非线性方程组的牛顿迭代法的应用
牛顿法及基于牛顿算法下的Steffensen加速法求解非线性方程组方法例题及答案
1. 非线性方程组求解1.分别用牛顿法,及基于牛顿算法下的Steffensen 加速法。
(1) 求ln(sin )x x +的根。
初值0x 分别取0.1,1,1.5,2,4进行计算。
(2) 求sin =0x 的根。
初值0x 分别取1,1.4,1.6,1.8,3进行计算。
分析其中遇到的现象与问题。
(1)牛顿法牛顿法实质上是一种线性化方法,其基本思想是将非线性方程()0f x =逐步归结为某种线性方程来求解。
将已知方程()0f x =在近似值k x 附近展开,有()()()()'0k k k f x f x f x f x x ≈+-=,构造迭代公式,则1k x +的计算公式为:()()1',0,1,,k k k k f x x x k f x +=-= (1-1)根据Taylor 级数的几何意义我们可以从几何上形象的看牛顿迭代法的求解()0f x =的过程,第一次迭代()()'1000/x x f x f x =-,其中()()'00/f x f x 的几何意义很明显,就是0x 到1x 的线段长度(这可以从直角三角形的知识得到)。
第二次迭代()()'2111/x x f x f x =-,其中()()'11/f x f x 的几何意义很明显,就是1x 到2x 的线段长度。
同理可以进行第三次迭代第四次迭代,可以明显的看出x 的取值在不断逼近真实解*x 。
如图1-1所示:图1-1○1求ln(sin )=0x x +的根时,迭代公式为()1ln(sin )sin 1cos k k x x x x x x x+++=++,0示。
计算结果见附录1表F.1-1所示。
初值取1.5,2,4进行计算时结果不收敛。
表 1-1 牛顿法计算结果○2求sin =0x 的根时,迭代公式为1cos k k x x x+=+,初值0x 分别取1、1.4、1.6、1.8、3计算时结果收敛,误差小于510-时,近似解如表1-2所示。
求解非线性方程的三种新的迭代法
求解非线性方程的三种新的迭代法
迭代法是一种通过迭代逼近的方式来求解方程的方法。
它的基本思想是通过不断逼近
方程的解,使得逼近值与真实解的差距越来越小,最终得到方程的解。
下面介绍三种新的迭代法:牛顿迭代法,弦截法和切线法。
一、牛顿迭代法
牛顿迭代法是一种通过利用函数导数的信息来逼近方程解的方法。
它的迭代公式为:
x_(n+1) = x_n - f(x_n)/f'(x_n)
x_n表示第n次迭代得到的逼近解,f(x_n)表示在x_n处的函数值,f'(x_n)表示在x_n 处的导数值。
牛顿迭代法的优点是收敛速度快,通常是二阶收敛,但其缺点是需要计算函数的导数,如果导数计算困难或者导数为零的情况下,该方法可能不适用。
二、弦截法
三、切线法
切线法的优点和牛顿迭代法类似,但其缺点是需要计算函数的导数,且对于初始逼近
解的选择比较敏感。
牛顿迭代法、弦截法和切线法都是三种常用的非线性方程迭代法。
它们各自有着优点
和缺点,适用的领域和条件也不尽相同。
在实际问题中,需要根据具体情况选择合适的方
法来求解非线性方程。
解非线性方程的牛顿迭代法及其应用
解非线性方程的牛顿迭代法及其应用一、本文概述非线性方程是数学领域中的一个重要研究对象,其在实际应用中广泛存在,如物理学、工程学、经济学等领域。
求解非线性方程是一个具有挑战性的问题,因为这类方程往往没有简单的解析解,需要通过数值方法进行求解。
牛顿迭代法作为一种古老而有效的数值求解方法,对于求解非线性方程具有重要的应用价值。
本文旨在介绍牛顿迭代法的基本原理、实现步骤以及在实际问题中的应用。
我们将详细阐述牛顿迭代法的基本思想,包括其历史背景、数学原理以及收敛性分析。
我们将通过具体实例,展示牛顿迭代法的计算步骤和实际操作过程,以便读者能够更好地理解和掌握该方法。
我们将探讨牛顿迭代法在各个领域中的实际应用,包括其在物理学、工程学、经济学等领域中的典型应用案例,以及在实际应用中可能遇到的问题和解决方法。
通过本文的介绍,读者可以深入了解牛顿迭代法的基本原理和应用技巧,掌握其在求解非线性方程中的实际应用方法,为进一步的研究和应用提供有力支持。
二、牛顿迭代法的基本原理牛顿迭代法,又称为牛顿-拉夫森方法,是一种在实数或复数域上近似求解方程的方法。
其基本原理是利用泰勒级数的前几项来寻找方程的根。
如果函数f(x)在x0点的导数f'(x0)不为零,那么函数f(x)在x0点附近可以用一阶泰勒级数来近似表示,即:这就是牛顿迭代法的基本迭代公式。
给定一个初始值x0,我们可以通过不断迭代这个公式来逼近f(x)的根。
每次迭代,我们都用当前的近似值x0来更新x0,即:这个过程一直持续到满足某个停止条件,例如迭代次数达到预设的上限,或者连续两次迭代的结果之间的差小于某个预设的阈值。
牛顿迭代法的收敛速度通常比线性搜索方法快,因为它利用了函数的导数信息。
然而,这种方法也有其局限性。
它要求函数在其迭代点处可导,且导数不为零。
牛顿迭代法可能不收敛,如果初始点选择不当,或者函数有多个根,或者根是重根。
因此,在使用牛顿迭代法时,需要谨慎选择初始点,并对迭代过程进行适当的监控和调整。
非线性方程组的求解方法及其应用
非线性方程组的求解方法及其应用非线性方程组是数学中一类非常重要的问题,其中每个方程都不是线性的。
与线性方程组不同,非线性方程组的求解通常需要借助于数值方法。
本文将讨论一些常见的非线性方程组求解方法,并介绍它们在实际应用中的一些应用。
1. 牛顿法牛顿法是一种非常常见的非线性方程组求解方法。
该方法基于牛顿迭代法原理,将非线性方程组转化为一系列的线性问题。
牛顿法的基本思想是:通过不断地使用一阶导数和二阶导数的信息来逼近方程组的解。
具体地说,在每一轮迭代中,求解一个方程组:$$F(x^{k})+J(x^{k})\Delta x^{k} =0$$其中$F(x)$表示非线性方程组,$x^k$表示第$k$轮迭代的解,$J(x^k)$表示$F(x)$在$x^k$处的雅可比矩阵,$\Delta x^k$表示下降方向,满足$\|\Delta x^k\|\rightarrow 0$。
值得注意的是,牛顿法在每轮迭代中都需要求解一次雅可比矩阵,这需要大量的计算资源。
因此,在实际应用中,牛顿法通常只适用于相对较小的方程组。
2. 信赖域方法相比于牛顿法,信赖域方法更具有通用性。
信赖域方法的基本思想是:在每轮迭代中,通过构造二次模型来逼近目标函数,并在一个信赖域内搜索下降方向。
具体地说,我们在每轮迭代中将非线性方程组$F(x)$在$x^k$处转化为二次模型:$$m_k(\Delta x)=F(x^k)+\nabla F(x^k)^\top \Deltax+\frac{1}{2}\Delta x^\top B_k\Delta x$$其中,$\nabla F(x^k)$是$F(x)$在$x^k$处的梯度,$B_k$是二阶导数信息。
在这里我们假设$B_k$为正定矩阵。
显然,我们希望在$m_k(\Delta x)$的取值范围内找到一个适当的$\Delta x$,使得$m_k(\Delta x)$最小。
因此,我们需要设定一个信赖域半径$\Delta_k$,并在$B_k$所定义的椭圆范围内查找最优的$\Delta x$。
牛顿迭代法的收敛性和稳定性
牛顿迭代法的收敛性和稳定性牛顿迭代法是一种高效的求解非线性方程组的方法。
它的基本思想是通过不断逼近目标函数的零点来求解方程,其中每次迭代通过求解目标函数的一阶导数和二阶导数来更新逼近值。
与其他求解非线性方程组的方法相比,牛顿迭代法具有更快的收敛速度和更高的精度。
然而,牛顿迭代法在实际应用中也存在一些问题,例如收敛性和稳定性。
本文将就牛顿迭代法的收敛性和稳定性进行探讨。
一、牛顿迭代法的收敛性牛顿迭代法的收敛性与初始迭代值的选择有关。
如果选择的初始迭代值与目标函数的零点较接近,则牛顿迭代法的收敛速度越快,精度越高。
反之,如果初始迭代值与目标函数的零点较远,则可能会导致收敛速度缓慢甚至无法收敛。
因此,通常使用牛顿迭代法进行求解时,需要通过试探法或其他方法寻找较接近目标函数零点的初始迭代值。
另外,牛顿迭代法的收敛性还与目标函数的性质有关。
具体来说,如果目标函数在初始迭代值处的二阶导数为正且在目标函数的零点处存在且连续,则牛顿迭代法一般会收敛到目标函数的零点。
而如果目标函数在某些点处的二阶导数为零或不存在,则可能会出现收敛速度缓慢或收敛不足的情况。
二、牛顿迭代法的稳定性牛顿迭代法的稳定性是指对于具有微小扰动的初始迭代值,迭代结果能否保持不变或只有微小的差异。
在实际应用中,由于存在数值误差或输入数据的不确定性,牛顿迭代法可能会受到微小扰动的影响而产生不稳定的结果。
因此,需要采取措施来提高牛顿迭代法的稳定性。
一种提高牛顿迭代法稳定性的方法是采用牛顿-拉夫逊迭代法。
牛顿-拉夫逊迭代法是在牛顿迭代法的基础上加入阻尼因子来实现的。
具体来说,牛顿-拉夫逊迭代法使用目标函数的一阶导数和二阶导数来更新逼近值,并在迭代过程中加入一个阻尼因子,使迭代结果在微小扰动下不会产生过大的变化。
此外,还可以采用增量式牛顿迭代法来提高牛顿迭代法的稳定性。
增量式牛顿迭代法是一种递推算法,它的基本思想是将目标函数的二阶导数逐步逼近到实际的值,并在每次迭代中只更新部分二阶导数,以减小更新过程中的数值误差。
利用牛顿迭代法求解非线性代数方程组
xi k 1
xi k
xi k i 1,2, , n
(3-7 )
则式( 3-6 )可写为
xk
F' xk
1
F
xk
(3-8 )
或
xk 1
xkHale Waihona Puke F' xk1
F
xk
(3-9 )
称式( 3-9 )为求解非线性方程组( 3-2 )的牛顿迭代法,而线性方程
组( 3-4 )称为牛顿方程组。
三、 算法描述
(1) 在真实根 x 附近选取一个近似根 x1;
x
(4 2
)
1.6615
所以取迭代次数为 3,且可取(1.2343 ,1.6615 )为非线性方程组(4-1 )
的近似解。
五、心得体会:
通过学习,我们认识到牛顿迭代法是求解非线性代数方程组的一
种简单而有效的方法。 我们通过将非线性代数方程组的系数矩阵求导
来使方程组线性化, 从而求得方程组的近似解。 牛顿迭代法的优点是
(3-3 )
F x 0 成为向量函数。
设
x1k
,
x
k 2
,
,
x
k n
是方程组( 3-2 )的一组近似解,把它的左端
在
x1k
,
x
k 2
,
, xnk 处用多元函数的泰勒展式展开,然后取线性部
分,便得方程组( 3-2 )得近似方程组
f1 x1k , x2k , , xnk f 2 x1k , x2k , , xnk
收敛速度快,但每次都要求导,求逆,计算量大。
在这段学习的过程中,感谢王老师给予我们耐心而清晰的讲解,
使我们掌握了一些数值分析的基本方法, 学有收获。 我感到这些数学
非线性方程组迭代法
实验二 非线性方程的数值解法1.1 实验内容和要求在科学研究和工程技术中大量的实际问题是非线性的,求非线性方程()0f x =满足一定精确度的近似根是工程计算与科学研究中诸多领域经常需要解决的问题。
实验目的:进一步理解掌握非线性方程求根的简单迭代法、埃特金Aitken 加速法、牛顿迭代法的思想和构造。
实验内容: 求方程2320x x x e -+-=的实根。
要求:(1)设计一种简单迭代法,要使迭代序列收敛,然后再用埃特金Aitken 加速迭代,计算到-8110k k x x --<为止。
(2)用牛顿迭代法,同样计算到-8110k k x x --<(3)输出迭代初值、迭代次数k 及各次迭代值,并比较算法的优劣。
1.2 算法描述普通迭代法计算步骤:(1)给定初始近似值0x ,eps 为精确度。
(2)用迭代公式x =x 2+2−e x 3进行迭代,直到-8110k k x x --<为止。
埃特金Aitken 加速迭代法计算步骤:(1)将()0f x =化成同解方程()x x ϕ=()k k y x ϕ= ,()k k z y ϕ=21()2k k k k k k k y x x x z y x +-=--+=22k k k k k kx z y z y x --+ (2)计算到-8110k k x x --<为止。
牛顿法计算步骤:给定初始近似值0x ,1ε为根的容许误差,2ε为()f x 的容许误差,N 为迭代次数的容许值。
计算00(),()f x f x '(1)如果0()0f x '=或者迭代次数大于N ,则算法失败,结束;否则执行(2)(2)按公式0100()()f x x x f x =-'迭代一次,得到新的近似值1x ,计算11(),()f x f x ' (3)如果101x x ε-<或者12()f x ε<,则迭代终止,以1x 作为所求的根,结束;否则执行(4)(4)以111(,(),())x f x f x '代替000(,(),())x f x f x ',转步骤(1)继续迭代。
求解非线性方程组的几种方法及程序实现
求解非线性方程组的几种方法及程序实现
求解非线性方程组一直是理论数学和应用数学研究的重点,并采用不同的方法得到准确的结果。
它们可以分为几种类型:
1. 用以绘图的方法解非线性方程组:该方法充分利用结合几何和数理的原理,给出非线性方程组的解,而不用对系数的解的表达式求解手段。
主要是利用可绘图的几何空间分析,它可以帮助理解问题本身,还可以很容易看出非线性方程组的解。
2. 用迭代法求解非线性方程组:这是一种常用的方法,它通过不断迭代收敛求解非线性方程组。
基本思想是通过构造一个迭代函数,其初始值和原始非线性方程组尽可能接近,然后不断迭代收敛求解非线性方程组。
3. 用强调法求解非线性方程系统:这是基于梯度的一种方法,它利用一个概念,即局部线性化,可以降低维数、转化为一个拐点,最后强化搜索全局解。
4. 用牛顿-拉夫逊方法求解非线性方程组:这是一种准确、快速的非线性方程组求解方法,主要利用牛顿迭代法搜索解的收敛性,加上一些拉夫逊的加速策略得到最终的结果。
5. 用幂法求解非线性方程组:幂法也称为指数序列,是一种重要的求解非线性方程组的方法,基本原理是利用指数的累加和误差的减少,从而最终得到非线性方程组的解。
6. 用逐步逼近法求解非线性方程组:逐步逼近法也称为分步变程法,是一种用于求解非线性方程组的简单方法,其基本思想是用不同的参数,在给定的范围内,逐步逼近目标解。
这些方法的程序实现略有不同,可以利用编程语言比如C、Fortran、Python等,编写程序完成求解。
可以采用函数求解、循环求解、行列式求解或者混合的算法等不同的方式实现,甚至可以用深度学习方法求解有些复杂的非线性方程组。
python高斯-牛顿迭代法 -回复
python高斯-牛顿迭代法-回复题目:Python高斯牛顿迭代法解析- 优化非线性问题摘要:高斯牛顿迭代法是一种用于求解非线性方程组的优化算法。
本文将介绍高斯牛顿迭代法的原理和使用Python实现的步骤。
我们将以一个简单的实例来说明算法的应用,并解释其背后的数学原理。
最后,我们将讨论高斯牛顿迭代法的优势和局限性。
引言:高斯牛顿迭代法是一种被广泛使用的数值优化算法,用于解决非线性问题。
不同于求解线性方程组的高斯消元法,高斯牛顿迭代法专门用于求解非线性问题。
它的应用领域涵盖了各个科学和工程领域,如计量经济学、计算机视觉和机器学习。
本文将详细介绍高斯牛顿迭代法的原理和实现步骤。
我们将以一个简单的实例来演示算法的工作原理,并对其数学背后的原理进行解析。
一、高斯牛顿迭代法原理高斯牛顿迭代法的目标是通过迭代的方式逼近方程组的根。
为了便于理解,我们以一个简单的二次曲线拟合问题为例。
假设我们有一组观测数据点(xi,yi),我们希望通过一个二次曲线y = a * x^2 + b * x + c来拟合这些数据。
我们的目标是找到最佳的参数a、b 和c,使得拟合曲线与观测数据点的差异最小。
为了达到这个目标,我们可以定义一个误差函数E(a,b,c)来衡量拟合曲线和观测数据点之间的差异。
常见的误差函数有平方和误差函数,即E(a,b,c) = Σ(yi - (a * xi^2 + b * xi + c))^2。
我们的目标是最小化误差函数,即找到使得E(a,b,c)最小的a、b和c。
高斯牛顿迭代法通过迭代的方式逼近最佳参数。
二、高斯牛顿迭代法步骤1. 初始化参数:初始化a、b和c的初始值。
2. 计算雅可比矩阵:雅可比矩阵是误差函数对参数的偏导数矩阵。
对于二次曲线拟合问题,雅可比矩阵J可以表示为:J = [∂E/∂a, ∂E/∂b, ∂E/∂c]3. 计算梯度向量:梯度向量是误差函数在当前参数值处的梯度,即导数。
梯度向量g可以表示为:g = [∂E/∂a, ∂E/∂b, ∂E/∂c]4. 计算海森矩阵:海森矩阵是误差函数对参数的二阶偏导数矩阵。
牛顿迭代法求解方程组
牛顿迭代法求解方程组一、牛顿迭代法的原理牛顿迭代法是一种求解非线性方程组的数值方法,其原理基于泰勒级数展开和迭代逼近。
对于一个方程组F(x)=0,我们可以通过不断迭代来逼近方程组的解。
具体的迭代公式如下:x_(n+1) = x_n - J^(-1)(x_n) * F(x_n)其中,x_n表示第n次迭代得到的近似解,J表示F(x)的雅可比矩阵。
二、牛顿迭代法的步骤1. 选择初始值x0,并计算F(x0)和J(x0)。
2. 利用迭代公式计算下一次迭代的近似解x1。
3. 判断迭代误差是否满足要求,如果满足则停止迭代;否则继续迭代。
4. 重复步骤2和步骤3,直到满足迭代停止条件。
三、牛顿迭代法的应用牛顿迭代法在实际问题中有广泛的应用,如求解非线性方程、优化问题等。
下面以两个具体的例子来说明牛顿迭代法的应用。
例1:求解方程组考虑方程组:f1(x1, x2) = x1^2 + x2^2 - 1 = 0f2(x1, x2) = x1 - x2^2 = 0我们可以通过牛顿迭代法来求解该方程组。
首先计算雅可比矩阵:J(x) = [2x1, 2x2; 1, -2x2]选择初始值x0=(1, 1),然后进行迭代计算:x1 = x0 - J^(-1)(x0) * F(x0)迭代计算的结果为x1=(0.7071, 0.7071),继续迭代直到满足停止条件。
例2:求解最小二乘问题最小二乘问题是求解一个线性方程组Ax=b的最优解。
如果方程组没有精确解,则可以使用牛顿迭代法来逼近最优解。
具体步骤如下:1. 初始值选择为x0=0。
2. 计算残差r=b-Ax0。
3. 计算雅可比矩阵J=A。
4. 利用迭代公式计算下一次迭代的近似解x1=x0 - J^(-1)(x0) * r。
5. 判断迭代误差是否满足要求,如果满足则停止迭代;否则继续迭代。
6. 重复步骤4和步骤5,直到满足迭代停止条件。
牛顿迭代法作为一种求解非线性方程组的有效方法,具有收敛速度快、精度高等优点。
数值分析中的牛顿迭代法
数值分析中的牛顿迭代法在现代科学技术领域中,数值计算是一项不可忽视的内容。
牛顿迭代法是数值计算中的一种重要方法,被广泛应用于数学、物理、化学、航空航天等领域。
下面就让我们来了解一下什么是牛顿迭代法,以及它的原理、特点和应用。
1. 概述牛顿迭代法又称为牛顿-拉夫逊迭代法,是一种求解非线性方程组的数值计算方法。
它的基本思想是:从已知函数的一个近似解出发,借助函数的切线逼近函数的零点,直到达到指定的精度要求为止。
牛顿迭代法的应用非常广泛,如求解函数的根、优化问题、最小二乘拟合、时间依赖问题等。
2. 原理假设$f(x)$是一个在$x0$处有连续二阶导数的函数。
如果要找到它在$x0$处的零点,那么牛顿迭代法的基本公式为:$$ x_{n+1} = x_n -\frac{f(x_n)}{f'(x_n)} $$其中,$n$表示迭代的次数,$x_{n+1}$表示迭代后的值,$x_n$表示当前的值,$f(x_n)$表示函数在$x_n$点的值,$f'(x_n)$表示函数在$x_n$点的导数。
公式的物理意义是:先用当前的$x$值求出函数值$f(x)$,然后用当前的$x$值求出函数的导数$f'(x)$,接着用$f(x)$和$f'(x)$计算出一个斜率,最后用当前的$x$值减去这个斜率,得到一个新的近似解$x_{n+1}$。
迭代过程如下:(1)选取初始值$x_0$;(2)计算出第一个近似值$x_1$,即$x_1=x_0-\frac{f(x_0)}{f'(x_0)}$;(3)计算出第二个近似值$x_2$,即$x_2=x_1-\frac{f(x_1)}{f'(x_1)}$;(4)依此类推,直到$f(x_n)$的值小到满足预设的精度为止。
3. 特点牛顿迭代法具有以下几个特点:(1)收敛速度快。
迭代公式是二阶收敛的,收敛速度远远超出了线性迭代法和高斯-赛德尔迭代法。
(2)精度高。
根据牛顿迭代法的收敛次数和精度估计定理,只要初值足够接近所求的跟,牛顿迭代法就能收敛,并且有二阶精度。
解非线性方程组的牛顿法
考虑非线性方程组
f1(x1, x2, , xn ) 0,
f2(x1, x2, , xn ) 0,
fn (x1, x2, , xn ) 0. 利用向量记号写为
F (X ) O. 这里F (X )是定义在某区域D Rn上向量值函数. 若存在 X* D, 使得F (X*) O, 则称X*为非线性方程组的解.
.
逐次迭代得结果.
Step 5 Set x x y
Step 6 If y TOL then OUTPUT(x)
Step7 Set k k 1
STOP.
Step8 OUTPUT (‘Maximum number of iterations exceeded’) STOP.
为了说明上述算法,我们可以看看下面的例子。设
s1
145 272
,
145 272
T
.
x2 x1 s1 0.092,3.092 T .
显然,我们只经过两步计算,所得到的 x2就已经非常靠近 解 0,3T .
例1 用牛顿法求解方程组
k x (k) 0 (1.5, 1.0)T
f1( f2(
x1 x1
,x2 ,x2
) )
x1 2 x12
定理 2 设G : D Rn Rn在D内有一不动点X *且G在X *可导,
(G(X*)) 1, 则存在开球 S S( X*, ) D, 对X (0) S, 迭代序列{X (k)}
收敛于X *.
牛顿迭代公式:
X (k1) X (k) F( X (k) ) 1 F ( X (k) ),
其中
f1
F
(
X
(k
)
)
二元非线性方程组求根的牛顿迭代法
2 二元函数的牛顿迭代法
设 z = f ( x, y ) 在点 ( x0 , y0 ) 的某一邻域内连续且 有直到 2 阶的连续偏导数 , ( x0 + h, y0 + k ) 为此邻域 内任一点 , 则有
f ( x0 + h, y0 + k ) ≈ f ( x0 , y0 ) +
记符号
gfx - fgx | ( x k, y k) = g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) fgy - gfy | ( x k, y k) = f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx fy - fx gy | ( x k, y k) = gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1 ) 式可改写为 x = xk + y = yk + fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) fgy - gfy | ( x k, y k) gx fy - fx gy | ( x k, y k) gfx - fgx | ( x k, y k) gx fy - fx gy | ( x k, y k) ( 3) ( 2)
f ( xk ) = xk ( k = 0, 1, …) ( xk ) f′
从而 :
x = xk + y = yk + f ( xk , yk ) gy ( xk , yk ) - g ( xk , yk ) fy ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) g ( xk , yk ) fx ( xk , yk ) - f ( xk , yk ) gx ( xk , yk ) gx ( xk , yk ) fy ( xk , yk ) - fx ( xk , yk ) gy ( xk , yk ) ( 1)
非线性方程的求解方法
非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。
然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。
本文将介绍几种非线性方程的求解方法。
一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。
该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。
牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。
牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。
二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。
与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。
割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。
三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。
该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。
二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。
二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。
四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。
它和二分法类似,都是通过缩小根所在的区间来逼近根。
不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。
求解非线性方程的牛顿迭代法
求解非线性方程的牛顿迭代法作者:李晓辉任伟和程长胜来源:《科技风》2021年第14期摘要:本文主要讲了求解非线性方程的牛顿迭代法。
文章首先引入牛顿迭代法的公式、迭代函数。
紧接着文章又介绍了牛顿迭代法的局部收敛性以及它的收敛速度,并通过数值实验验证了牛顿迭代法求解非线性方程的有效性。
关键词:牛顿迭代法;局部收敛;收敛速度中图分类号:O010224文献标识码:A一、绪论类似于线性方程组Ax=b求解的问题,非线性方程的一般问题可化为f(x)=y,即“对于什么样的x的值,函数f取值为y”,这里可以暂且先把f当成单变量函数,通常把y移项并吸收进f,从而一般形式可记为f(x)=0,因此,一个一般的一元非线性方程的求解问题有如下形式:给定函数f,寻找x(实的或复的),使得f(x)=0。
若存在一点x*满足该性质,称x*是方程f(x)=0的根或函数的零点。
这类问题称为求根问题或求零点问题。
此外,方程的根的情况可分为单根和重根。
一般的非线性方程的重数可以定义如下:若f(x)=(x-x*)m·g(x)且g(x)≠0,其中,m为自然数,称x*为f(x)的m重根,m=1时也称单根。
若区间[a,b]上有方程的一个实根,称该区间为方程的一个有根区间,如果能把方程的有根区间的长度缩短到一定的范围内,那么就求到了一个近似根,通常采用的都是数值求解的办法,因此若假设要求有根区间长度为0(即求到精确解),这些数值求解的办法通常都会产生一个逐渐逼近根的一个无穷序列。
求方程的近似根,一般要考虑如下几个问题:(1)根的存在性问题,即方程有没有实根,有几个根。
(2)有根区间的确定。
本文介绍的算法通常是假设有根的前提下给出求近似根的方法,一般需要以别的辅助工具先确定有根区间。
(3)求出足够近似的根,即在制定精度下缩小有根区间,或通过某些判别条件断定近似根的精度。
二、Newton迭代公式的构造简单迭代是将非线性方程f(x)=0通过代数恒等变形,将原方程化成等价方程x=φ(x),从而形成迭代式xk+1=φ(xk)。
非线性方程组的求解
非线性方程组的求解摘要:非线性方程组求解是数学教学中,数值分析课程的一个重要组成部分,作为一门学科,其研究对象是非线性方程组。
求解非线性方程组主要有两种方法:一种是传统的数学方法,如牛顿法、梯度法、共轭方向法、混沌法、BFGS 法、单纯形法等。
传统数值方法的优点是计算精度高,缺点是对初始迭代值具有敏感性,同时传统数值方法还会遇到计算函数的导数和矩阵求逆的问题,对于某些导数不存在或是导数难求的方程,传统数值方法具有一定局限性。
另一种方法是进化算法,如遗传算法、粒子群算法、人工鱼群算法、差分进化算法等。
进化算法的优点是对函数本身没有要求,不需求导,计算速度快,但是精度不高。
关键字:非线性方程组、牛顿法、BFGS 法、记忆梯度法、Memetic 算法1: 三种牛顿法:Newton 法、简化Newton 法、修改的Newton 法【1-3】 求解非线性方程组的Newton 法是一个最基本而且十分重要的方法, 目前使用的很多有效的迭代法都是以Newton 法为基础, 或由它派生而来。
n 个变量n 个方程的非线性方程组, 其一般形式如下:⎪⎪⎩⎪⎪⎨⎧===0),...,(...0),...,(0),...,(21212211n n n n x x x f x x x f x x x f (1)式(1)中,),...,(21n i x x x f ( i=1, ⋯, n) 是定义在n 维Euclid 空间Rn 中开域 D 上 的实值函数。
若用向量记号,令:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=n x x x ...X 21,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡====)(...)()(0),...,(...0),..,(0)...,()(2121212,211X f X f X f x x x f x x x f x x x f X F nn n n n则方程组(1)也可表示为:0)(=X F(2) 其中:X ∈R n ,F ∶R n →R 0, F(X) ∈R n , R n 为赋值空间。
非线性方程组的牛顿迭代法的应用
非线性方程组的牛顿迭代法的应用CENTRAL SOUTH UNIVERSITY数值分析实验报告非线性方程组的牛顿迭代法的应用一、问题背景非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。
道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。
从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。
本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。
二、数学模型对于方程f x =0,如果f x湿陷性函数,则它的求根是容易的。
牛顿法实质上是一种线性化方法,其基本思想是将线性方程 f x =0逐步归结为某种线性方程来求解。
设已知方程f x =0有近似根X k (假定f X k - 0),将函数f x在点X k展开, 有f X : f X k f' X k X -X k ,于是方程f X = 0可近似地表示为f X k f' X k x - X k =0这是个线性方程,记其根为X ki,则X k 的计算公式f(Xk)k 01...X ki =X k ;,k=01,f区)这就是牛顿法。
三、算法及流程对于非线性方程飞仅鸡丄区)1 f2(X i,X2 丄,X n ) f =M」n(X i ,X2,L,X n )在x k处按照多元函数的泰勒展开,并取线性项得到fjx*),X2(k )丄,XnC ))1 -X1(“)_X1(k )〕 fzgt 以^)丄%$))十f'(x (k))X2(kT —X2(k)MM ' fn(x/k凡卜),L,Xn&))1 〕X 0L Xn ®这边是牛顿迭代法的算法过程,牛顿迭代法是工程上应用最多的一种非线性方 程组的计算方程法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性方程组的牛顿迭代法的应用
CENTRAL SOUTH UNIVERSITY
数值分析实验报告
非线性方程组的牛顿迭代法的应用
一、问题背景
非线性是实际问题中经常出现的,并且在科学与工程计算中的地位越来越重要,很多我们熟悉的线性模型都是在一定条件下由非线性问题简化的,为得到更符合实际的解答,往往需要直接研究非线性科学,它是21世纪科学技术发展的重要支柱,非线性问题的数学模型有无限维的如微分方程,也有有限维的。
道遥咏计算机进行科学计算都要转化为非线性的单个方程或方程组的求解。
从线性到非线性是一个质的变化,方程的性质有本质不同,求解方法也有很大差别。
本文主要介绍的是非线性方程组的牛顿迭代法的数值解法。
二、数学模型
对于方程()0=x f ,如果()x f 湿陷性函数,则它的求根是容易的。
牛顿法实质上是一种线性化方法,其基本思想是将线性方程()0=x f 逐步归结为某种线性方程来求解。
设已知方程()0=x f 有近似根k x (假定()0'≠k x f ),将函数()x f 在点k x 展开,有
()()()()k k k x x x f x f x f -+≈',
于是方程()0=x f 可近似地表示为
()()()0'=-+k k k x x x f x f
这是个线性方程,记其根为1+k x ,则1+k x 的计算公式
()
()
k k k k x f x f x x '
1-
=+, ,1,0=k 这就是牛顿法。
三、算法及流程
对于非线性方程
()()()⎥⎥⎥⎥
⎦⎤⎢⎢⎢⎢⎣⎡=n n n n x L x x f M x L x x f x L x x f f ,,,,,,,,,2
12
12211 在()k x 处按照多元函数的泰勒展开,并取线性项得到
()()()()()()()(
)()()()
()
()()()()
()()()()0,,,,,,,,,1212
1
11
'21
212211=⎥
⎥
⎥⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡---+⎥⎥⎥⎥⎥⎦
⎤
⎢⎢
⎢
⎢⎢⎣⎡+++k n k n k k k k k
k n k k n k n k k k n k k x x M x x
x x x f x L x x f M x L x x f x L x x f 其中
()⎥⎥⎥⎥⎥⎥⎦
⎤
⎢⎢⎢
⎢⎢⎢⎣⎡∂∂∂∂∂∂∂∂=n n n
n n x f L x f M M x f K x f x f 0
11
1
' 这样便得到迭代公式:
()()()()()()()
()[]
()()()()
()()()()()(
)()()()()
(
)
⎥⎥⎥⎥⎥⎦
⎤⎢⎢
⎢⎢⎢⎣⎡-⎥⎥⎥
⎥⎥⎦
⎤
⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-+++k n k k k n
k n k k k k n k k k k k n k k k n k k x L x x f M x L x x f x L x x f x f x M x x x M x x ,,,,,,,,,212122111'2111211 这边是牛顿迭代法的算法过程,牛顿迭代法是工程上应用最多的一种非线性方程组的计算方程法。
MATLAB 编写的牛顿迭代法的基本程序如下: % 牛顿迭代法计算非线性方程 % 输入x0为迭代初值
% tol 为误差容限,如果缺省,则默认为10的-10次方 % data 用来存放计算的中间数据便于计算收敛情况分析 function [x,n,data]=new_ton(x0,tol) if nargin==1 tol=1e-10; end
x1=x0-f1(x0)/df1(x0); n=1; %迭代过程
while (norm(x1-x0)>tol) x0=x1;
x1=x0-f1(x0)/df1(x0); n=n+1;
% data 用来存放中间数据 data(:,n)=x1; end
x=x1;
以文件名new_ton.m 保存文件。
四、计算结果与分析
计算非线性方程组
4405.022
2
2=-+=+--y x y x x
取初值为⎥⎦
⎤
⎢⎣⎡=⎥⎦⎤⎢⎣⎡11y x 。
(1) 先编写方程函数与方程的Jacobi 矩阵函数。
% 牛顿迭代法的方程函数 function f=f1(x0) x=x0(1); y=x0(2);
f1=x^2-2*x-y+0.5; f2=x^2+4*y^2-4;
% 最后方程函数以行向量输出 f=[f1 f2];
以文件名f1.m 保存。
(2) 打开editor 编辑器输入以下语句并以文件名df1.m 保存。
function f=df1(x0) x=x0(1); y=x0(2); f=[2*x-2 -1 2*x 8*y];
(3) 编写主函数,并以文件名new_main.m 保存文件。
%牛顿迭代法的主函数 x0=[1 1];
[x,n,data]=new_ton(x0); disp('计算结果为') x
disp('迭代次数为') n
% 抽取data 中的第一个变量数据画出曲线 subplot(2,1,1)
plot(data(1,:)),title('x 在迭代中的变化')
% 抽取data 中的第二个变量数据画出其变化曲线 subplot(2,1,2)
plot(data(2,:)),title('y 在迭代中的变化')
(4) 运行程序,在MATLAB 命令窗口输入new_main ,以enter 键结束,输出为: 计算结果为 x =
-0.222214555069498
0.993808418603981
迭代次数为
n =
16
为了获得更为直观的迭代收敛信息,MATLAB方便的画出了函数图形,如下所示,其中第一幅图形为x的迭代情况,第二幅为y的迭代情况。
从图中可以看出,迭代的前几次有一些震荡情况,但是随着迭代次数的增加,收敛效果还是很明显的。