运筹学 第三章 0-1规划

合集下载

运筹学-0-1规划指派问题PPT课件

运筹学-0-1规划指派问题PPT课件
在0-1规划问题中,遗传算法通过模拟生物进化过程中的基因突变、交叉 和选择等过程来寻找最优解。算法从一个初始种群出发,通过不断迭代 进化,最终找到最优解。
遗传算法的优点是能够处理大规模、复杂的优化问题,且具有较强的鲁 棒性和全局搜索能力。缺点是算法实现较为复杂,需要较高的计算资源 和时间,且在某些情况下可能会陷入局部最优解。
指派问题通常具有整数约束和 0-1约束,即每个工人只能被分 配一项任务,且每个任务只能 由一个工人完成。
指派问题的解通常具有最优子 结构和局部最优解的特性。
变量定义
• $x{ij}$:如果第i个工人被分配第j项任务,则$x{ij}=1$; 否则$x_{ij}=0$。
目标函数
• $min \sum{i=1}^{n} \sum{ j=1}^{n} c{ij} x{ij}$: 最小化总成本。
04
指派问题在0-1规划中的应用
指派问题的定义
• 指派问题是一种组合优化问题,旨在将一组任务分配给一组工 人,使得总成本最小化。每个工人只能完成一项任务,每项任 务只能由一个工人完成。目标是找到一种最优的分配方式,使 得总成本最低。
指派问题的特点
指派问题具有NP难解的特点, 即没有已知的多项式时间算法 来解决该问题。
04
总结词:整数规划
பைடு நூலகம்
案例三:旅行商问题
总结词:旅行商问题
总结词:图论
详细描述:旅行商问题是一个经典的组合优 化问题,涉及到寻找一条最短路径,使得一 个旅行商能够访问一系列城市并返回出发城 市,同时最小化总旅行距离。
详细描述:图论是研究图形和图形结构的数 学分支,提供了解决旅行商问题和其他优化 问题的理论基础。
在0-1规划问题中,分支定界法将问题分解为多个子问题,每个子问题对应一种指派 方案。算法通过不断排除不可能的解来缩小搜索范围,最终找到最优解。

运筹学 第3章 线性规划问题的计算机求解

运筹学  第3章   线性规划问题的计算机求解
• 百分之一百法则
• 50
74
• 100
78
• 允许增加量是指该系数在上限范围内的 最大增加量。
• 允许减少量是指该系数在下限范围内的 最大减少量。
c • x1系数的上限为100,故 1的允许增加量为

上限-现在值=100-50=50
x c • 而 2的下限为50,故 2的允许减少量为

现在值-下限=100-50=50
管理运筹学
朱晓辉 管理科学与工程
第三章 线性规划问题的计算机求解
• 3.1 “管理运筹学软件的操作方法
3.2 “管理运筹学”软件的输出信息分析
• 相差值提供的数值表示相应的决策变量的目 标系数需要改进的数量,使得该决策变量有可能 取正数值,当决策变量已取正数值时相差值为零。
• 在目标函数系数范围一栏中,所谓的上限与 下限是指目标函数的决策变量的系数在此范围内 变化时,其线性规划的最优解不变。
c • 其中bj的允许增加(减少)百分比的定义同 i
的允许增加(减少)百分比一样,为bj的增加量 (减少量)除以bj的允许增加量(减少量)所得
到的值。
• 在使用百分之一百法则进行灵敏度分析时,要 注意以下三点:
• (1)当允许增加量(减少量)为无穷大时,则 对于任一个增加量(减少量),其允许增加(减 少)百分比都看成零。
• 在常数项数范围一栏中,所谓上限与下限是指 当约束条件中的常数项在此范围内变化时,与其 对应的约束条件的对偶价格不变。
• 以上讨论计算机输出的关于目标函数系 数及约束条件中常数项的灵敏度分析都是 基于这样一个重要假设:当一个系数发生 变化时,其他系数保持不变。
• 两个或更多的系数发生变化时,怎么来 进行灵敏度分析?

运筹学知识点总结

运筹学知识点总结

运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。

第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。

线性规划的三要素:变量或决策变量、目标函数、约束条件。

目标函数:是变量的线性函数。

约束条件:变量的线性等式或不等式。

可行解:满足所有约束条件的解称为该线性规划的可行解。

可行域:可行解的集合称为可行域。

最优解:使得目标函数值最大的可行解称为该线性规划的最优解。

唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。

凸集:要求集合中任意两点的连线段落在这个集合中。

等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。

松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。

剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。

2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。

4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。

5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。

当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。

第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。

2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。

4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。

北京科技大学运筹学课件第3章

北京科技大学运筹学课件第3章

x2
D
x1
(39) 的最优表为
5 2 x2 74 x1 3 4
x1 x2 u1
0 0 0 12 1 34
u2
1 2 1 4 1 4
A( 3 , 7 ) 最优解: 4 4
不是整数解
x1
3 7 10 A( , ) Z 4 4 4
C ( 1 ,1 )
S
0 1
最优整数解
x1
3 1 1 u1 u 2 4 4 4 7 3 1 1 0 14 x 2 u1 u 2 4 4 4 (3 在( 2 9) 9)的约束方程中 , x1 , x 2的系数是整数 , 右侧常数项也 是整数, 若 x1 , x 2 取整数 , 则 u1 , u2也一定是整数 .
max z x1 x 2
s .t .
x 2 2或x 2 3
1
2
3
x1
61 14
x1 2 x2 3
9 51 x2 14 14 (3 2) 1 2 x1 x 2 3 x1
max z x1 x 2
s .t .
3 10 29 A( , ) Z 2 3 6 7 23 10 41 C ( 1 , ) B ( 2 , ) Z Z 3 9 3 9 33 D( ,2) 14 61
则((3-2) 2 2)的最优解中, x2应满足 : x2 2或x2 3
( 2 x 2 3不符合整数条件 )
9 51 x1 x2 14 14 (3 4) 1 2 x1 x 2 3
max z x1 x 2
x1 2 0 x2 2
9 51 x2 S5 空集 14 14 (35) 1 2 x1 x 2 3 x1

运筹学 第三章

运筹学 第三章
st.

运用
8
8
现有一批每根长度为L的圆钢,需要截取n种不同长度的零件毛坯,长度为a 的毛坯需要
有m (1,2,….n)段。为了方便,每根圆钢只截取一种长度的毛坯。应当怎样截取,才能使动用的圆钢数目最少?
设使用 根L米长的圆钢来截取 米长的毛坯(1,2,……n)。
设s 为每根L米长的圆钢用来截取 米长毛坯时可以得到的最多段数。
max z=7x +9 x
st.
最优解z=55, x =4, x =3;
用割平面法求解下列整数规划问题
max z=4x +5 x
st.
最优解z=13, x =2, x =1;
用割平面法求解下列整数规划问题
max z=4x +6 x +2 x
st.
最优解z=26, x =2, x =1,x =6;
用割平面法求解下列整数规划问题
设在A 处建住宅x 幢(j=1,2…..n)。
数学模型为
11180302
某公司今后三年内有五项工程可以考虑投资

求最优解和投资的最大收益
最优解X=(1,1,1,0,1),Z=110万元。
用分枝定界法求解下列整数规划问题
max z=3x +2 x
st.
最优解z=14, x =4, x =1;
用分枝定界法求解下列整数规划问题
-1/2
1
0
1/2
5/2
z
x1
x2
x3
x4
RHS
z
1
0
0
3/35
1/5
89/5
x1
0
1
0
1/35
-3/5

运筹学 第三章 0-1规划

运筹学 第三章 0-1规划

例2 求解0-1规划
编号
max z 3 x1 2 x2 5 x3
s.t. x1 2 x2 x3 2

x1 4 x2 x3 2 x1 2 x2 3
② ③
4x2 x3 6

xi 0 or 1, i 1,2,3
算法过程:1. 先找出一个可行解,比如(1,0,0).相应
cnn
称为指派问题 的效益矩阵。

定理:将指派问题的效益矩阵的行(列)分别减去该行(列) 的最小元素,得到的新指派问题和原问题的最优解相同. 意义:根据定理,对指派问题可以化简,使 最优值呢? 得其效益矩阵中每一行至少有一个0元素.
这种简化对于求解有何帮助?
任务 A
B
C
D
人员

2
15
13
4

10
在海淀区,由A6,A7中至少选一个. 假设选用Ai点,设备投资估计为bi元,每年获利估计ci元, 但是总投资额不超过B元。问应该选择哪几个点可以使年 利润最大?
➢分析问题
如图,如何确定选择哪些点?有多少种可能?
试一试
枚举 法
A7
A6
海淀区
共有多少情形?
A5 A4
西城区 专门的解法研究 ——隐枚举法.
安排n个人完成n项工作,使总效率最高的问题称为指 派问题或者分派问题(Assignment problem).
例 甲、乙、丙、丁四人去完成A、B、C、D四项工作. 要求每个人只能完成一项工作,每个工作只能一人完成,
他们所需费用如下表,应如何安排工作,使所需总费用最
少?
任务 A
B
C
D
人员

2
10

运筹学课件第四节0—1型整数规划

运筹学课件第四节0—1型整数规划
T (1,1,...,1) T , 选择( A1,...An) ( x1 ,...x n ) T : T (1,1,...,0 ) T , 选择( A1,...A n)
例:固定费用问题 有三种产品被用于生产三种产品,资源量、产品单件费用、 资源消耗量以及生产产品的固定费用。要求制定一个生产计 划,总收益最大。
,先加工某种产品 0 yj ( j 1 ,2 ,3 ,4 ) 1 ,先加工另外产品 机床1:x11+a11≤x21+My1 ; x21+a21≤x11+M(1-y1) 机床2:x22+a22≤x32+My2 ; x32+a32≤x22+M(1-y2) 机床3:x13+a13≤x33 +My3 ; x33+a33≤x13+M(1-y3) 机床4:x14+a14≤x24 +My4 ; x24+a24≤x14+M(1-y4) 当y1=0,表示机床1先加工产品1,后加工产品2;当y1=1,表示机床1先 加工产品2,后加工产品1.
4 求解: 7 C 6 6 6
8
7
9 17 9 12 7 14 9 12
15 12 14 10 8 7 6 10 10 6
第一步 造0 各行各列减其最小元素
0 0 0 0 0
4 3 2 10 3 1 3 6 8 6
11 7 2 0 4
第四节
0—1型整数规划
一、0-1变量及其应用 某些特殊问题,只做是非选择,故变量设置简化为0或1, 1代表选择,0代表不选择。
选取某个特定方案 1, 当决策选取方案 x 0 , 当决策不选取方案 问题含有较多的要素, 每项要素有 2 种选择,用 0 1变量描述。 有限要素 E1, E 2 ,...E n , 每项 E j 有两种选择 A j , A j 1, E j 选择 A j xj 0 , E j 选择 A j

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型

《运筹学》教案-目标规划数学模型第一章:目标规划概述1.1 目标规划的定义与意义1.2 目标规划与其他规划方法的区别1.3 目标规划的应用领域1.4 目标规划的发展历程第二章:目标规划的基本原理2.1 目标规划的基本假设2.2 目标规划的数学模型2.3 目标规划的求解方法2.4 目标规划的评估与决策第三章:目标规划的数学模型3.1 单一目标规划模型3.2 多目标规划模型3.3 带约束的目标规划模型3.4 动态目标规划模型第四章:目标规划的求解方法4.1 线性规划求解方法4.2 非线性规划求解方法4.3 整数规划求解方法4.4 遗传算法求解方法第五章:目标规划的应用案例5.1 生产计划目标规划案例5.2 人力资源规划目标规划案例5.3 投资组合目标规划案例5.4 物流配送目标规划案例第六章:目标规划的高级应用6.1 目标规划在供应链管理中的应用6.2 目标规划在项目管理中的应用6.3 目标规划在金融管理中的应用6.4 目标规划在能源管理中的应用第七章:目标规划的软件工具7.1 目标规划软件工具的介绍7.2 常用目标规划软件工具的操作与应用7.3 目标规划软件工具的选择与评估7.4 目标规划软件工具的发展趋势第八章:目标规划在实际问题中的应用8.1 目标规划在制造业中的应用案例8.2 目标规划在服务业中的应用案例8.3 目标规划在政府决策中的应用案例8.4 目标规划在其他领域的应用案例第九章:目标规划的局限性与挑战9.1 目标规划的局限性分析9.2 目标规划在实际应用中遇到的问题9.3 目标规划的发展趋势与展望9.4 目标规划的未来研究方向10.1 目标规划的意义与价值10.2 目标规划在国内外的发展现状10.3 目标规划在未来的发展方向10.4 对运筹学领域的发展展望重点和难点解析重点环节一:目标规划的数学模型补充和说明:在讲解目标规划的数学模型时,重点关注单一目标规划模型和多目标规划模型的构建。

运筹学——第3章_线性规划问题的计算机求解

运筹学——第3章_线性规划问题的计算机求解

变量 下限 当前值 上限
x1
0
50
100
x2
50
100 无上限
从上面可知目标函数中X1的系数的上限为100,故C1
允许增加量为: 上限-现在值=100-50=50;
而X2的下限为50,故C2的允许减少量为: 现在值-下限=100-50=50。
定义Ci 的允许增加(减少)百分比为:Ci 的增加量 (减少量)除以Ci 的允许增加量(允许减少量)的值。
在上题中C1 的允许增加百分比与C2 的允许减 少百分比之和为92%不超过100%,所以当每件产 品Ⅰ利润从50元增加到74元,每件产品Ⅱ利润从 100元减少到78元时,此线性规划最优解仍然为Ⅰ 产品生产50件, Ⅱ产品生产250件(即x1= 50, x2=250),此时有最大利润为:
74× 50+78× 250=3700+19500=23200(元)。
为50元,即增加了一个台时数就可使总利润增加50元;
原料A还有50千克没有使用,原料A的对偶价格当然为零,
即增加1千克A原料不会使总利润有所增加;原料B全部使
用完,原料B的对偶价格为50元,即增加一千克原料B就
可使总利润增加50元。
在目标函数系数范围一栏中,所谓的当前值是指在目标函数 中决策变量的当前系数值。如x1的系数值为50,x2的系数值为100。 所谓的上限与下限值是指目标函数的决策变量的系数(其它决策 变量的系数固定在当前值)在此范围内变化时,其线性规划的最 优解不变。例如当c1= 80时,因为0≤80≤100,在x1的系数变化范 围内,所以其最优解不变(此时要固定c2=100),也即当x1=50, x2=250时,有最大利润。当然由于产品Ⅰ的单位利润由50变为80 了,其最大利润也增加了(最优值变了),

运筹学-第三章-整数规划

运筹学-第三章-整数规划

于是,对原问题增加两个新约束条件,将原问题分为两个 子问题,即有
max z 40x1 90x2
max z 40x1 90x2
9x1 7x2 56
s.t
7 x1
20 x2
70
x1 4
x1, x2 0
(LP1)
9x1 7x2 56

s.t
7
x1
20
x2
70
(LP2)
x1 5
表 3.1
货物 体积(米 3/箱) 重量(百公斤/箱) 利润(百元/箱)

5
2
20

4
5
10
托运限制 24 米 3
13 百公斤
解: 设x1,x2 分别为甲、乙两种货物的托运箱数,则数 学模型可以表示为:
max z 20x1 10x2
5x1 4x2 24 2x1 5x2 13 x1, x2 0, x1, x2整数
其中,目标函数表示追求最大的卫星实验价值;第1,2个约
束条件表示体积和重量的限制;第3-5个约束条件表示特定的卫
星装载要求,该问题的决策变量是0-1整数变量。
3.2.3隐枚举法 从上面两个例子可以看出,此类型问题是整数规划中的特
殊情形,其中决策变量 xi 的取值只能为0或1,此时变量 xi 称 为0-1变量,这类问题被称为0-1整数规划。对于 xi 的取值的 0-1约束,可以转化成下述整数约束条件:xi 1, xi 0, xi Z
目前对于整数规划问题的求解主要有两种方法:分支 定解法和割平面法。本章仅介绍分枝定界法,该方法在上 世纪60年代由Land Doig和Dakin等人提出,其具有灵活 且便于计算机求解的优点,所以现在已成为解决整数规划 问题的重要方法。下面通过例子说明分支定界方法的算法 思想和步骤。

运筹学课件第四节0-1型整数规划

运筹学课件第四节0-1型整数规划
运筹学课件第四节0-1型整数 规划
目录
CONTENTS
• 0-1型整数规划概述 • 0-1型整数规划的数学模型 • 0-1型整数规划的求解算法 • 0-1型整数规划的案例分析 • 0-1型整数规划的软件实现
01 0-1型整数规划概述
CHAPTER
定义与特点
定义
0-1型整数规划是一种特殊的整数规 划,其中决策变量只能取0或1。
解决方案通常采用动态规划或混合整数线性规 划方法,通过迭代和优化算法来找到最优解。
05 0-1型整数规划的软件实现
CHAPTER
Excel求解工具
适用范围
适用于简单的0-1型整数规划问题。
优点
操作简单,易学易用,适合初学者。
使用方法
利用Excel的Solver插件,设置目标函数、 约束条件和决策变量,进行求解。
其他约束
除了资源和需求约束外,还可能 存在其他类型的约束,如数量约 束、时间约束等,这些约束条件 都对决策变量的取值范围进行了 限制。
决策变量
离散变量 0-1型整数规划中的决策变量通常 是离散的,只能取0或1两个值。 这些决策变量代表了不同的策略 或选择。
最优解 最优解是指在所有可行解中使目 标函数达到最优值的决策变量的 取值组合。
缺点
对于大规模问题求解能力有限,可能存在精 度问题。
Python求解库
适用范围
适用于各种规模的0-1型整数规 划问题。
使用方法
利用Python的优化库,如PuLP 或CVXPY,编写目标函数和约束 条件,进行求解。
优点
功能强大,可处理大规模问题 ,精度高。
缺点
需要一定的编程基础,学习成 本较高。
MATLAB求解工具

运筹学-0-1规划 指派问题

运筹学-0-1规划 指派问题
Max { 6 , 8 } = 8。于是,本0-1规划的
最优值ymax= 8
最优解(x1,x2,x3,x4)=(0,1,0,1)。
这表明,该同学还要带诱饵和食物。
从提高隐枚举法的效率着想,当求解最 大(小)化0-1规划时,若遇到y 值大(小) 于(0)的右边,应随即让(0)的右边改取
这个y 值。求解0-1规划,不要墨守成规,应

( x1, x2 , x3 , x4 ) (0, 0, 0, 0 ) ( 0, 0, 0, 1 ) ( 0, 0 ,1, 0 ) ( 0, 0, 1, 1 ) ( 0, 1, 0, 0 ) ( 0, 1, 0, 1 ) ( 0, 1, 1, 0 ) ( 0, 1, 1, 1 ) ( 1, 0, 0, 0 ) ( 1, 0, 0, 1 ) ( 1, 0, 1, 0 ) ( 1, 0, 1, 1 ) ( 1, 1, 0, 0 ) ( 1, 1, 0, 1 ) ( 1, 1, 1, 0 ) ( 1, 1, 1, 1 )
大于bj的最小整数),因而得到两枝新的线
性规划,然后计算每枝的最优解和最优值。
第三步
定界
具体做法为:进行定界(由各枝的最 优值中选最大值),找出界枝。若界枝的 最优解就是原整数规划的最优解,则计算
过程便告结束;否则,回到第二步。
返回
第四节
0-1 规 划
一、0-1 规划的概念 二、隐枚举法
一、0-1 规划的概念
最小化指派问题的求解步骤如下:
第一步:在效率矩阵[bij]中,让每行(列)元素减去该
行(列)元素的最小值,从而得到矩阵[ Cij ]。

37.3 32.9 bi j 33.8 37.0
每行每 列都有 零

运筹学课件 0-1 整数规划

运筹学课件 0-1 整数规划

§4 0-1 整数规划
决策变量仅取为0或1的整数规划问题。
xi 是0-1变量的表示: xi = 0 或1
或 xi 0,xi 1,xi Z
4.1 1.
典型的0-1整数规划问题 相互排斥的计划
例4.某公司拟在市东、西、南三区建立门市部。拟议 中有7个位置(点)Ai (i =1,2,…,7)可供选择。规定 在东区,由A1,A2,A3三个点中至多选两个; 在西区,由A4,A5两个点中至少选一个; 在南区,由A6,A7两个店中至少选一个。 如选用Ai点,设备投资估计为bi 元,每年可获利润 估计为ci 元,但投资总额不能超过B元。问选择哪几个 点可使年利润最大?
5
点 (x1,x2,x3) (0,1,0) (0,1,1) 3 8
条 ① 0 ② 2
件 ③ 1 ④ 1
满足条件?
z值
8
再将过滤条件改进为 3x1-2x2 + 5x3 8
点 (x1,x2,x3) (1,0,0) (1,0,1) (1,1,0) (1,1,1) 2 3 1 6 条 ① ② 件 ③ ④ 满足条件? z值
解题时先引入0-1变量xi (i =1,2,…,7)

1 xj 0
选择在A i建店 否则
收益最大
于是问题可列成:
Max z ci xi
i 1 7
投资总额不超过B
A4,A5两个点中至 少选一个
A1,A2,A3三个点中至多选两个 bi xi B i 1 x1 x2 x3 2 A6,A7两个店中至少 x x 1 4 5 选一个 x x 1 7 6 xi 0或1( i 1 , ,7 )
y1 + y2 + … + ym = m –1, yi = 0 或 1 (i=1,…,m)

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

《运筹学》 第三章线性规划对偶理论与灵敏度分析习题及 答案

第三章线性规划对偶理论与灵敏度分析习题 一、思考题1.对偶问题和对偶变量的经济意义是什么?2.简述对偶单纯形法的计算步骤。

它与单纯形法的异同之处是什么?3.什么是资源的影子价格?它和相应的市场价格之间有什么区别?4.如何根据原问题和对偶问题之间的对应关系,找出两个问题变量之间、解及检 验数之间的关系?5.利用对偶单纯形法计算时,如何判断原问题有最优解或无可行解?6.在线性规划的最优单纯形表中,松弛变量(或剩余变量)0>+k n x ,其经济意 义是什么?7.在线性规划的最优单纯形表中,松弛变量k n x +的检验数0>+kn σ(标准形为求最小值),其经济意义是什么?8.将i j ji bc a ,,的变化直接反映到最优单纯形表中,表中原问题和对偶问题的解 将会出现什么变化?有多少种不同情况?如何去处理? 二、判断下列说法是否正确1.任何线性规划问题都存在且有唯一的对偶问题。

2.对偶问题的对偶问题一定是原问题。

3.若线性规划的原问题和其对偶问题都有最优解,则最优解一定相等。

4.对于线性规划的原问题和其对偶问题,若其中一个有最优解,另一个也一定 有最优解。

5.若线性规划的原问题有无穷多个最优解时,其对偶问题也有无穷多个最优解。

6.已知在线性规划的对偶问题的最优解中,对偶变量0>*i y ,说明在最优生产计 划中,第i 种资源已经完全用尽。

7.已知在线性规划的对偶问题的最优解中,对偶变量0=*i y ,说明在最优生产计 划中,第i 种资源一定还有剩余。

8.对于i j ji bc a ,,来说,每一个都有有限的变化范围,当其改变超出了这个范围 之后,线性规划的最优解就会发生变化。

9.若某种资源的影子价格为u ,则在其它资源数量不变的情况下,该资源增加k 个单位,相应的目标函数值增加 u k 。

10.应用对偶单纯形法计算时,若单纯形表中某一基变量0<i x ,且i x 所在行的 所有元素都大于或等于零,则其对偶问题具有无界解。

管理运筹学 第三章 整数线性规划

管理运筹学 第三章 整数线性规划

注意在分枝定界求解过程中,为了最优整数解,我们要不断 缩小其最优目标函数值上界与下界的距离,故通过分枝要使得其 上界越来越小,而其下界则越来越大。 在例题中,通过对上下界的修改,上下界距离有所缩小,但 并不相等,所以还要继续分枝。
(5)在线性规划2和线性规划3中选择一个上界最大的线性规划, 即 线 性 规 划 3 , 进 行 分 枝 。 线 性 规 划 3 的 最 优 解 为 x1=3 , x2=2.86,把x2分成x2≤2和x2 ≥3两种情况,这样线性规划3分 解为线性规划4和线性规划5,如下: 线性规划4: s.t. 线性规划5: s.t.
分枝定界法是先求解整数规划的线性规划问题。如果其最优 解不符合整数条件,则求出整数规划的上下界,用增加约束条件 的办法,把相应的线性规划的可行域分成子区域(称为分枝), 再求解这些子区域上的线性规划问题,不断缩小整数规划的上下 界的距离,最后得整数规划的最优解。
“ 分枝”为整数规划最优解的出现创造了条件, 而“定界”则提高了搜索的效率。
(6)进一步修改整数规划最优目标函数值z*的上下界。 由于线性规划 1 分枝为线性规划 2 和线性规划 3 ,线性规 划3又分枝为线性规划4和5,也就是线性规划1分枝为线性规 划 2、 4、 5,故从线性规划 2, 4,5中进一步修改整数规划 最优目标函数值的上下界。 因为线性规划2的最优目标函数值为13.90,线性规划4 的最优目标函数值为 14,而线性规划 5无可行解,可得整数 规划最优目标函数值的上界可修改为14,即 z =14, 取线性 规划2,4,5中的整数可行解的目标函数值的最大值。 又因为在线性规划2中可知存在整数规划可行解x1=2, x2=3,其目标函数值为13,在线性规划4中可知存在整数规 划可行解 x1=4 , x2=2 ,其目标函数值为 14 ,而线性规划 5 无可行解,可知整数规划最优目标函数值的下界可修改为 14, z=14,也取线性规划2,4,5中的整数可行解的目标函数值 的最大值。

运筹学 0-1整数规划

运筹学  0-1整数规划

n ∑ a ij x j < = b i + M i y i j =1 p ∑1 y i = p - q i=
三、固定成本问题
某公司制造小、 大三种尺寸的容器,所需资源为金属板、 例4.8 某公司制造小、中、大三种尺寸的容器,所需资源为金属板、劳 动力和机器设备,制造一个容器所需的各种资源的数量如下表所示: 动力和机器设备,制造一个容器所需的各种资源的数量如下表所示: 不考虑固定费用, 大号容器每售出一个其利润分别为4万元 万元、 不考虑固定费用,小、中、大号容器每售出一个其利润分别为 万元、 5万元、6万元,可使用的金属板有 万元、 万元 可使用的金属板有500吨,劳动力有 万元, 万元 吨 劳动力有300人/月,机器有 人月 100台/月,另外若生产,不管每种容器生产多少,都需要支付一笔固定 台 月 另外若生产,不管每种容器生产多少, 费用:小号为100万元,中号为 万元, 万元, 万元。 费用:小号为 万元 中号为150万元,大号为 万元 大号为200万元。问如何制定 万元 生产计划使获得的利润对大? 生产计划使获得的利润对大?
0-1 整数规划求解方法
0-1 整数规划是一种特殊形式的整数规划,这时的 - 整数规划是一种特殊形式的整数规划, 决策变量x 只取两个值0或 ,一般的解法为隐枚举法。 决策变量 i 只取两个值 或1,一般的解法为隐枚举法。 例一、求解下列0- 例一、求解下列 -1 规划问题 max Z = 3 x 1 − 2 x 2 + 5 x 3
(1) (2)

工序B 只能从两种加工方式中选择一种,那么约束条件( ) 工序 3只能从两种加工方式中选择一种,那么约束条件(1)和(2)就成为 ) 相互排斥的约束条件。为了统一在一个问题中,引入0-1变量 相互排斥的约束条件。为了统一在一个问题中,引入 变量

运筹学——0-1整数规划

运筹学——0-1整数规划

(1,0,0) (1,0,1) (1,1,0) (1,1,1)
0’’ -2 3 1 6
1
.2
.3
Z .4 足 值 no no no no
最优解(X2,X1,X3) =(0,1,1) Z=8 实际只计算了16次
例2
求下列问题:
Max Z=3x1+ 4x2 + 5x3 + 6x4 s.t. 2x1+ 3x2 + 4x3 + 5x4 15
0-1规划应用
华美公司有5个项目被列入投资计划,各项目 的投资额和期望的投资收益见下表: 项目 投资额(万元) 投资收益(万元) 1 210 150
2
3 4 5
300
100 130 260
210
60 80 180
该公司只有600万元资金可用于投资, 由于技术原因,投资受到以下约束: 在项目1、2和3中必须有一项被选中;
0-1 规划及其解法
0-1 规划在线性整数规划中具有重要地位。 定理:任何整数规划都可以化成0-1规划。 一般地说,可把整数x变成(k+1)个0-1变量公 式为:x=y0+2y1+22y2+….2kyk 若x上界为U,则对0<x<U,要求k满足2k+1 U+1.

由于这个原因,数学界曾纷纷寻找“背包问 题”解的方法,但进展缓慢。
xi=1或0
• 点击这里进入 “指派问题”的 学习
解:由于目标函数中变量x1, x2 , x4 的系数均为负数, 可作如下变换:
令 x1 =1- x1′ , x2 =1- x2′, x3= x3′, x4 =1- x4′带入原题 中,但需重新调整变量编号。令 x3′ = x1′, x4′ = x2′得到下式。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档