污水处理场效果图
污水处理厂平面布置及高程布置
污水处理厂平面布置及高程布置一、污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5-8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
20000m3d城市污水处理厂综合设计(含11个CAD作图图纸)--优秀毕业设计{修}
本设计污水处理厂综合设计包括15个图纸,十分全面,具体详见报告后附图。
本报告附图全面详细。
图纸内容如下:A2O池,初沉池,幅流式二沉池,隔栅,工艺简单图,工艺流程图(高程图),回转耙式格栅除污机图,平面布置图,污泥浓缩池,厌氧消化池,钟式沉砂池等。
全为CAD制图。
下载后复制放大或打印可看清!题目20000m3/d城市污水处理厂综合设计专业: 环境工程年级: 2005级学号: 3105001286姓名: 莫笑伟指导教师:2008年12 月摘要我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
我国水体污染主要来自两方面,一是工业发展超标排放工业废水,二是城市化中由于城市污水排放和集中处理设施严重缺乏,大量生活污水未经处理直接进入水体造成环境污染。
工业废水近年来经过治理虽有所减少,但城市生活污水有增无减,占水质污染的51%以上。
本设计要求处理水量为20000m3/d的城市生活污水,设计方案针对已运行稳定有效的A2/O活性污泥法工艺处理城市生活污水。
A2O工艺由于不同环境条件,不同功能的微)能生物群落的有机配合,加之厌氧、缺氧条件下,部分不可生物降解的有机物(CODNB被开环或断链,使得N、P、有机碳被同时去除,并提高对COD的去除效果。
它可以同NB--时完成有机物的去除,硝化脱氮、磷的过量摄取而被去除等功能,脱氮的前提是NH3N应完全硝化,好氧池能完成这一功能,缺氧池则完成脱氮功能。
厌氧池和好氧池联合完成除磷功能。
关键词:城市生活污水,活性污泥,A2/O目录摘要 (III)目录 (IV)第一章设计概述 ······································································- 7 -1设计任务 ······································································- 7 - 2设计原则 ······································································- 7 - 3设计依据 ······································································- 8 - 第二章工艺流程及说明 ·····························································- 8 -1工艺方案分析 ································································- 8 - 2工艺流程 ······································································- 9 - 3流程各结构介绍 ·····························································- 9 -3.1格栅······························································································· - 9 -3.2沉砂池··························································································- 10 -3.3初沉池··························································································- 10 -3.4生物化反应池··············································································- 10 -3.5二沉池··························································································- 12 -3.6浓缩池··························································································- 12 - 第三章构筑物设计计算 ··························································· - 12 -1格栅 ·········································································· - 12 -1.1设计说明······················································································- 12 -1.2设计计算······················································································- 13 -2沉砂池 ······································································· - 16 -2.1设计说明······················································································- 16 - 3初沉池 ······································································· - 17 -3.1设计说明······················································································- 17 -3.2设计计算······················································································- 17 - 4生化池 ······································································· - 19 -4.1设计说明······················································································- 19 -4.2设计计算······················································································- 19 - 5二沉池 ······································································· - 26 -5.1设计说明······················································································- 26 -5.2设计计算······················································································- 26 - 6液氯消毒 ···································································· - 29 -6.1设计说明······················································································- 29 -6.2设计计算······················································································- 29 - 7污泥浓缩池 ································································· - 30 -7.1设计说明······················································································- 30 -7.2设计计算······················································································- 30 -8 污泥消化池 ································································· - 31 -8.1设计说明······················································································- 31 -8.2设计计算······················································································- 32 - 9浓缩污泥提升泵房 ························································ - 38 -9.1设计选型······················································································- 38 -9.2提升泵房······················································································- 38 -9.3污泥回流泵站··············································································- 38 -10污泥脱水间 ······························································· - 39 -10.1设计说明······················································································- 39 -11鼓风机房 ·································································· - 39 - 12恶臭处理系统 ···························································· - 39 -12.1设计说明······················································································- 39 -12.2设计计算······················································································- 39 -12.3风机选型······················································································- 40 - 第四章污水处理厂总体布置 ····················································· - 41 -1总平面布置 ································································· - 41 -1.1总平面布置原则··········································································- 41 -1.2总平面布置结果··········································································- 41 -2高程布置································································································- 42 -2.1高程布置原则··············································································- 42 - 第五章参考文献 ···································································· - 42 -第一章设计概述1设计任务本次课程设计的主要任务是完成某城市污水厂的A2/O工艺设计处理生活污水,处理水量为20000m3/d,按近期规划人口10万人计算(自定)。
污水处理厂平面布置及高程布置资料
污水处理厂平面布置及高程布置一污水处理厂的平面布置污水处理厂的平面布置应包括:处理构筑物的布置污水处理厂的主体是各种处理构筑物。
作平面布置时,要根据各构筑物(及其附属辅助建筑物,如泵房、鼓风机房等)的功能要求和流程的水力要求,结合厂址地形、地质条件,确定它们在平面图上的位置。
在这一工作中,应使:联系各构筑物的管、渠简单而便捷,避免迁回曲折,运行时工人的巡回路线简短和方便;在作高程布置时土方量能基本平衡;并使构筑物避开劣质土壤。
布置应尽量紧凑,缩短管线,以节约用地,但也必须有一定间距,这一间距主要考虑管、渠敷设的要求,施工时地基的相互影响,以及远期发展的可能性。
构筑物之间如需布置管道时,其间距一般可取5—8m,某些有特殊要求的构筑物(如消化池、消化气罐等)的间距则按有关规定确定。
厂内管线的布置污水处理厂中有各种管线,最主要的是联系各处理构筑物的污水、污泥管、渠。
管、渠的布置应使各处理构筑物或各处理单元能独立运行,当某一处理构筑物或某处理单元因故停止运行时,也不致影响其他构筑物的正常运行,若构筑物分期施工,则管、渠在布置上也应满足分期施工的要求;必须敷设接连人厂污水管和出流尾渠的超越管,在不得已情况下可通过此超越管将污水直接排人水体,但有毒废水不得任意排放。
厂内尚有给水管、输电线、空气管、消化气管和蒸气管等。
所有管线的安排,既要有一定的施工位置,又要紧凑,并应尽可能平行布置和不穿越空地,以节约用地。
这些管线都要易于检查和维修。
污水处理厂内应有完善的雨水管道系统,以免积水而影响处理厂的运行。
辅助建筑物的布置辅助建筑物包括泵房、鼓风机房、办公室、集中控制室、化验室、变电所、机修、仓库、食堂等。
它们是污水处理厂设计不可缺少的组成部分。
其建筑面积大小应按具体情况与条件而定。
有可能时,可设立试验车间,以不断研究与改进污水处理方法。
辅助建筑物的位置应根据方便、安全等原则确定。
如鼓风机房应设于曝气池附近以节省管道与动力;变电所宜设于耗电量大的构筑物附近等。
污水处理_城镇生活污水处理厂总平面布置CAD图纸
武汉市污水处理厂污泥处理处置项目
武汉市污水处理厂污泥处理处置项目环境影响报告书1总论1.1项目由来武汉市区2010年已建污水处理厂的总污水处理规模达171万m3/d,规划至2020年将建设13座污水处理厂,总的污水处理规模将达358万m3/d,其污水处理厂采用浓缩+脱水的污泥处理方式。
污水厂出厂污泥含水率80%左右,需进一步处理处置,保证污泥处理处置的“无害化、减量化、稳定化”,并为逐步“资源化”创造有利条件。
根据武汉市区污水处理厂的分期建设规划及固体物质计算,预测武汉市污水处理厂2015年污泥产量为795 t/d,2020年为1543 t/d。
随着污水处理厂规模的不断扩大,污水处理厂产生的污泥也会不断增加,大量污泥的妥善处理处置问题更为突出,如果不能采取有效的措施进行妥善处理和处置,必然对城市的环境造成严重影响,因此武汉市政府决定抓紧建设污泥处理处置工程以改善城市的环境。
1.1.1委托书武汉市污水处理厂污泥无害化处理处置项目环境评价委托书(附件1)。
1.1.2工程资料及有关批复文件(1)《武汉城市污水厂污泥处理处置工程可行性研究报告》,2010.8;(2)武汉市发展和改革委员会关于北京恒通信达环境科技有限公司投资建设、经营污泥处置项目情况的汇报及指示(附件2);(3)武汉市发展和改革委员会关于同意开展武汉市污水处理厂污泥无害化处理处置项目前期工作的函(附件3);(4)武汉市城市管理局关于恒通公司投资建设、经营污泥处置项目意见的回复(附件4);(5)武汉市环境保护局关于恒通公司投资建设、经营污泥处置项目的回复意见(附件5);(6)武汉市农业局关于征求恒通公司投资建设、经营污泥处置项目意见的复函(附件6);(7)武汉市水务局污水处向局领导关于北京恒通信达环境科技有限公司投资建设经营武汉市城市污泥处置项目工作情况汇报及批示(附件7);(8)武汉市新洲区人民政府阳逻街道办事处关于请求解决阳逻街工业园用地的请示(附件8);(9)新洲区人民政府办公室重要事项报告单及批示(附件9);(10)武汉市新洲区阳逻街道办事处与北京恒通信达环境科技有限公司武汉分公司签署的意向协议书(附件10);(11)武汉市农业局关于北京恒通信达环境科技有限公司投资建设武汉市污水处理厂污泥无害化处理处置项目生产的有机肥进行跟踪的意见函(附件11)。
污水处理厂V型滤池整套工艺施工图
马来西亚吉隆坡Pantai污水处理厂介绍
马来西亚吉隆坡Pantai污水处理厂介绍及国内全地下污水处理厂的发展趋势文/ 刘慧九(北控水务技术中心副总经理)一、项目背景马来西亚是一个风光秀丽的国家,旅游业发达,但随着经济的发展,水污染问题日趋严重。
2010年9月,在原中国主席胡锦涛与马来西亚首相拿督斯里纳吉的见证下,签署了北控水务对马来西亚全国污水处理的一揽子协议,其中Pantai污水处理厂作为首批项目开始实施建设。
该项目作为两国在基础设施领域的重要合作项目,也是中国企业在马来西亚第一次采用自己的专利技术承包污水处理项目。
二、项目概况Pantai污水处理厂位于吉隆坡Pantai区,设计规模32万吨/天,服务人口大约为140万人左右,总投资为25亿港币,运营模式为DBO(2年运营期)。
该污水处理厂最初采用氧化塘工艺,占地面积150000m2,随着城市的开发,厂子周边逐渐被高楼大厦所包围,成为“城中厂”。
周边居民面临噪音、臭气、污水、污泥等多重污染,严重影响人们的身心健康与城市形象,制约周边地块功能规划和周边地块土地价值。
原厂规划设计见图1。
图1北控水务经与马来西亚政府与技术委员会沟通,提出多种改建方案,其中一个方案为将原厂迁移,原厂地址用土覆盖用作绿化,但考虑到迁移会导致所有管网系统的调整,成本更大,因此提出全地下式污水处理厂的方案。
污水主体处理工艺采用A2O活性污泥法,污水处理系统的细格栅及旋流沉砂池、调节池、A2O生化池、二沉池、鼓风机房、维修车间、生物除臭设备、污水源热泵等均位于地下,效果图见图2。
项目用地面积109200m2,其中地面(生产区)部分44100m2,下部地面构筑物65100 m2。
污水经过沉淀池、消毒等工艺后达到我国国内污水出水标准的一级B 标准。
需要注意的是:马来西亚的污水出水设计标准较我国相对落后,且可套用多国标准,比较混乱。
北控水务在出水标准这一事宜与当地政府协商了半年多,最终决定采用中国国内污水出水一级B标准。
北石桥污水处理中心
一:西安市北石桥污水净化中心西安市北石桥污水净化中心由西安市市政工程管理局负责建设,中国市政工程西北设计研究院和西安市市政设计研究院设计,西安市市政一公司等单位承担施工。
1999年10月获陕西省第九次优秀工程设计一等奖。
西安市北石桥污水处理厂位于西安市西南郊北石桥村东,主要接纳和处理西安南郊和西南郊地区工业企业生产废水和居住区生活污水,其比例为7∶3左右。
由于西安市西南郊地区污水未经处理直接排放,从而引起皂河的严重污染,为此,北石桥污水处理厂的兴建,将会明显改善西安市西郊地区水环境状况。
同时二级处理出水经深度处理、回用,以弥补工业用水严重不足,缓解城市供水矛盾。
全区服务面积53.5km2,规划控制人口60万人。
北石桥污水处理厂一期工程设计规模15万m3/d,远期规模为30万m3/d,工程建设利用北欧发展基金与北欧投资银行联合贷款,贷款额度为545万美元。
根据对服务区域内各工业企业近远期所排污水水质、水量分析与预测,进、出厂水水质指标如下:进水中BOD5 180 mg/L,SS 255 mg/L,COD 400 mg/L,NH4-N 32 mg/L;出水中BOD5 <20 mg/L,SS <20 mg/L,COD <100 mg/L,NH4-N <15 mg/L(T>12℃)。
西安市北石桥污水处理厂的工艺设计,在进行各种工艺方案比较的基础上,消化吸收国外发达国家80年代先进技术,远期采用AB法工艺,近期暂建成B段,B段处理工艺采用丹麦克鲁格公司DE型氧化沟处理系统,由于污泥在氧化沟内已趋于稳定,无需另设消化池,剩余污泥经浓缩后直接机械脱水。
北石桥污水处理厂自1998年5月试运行以来,经过一年多的生产运行,整个工艺流程均达到和超过设计要求,出水水质稳定且低于设计出水指标,即BOD5 <15 mg/L,SS <15 mg/L,COD <60 mg/L,TN <8 mg/L,TP <1.5 mg/L。
污水厂投产后,每天大约15万m3污水中的有机物、磷、氮被大量削减,因此排入接纳水体皂河的水质也产生了较大的变化。