantages, such as safety, non-immunogenicity, easy of large-scale preparation and well load-capability. Therefore, more and more attentions and researches have been paid on its application.Especially, PLGA has shown enormous potential application value and space in the field of plasmid DNA (pDNA) delivery system. On the basis of the current situation of PLGA nano/microparticles for pDNA delivery, this paper focused on summarizing the current preparation approaches and surface modified methods of PLGA particle, furthermore showing its application in gene therapy and genetic vaccine delivery. These showed that PLGA nano/microparticles have extensive prospect in the development of controlled gene delivery system.Key words: poly(lactide-co-glycolide); gene delivery system; gene therapy; surface modification基因治疗是生物治疗的重要组成部分, 该疗法在治疗多种人类重大疾病如遗传病、恶性肿瘤、代谢性疾病以及感染性疾病(如AIDS、乙型肝炎) 等方收稿日期: 2010-03-29.基金项目: 国家自然科学基金资助项目 (30771921).*通讯作者Tel: 86-23-65111022, Fax: 86-23-65104101,E-mail: xuyibbd@ 面具有良好的应用前景, 并将逐渐成为生物医学领域的研究重点。

丁香苦苷 PLGA 纳米粒的体外释放研究

丁香苦苷 PLGA 纳米粒的体外释放研究

丁香苦苷 PLGA 纳米粒的体外释放研究封文静;管庆霞;张亮;李梦雪;李永吉【摘要】为研究丁香苦苷PLGA纳米粒( SYR-NP)的体外释药规律,采用动态透析技术考察SYR-NP体外释药性能,并用高效液相测定SYR-NP和SYR溶液的含量,以累积释药百分率进行不同模型的拟合.SYR-NP的体外释放规律基本符合Higuchi方程的释药模型,拟合的释药动力学方程为 Q=0.1281+0.0189t1/2(r=0.9568).相比于药物溶液,SYR-NP具有良好的缓释的作用.%In order to study the vitro release profile of Syringopicroside PLGA nanoparticles , the dynamic dialysis technology was employed to study the in vitro release ability of SYR -NP and Syringopicroside solution .The content of Syringopicroside was determined by HPLC , and the fitting of different models were performed based on the accumulative drug release percentages .The release curve of Syringopicroside PLGA nanoparticles was in line with Higuchi equation , Q=0.128 1+0.018 9t1/2 ( r=0.9568) .Compared with the Syringopi-croside solution , SYR-NP has a satisfactory sustained release effect .【期刊名称】《哈尔滨商业大学学报(自然科学版)》【年(卷),期】2014(000)004【总页数】4页(P395-397,401)【关键词】丁香苦苷;PLGA纳米粒;体外释放【作者】封文静;管庆霞;张亮;李梦雪;李永吉【作者单位】黑龙江中医药大学,哈尔滨150040;黑龙江中医药大学,哈尔滨150040;黑龙江中医药大学,哈尔滨150040;黑龙江中医药大学,哈尔滨150040;黑龙江中医药大学,哈尔滨150040【正文语种】中文【中图分类】R283丁香苦苷[1](Syringopicroside,SYR)是从丁香叶(Folium syringae)中分离后得到的单体成分,属于环烯醚萜苷类化合物,其具有很强的抗菌、抗病毒、保肝利胆等作用,尤其对乙型肝炎病毒作用显著.但由于其在体内消除较快,半衰期较短等原因,导致其生物利用度并不高.因此本研究采用复乳化法制得SYR-PLGA纳米粒,在此基础上选取既不需要离心将载药纳米粒与释放介质分离,又能保证纳米粒无损失的透析法进行SYR-NP 的体外释放研究.1 试剂与仪器1.1 药品与试剂丁香苦苷对照品 (黑龙江中医药大学药剂教研室自制,质量分数≥98%);丁香苦苷原料药(黑龙江中医药大学药剂教研室自制,质量分数≥95%);透析袋(MW:8 000-10 000,美国Sigma公司);碳酸氢钠(批号111009,北京化学试剂公司);EDTA(批号20100715,天津市化学试剂厂);其他试剂均为分析纯.1.2 仪器与设备美国Waters公司高效液相色谱仪系统:2996Photodiode Array Detector,2695Separations Module,Empower 色谱工作站;恒温水浴振荡器(哈尔滨东联电子技术开发有限公司);PHS-3C型酸度计(金坛市荣华仪器制造有限公司);AB265-S电子分析天平(德国梅特勒公司).2 实验方法与结果2.1 SYR-PLGA纳米粒的制备取PLGA(LA∶GA=50∶50)加入到二氯甲烷和乙酸乙酯1∶3的混合溶液中,制得质量浓度为20 mg/mL的 PLGA溶液,然后将丁香苦苷溶于蒸馏水中,制得10 mg/mL的药物溶液;其次,按照1∶4 的体积比将药物加入到PLGA溶液中,超声乳化,制得初乳,然后,将该初乳注入体积分数为0.5%的poloxamer188 水溶液形成初级复乳,然后将初级复乳按照10倍量体积加入到0.1%poloxamer188的水溶液中,以800 r/min 磁力搅拌1~2 h后,将二氯甲烷和乙酸乙酯的混合溶液减压旋转45~60 min 挥发,形成胶体溶液,经过冷冻干燥后,形成SYR-PLGA 纳米粒.2.2 丁香苦苷纳米粒释放条件的研究2.2.1 透析袋的处理先将透析袋剪成适当长度的小段,在大体积的2%(w/V)碳酸氢钠和1 mmol/L EDTA中(pH=8.0)中将透析袋煮沸15 min,用重蒸水彻底清洗透析袋.再放在1 mmol/L EDTA中(pH=8.0)将之煮沸15 min,冷却后,用重蒸水彻底冲洗.将透析袋放在重蒸水中.存放于4 ℃保存备用,必须确保透析袋始终浸没在溶液内,取用透析袋时必须戴手套,以免造成污染.使用前在透析袋内装满水然后排出,反复冲洗,确保透析袋的清洁.2.2.2 释放介质的选择为了模拟体内条件,充分考虑血液环境的pH值在7.35~7.45 之间纳米粒进入血液循环中,血液环境pH值对其的影响,以及磷酸根离子大量存在于体内环境中可能对PLGA 的降解产生的影响.本实验选取磷酸盐缓冲液(PBS, pH =7.4)作为释放介质,采用透析法对SYR纳米粒进行释药研究.PBS的配制:称取8 g 氯化钠、0.2 g 氢氧化钠、0.2 g 无水磷酸二氢钾、0.9 g无水磷酸氢二钾,用重蒸水溶解后定容至1 000 mL.2.2.3 释放介质稳定性考察称取适量的丁香苦苷样品溶于50 mL pH值为7.4磷酸盐缓冲液中,置于溶出瓶中,37 ℃水浴,100 r/min恒速振摇,定时取样,测定其在0~96 h间的峰面积变化,其RSD为1.41%(n=3),表明丁香苦苷在pH值为7.4的磷酸盐缓冲液释放介质中的稳定性符合要求.2.3 丁香苦苷纳米粒体外释放实验2.3.1 体外释放分析方法的建立1) 色谱条件色谱柱:ODS-C18 (250 mm×4.6 mm,5 μm);检测波长:221 nm;流动相:(甲醇∶水)=(50∶50,V/V);流速:1.0 mL/min;柱温:30 ℃;进样量:10 μL.配制对照品溶液、样品溶液, 进样测定.样品溶液SYR-PLGA保留时间与对照品溶液中的一致, 辅料对主药测定无干扰(见图1).A-空白对照PBS液(在221 nm, 9 min左右无杂质峰); B-含有SYR 的PBS液(在221 nm, 9 min左右出峰) ;C-含SYR-PLGA 纳米粒的PBS液(在221 nm, 5 min 左右出峰)图1 样品高效液相色谱图2)标准曲线的绘制精密称取干燥至恒重丁香苦苷对照品6.12 mg,置100 mL量瓶中,用磷酸盐缓冲液溶解并定容至刻度,摇匀得质量浓度为0.061 2 mg/mL对照品溶液.分别吸取对照品溶液0.2、0.5、1.0、2.0、3.0、4.0 mL至10 mL的量瓶中,用磷酸盐缓冲液溶解并定容至刻度,分别取10 μL进样分析,以峰面积Y对质量浓度X进行回归,得到回归方程为Y=0.158 7X+0.769 6(r=0.999 7),结果表明丁香苦苷在(1.224~24.448)μg/mL范围内线性关系良好.2.3.2 体外释放实验本实验采用动态透析法:一定量丁香苦苷纳米粒的冻干粉于适量的重蒸水中溶解,形成复溶液,分别精密吸取复溶液和SYR对照品溶液(均含主药3 mg).转入经处理后的透析袋中,扎紧透析袋两端,悬浮于50 mL具塞锥形瓶中,锥形瓶中加入磷酸盐缓冲液作为释放介质,将其置于恒温振荡器中,以温度37 ℃、转速100r/min持续振荡,于不同的时间5、10、30、45、60、120、240、360、480、600、720、1 080、1 040、1 800、2 160 min吸取2 mL透析外液,并及时补充等量同温的新鲜的释放介质,用HPLC测定释放介质中丁香苦苷的含量,记录峰面积,计算各时间点SYR-NP冻干粉和SYR溶液的累积释放率,并以累积释药百分率( Q )对时间(t)作图,绘制载药纳米粒释放曲线.SYR-NP和SYR单体的体外释放数据见表1,释药曲线见图2.在各时间点的累积释放百分率(Q)计算公式为:Q(%)=(V0·Ct+V·∑Ci)·100%·W-1(1)其中:W为药物完全释放量;V0为初始体积;Vt为各时间点对应的体积;Ci为初始质量浓度;Ct为各时间点对应的质量浓度.从表1和图2的结果可知,游离药物在4 h时体外累积释放量达到81.49%,而SYR-NP 前4 h时释药较快,30 min时累积释放百分率达16.03%,4 h时仅释放了48.03%,之后释药曲线渐趋平稳,释放缓慢,在36 h时累积释放量达到88.03%,具有一定的缓释作用.2.4 释药机制探讨载药纳米粒的药物释放可以通过若干途径实现,主要取决于药物在粒子中所处的部位和载体的性质.如纳米粒表面降解释药、整体崩解、骨架扩散、水合膨胀、解离扩散和解吸附等途径.药物既有包封在粒子内部的,也有吸附在粒子表面的,还有在粒子浅表层或壳层内,因此不同部位的释药速度也不同.目前解释缓控释制剂的释药动力学方程主要是以Fick’s扩散定律为基础理论而提出的,他们是以一些边界条件和假设为基础,从而得到的Fick’s扩散定律的近似解释,一般有下列常用模型[2].若药物释放符合零级动力学模型,则方程为:Q=a1+b1t(2)若药物释放符合一级动力学模型,则方程为:ln(100-Q)=-a2+b2t(3)表1 SYR-NP和SYR累积释放量的测定结果t/minSYR-NP冻干粉/%SYR单体/%56.038.91106.3219.493016.3032.814523.2048.626028.7061.3312037.807 0.6224048.0381.4936058.1287.2348063.1788.6260068.7190.4472072.5292. 541 08078.4593.251 44082.4394.561 80085.4595.122 16088.0796.51图2 SYR-NP和SYR溶液的累积释药量曲线处于粒子浅表层或深层部位的药物释放受扩散控制符合Higuchi方程为:Q=a3+b3t1/2(4)其中:Q为累积释药量,t为取样时间,a1-a3为常数,b1-b3为释药常数.分别以零级动力学方程、一级动力学方程、Higuchi方程三种释药模型对SYR-PLGA进行体外释放的的拟合,结果见表2.表2 SYR-NPS体外释放的拟合方程数学模型拟合方程相关系数r零级方程Q=0.290 4+0.000 4t0.737 1一级方程ln(100-Q)=-4.277 1-0.000 1t0.918 6Higuchi方程Q=0.018 9+0.1281t1/20.956 8SYR-NP的体外释放规律基本符合Higuchi方程的释药模型,拟合的释药动力学方程为: Q=0.128 1+0.018 9t1/2 (r=0.956 8).3 讨论3.1 透析方法的筛选本实验采用动态透析法[3]考察了丁香苦苷PLGA纳米粒的释药特性,其基本原理是将载药纳米粒混悬于一定的释放介质中,将透析袋与释放介质分开,透析袋是一种具有分子截留作用的半透膜药物经透析膜扩散至介质中,通过测定介质中药物质量浓度,获得累计释放规律的一种方法.该法操作简单,不破坏释药平衡,药物在释放介质中稳定性,溶解性好,不需要定时完全更换释放介质.本实验选取透析袋截留分子质量为8000~12000,即分子质量小于8000~12000的游离药物可以透过透析袋进入释放介质中,而被PLGA包封的药物因为分子质量大而被截留在透析袋里,pH值为7.4的磷酸盐缓冲液为溶出介质,可满足漏槽条件.3.2 释放机理的探讨药物从PLGA纳米粒中释放机理有可能有以下几个方面:1)表面降解吸附;2)聚合物表面或整体溶蚀释放;3)通过纳米粒孔隙扩散;4)通过水溶性聚合物的扩散等.不同的释药机理主要取决于乳酸/羟基乙酸共聚物的分子质量、纳米粒的粒径大小、药物含量以及制备工艺等参数的不同.将丁香苦苷纳米粒冻干粉与游离丁香苦苷溶液进行对比释放实验,绘制释放曲线,可以清楚观察到药物从丁香苦苷纳米粒的释放分为突释和缓释部分[4].释放曲线可观察到初期的药物突释现象,随后释药曲线趋于平稳.前期释药较快,在最初的0.5 h释放了药物的16.30%.药物的突释量是药物溶解度的一个重要函数,溶解度越大,载药的纳米粒突释时释药速度越快,突释时间越长;溶解度越小,则突释量越少,突释持续时间越短[5].尽管纳米粒在体外释药情况与体内存在差别,但体外释药仍可以在一定程度上反映体内释药情况,为预测SYR-PLGA纳米粒的体内释药情况提供参照,并以此指导处方设计以及制备工艺的优化.参考文献:[1] 王艳宏, 李永吉, 王艳芝, 等. 紫丁香叶中丁香苦苷的RP-HPLC法测定[J]. 中草药, 2003, 34(3): 268-269.[2] SCHWARZ C, MEHNERT W. Solid lipid nanopartics (SLN) for controlled drug delivery Drug incorporatin.and physicochemical characterization [J].Journal of microencapsulation, 1999, 16(2): 205-213.[3] 尹华峰, 谭群友, 陈学梁, 等. 溴吡斯的明磷脂复合物纳米粒的体外释放行为评价[J].中国医院药学杂志, 2012, 32(7): 501-504.[4] NIHANT N, GRANDFILS C, JEROME R, et al. Microencapsulation by coacervation of poly (lactide-co-glycolide) IV. Effect of the processing parameters on coacervation and encapsulation [J].Journal of Controlled Release, 1995, 35(2-3): 117-125.[5] 王恺源, 高永良. 影响 PLGA 微球突释的因素以及控制技术[J].中国新药杂志, 2011, 20 (6): 557-562.。

抗菌 PLGA 薄膜的初步研究

抗菌 PLGA 薄膜的初步研究

抗菌 PLGA 薄膜的初步研究王梦露;潘文文【摘要】Taking the thin film of PLGA without carboxyl end group as the material,sodium hydroxide and ultraviolet ray were adopted respectively to make it with carboxyl end group.Atomic force microscopy was used to characterized the thin film of PLGA after treatment,and its hydrophily was tested.Then grafting the active protein bacitracin through the carbodiimide sequential method,and the antibacterial performance of the thin film of PLGA before and after grafted was tested respectively by the methods of acridine orange fluorescence staining and MTT method.The results showed that the chemical structure of the thin film of PLGA dealt with sodium hydroxide and ultraviolet ray changed pared with the blank thin film,the hydrophily of the thin film of PLGA after treatment became pared with the thin film of PLGA without grafting,the thin filmof PLGA after grating had the certain antibacterial performance,and the antibacterial performance gradually decreased as the grating concentration increased.%以不含端羧基的聚乳酸-羟基乙酸共聚物(PLGA)薄膜为材料,分别采用氢氧化钠处理和紫外线处理使其加上端羧基,利用原子力显微镜对处理后的 PLGA 薄膜表面进行表征,并对其亲水性能进行检测。

PLGA纳米材料在缺血性脑卒中中的应用

PLGA纳米材料在缺血性脑卒中中的应用

PLGA纳米材料在缺血性脑卒中中的应用郭桥; 蔡强; 李知阳; 王文举; 陈治标【期刊名称】《《医学综述》》【年(卷),期】2019(025)018【总页数】5页(P3622-3626)【关键词】聚乳酸-羟基乙酸共聚物; 纳米粒子; 缺血性脑卒中【作者】郭桥; 蔡强; 李知阳; 王文举; 陈治标【作者单位】武汉大学第一临床学院武汉大学人民医院神经外科武汉 430061【正文语种】中文【中图分类】R743.3脑卒中是脑部缺血或出血导致神经功能障碍的疾病,是引起死亡的第二大原因,常发生于老年群体,且有年轻化的趋势[1- 2]。

我国脑卒中年发病约为200万,年新发病例约为150万,死于脑卒中的患者约130万,幸存者中75%不同程度地丧失劳动能力[3]。

缺血性脑卒中又称为脑梗死,是由于栓子或血栓使脑部供血不足从而导致脑组织缺血缺氧引起脑组织与功能损伤的疾病,约占卒中人数的87%[3- 4]。

静脉溶栓及机械取栓疗法是目前早期治疗缺血性脑卒中的主要方法,其时间窗及适用范围较窄[5]。

只有5%的患者受益于重组组织型纤溶酶原激活剂治疗[6]。

通过阻断导致神经元死亡的分子通路或增强神经元的存活和再生,已经开发出多种治疗脑卒中的药物,但除了重组组织型纤溶酶原激活剂外,其他很少在临床试验中成功[7]。

由于现有很多药物存在溶解度低、半衰期短等药动学缺陷,在血脑屏障的存在下,药物很难到达脑组织损伤的部位,影响了药效的发挥[8]。

新近发展的纳米技术可帮助药物显著扩大其药动学的局限性,在脑血管疾病的治疗中具有潜在的应用价值。

纳米材料的粒径小,比表面积大(每克物质中所有颗粒总外表面之和),并且能对其进行各种靶向修饰,改变其脂溶性等特性,适合作为脑部的载药系统,不仅能够装载疏水性或亲水性药物以及基因药物,还能成为影像学探针[9]。

大脑局部缺血或损伤都会激活成年哺乳动物脑内的内源性神经发生[10]。

利用纳米纤维作为神经细胞生长的支架和营造神经细胞生长分化的微环境,成为神经修复的热点。

PLGA薄膜与生物蛋白胶联合应用对兔椎板切除术后硬膜外及神经根粘连的预防作用研究

PLGA薄膜与生物蛋白胶联合应用对兔椎板切除术后硬膜外及神经根粘连的预防作用研究

PLGA薄膜与生物蛋白胶联合应用对兔椎板切除术后硬膜外及神经根粘连的预防作用研究王罡;陈勇;王国华;刘大凯【期刊名称】《临床和实验医学杂志》【年(卷),期】2017(016)002【摘要】目的探究聚乳酸-羟基乙酸共聚物( PLGA)薄膜与生物蛋白胶联合应用对椎板切除术后硬膜外及神经根粘连的预防作用。

方法应用随机数字表法将160只新西兰雄兔随机分为薄膜组、生物蛋白胶组、联合组、明胶组以及对照组,每组32只。

薄膜组在硬膜裸露区覆盖PLGA薄膜;生物蛋白胶组在硬膜裸露区喷洒生物蛋白胶1 ml;联合组先在硬膜裸露区喷洒1 ml生物蛋白胶,待其充分吸收后,覆盖PLGA薄膜;明胶组在硬膜裸露区覆盖明胶海绵处理;对照组在相应部位的硬膜裸露区喷洒生理盐水。

分析5组术后疤痕增生个数、切口愈合时间、发生炎症反应个数之间的差异。

观察比较5组术后粘连程度以及粘连分级。

在术后第2、8周比较各组的成纤维细胞个数以及神经根活动范围。

结果5组在疤痕增生个数(χ2=2.06,P =0.84)、切口愈合时间( F =0.91,P =0.46)、发生炎症反应个数(χ2=1.10, P =0.95)之间无显著差异。

联合组的粘连程度较其他4组低(χ2=158.00,P ﹤0.01),硬膜外粘连分级等级低(χ2=160.00,P ﹤0.01)。

术后第2、8周情况:联合组的成纤维细胞个数明显低于其余4组( F =23.53,P ﹤0.01;F =142.20,P ﹤0.01);联合组的神经根活动范围均高于其余4组( F =70.90,P ﹤0.01;F =152.80,P ﹤0.01)。

结论PLGA薄膜与生物蛋白胶联合应用对椎板切除术后硬膜外及神经根粘连具有预防作用,且不影响术后疤痕增生以及切口愈合。

%Objective To explore the preventive effect of the combinedadhesion. Methods A total of 160 New Zealand male rabbits were randomly divided into film group,fibrin glue group,combinedgroup,gelatin group and control group,32 cases in each group. The film group were covered with PLGA films in the bare dura mater;the fibrin glue group was sprayed 1 ml of fibrin glue in the bare dura mater;in the combined group:1 ml of fibrin glue was sprayed in the dura mater;gelatin group was covered with gelatin sponge in the exposed area of dura mater;the control group was sprayed with normal saline in the exposed area of dura mater. The postoperative scar hyperplasia number,wound healing time and inflammation of the number was observed in 5 groups. The adhe-sion degree and adhesion grade were observed and compared in five groups. The number of fibroblasts and the range of nerve root activity were com-pared at the 2nd and 8th week after operation. Results The number o f scar hyperplasia(χ2 =2. 06,P =0. 84),wound healing time( F =0. 91, P =0. 46),the number of inflammatory reaction(χ2 =1. 10,P =0. 95)had no significant difference among the five groups. The adhesion degree of the combination group was lower than that of the other 4 groups(χ2 =158. 00,P ﹤0. 01),and epidural adhesion grade level was lower(χ2 =160. 00,P ﹤0. 01). The fibroblast number in 2 and 8 weeks of combined group were significantly lower than that of the other four groups( F =23. 53,P ﹤0. 01;F =142. 20,P ﹤0. 01). The nerve root activity in the combination group in 2 and 8 weeks were higher than that in the other four groups( F =70. 90,P ﹤0. 01;F =152. 80,P ﹤0. 01). Conclusion Thenerve root adhesion has a preventive effect. And it dose not affect the postoperative wound healing and scar hyperplasia.【总页数】4页(P137-140)【作者】王罡;陈勇;王国华;刘大凯【作者单位】大连市第二人民医院骨科辽宁大连 116011;大连市第二人民医院骨科辽宁大连 116011;大连市第二人民医院骨科辽宁大连 116011;大连市第二人民医院骨科辽宁大连 116011【正文语种】中文【相关文献】1.丹参透明质酸凝胶混合物预防兔椎板切除术后硬膜外粘连的安全性研究 [J], 张晨阳;张岩;梁文锴2.丹参透明质酸凝胶混合物预防兔椎板切除术后硬膜外粘连的安全性研究 [J], 张晨阳,;张岩;梁文锴;3.丹参透明质酸凝胶混合物预防兔椎板切除术后硬膜外粘连的实验研究 [J], 张晨阳;张岩;梁文锴4.丹参透明质酸凝胶混合物预防兔椎板切除术后硬膜外粘连的实验研究 [J], 张晨阳;张岩;梁文锴;5.聚乳酸薄膜预防椎板切除术后硬膜外瘢痕粘连的临床应用 [J], 余化龙;熊敏;宋跃明;柯红云;陈森因版权原因,仅展示原文概要,查看原文内容请购买。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精选ppt
17
复乳溶剂蒸发法
❖是制备PLGA载体常用的一种方法。
❖将DNA溶于内水相,PLGA 溶于有 机溶剂作为中间相,聚乙烯醇 ( PVA )等乳化剂作为外水相,通过高速均 质或超声乳化等方式得到 PLGA 乳 状液,室温搅拌蒸发有机溶剂得到 PLGA微/纳米颗粒。
精选ppt
18
复乳溶剂蒸发法
精选ppt
10
其结合方式主要有两种:
❖ 另一种方式是将pDNA吸附在 PLGA表面, 即PLGA 载体制备完成后,在温和条件下与 pDNA反应完成。 该方式反应条件温和,制备过程对 pDNA 影响较小,但是细胞转染时外部环境如pH等 对pDNA结构影响较大。
精选ppt
11
PLGA微 / 纳米载体在介导 基因传递方面也具有一定的优 势。
适当分子量的 PLGA可提高 pDNA释放速度和自身降解速度,更 适合用作基因载体。
精选ppt
8
PLGA微/纳米载体与 pDNA 的结合方式也会影响 pDNA 的 包封率和释放速度。
精选ppt
9
其结合方式主要有两种:
❖ 一种是将 DNA包裹于PLGA微/纳米颗粒 内部。 这种方式能避免 pDNA 在细胞转染时受 外部环境的影响,更好保护pDNA的结构完整 性,但是其释放速度慢,pDNA易受制备过程 中有机溶剂和机械力破坏;
精选ppt
24
缺点:
❖ 喷雾干燥法虽然可以显著提高pDNA 包封率, 但是在干燥过程中容易导致pDNA 失活,基 因表达强度不高。
精选ppt
25
PLGA微/纳米基因载体的
表面修饰
Hale Waihona Puke 精选ppt26表面修饰方式:
❖PLGA表面阳离子修饰 ❖PLGA表面亲水性修饰 ❖PLGA表面靶向性修饰
精选ppt
27
精选ppt
12
❖ 微/纳米颗粒的特殊结构和表面 电荷具有较高的基因转移效率,可 介导外源基因在细胞染色体DNA中 的整合,从而获得基因长期稳定的 表达。
精选ppt
13
微/纳米载体可以保护转导基因 ,减少机体血浆或组织细胞中各种 补体以及各种酶的破坏有利于目的 基因在转导进入靶细胞后更好更稳 定地发挥作用。
PLGA微粒/纳米粒 基因载体的研究进展
药学学报
精选ppt
1
基因治疗是生物治疗的重要组 成部分,该疗法在治疗多种人类重 大疾病如遗传病、恶性肿瘤、代谢 性疾病以及感染性疾病 (如AIDS、 乙型肝炎)等方面具有良好的应用前 景,并将逐渐成为生物医学领域的 研究重点。
精选ppt
2
聚乳酸--羟基乙酸共聚物
特点 制备方法 表面修饰方式 在基因治疗方面的研究进展
精选ppt
5
特点
精选ppt
6
PLGA由乳酸(LA)和羟基乙酸 (GA)两种单体聚合而成。
通过改变聚合物单体比例和分 子量可以调控共聚物在体内的降 解速度、DNA 包封率以及基因体 外释放速度。
精选ppt
7
目前,LA和GA常用比例为 75: 25和50:50。
精选ppt
21
自乳化溶剂扩散法
❖ 此种方法制备的颗粒粒径分布较窄,约 在200~300 nm。如果采用自乳化有机 溶剂扩散法制备PLGA-PEI纳米粒,粒 径可达100 nm左右,可成功用于小分子 干扰基因siRNA的传递。
精选ppt
22
缺点:
❖ 由于亲水性有机溶剂扩散快,pDNA容 易从内水相中泄漏,导致pDNA包封率 不高。 pDNA 在有机溶剂作用下结构易发生变 化甚至降解,这将严重影响pDNA的活 性,不利于后续基因表达。
❖ 该法可以通过调节搅拌速度和乳化 剂浓度来改变粒径大小,当搅拌速度和 PVA浓度达到一定时,粒径可控制在 300nm以下,pDNA包封率可达90%以 上。
精选ppt
19
缺点:
❖ 尽管复乳溶剂蒸发法对pDNA 的包封率较高, 但水油两相之间的界面张力和制备过程中施 加的机械外力会引起超螺旋pDNA 的开环或 降解,且由于pDNA 降解产物的活性和转染 效率远不及超螺旋pDNA,这在很大程度上限 制了复乳溶剂蒸发法的应用。
❖常用的阳离子聚合物主要有十六烷 基三甲基溴化铵(CATB) 、聚赖氨酸、 CHS和聚醚酰亚胺(PEI) 等,其中 CHS和PEI都带有氨基基团或类似基 团,可质子化带正电荷,从而有效 的吸附带负电的pDNA。
精选ppt
23
喷雾干燥法
❖ PLGA 固化成微/纳米粒后,为了保持pDNA结构
完整和生物活性,一般通过冷冻干燥法收集颗粒。
但这种方法容易引起颗粒的团聚,粒径分布不均匀, 不利于细胞转染。
❖ 喷雾干燥法将PLGA微/纳米乳状液用雾化器喷
雾,同时用向上流动的氮气干燥,这种方法不仅可 避免颗粒在冻干过程中发生聚集,而且可以有效去 除残留有机溶剂。
精选ppt
20
自乳化溶剂扩散法
❖ 避免了复乳溶剂蒸发法中使用的强机械力, 保证了pDNA结构的完整性。
❖ 该法将PLGA溶于两种有机溶剂中,一种疏水 性较强(二氯甲烷),一种亲水性较强(丙酮、 乙醇等),将有机相逐滴加入水相中,亲水性 有机溶剂迅速扩散到水相中形成小液滴,减 少了界面张力,同时通过搅拌去除有机溶剂 形成PLGA 微/纳米粒。
表面阳离子修饰
精选ppt
28
表面阳离子修饰:
❖ PLGA对pDNA的吸附效率较低,细胞转 染率相应较低,通常采用阳离子化合物 对PLGA 表面进行阳离子修饰,通过静 电作用吸附更多的pDNA,同时由于 PLGA 表面带正电荷,增强了细胞黏附 和吸收,转染率得到提高。
精选ppt
29
表面阳离子修饰:
[poly(1actic-co-glycolicacid ),PLGA] 是一类可降解的功能高分子有机聚合
物,通过美国FDA认证,具有良好的生物 相容性、无毒、无刺激性、无免疫原性和 药物缓释等特性,广泛应用于基因载体。 PLGA一般制成微粒或纳米粒 ( 简称微/纳 米)。
精选ppt
3
PLGA微/纳米基因载体的:
精选ppt
14
PLGA微/纳米基 因载体制备方法
精选ppt
15
制备方法
❖ 复乳溶剂蒸发法 ❖ 自乳化溶剂扩散法 ❖ 喷雾干燥法 ❖ CO2超临界流体乳液萃取法 ❖ 溶剂置换法 ❖ 纳米粒沉淀法
精选ppt
16
❖ 不同的制备方法影响载体粒径大 小和 pDNA包封率,不同粒径大小 的 PLGA微/纳米基因载体又有不同 的用途。
相关文档
最新文档