函数的零点 -课件PPT

合集下载

函数零点

函数零点

一、 函数的零点1. 零点的概念:对于函数y =f (x )(x ∈D ),把使f (x )=0成立的实数x 叫做函数y =f (x )(x ∈D )的零点. 2. 函数零点的意义:方程f (x )=0有实数根⇔函数y =f (x )的图象与x 轴有交点⇔函数y =f (x )有零点. 3. 零点存在性判定定理:如果函数y =f (x )在区间[a ,b ]上的图象是连续不断的一条曲线,且f (a )·f (b )<0,则函数y =f (x )在区间(a ,b )内有零点,即存在c ∈(a ,b ),使得f (c )=0,这个c 就是方程f (x )=0的根. 4. 二次函数零点的判定(1)二次函数零点的判定二次函数2y ax bx c =++的零点个数,方程20ax bx c ++=的实根个数见下表.(2① 二次函数的图象是连续的,当它通过零点时(不是二次零点),函数值变号. ② 相邻两个零点之间的所有的函数值保持同号.【说明】对任意函数,只要它的图象是连续不间断的,上述性质同样成立. (3)二次函数的零点的应用① 利用二次函数的零点研究函数的性质,作出函数的简图.② 根据函数的零点判断相邻两个零点间函数值的符号,观察函数的一些性质.重难点【定理1】21x x k ≤<⇔⎪⎪⎩⎪⎪⎨⎧>->≥-=∆k ab k af ac b 20)(042 如图所示:f【定理2】kx x <≤21⇔⎪⎪⎩⎪⎪⎨⎧<->≥-=∆k ab k af ac b 20)(042.如图所示:【定理3】21x k x <<⇔0)(<k af .如图所示:推论1 210x x <<⇔0<ac . 推论2 211x x <<⇔0)(<++c b a a .【定理4】有且仅有11x k <(或2x )2k <⇔0)()(21<k f k f如图所示:【定理5】221211p x p k x k <<≤<<⇔⎪⎪⎪⎩⎪⎪⎪⎨⎧><<>>0)(0)(0)(0)(02121p f p f k f k f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧<>><<0)(0)(0)(0)(02121p f p f k f k f a【定理6】2211k x x k <≤<⇔⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<>>>≥-=∆2121220)(0)(004k a b k k f k f a ac b 或⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧<-<<<<≥-=∆2121220)(0)(004k a b k k f k f a ac b如图所示:二、 二分法1. 对于在区间[],a b 上连续,且满足()()0f a f b <的函数()y f x =通过不断把函数()f x 的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,从而得到零点从而得到零点近似值的方法,叫做二分法.2. 用二分法求函数零点的近似值第一步:确定区间[],a b ,验证()()0f a f b <,给定精确度. 第二步:求区间(),a b 的中点1x . 第三步:计算()1f x○1若()10f x =,则1x 就是函数的零点; ○2若()()1.0f a f x <,则令1b x =; ○3若()()10f x f b <,则令1a x =.第四步:判断是否达到精确度ε,即若a b ε-<,则得到零点的近似值a (或b ),否则重复第二、三、四步.函数零点的性判定及求解:【例1】 判断下列函数在给定的区间上是否纯在零点.(1)()2318f x x x =--,[]1.8x ∈ (2)()331f x x x =--,[]1,2x ∈- (3)()()2log 2f x x x =+-,[]1,3x ∈.【解析】(1)方法一:()1200f =-<,()8220f =>,()()180f f ∴⋅<.故()2318f x x x =--在[]1,8上存在零点. 方法二:令23180x x --=,解得3x =-或6x =,()23180f x x x ∴=--=在[]1,8上存在零点. (2)()110f -=-<,()250f =>,()31f x x x ∴=--在[]1,2-上存在零点. (3)()()221log 121log 210f =+->-=,()()223log 323log 830f =+-<-=,()()130f f ∴⋅<.故()()2log 2f x x x =+-在[]1,3上存在零点.【例2】 设函数3y x =与212x y -⎛⎫= ⎪⎝⎭的图像交点为()00,x y ,则0x 所在的区间( )A .()0,1B .()1,2C .()1,3D .()3,4【答案】B【例3】 (天津理2)函数()23x f x x =+的零点所在的一个区间是( )A.()2,1-- B.()1,0- C.()0,1 D.()1,2【答案】B【解析】解法1.因为()22260f --=-<,()11230f --=-<,()00200f =+>,所以函数()23x f x x =+的零点所在的一个区间是()1,0-.故选B. 解法2.()230x f x x =+=可化为23x x =-.画出函数2x y =和3y x =-的图象,可观察出选项C,D不正确,且()00200f =+>,由此可排除A,故选B.例题精讲【例4】 (2010宣武一模理4)设函数231()2x f x x -⎛⎫=- ⎪⎝⎭,则其零点所在的区间为( )A .(0,1)B .(1,2)C .(2,3)D .(3,4)【答案】B【解析】 ()f x 在R 上单调增,(1)10f =-<,(2)70f =>,故零点所在区间(1,2).【例5】 (合肥第三次质检)“14a =-”是“函数()21f x ax x =--只有一个零点”的( )A .充要条件B .充分而不必要C .必要而不充分D .既不充分也不必要【答案】B【解析】由“函数()21f x ax x =--只有一个零点”可得14a =-或0a =,故14a =-充分而不必要.【例6】 (2010浙江文)已知x 是函数()121x f x x=+-的一个零点.若()101,x x ∈,()20,x x ∈+∞,则 A .()10f x <,()20f x < B .()10f x <,()20f x > C .()10f x >,()20f x <D .()10f x >,()20f x >【答案】B【例7】 (山东理10)已知()f x 是R 上最小正周期为2的周期函数,且当02x <≤时,()3f x x x =-,则函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为( ) A .6B .7C .8D .9【答案】A【解析】因为当02x <≤时,()3f x x x =-,又因为()f x 是R 上最小正周期为2的周期函数,且()00f =,所以()()()()6420f f f f ===,又因为()10f =,所以()30f =,()50f =,故函数()y f x =的图象在区间[]0,6上与x 轴的交点的个数为6个,选A .【例8】 (2010福建文)函数()223,0-2+ln ,0x x x f x x x ⎧+-=⎨>⎩≤的零点个数为 ( )A .3B .2C .1D .0【答案】B【解析】当0x ≤时,令2230x x +-=解得3x =-;当0x >时,令2ln 0x -+=解得100x =,所以已知函数有两个零点,选C .二次函数的零点问题【例9】 方程()2250x m x m +-+-=的两根都大于2,则m 的取值范围________. 【答案】(]5,4--【解析】令()()225f x x m x m =+-+-,要使()0f x =的两根都大于2,则()()()22450,20,22,2m m f m ⎧⎪=---⎪⎪>⎨⎪-⎪>⎪⎩Δ≥ 54m -<<-.【例10】 关于x 的方程()234210m x mx m +-+-=的两根异号,且负的绝对值不正的绝对值大,那么实数m 的取值范围时( )A .30m -<<B .03m <<C .3m <-或0m >D .0m <或3m >【解析】由题意知()()2121216432104032103m m m m x x m m x x m ⎧=-+->⎪⎪⎪+=<⎨+⎪⎪-⋅=<⎪+⎩Δ得30m -<<,故选A .【变式】(福建文6)若关于x 的方程210x mx ++=有两个不相等的实数根,则实数m 的取值范围是( )A .(-1,1)B .(-2,2)C .()(),22,-∞-+∞ D .()(),11,-∞-+∞.【答案】C【变式】(重庆理10)设m ,k 为整数,方程220mx kx -+=在区间(0,1)内有两个不同的根,则m k +的最小值为( )A .-8B .8C .12D . 13【答案】D【例11】 已知m ∈R ,函数()()21f x m x x a =-+-恒有零点,求实数a 的取值范围.【答案】当0m =时,a R ∈;当0m ≠时,11a -≤≤【解析】 (1)当0m =时,()0f x x a =-=解得x a =恒有解,此时a R ∈;.(2)当0m ≠时,∵ ()0f x =,即20mx x m a +--=恒有解,∴ 211440m am ∆=++≥恒成立,令()2441g m m am =++ ∵()0g m ≥恒成立,∴2α2∆=16-16≤0,解得11a -≤≤,综上所述知,当0m =时,a R ∈; 当0m ≠时,11a -≤≤.函数图象与方程【例12】 关于x 的方程10ax a +-=在区间()0,1内有实根,求实数a 的取值范围是( )A .1a >B .12a <C .112a << D .12a <或1a > 【解析】只需()()010f f <即可,解得112a <<.【例13】 (2010•上海理17)若0x 是方程1312xx ⎛⎫= ⎪⎝⎭的解,则0x 属于区间( )【例14】 设123,,x x x 依次是方程12log 2x x +=,2log (2)x +22x x +=的实数根,试比较123,,x x x 的大小 .【答案】231x x x <<【解析】 在同一坐标内作出函数2y x =-,12x12log y x=,2x y =-的图象从图中可以看出,310x x << 又20x <,故231x x x <<【例15】 (山东理16)已知函数()log a f x x x b =+-(0a >,且0a ≠),当234a b <<<<时,函数()f x 的零点()0,1x n n ∈+,n N *∈,则N =_________ .【答案】5【解析】方程()log a f x x x b =+-(0a >,且0a ≠)=0的根为0x ,即函数log a y x =()23a <<的图象与函数()34y x b b =-<<的交点横坐标为0x ,且()0,1x n n ∈+,n N ∈*,结合图象,因为当()23x a a =<≤时,1y =,此时对应直线上1y =的点的横坐标()14,5x b =+∈;当2y =时, 对数函数()log 23a y x a =<<的图象上点的横坐标()4,9x ∈,直线()34y x b b =-<<的图象上点的横坐标()5,6x ∈,故所求的5=.【例16】 (2010广东深圳)已知函数()221f x x ex m =-++-,()()20e g x x x x=+>.(1)若()g x m =有零点,求m 的取值范围;(2)确定m 的取值范围,使得()()0g x f x -=有两个相异样的实根.【解析】(1)()22e g x x e x=+≥等号成立的条件是x e =故()g x 得值域是(]2,e +∞.故此只需2m e >,则()g x m =就有零点. (2)若()()0g x f x -=有两个相异实根,而()()g x f x =中()g x 与()f x 的图像有两个不同的交点.作出()2e g x x x=+()0x >的图像,如图()21f x x ex m =-++-=()221x e m e --+-+,其对称轴为x e =,开口向下,最大值为21m e -+故当212m e e -+>,即221m e e >-++时,()g x 与()f x 有两个交点,即()()0g x f x -=有两个实数根.∴m 的取值范围是()221,e e -+++∞.函数零点的应用【例17】 (辽宁文16)已知函数()2x f x e x a =-+有零点,则a 的取值范围是___________.【答案】(],2ln 22-∞-【例18】 (2011•湖南)已知函数()1x f x e =-,()243g x x x =-+-,若有()()f a f b =,则b 的取值范围为( )A.2⎡⎣B.(2+C .[]1,3D .()1,3【例19】 已知2()log f t t =,8t ⎤∈⎦,对于()f t 值域内的所有实数m ,不等式2424x mx m x ++>+恒成立,求x 的取值范围.【解析】 ∵t ∈8],∴ ()f t ∈[12,3], ∴m ∈[12,3] . 原题转化为:2(2)(2)m x x -+->0恒成立, 当2x =时,不等式不成立.∴2x ≠,令2()(2)(2)g m m x x =-+-,m ∈[12,3], 则:2212()(2)022(3)3(2)(2)0x g x g x x -⎧=+->⎪⎨⎪=-+->⎩,解得:21x x ><-或. ∴x 的取值范围为(,1)(2,)-∞-+∞.【答案】(,1)(2,)-∞-+∞【例20】 (2009福建卷文)若函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25, 则()f x 可以是( )A .()41f x x =-B .()2(1)f x x =-C .()1xf x e =- D .()12f x In x ⎛⎫=-⎪⎝⎭【答案】 A【解析】 ()41f x x =-的零点为14x =,()2(1)f x x =-的零点为1x =, ()1xf x e =-的零点为0x =,()12f x In x ⎛⎫=- ⎪⎝⎭的零点为x=23.现在我们来估算()422x g x x =+-的零点,因 为g(0)=-1,g(21)=1,所以g(x)的零点x ∈(0, 21),又函数()f x 的零点与()422xg x x =+-的零点之差的绝对值不超过0.25,只有()41f x x =-的零点适合,故选A .【例21】 (2010西城一模文20)已知函数2()()e x f x x mx m =-+,其中m ∈R .(1)若函数()f x 存在零点,求实数m 的取值范围;(2)当0m <时,求函数()f x 的单调区间,并确定此时()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由.【解析】 (1)设()f x 有零点,即函数2()g x x mx m =-+有零点,所以240m m -≥,解得4m ≥或0m ≤;(2)2()(2)e ()e (2)e x x x f x x m x mx m x x m '=-⋅+-+⋅=-+, 令()0f x '=得0x =或2x m =-, 因为0m <,所以20m -<,当(,2)x m ∈-∞-时,()0f x '>,函数()f x 单调递增; 当(2,0)x m ∈-时,()0f x '<,函数()f x 单调递减; 当(0,)x ∈+∞时,()0f x '>,函数()f x 单调递增. 此时,()f x 存在最小值.()f x 的极小值为(0)0f m =<.根据()f x 的单调性,()f x 在区间(2,)m -+∞上的最小值为m ,解()f x =0,得()f x 的零点为1x =和2x =结合2()()e x f x x mx m =-+⋅可得在区间1(,)x -∞和2(,)x +∞上,()0f x >. 因为0m <,所以120x x <<,并且1(2)2x m m --=+=4|2|4(2)1022m m m m -+---+-->===>,即12x m >-,综上,在区间1(,)x -∞和2(,)x +∞上,()0f x >,()f x 在区间(2,)m -+∞上的最小值为m ,0m <,所以,当0m <时()f x 存在最小值,最小值为m .【例22】 设函数()32f x x ax bx a =+++,()232g x x x =-+,其中x R ∈,a ,b 为常数,已知曲线()y f x =与()y g x =在点()2,0处有相同的切线1. (I) 求a ,b 的值,并写出切线1的方程;(II)若方程()()f x g x mx +=有三个互不相同的实根0,1x ,2x ,其中12x x <,且对任意的1,2x x x ⎡⎤∈⎣⎦,()()(1)fxg x m x +<-恒成立,求实数m 的取值范围.判断函数()y f x =在某区间上是否有零点,有几个零点,常用以下方法: 解方程:方程根的个数即为零点的个数 定理法:利用函数零点存在性定理直接判断图像法:转化为求两个函数图像的交点个数问题进行判断课后总结【习题1】 (天津文4)函数()e 2xf x x =+-的零点所在的一个区间是( )A .()2,1--B .()1,0-C .()0,1D .()1,2 【答案】C【解析】因为()11e 120f --=--<,()00e 0210f =+-=-<,()11e 12e 10f =+-=->,所以函数()e 2x f x x =+-的零点所在的一个区间是()0,1.故选C.【习题2】 偶函数()f x 在区间[]0,a ()0a >是单调函数,且满足()()00f f a <,则函数()f x 在区间[],a a -内零点的个数是( ) A .1B .2C .3D .4A .0B .1C .2D .3【答案】C .【习题4】 (2009安徽卷理)设a <b,函数2()()y x a x b =--的图像可能是( )【答案】 C【解析】/()(32)y x a x a b =---,由/0y =得2,3a bx a x +==,∴当x a =时,y 取极大值0,当课堂检测23a bx +=时y 取极小值且极小值为负.故选C .【习题5】 方程2210(0ax x a --=>,且1)a ≠在区间[]1,1-上有且仅有一个实根,求函数23xxy a -+=的单调区间.【解析】 令2()21f x ax x =--,(1)由(1)20f a -==,得0a =,舍去; (2)由(1)220f a =-=,得1a =,舍去; (3)(1)(1)0f f -⋅<⇔20a a -<⇔01a << 综上:01a << 对于函数23xxy a -+=,令t y a =,221133()612t x x x =-+=--+则t y a =在R 上为减函数,t 在1(,]6-∞上为增函数,在1[,)6+∞上为减函数. ∴当1(,]6x ∈-∞时,23x x y a -+=是减函数;当1[,)6x ∈+∞时,23x x y a -+=是增函数.【答案】单调减区间1(,]6-∞单调增区间1[,)6+∞【习题6】 若函数()()01xf x a x a a a =-->≠且有两个零点,则实数a 的取值范围是 _________.【答案】}1|{>a a【解析】 设函数(0,x y a a =>且1}a ≠和函数y x a =+,则函数()()01x f x a x a a a =-->≠且有两个零点, 就是函数(0,xy a a =>且1}a ≠与函数y x a=+有两个交点,由图象可知当10<<a 时两函数只有一个交点,不符合,当1>a 时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点(0,a )一定在点(0,1)的上方,所以一定有两个交点.所以实数a 的取值范围是}1|{>a a .。

高中一年级数学函数零点

高中一年级数学函数零点

高中一年级数学函数零点1、一次函数的零点一次函数的零点即为函数的根,也可以称之为x的零点,可以直接由函数的一次单调性性质判断。

函数y=f(x)在区间(a,b)上单调递增时,可以推断出其在[a,b]上无根;函数f(x)在区间[a,b]上单调递减时,可以推断出其在[a,b]上无根;此时若f(a)、f(b)有符号相反,表示在[a,b]区间有一个零点,即根。

2、二次函数的零点二次函数y=f(x),其零点可以直接由函数的二次单调性性质解决。

函数y=f(x)在区间[a,b]上单调递增时,可推断出其在该区间内有两个零点。

若f(a)、f(b)均为正数即表示区间[a,b]内无根;若f(a)和f(b)均为负数即表示区间[a,b]内有两个零点;若f(a)和f(b)有符号相反,表示区间[a,b]内有一个零点。

3、多项式的零点多项式的零点可以用牛顿法和求根公式求解,如牛顿法:牛顿法是基于牛顿迭代公式的一种求根法,只要给定初值和函数值连续可导,能利用牛顿法求解方程的根,多项式的零点就是多项式的根的求解。

如果一个多项式的次数未知,则可采用数值求根方法,如牛顿法,。

4、一元二次不等式的零点一元二次不等式的零点可由不等式的根的求解来求得。

一元二次不等式的零点可以分为以下三种情况:1)当不等式转化为一元二次函数后,没有实数根;2)当不等式转化为一元二次函数后,只有一个实数根;3)当不等式转化为一元二次函数后,有两个实数根。

5、三次函数的零点三次函数y=f(x)的零点可以由三次单调性来求得。

函数y=f(x)在区间[a,b]上单调递增或者递减时,可以判断出函数在[a,b]上无根;函数y=f(x)在区间[a,b]上单调性改变一次时,可以判断出函数在[a,b]上有一个根;函数y=f(x)在区间[a,b]上单调性改变两次时,可以判断出函数在[a,b]上有两个根。

6、可导函数的零点可导函数的零点可由可导性的性质求得。

可导函数的零点可以这样想:在一个函数上,它的任一点,当其处于可导区域,即点斜率存在且连续时,可知此点应该是函数的驻点,即此点处函数图像的斜率均为0,便可以确定此点为函数的零点。

导数与函数的零点

导数与函数的零点

仅有一个交点,即f(x)=2x-6+ln x在(0,+∞)上
有故且函仅 数f有(x有)共1有个2零个点零,
点.
高二数学名师 课程
3.已知函数f(x)=ex-2x+a有零点,则a的取值,2l范n 2围 2
是解:函数f(x)=e.x-2x+a有零点即ex-2x+a=0有根,即 a=2令x-gex(有x)=根2x, -ex,则a的范围即为函数g(x
只有一个零点,求实数 k 的值. [解析] 解法一:f(x)=kx-ln x-1,f′(x)=k-1x=kx-x 1(x>0,k>0), 当 x=1k时,f′(x)=0;当 0<x<1k时,f′(x)<0; 当 x>1k时,f′(x)>0.
∴f(x)在(0,1k)上单调递减,在(1k,+∞)上单调递增, ∴f(x)min=f(1k)=ln k, ∵f(x)有且只有一个零点, ∴ln k=0,∴k=1. 解法二:由题意知方程 kx-ln x-1=0 仅有一个实根, 由 kx-ln x-1=0 得 k=ln xx+1(x>0), 令 g(x)=ln xx+1(x>0),g′(x)=-xln2 x, 当 x=1 时,g′(x)=0;当 0<x<1 时,g′(x)>0;
当x∈(1,+∞)时,u′(x)>0, 所以u(x)在(1,+∞)上单调递增, 所以x=1时,u(x)取得极小值u(1)=-e, 又x→+∞时,u(x)→+∞; x<2时,u(x)<0,所以-e<m<0.
方法二:g(x)=f(x)-3ex-m=ex(x-2)-m, g′(x)=ex·(x-2)+ex=ex(x-1), 当x∈(-∞,1)时,g′(x)<0,所以g(x)在(-∞,1)上单调递减, 当x∈(1,+∞)时,g′(x)>0,所以g(x)在(1,+∞)上单调递增, 所以x=1时,g(x)取得极小值g(1)=-e-m, 又x→-∞时,g(x)→-m,

高中数学:函数零点

高中数学:函数零点

函数零点一、函数的零点1.零点的定义:对于函数()y f x ,使()0f x 的实数x 叫做函数()yf x 的零点.2.函数零点的等价关系函数()y f x =的零点就是方程()0f x =实数根,亦即函数()y f x =的图象与x 轴交点的横坐标.即方程()0f x =有实数根⇔函数()y f x =的图象与x 轴有交点⇔函数()y f x =有零点.3.零点存在性判定定理定理:如果函数()y f x =在区间[]a b ,上的图象是连续不断的一条曲线,且()()0f a f b ⋅<,则函()y f x =在区间()a b ,内有零点,即存在()c a b ∈,,使得()0f c =,这个c 就是方程()0f x =的根.4.对函数零点存在的判断中,必须强调:1)()f x 在[]a b ,上连续; 2)()()0f a f b <; 3)在()a b ,内存在零点. 这是零点存在的一个充分条件,但不是必要条件. 注意:函数()yf x 的零点就是方程()0f x 的实数根,也就是函数()yf x 的图象与x 轴交点的横坐标,所以函数的零点是一个数,而不是一个点.在写函数零点时,所写的一定是一个数字,而不是一个坐标.5. 二次函数零点的判定0)的图像2ax bx c 0a )的根2a2ax bxc0)的零点2ba2ax bxc0)的解集2ax bxc0)的解集1x 或2xx }2a6.一元二次方程20axbx c根的分布(下面对0a 进行讨论)20bk a △20bk a △1212()x x k k ,,1122k x k x )k ,内有且只有一根yyyky y1220b k a△23()0()0f k f k △且(2b k a一.选择题(共12小题)1.(2018•重庆模拟)函数f(x)=|x﹣2|﹣lnx在定义域内零点的个数为()A.0B.1C.2D.32.(2018•商洛模拟)函数f(x)=ln(x+1)﹣2x的零点所在的大致区间是()A.(3,4)B.(2,e)C.(1,2)D.(0,1)3.(2017秋•镇原县校级期末)函数f(x)=2x+7的零点为()A.7B.7 2C.﹣7D.−7 24.(2017秋•平罗县校级期末)方程2x=2﹣x的根所在区间是()A.(﹣1,0)B.(2,3)C.(1,2)D.(0,1)5.(2018春•番禺区校级月考)方程x3﹣3x﹣m=0在[0,1]上有实数根,则m的最大值是()A.0B.﹣2C.﹣118D.16.(2017•奉贤区二模)若f(x)为奇函数,且x0是y=f(x)﹣e x的一个零点,则﹣x0一定是下列哪个函数的零点()A.y=f(x)e x+1B.y=f(﹣x)e﹣x﹣1C.y=f(x)e x﹣1D.y=f(﹣x)e x+17.(2016秋•仙桃期末)函数f(x)=2x2﹣3x+1的零点个数是()A.0B.1C.2D.38.(2016秋•库尔勒市校级期末)下列函数中,既是奇函数又存在零点的函数是()A.y=sinx B.y=cosxC.y=lnx D.y=x3+19.(2016秋•黄山期末)函数f(x)=log2(x﹣1)的零点是()A.(1,0)B.(2,0)C.1D.210.(2016秋•东莞市校级期末)函数f(x)=x2﹣4x+4的零点是()A.(0,2)B.(2,0)C.2D.411.(2017秋•青冈县校级期中)函数f(x)=2x2﹣3x+1的零点是()A.﹣12,﹣1B.﹣12,1C.12,﹣1D.12,112.(2017春•江津区期中)设f(x)=ax+4,若f(1)=2,则a的值()A.2B.﹣2C.3D.﹣3二.填空题(共5小题)13.(2014秋•新沂市校级月考)已知集合A={x|ax2﹣3x+2=0,x∈R,a∈R}只有一个元素,则a=.14.(2014秋•涟水县校级期中)方程4x2﹣12x+k﹣3=0没有实根,则k的取值范围是.15.(2012秋•浦东新区校级月考)2﹣x+x2=5的实根个数为.16.(2012秋•金山区校级月考)函数y=x3﹣2x的零点是.17.已知x 38=234,则x=.三.解答题(共1小题)18.解方程:x3+x2=1.。

函数的零点

函数的零点
函 数 的 零 点
新概念:
一般地,如果函数y=f(x)在实数a处的值等于零,即 f(a)=0,则a叫做这个函数的零点. 注:1.零点是图像与x轴交点的横坐标a,不是号零点两种.
3.如果函数y=f(x)在一个区间[a,b]上的图像不间
断,并且在它的两个端点处的函数值异号,即
C.有且只有一个
D.可能有无数个
3.已知函数f(x)满足f(2+x)=f(2-x)(x∈R),且函数f(x)有 四个不同零点x1,x2,x3,x4,则x1+x2+x3+x4= 8 ;若 有5个不同零点x1,x2,x3,x4,x5,则x1+x2+x3+x4+x5= 10 .
小贴士:研究函数零点的一个重要方法是数形结合!
4.关于x的一元二次方程x2+(a2-1)x+a-2=0一根大于1, 另一根小于1,求实数a的取值范围。 (-2<a<1) 5.若关于x的方程kx2-(2k+1)x-3=0在(-1,1)和(1,3)内 各有一个实根,求实数k的取值范围 (K<-4,或k>2) 小贴士:1.一元二次方程实根分布问题; 2.函数、方程、不等式是紧密联系在一起的;
f(a)f(b)<0,则这个函数在这个区间上至少有一 个零点,即至少存在一点x0∈(a,b),使f(x0)=0.
做一做: 1.若函数f(x)=3ax-2a+1在[-1,1]上存在零点,则实数a 的取值范围为 a≤-1,或a≥1/5 。 2.若函数f(x)在R上递增,则y=f(x)的零点(B ) A.至少有一个 B.至多有一个
3.转换过程要注意同解性。
6.若函数f(x)=x2+2x-a在区间[-3,3]上有两相异零点, 则实数a的取值范围为 -1<a≤3 。 思考:除了刚才实根分布方法,还可以怎么解?

函数的基本性质-函数的零点剖析

函数的基本性质-函数的零点剖析

y f (x) y A
B
x [a,b]bx a
B
2.当A,B与x轴是怎样的位置关系时,AB间一段 连续不断的函数图像与x轴一定有交点?
3.A,B与x轴的位置关系如何用数学符号(式子)表示?
f (a) f (b) 0
探究一:
在什么情况下,函数f (x)在(a,b)一定存在零点?
函数y f (x)在[a,b]上图像连续不断 f (a) f (b) 0
练一练:
(1)用二分法研究函数f ( x) x3 3x 1的零点时 第一次经计算f (0) 0, f (0.5) 0,可得其中一个
零点x0 (0, 0.5) ,第二次应计算 f (0.25)
练一练:
(2)用二分法求函数f ( x) x3 2x 1的零点近似 值时,现已将零点锁定在区间(1,2)内,则下一步 可断定该零点所在区间为 ( 3 ,2)
2
试一试:求f ( x) 4x3 52x2 169x 140在(3,4)
内的零点的近似值。(精确到0.1)
左端点 (a
中点 c
右端点 f(a) f(c) f(b) b) 符号 符号 符号
求f ( x) 4x3 52x2 169x 140在(3,4) 内的零点的近似值。(精确到0.1)
f (3) 7
f (3.125) 2.4
3.15625
( ( () ) 3.125 3.1875 3.25
3
f (3.25) 2.7
) 3.5
f (3.5) 14
)
4
f (4) 40
试一试:求f ( x) 4x3 52x2 169x 140在(3,4)
内的零点的近似值。(精确到0.1)
x1 1 x2 3 f (x) x2 2x 3

22.函数的零点

22.函数的零点
f ( z ) ( z z0 )m ( z ),
其中 ( z ) 在点z0解析, 且 ( z0 ) 0.
定理1 不恒为零的解析函数的零点必是 孤立零点. 这是解析函数又一个 解析函数的特性. 对于实可微函数, 其
定理 设函数f (z)在单连通区域 D上的解 零点不一定是孤立的,例如函数 1 C是 D内分段光滑 (或可求长)的Jordan曲线, z 2 x sin , x 0 f ( x) x C的内部区域 , 则f (z)在z0处存在各阶导数, 并 x0 0, 1z ) n! x f ( (n) n 1, 2, 在零点x=0处可微,但是 f ( z0 ) d z n n 1 2πi C ( z n z z 0) C lim xn 0. 也是f (z)的零点,且 ( n 1,2,3, ), n
该邻域内可展开成 Taylor 方法奠定了基础 . 级数. 由已知条件知, 该
可展开为幂级数

注 这个定理为把函数展开成Taylor级数的间接
f ( z ) cn ( z z0 ) n ,
cn
0
内解析 , z0 为D内的一点, R为 z0 到 n! (D是全平面时, R=+), 则 f ( z ) 在
3
2 f (1) 3 z 3 0, 所以可见 解 (1) 由于 z 1
z 1 是 f ( z ) 的1级零点 . 只有一个零点?
(2) 显然,zk 2k ( k 0, 1, 2, ) 是 f (z) 的零点. 由于
f (2k ) 0,
f (2k ) sin z
D内的点,且在 z z0 R 内可展成幂级数
( z z0 ) n , f ( z ) cn

第15节 函数的零点

第15节  函数的零点

典例分析:
例 4:已知函数 f(x)的图象是连续不断的,有如下的 x,f(x)的对应表:
则函数 f(x)存在零点的区间有( )
A.区间[2,3]和[3,4]
B.区间[3,4]、[4,5]和[5,6]
C.区间[2,3]、[3,4]和[4,5] D.区间[1,2]、[2,3]和[3,4]
解:由已知条件可得:f(1)=﹣8<0,f(2)=2>0,f(3)=﹣3<0,f(4)=5
高中数学 必修一
第二章 函数 第15节 函数的零点
第二章 函数
第十五节 函数的零点
必备新知
1.函数的零点
如果函数 y=f(x)在实数 α 处的值等于零,即 f(α)=0,则 α 叫做这个函数的零点.在坐标系
中表示图象与 x 轴的公共点是(α,0).
典例分析:
例 1:求下列函数的零点: (1)f(x)=-x2-2x+3; (2)f(x)=x4-1.
3.已知函数
则方程 f(x)+1=0 的实根个数为( )
A.0 B.1 C.2 D.3
解:画出函数
和 y=﹣1 的图象,
方程 f(x)+1=0 即 f(x)=﹣1, 结合图象易知这两个函数的图象有 2 交点, 则方程 f(x)+1=0 的实根个数为 2. 故选 C.
4.已知函数 f(x)是定义在 R 上的奇函数,且在区间(0,+∞)上单调,f(2) >0>f(1),则函数 f(x)的零点个数为( ) A.0 B.1 C.2 D.3
典例分析:
例 6:(1)函数 f(x)=x2﹣2x+a 在区间(1,3)内有一个零点,则实数 a 的取值
范围是( )
A.(﹣3,0)
B.(解:﹣∵3令,f1()x)=Cx2.﹣(2x﹣+a1,,它3的)对称D轴.为(x﹣=1,1,1)

函数的零点和二分法

函数的零点和二分法

练习1: 求方程x3+3x-1=0的一个近似解(精确到 0.01)
画y=x3+3x-1的图象比较困难, 变形为x3=1-3x,画两个函数的图象如何?
y
1
y=x3
有惟一解x0∈(0,1)
0 1
x
y=1-3x
课堂小结
1. 二分法定义 二分法是求函数零点近似解的一种计算方法. 2.解题步骤 ①确定初始区间 ②计算并确定下一区间,定端点值符号 ③循环进行,达到精确度。 3. 感悟重要的数学思想:等价转化、函数与 方程、数形结合、分类讨论以及无限逼近 的思想.
由特殊到一般性的归纳:
x2-2x-3=0 x2-2x+1=0 方 程 Δ> 0 Δ= 0 判别式Δ x1=x2=1 x1=-1,x2=3 方程的根 方程ax2 +bx+c=0 两个不相等的 有两个相等的 (a>0)的根 数 实数根x1 、x2 实数根x1 = x2 y=x2-2x-3 y=x2-2x+1 函 y y 函数y=ax2 +bx+c (a>0)的图象 2 4
A. ( – 2 ,0) B. (1,2) C. (0,1)
B)
D. (0,0.5)
2.4.2求函数零点近似解的一种计算方法 ——二分法
问题1: 有12个球,其中有一个比别的球重,你用天平 称几次可以找出这个球?次数越少越好 ? • 第一次,两端各放6个,低的那端有重球. • 第二次,两端各放3个,低的那端有重球. • 第三次,两端各放1个,如果平了,剩下的 那个就是,否则低的那端那个就是!
数离形时少直观,形离数时难入微!
1.简述上述求方程近似解的过程 解:设f (x)=x2-2x-1,x1为其正的零点 x1∈(2,3) ∵ f(2)<0, f(3)>0 ∵f(2.5)=0.25>0 x1∈(2,2.5) ∴f(2)<0, f(2.5)>0 ∵ f(2.25)= -0.4375<0 x1∈(2.25,2.5) ∴ f(2.25)<0, f(2.5)>0 ∵ f(2.375)= -0.2351<0 x1∈(2.375,2.5) ∴ f(2.375)<0, f(2.5)>0 ∵ f(2.4375)= 0.105>0 x1∈(2.375,2.4375) ∴ f(2.375)<0, f(2.4375)>0 ∵ 2.375与2.4375的近似值都是2.4, ∴x1≈2.4

函数的零点

函数的零点

1 3 f(x)=ex-1 的零点为 x=0,f(x)=ln(x-2)的零点为 x=2,现在我们来估 1 算 g(x)=4x+2x-2 的零点,因为 g(0)=-1,g(2)=1,所以 g(x)的零点 1 x∈(0,2),又函数 f(x)的零点与 g(x)=4x+2x-2 的零点之差的绝对值不 超过 0.25,只有 f(x)=4x-1 的零点适合,故选 A.
则a的范围为________. 解析:由题意f(1)f(0)<0,∴a(2+a)<0,∴-2<a<0.
答案:(-2,0)
5.(2012届温州八校联考)关于x的方程9-|x-2|-4·3-|x-
2|-a=0有实根的充要条件是(
)
A.a≥-4 C.a<0
B.-4≤a<0 D.-3≤a<0
解析:令t=3-|x- 2|∈(0,1],∴t2-4t-a=0在(0,1]内有 根,∴a=t2-4t t∈(0,1],∴a∈[-3,0). 答案:D
[解析] 令 f(x)=log2(x+1)-1=0,得函数 f(x)的零点为 x=1,于是抛 1 物线 x=ay2 的焦点的坐标是(1,0),因为 x=ay2 可化为 y2=ax,所以
1>0 a 1 4a=1
[答案] 1 4
1 ,解得 a=4.
本小节结束
请按ESC键返回
)
解析:∵f′(x)=ex+1>0,∴f(x)=ex+x-2在R上是增函数.
而f(-2)=e-2-4<0,f(-1)=e-1-3<0,f(0)=-1<0,f(1)= e-1>0,f(2)=e2>0,∴f(0)·f(1)<0.故(0,1)为函数f(x)的零点所在 的一个区间. 答案:C
2.方程2-x+x2=3的实数解的个数为( A.2 B.3 C.1

高一数学函数的零点

高一数学函数的零点

零点存在性的探索
y
观察二次函数f(x)=x2-2x-3的图象:
.
-2 -1
2
.
.
1
-1 -2
.
1
0
2
3 4
x
> f(1)___0, < 在区间[-2,1]上,f(-2) __0, < 则 f(-2)·f(1) ___0 , 在区间(-2,1)上,x=-1是 x2 -2x-3 =0的一个根
-3 -4
2.4.1 函数的零点
思考:一元二次方程 ax2+bx+c=0(a≠0)的根与二次 函数y=ax2+bx+c(a≠0)的图象 有什么关系?
判别式△ = b2-4ac
△>0
△=0
△<0 没有实根
y
方程ax2 +bx+c=0 两个不相等 有两个相等的 的实数根x1 、x2 实数根x1 = x2 (a≠0)的根
A x> – 2
B
x< – 2
C x>2
D x<2
D – 4 ,0,4
3、函数f(x)=x3-16x的零点为( A (0,0),(4,0) B 0,4
D
)
C (– 4 ,0), (0,0),(4,0)
4、函数f(x)= – x3 – 3x+5的零点所在的大致区间为( A ) 1 A (1,2) B ( – 2 ,0) C (0,1) D (0, ) 2
5、已知函数f(x)的图象是连续不断的,有如 下的x, f(x)对应值表:
x 1 f(x) 23 2 9 3 4 –7 11 5 –5 6 7 –12 –26
那么函数在区间[1,6]上的零点至少有(

函数的零点

函数的零点

(B)k<3或k>4
(C)-1<k<1或3<k<4
(D)-2<k<-1或3<k<4 解:函数f(x)=7x2-(k+13)x+k2-k-2的图象 是开口向上的抛物线,两个零点分别在(0,1), (1,2)内,所以由图象可知,函数y=f(x)满足
2 f (0) 0 k k 20 2 f (1) 0 ,即 k 2k 8 0 , f (2) 0 k 2 3k 0 k 2或k 1 解得, 2 k 4 k 3或k 0
(2)两个零点把x轴分成三个区间: (-∞,-2)、(-2,3)、(3,+∞), 在每个区间上,所有函数值保持同号。
例1. 求函数y=x3-2x2-x+2的零点,并画出 它的图象。 解:因为x3-2x2-x+2=x2(x-2)-(x-2) =(x-2)(x+1)(x-1). 所以函数的零点为-1,1,2. 3个零点把x轴分成4个区间:(-∞,-1)、 (-1,1)、(1,2)、(2,+∞)。 在这四个区间内,取x的一些值,以及零点, 列出这个函数的对应值表:
(m 2) 2 4(5 m) 0 f (2) 0 2m 2 2
2 m 16 0 解得 4 2(m 2) 5 m 0 m 2
m 4或m 4 m 5 所以 m 2
令g(m)=4m2+4am+1,
∵g(m)≥0恒成立, ∴ △2=16a2-16≤0,解得-1≤a≤1。 综上所述知,当m=0时,a∈R; m≠0时,-1≤a≤1。
例5.方程x2+(m-2)x+5-m=0的两根都大于

函数的零点

函数的零点
2
小结: 对于含参函数的零点问题, 小结: 对于含参函数的零点问题,可构造 函数F(x)=g(x) h(x).结合图像法 F(x)=g(x)图像法较易求 函数F(x)=g(x)-h(x).结合图像法较易求 得。
小结
• 知识内容总结: 知识内容总结: 函数零点定义,求法,性质, 函数零点定义,求法,性质,判定以 及应用。 及应用。 • 学习方法总结: 学习方法总结: 要学会在新旧知识间建立联系。 1、要学会在新旧知识间建立联系。 要学会总结与反思。 2、要学会总结与反思。

x + x − x 的所有零点
7 3
函数的图象与x ⇔ 函数的图象与x轴交点的横坐标
二、函数零点的性质
对于图象不间断的 函数y=f(x) 函数y=f(x)
a bO y
y = f(x)
xc demn零点的分类:若函数图象通过零点时且穿过x轴, 零点的分类:若函数图象通过零点时且穿过x 这样的零点为变号零点 变号零点; 这样的零点为变号零点; 若没有穿过x 则称之为不变号零点 不变号零点。) 若没有穿过x轴,则称之为不变号零点。)
三、函数零点存在性的判定
例4.判断下列函数在区间上是否存在零点。 4.判断下列函数在区间上是否存在零点。 判断下列函数在区间上是否存在零点 3 2 f 0,2) 1)( x) = 2 x − 3 x − 4 x + 6 在(0,2)上 3 2 1,1) 2) ( x) = 2 x − x + 1 在(-1,1)上 f 的图象是不间断的, 例5.已知函数 f(x) 的图象是不间断的,有 5.已知函数 对应值表: 如下的x,f(x)对应值表:
y = x − 3x 小结:常见函数的零点求法: 小结:常见函数的零点求法:一般直接用代数法 求方程f(x)=0的实根)或图像法。 f(x)=0的实根 (求方程f(x)=0的实根)或图像法。

函数的零点

函数的零点

y
y
0 a y
b
0 a
b x
b
x
y
0a x
0a
b
x
如果函数 y=f(x) 在[a,b]上,图象 是连续的,并且在闭区间的两个端点上 的函数值互异即f(a)f(b)﹤0,且是单调 函数,那么这个函数在(a,b)内必有惟一 的一个零点。
y
0
a
b
x
变号零点:如果函数图像通过零点时穿过x轴, 函数值变号,则称这样的零点为变号零点 不变号零点:如果函数图像通过这个零点时, 函数值的符号不改变,这样的零点叫不变号零点
1 2
有两个相等实数 根x1=x2 有一个二(重) 阶零点x1=x2
没有实数根
没有零点
方程f(x)=0有实数根 函数y=f(x)的图象与x轴有交点 函数y=f(x)有零点
例 1:1、函数 y 2 x 1 的图象与 x 轴交点的坐标 及零点分别是: (
1 1 , A、 2 2
1 1 C、 2 , 2
知识探究(三):根的分布问题
2 2 f x 7 x k 13 x k k 2 的两零点分 例 3、若函数
别在区间(0,1) , (1,2)内,则( D ) A、 k
3 2
B、 k 3或k 4
C、 1 k 1或3 k 4 D、 2 k 1或3 k 4
2.4.1 函数的零点
复习回顾
1、函数的零点的定义 2、关于零点的两点说明
对于函数y=f(x),我们把使f(x)=0的实 数x叫做函数y=f(x)的零点(zero point). 说明:①零点不是一个点,而是一个实数 ②并不是所有的函数都有零点
一元二次方程ax2+bx+c=0(a≠0)的 根与二次函数y= ax2+bx+c (a≠0)的图 像有什么关系?

函数的零点_PPT

函数的零点_PPT

A.2
B.3
C.4
D.5
3.函数f(x)=2x+3x的零点所在的一个区间是( B )
A.(-2,-1) B.(-1,0)
C.(0,1)
D.(1,2)
4.函数y=|x|-cos x在(-∞,+∞)内有___两_____个零点.
5.已知函数f(x)=x2+x+a(a<0)在区间(0,1)上有零点,则 a的取值范围为___(-__2_,__0_)___.
(数形结合法)作出函数 f(x)与 g(x)的图象如图所示,发现有 2 个不同的交点.
栏目 导引
基本初等函数、导数及其应用
判断函数零点个数的方法: (1)解方程法:令f(x)=0,如果能求出解,则有几个解就有 几 个零点; (2)零点存在性定理法:利用定理不仅要求函数在区 间[a,b] 上是连续不断的曲线,且f(a)·f(b)<0,还必须结合 函数 的 图 象与性质(如单调性、奇偶性、周期性、对称性)才能 确 定 函 数有多少个零点或零点值所具有的性质; (3)数形结合法:转化为两个函数的图象的交点个数问题.先 画出两个函数的图象,看其交点的个数,其中交点的横 坐 标 有几个不同的值,就有几个不同的零点.
基本初等函数、导数及其应用
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
Δ>0
二次函数 y=ax2+bx
+c (a>0)的图

与x轴的交 点
_(_x_1,__0_)_,_(_x_2_,__0_)
零点个数
2
Δ=0
(x1,0)或 (x2,0) 1
Δ<0
无交点 0
栏目 导引
基本初等函数、导数及其应用
零点为( D )
A.12,0
B.-2,0

《函数的零点》 讲义

《函数的零点》 讲义

《函数的零点》讲义一、函数零点的定义在数学中,函数的零点是一个非常重要的概念。

那什么是函数的零点呢?简单来说,如果函数 y = f(x) 在 x = a 处的函数值 f(a) = 0,那么x = a 就叫做函数 y = f(x) 的零点。

比如说,对于函数 f(x) = x 1,当 f(x) = 0 时,也就是 x 1 = 0,解得 x = 1。

所以 1 就是函数 f(x) = x 1 的零点。

再比如函数 f(x) = x² 4,令 f(x) = 0,即 x² 4 = 0,通过求解可得x = 2 或 x =-2,所以 2 和-2 都是函数 f(x) = x² 4 的零点。

二、函数零点存在性定理有了函数零点的定义,我们来看看函数零点存在性定理。

如果函数 y = f(x) 在区间 a, b 上的图象是连续不断的一条曲线,并且有 f(a)·f(b) < 0,那么函数 y = f(x) 在区间(a, b) 内至少有一个零点。

这个定理非常有用,它为我们判断函数在某个区间内是否存在零点提供了依据。

比如说,函数 f(x) = x² 2x 3 在区间 1, 4 上,f(1) =-4,f(4) = 5,因为 f(1)·f(4) < 0,所以函数在区间(1, 4) 内至少有一个零点。

但要注意,函数在区间内有零点,不一定只有一个零点。

三、函数零点与方程根的关系函数的零点与方程的根有着密切的关系。

方程 f(x) = 0 的根就是函数 y = f(x) 的零点。

例如,方程 x² 5x + 6 = 0 的根为 x = 2 和 x = 3,这两个值就是函数 f(x) = x² 5x + 6 的零点。

反过来,如果知道函数的零点,也就得到了相应方程的根。

通过求函数的零点来解方程,是一种重要的数学方法。

四、求函数零点的方法接下来,我们看看怎么求函数的零点。

函数的零点

函数的零点

必备知识:1、函数的零点:一般地,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。

2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ⋅<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b ∃∈,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。

因此分析一个函数零点的个数前,可尝试判断函数是否单调。

若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ⋅<,则()f x “一定”存在零点,但“不一定”只有一个零点。

要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ⋅>,则()f x “不一定”存在零点,也“不一定”没有零点。

如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ⋅的符号是“不确定”的,受函数性质与图像影响。

如果()f x 单调,则()()f a f b ⋅一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b ∈,则()0,x a x ∈时,()0f x <;()0,x x b ∈时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数 ③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ⋅为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =-,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

令h(x)=ln
x+x+
2 x
,则h′(x)=
1 x
+1-
2 x2

x2+x-2 x2

1 x2
(x+
2)(x-1),
易知h(x)在(0,1)上单调递减,在(1,+∞)上单调递增,
所以a=h(x)min=h(1)=3.
【方法总结】 已知函数有零点(方程有根)求参数取值常用的 方法和思路
(1)直接法:直接根据题设条件构建关于参数的不等式,再通过 解不等式确定参数范围;
答案:(1.25,1.5) 5.若函数 f(x)=2x2-ax+3 有一个零点是 1,则 f(-1)= ________. 答案:10
1.函数零点的概念 (1)函数的零点是一个实数,当函数的自变量取这个实数时,其 函数值等于零; (2)函数的零点也就是函数y=f(x)的图象与x轴的交点的横坐 标; (3)一般我们只讨论函数的实数零点; (4)函数的零点不是点,是方程f(x)=0的根.
3x-3的零点的是( )
A.[-1,0]
B.[1,2]
C.[0,1]
D.[2,3]
解析:由于f(0)=-3<0,f(1)=1>0,所以f(x)在区间[0,1]上存
在零点,故选C.
答案:C
考向二 判断函数零点的个数 (2013·豫东、豫北十校)已知f(x)是定义在[a,b]上的函数,其
图象是一条连续的曲线,且满足下列条件: ①f(x)的值域为G,且G⊆(a,b); ②对任意的x,y∈[a,b],都有|f(x)-f(y)|<|x-y|.那么,关于x
【解】 (1)由f(x)=ex(x2+ax-a)可得 f′(x)=ex[x2+(a+2)x].2分 当a=1时,f(1)=e,f′(1)=4e.4分 所以曲线y=f(x)在点(1,f(1))处的切线方程为y-e=4e(x-1), 即y=4ex-3e.5分
(2)令 f′(x)=ex[x2+(a+2)x]=0, 解得 x=-(a+2)或 x=0.6 分 当-(a+2)≤0,即 a≥-2 时,在区间[0,+∞)上,f′(x)≥0, 所以 f(x)是[0,+∞)上的增函数, 所以方程 f(x)=k 在[0,+∞)上不可能有两个不相等的实数根.8 分 当-(a+2)>0,即 a<-2 时,f′(x),f(x)随 x 的变化情况如下 表:
(2)分离参数法:先将参数分离,转化成求函数值域问题加以解 决;
(3)数形结合法:先对解析式变形,在同一平面直角坐标系中, 画出函数的图象,然后数形结合求解.
3.若函数f(x)=ax-x-a(a>0且a≠1)有两个零点,则实数a的 取值范围是________.
解析:设函数y=ax(a>0,且a≠1)和函数y= x+a,则函数f(x)=ax-x-a(a>0,且a≠1)有两 个零点,就是函数y=ax(a>0,且a≠1)与函数y= x+a有两个交点,由图象可知当0<a<1时两函数只有一个交点, 不符合;如图所示,当a>1时,因为函数y=ax(a>1)的图象过点 (0,1),而直线y=x+a所过的点一定在点(0,1)的上方,所以一定有两 个交点.所以实数a的取值范围是(1,+∞).
的区间为( )
x
-1
0
1
2
3
ex
0.37
1 2.72 7.39 20.09
x+2 1
2
3
4
5
A.(-1,0)
B.(0,1)
C.(1,2)
D.(2,3)
解析:设f(x)=ex-(x+2),
则由题设知f(1)=-0.28<0,f(2)=3.39>0,
故有一个根在区间(1,2)内.
答案:C
3.函数f(x)=2x+3x的零点所在的一个区间是( )
Δ>0
Δ=0
Δ<0
二次函数y=
ax2+bx+c(a
>0)的图象
与x轴的交点 (x1,0) , (x2,0) (x1,0)或(x2,0) 无交点
零点个数
两个
一个
零个
【基础自测】 1.(教材习题改编)下列图象表示的函数中能用二分法求零点的 是( )
答案:C
2.根据表中的数据,可以判定方程ex-x-2=0的一个根所在
2.(2013·广州模拟)函数f(x)=
x2+2x-3,x≤0, -2+ln x,x>0
的零点个数
为( )
A.3
B.2
C.1
D.0
解析:当x≤0时,由f(x)=x2+2x-3=0得x=-3(x=1舍去);
当x>0时,由f(x)=-2+ln x=0得x=e2,所以函数有2个零点,故
选B.
答案:B
考向三 由函数零点的存在情况求参数值 (2013·浙江十二校二次联考)已知函数f(x)=xln x,g(x)=-x2
+ax-2. 若函数y=f(x)与y=g(x)的图象恰有一个公共点,求实数a的
值. 【审题视点】 y=f(x)与y=g(x)图象恰有一个公共点,即f(x)
-g(x)=0恰有一根,转化为a的函数.
【解】 由题意得,f(x)-g(x)=xln x+x2-ax+2=0在(0,+
∞)上有且仅有一个根,
Байду номын сангаас
即a=ln x+x+2x在(0,+∞)上有且仅有一个根.
A.-2
B.1
C.-2 或 1
D.0
(2)(2013·北京海淀模拟)函数 f(x)=log2x-1x的零点所在区间为
()
A.0,12 C.(1,2)
B.21,1 D.(2,3)
【审题视点】 (1)将方程的根转化为两个函数图象交点问题, 结合图象以及单调性进行求解.
(2)根据区间(a,b)上的零点存在定理.f(a)f(b)<0判定. 【解析】 (1)由题意知,x≠0,则原方 程即为lg(x+2)=1x,在同一直角坐 标系中作出函数y=lg(x+2)与y=1x 的图象,如图所示,由图象可知,原方程有两个根,一个在区间(- 2,-1)上,一个在区间(1,2)上,所以k=-2或k=1.故选C.
阅卷点评 函数的零点,方程的根、图象的交点问题,三者之 间可以相互转化,常与导数综合.
规范步骤 第一步:把方程的根、图象的交点问题转化为函数 问题,并求导.
第二步:研究函数的单调变化. 第三步:研究函数的最值(或极值) 第四步:结合函数的性质描绘函数的图象特征,并用数形结合 法,求字母参数取值(范围).
所以要使方程 f(x)=k 在[0,+∞)上有两个不相等的实数根,k 的取值范围是ae+a+24,-a.13 分
【思维流程】 求导,及 k=f′(1). 利用点斜式写切线方程. 讨论两极值点的大小,当-(a+2)≤0,确定 f(x)在[0,+∞)
上的单调性,从而判断 f(x)=k 的根的情况. 当-(a+2)>0 时,f(x)在[0,+∞)上先减后增. 求 f(x)在[0,+∞)上的最小值 f(-(a+2)). 利用数形结合,y=k 与 y=f(x)有两个交点时 k 的上限值. 写出答案.
备考建议 对函数的零点除掌握好常规的考向外,在备考中还 应关注以下几个问题:
(1)与函数的单调性、奇偶性、周期性、值域等性质的综合问题. (2)与指数、对数及三角函数图象与性质的综合问题. (3)与导数的应用综合在一起的解答题. (4)培养数形结合思想、函数与方程思想的应用意识.
1.(2011·高考福建卷)若关于 x 的方程 x2+mx+1=0 有两个不
(3)函数零点的判定(零点存在性定理)
如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲 线,并且有 f(a)·f(b)<0,那么函数y=f(x)在区间 (a,b) 内有零点, 即存在c∈(a,b),使得 f(c)=0 ,这个c也就是f(x)=0的根.
2.二次函数y=ax2+bx+c(a>0)的图象与零点的关系
2.对函数零点存在的判断中,必须强调: (1)f(x)在[a,b]上连续;(2)f(a)·f(b)<0;(3)在(a,b)内存在零 点. 这是零点存在的一个充分条件,但不必要.
考向一 确定函数零点所在区间
(1)(2013·山东淄博模拟)若方程 xlg(x+2)=1 的实根在区间(k,
k+1)(k∈Z)上,则 k 等于( )
A.(-2,-1)
B.(-1,0)
C.(0,1)
D.(1,2)
解析:f(-1)=2-1-3=-52,f(0)=1,
则f(x)=2x+3x在(-1,0)上有零点.
答案:B
4.(教材改编)设 f(x)=3x+3x-8,用二分法求方程 3x+3x-8 =0 在 x∈(1,2)内近似解的过程中得 f(1)<0,f(1.5)>0,f(1.25)<0, 则方程的根落在区间________.
答案:(1,+∞)
函数与方程思想的综合应用
(2013·海淀区高三期末)已知函数f(x)=ex(x2+ax-a),其中a是 常数.
(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程; (2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个 不相等的实数根,求k的取值范围. 【解题指南】 (1)直接求导,求斜率,利用点斜式建立直线方 程. (2)在[0,+∞)上求f(x)的单调变化及最值,利用函数与方程的 思想求k的变化范围.
(2)∵f(12)=log212-2=-3<0, f(1)=log21-1=-1<0, f(2)=log22-12=12>0, ∴函数f(x)=log2x-1x的零点所在区间为(1,2), 故应选C. 【答案】 (1)C (2)C
1.(2013·北京东城区模拟)在以下区间中,存在函数f(x)=x3+
相等的实数根,则实数 m 的取值范围是( )
A.(-1,1)
B.(-2,2)
C.(-∞,-2)∪(2,+∞) D.(-∞,-1)∪(1,+∞)
相关文档
最新文档