光面爆破参数

合集下载

光面爆破参数

光面爆破参数

光面爆破设计1.光爆标准:眼痕率不少于70%;超挖尺寸不得大于150mm,欠挖尺寸不得超过质量标准要求;岩面上不应有明显的炮震裂隙。

2.光面爆破的起爆顺序。

起爆顺序:掏槽炮→辅助炮→周边炮→底板炮→底角炮。

3.光面爆破参数的确定(1)周边孔间距E。

周边眼通常布置在距开挖断面边缘0.1m至0.2m处,光爆孔的孔底的孔底朝隧道开挖轮廓线方向倾斜3~5°。

当爆孔孔径D为42mm时,周边孔间距E =(10~14)D,即0.42mm~0.59mm;Ⅱ、Ⅲ级围岩周边眼的间距为0.55m,Ⅳ级围岩约为0.50m比较合适。

(2)光爆层厚度W。

光爆层厚度就是周边眼最小抵抗线,它与开挖的隧道断面大小有关。

断面大,光爆眼所受到的夹制作用小,岩石比较容易崩落,可以大些;断面小,光爆眼受到的夹制力大,光爆层厚度相对要小些。

同时,光爆层厚度与岩石的性质和地质构造有关,坚硬岩石光爆层可小些,松软破碎的岩石光爆层可大些。

(3)密集系数K。

周边眼密度系数是周边眼间距E与光爆层厚度W的比值,是影响爆破效果的重要因素。

K=E/W(K取值0.8)(4)孔深L。

围岩循环进尺:L=0.5×B×90%=0.5×6.0×90%=2.70m(隧道宽度B=6.0m)。

除掏槽眼和底角眼取值3.2m外,其余各眼炮孔深度取3.0m。

在实际操作中应视掌子面的凹凸情况,调整各炮眼钻孔长度,使所有炮眼眼底处于同一垂直面上。

(5)装药量Q。

一是确定炸药单耗量q,炸药单耗量对装药效率、炮孔利用率、开挖壁面的平整程度和围岩的稳定性都有较大的影响。

它取决于岩性、断面积、炮孔直径和炮孔深度等多种因素。

q取值1.2kg/m3。

二是装药集中度Q。

光面爆破装药量的计算,主要是确定周边眼光爆层炮眼装药集中度,即Q=qEWQ确定为0.11~0.30kg/m。

(6)炮孔数量N。

炮孔数量取决于掘进断面积、岩石性能和炸药性能。

孔数过少将造成大块增多,周壁不平整,甚至会出现炸不开的情况;相反,孔数过多将使凿岩工作量增大。

隧道光面爆破作业标准

隧道光面爆破作业标准

隧道光面爆破施工作业标准1. 作业条件隧道开挖爆破采用光面爆破,施工前对施工人员进行详细的书面技术交底,作业人员进行岗前培训和安全教育,特殊工种的作业人员持证上岗。

仔细检查钻孔设备,风、水、电等管线路,发现问题及时处理。

2. 作业标准(1)资源配置隧道施工所需材料规格、尺寸及数量等参照图纸设计要求执行,并保证用于施工的材料符合国家质量标准。

开挖作业使用火工品必须按照正规程序办理,并投入使用。

其他工程所用材料必须应符合设计规定,满足质量验收标准,经检验合格和监理工程师批准后方可使用。

结合正常施工需要,机械设备配置如下:双线全断面开挖设备配置表(2)工艺流程光面爆破施工工艺流程图(3)作业要点⑴钻爆设计控制要点最大限度地减少爆破震动对围岩的扰动,避免造成或加大既有裂隙而出现渗漏水现象;控制后续爆破对隧道初期支护或衬砌结构的震动影响;根据分部开挖方案,爆破时不影响相邻洞室的支护结构的稳定性;控制爆破震动对临近建筑物的影响,确保地表建筑物的安全。

提高爆破效果,即隧道开挖轮廓的质量及机械化施工对岩石块度要求。

动态设计,隧道开挖时进行爆破监测,及时反馈信息,经济技术指标设计合理,操作方法利于推广应用。

根据隧道岩质情况,按《光面爆破参数表》进行选择。

施工过程中通过爆破效果检查,结合地质变化情况适当调整,以求达到安全、经济和最佳爆破效果。

光面爆破参数表⑵减震措施根据以往研究成果及施工经验,影响爆破振动强度的主要因素有:爆破器材的质量、爆破体的物理性质、爆破开挖方式、微差时间间隔、单段起爆药量等。

为此,减振爆破主要从以下几个方面采取措施:①爆破器材要获得比较好的减震效果,必须根据炸药与岩石的匹配程度选择合适的爆破器材。

为此,在隧道开挖爆破时,掏槽眼、扩槽眼和掘进眼选用高爆速的2#岩石硝铵炸药(有水地段采取乳化炸药),光爆孔采取专用的φ25小直径光爆炸药(炸药均要求防水性能好)。

雷管采用精度高的非电毫秒延期导爆管雷管,避免爆破时出现串段现象,防止因爆破器材质量问题,增大爆破振动,降低爆破效果。

煤矿巷道光面爆破参数选择在快速掘进中的作用

煤矿巷道光面爆破参数选择在快速掘进中的作用
3 . 炮 眼 间距
关键词 :光面爆破

引 言 在煤 矿 巷道 的开 挖过 程 中 ,其光 面爆 破是 一 种使 爆 出的新 壁 面保 持 平整 而不 受 明显 破坏 的爆 破技 术 ,又 称为 周边 爆破 和 轮廓 爆破 。要 实 现快速 掘 进 ,主要 是 从凿 岩机 具 、爆 破参 数 、施 工组 织等 方面 优化 设 计 ,从 而达 到快速 掘进 的 目的。
R=2 R ( P / 盯 )d b ( 6 )
四、巷道 光面爆 破 的参 数计 算
巷 道光 面 爆破 参数 包括 不 耦合 系数 、炮 孔 深度 、炮 眼间 距 、邻 近 系数 、最小 抵 抗线 、装 药 结构 和装 药 密集 系数 等 。其 中 ,炮 孔 直径 和 炮 孔深 度 ,则按照 工程 实际来 取值 。 1 . 不 耦合 系数 对 于不 耦 合系 数来 说 ,它 是药 卷直 径 与炮孔 直 径之 比 。其 选取 原 则是 ,使作 用在孔 壁上 的压 力低于岩 石 的抗压 强度 ,而高 于抗拉 强度 。 按 下式 进行 :
式 中 :R 为炮 眼 间距 ;P 为炮 眼 壁上 初始 应 力峰 值 ;b为切 向应 力 与径 向应 力 比值 ,b= ,( 1 一 ) , 为泊松 比 ;为岩 石抗 拉 强度 ; a 为应 力波 衰减 系数 , d= 2 一 /( 1 一 ) 。若 以应力 波和爆 生气 体共 同 作 用理论 为基础 ,炮 眼间距 为 :
第1 期 2 o 1 3年
中国 化 工 贸 易
C h i n a C h e m i c a l T r a d e
攘术瘟用
煤 矿巷道光面爆破参数选择在快 速掘进 中的作用
周 甄遥
( 淮北 矿业集 团双龙公 司 。安徽淮 北 2 3 5 0 4 7 )

光面爆破

光面爆破

光面爆破是一种控制巷道轮廓较好的爆破方法,它是国内外广泛使用的一项新的爆破技术。

其主要优点是:巷道爆破后巷道成型规整,超挖量小;不产生或很少产生炮震裂缝,对围岩扰动小,利于巷道稳定;出渣量少、衬砌材料减少,经济合理。

因此,随着锚喷支护新工艺的推广使用,光面爆破已成为一种配套技术。

(一)光面爆破一般应达到如下三个标准(1)爆破后,周边留下的眼痕数应不少于其总数的50%;(2)超挖尺寸不得大于150mm,欠挖不得超过质量标准规定;(3)岩石上不应留有明显的炮震裂缝。

光面爆破的实质是:控制炸药的爆炸能量,减弱其对围岩的破坏作用,合理利用相邻周边眼爆炸冲击波的动力作用和爆破气体的静力作用,在其相邻周边眼的连线上产生有效的裂缝,将岩石切割破坏。

从上述光爆作用原理可知,为达到良好的光爆效果,必须合理选取光爆有关参数,如周边眼距、最小抵抗线、药卷直径、装药结构和起爆时间等。

(二)光面爆破参数(1)周边眼布置周边眼的最小抵抗线和眼距是光面爆破的两个主要参数,二者之间有一个合理的比例关系,并随岩石性质的不同而相应变动,同时还要考虑眼深和装药结构的影响。

根据试验,一般可依岩石情况不同,按下式选择K=E/W (3-12) 式中E——周边眼距,一般取400~600mm,在拱顶两侧(靠近拱基处),岩石对爆破的夹制作用较大,眼间距应适当减少,在裂缝节理发育或层理明显的岩层中,眼距也应适当减少,同时还要减少装药量;W——最小抵抗线,mm;K——炮眼密集系数,一般取0.8~1.0,硬岩中取大值,软岩中取小值。

(2)药卷直径根据国内外经验,药卷直径与炮眼直径之比,在缓冲爆破作用方面,有着密切的关系。

小直径药卷不但其爆炸性能低,而且由于它与炮眼间有较大的空隙,缓冲了爆轰波对岩石的冲击作用,减轻了对围岩的震裂破坏程度。

关于不耦合系数,我国目前多采用的炮眼:直径在40~42mm左右,小药卷直径一般为25mm,因此不耦合系数为1.6。

随着炸药性能的改进,小药卷直径还可以变小(但不能小于该炸药的临界直径),以便进一步提高光爆效果。

光面爆破施工技术要求

光面爆破施工技术要求

光面爆破施工技术要求1、光面爆破基本参数(1)光面爆破层厚度:即最小抵抗线的大小,一般为炮孔直径的10~20倍。

岩质软弱、裂隙发育者,眼距应小而抵抗线应大;坚硬、稳定的岩石上,眼距应大而抵抗线应小。

(2)孔距:一般为光面爆破层厚度的0.75~0.90倍,岩质软弱、裂隙发育者取小值。

(3)钻孔直径及装药不偶合系数可参照预裂爆破选用。

明挖工程钻孔直径为70~165mm;不偶合系数指炮孔半径与药卷半径的比值,为防止炮孔壁的破坏,该值一般取2~5。

(4)线装药密度一般按照松动爆破药量计算公式确定,预裂爆破的线装药密度一般为200~500g/m,为克服岩石对孔底的夹制作用,孔底段应加大线装药密度到2~5倍。

2、光面爆破技术要点:(1)根据围岩特点,合理选定周边眼的间距和最小抵抗线,尽最大努力提高钻眼质量。

(2)严格控制周边眼的装药量,尽可能将药量沿眼长均匀分布。

(3)周边眼宜使用小直径药卷和低猛度、低爆速的炸药,为满足装结构要求,可借助导爆索(传爆线)来实现空气间隔装药。

(4)采用毫秒微差有序起爆,要安排好开挖程序,使光面爆破具有良好的临空面。

(5)边孔直径小于等于50mm。

3、质量控制标准(1)开挖壁面岩石的完整性用岩壁上炮孔痕迹率来衡量,炮孔痕迹率也称半孔率,为开挖壁面上的炮孔痕迹总长与炮孔总长的百分比率。

对节理裂隙极发育的岩体,一般应使炮孔痕迹率达到10%~50%;节理裂隙中等发育者应达50%~80%;节理裂隙不发育者应达80%以上,且岩壁面不应有明显的爆生裂隙。

(2)围岩壁面不平整度(又称起伏差)的允许值为±15cm。

(3)在临空面上,预裂缝宽度一般不宜小于1cm。

实践表明,对软岩预裂缝宽度可达2cm以上,而且只有达到2cm以上时,才能起到有效的隔震作用;但对坚硬岩石,预裂缝宽度难以达到1cm。

东江工程的花岗岩预裂缝宽仅6mm,仍可起到有效隔震作用。

预裂缝的宽度标准与岩性及工程部位有关,应通过现场试验最终确定。

光面爆破参数的调控

光面爆破参数的调控

光面爆破参数的调控目前,隧道施工普遍采用光面爆破技术,以尽量降低对围岩的振动,在隧道周边形成一个光滑平整的边壁,从而保持围岩的完整性和自身承载力。

为了保证光爆效果,避免超、欠挖现象,就必须对光爆参数进行及时有效地调控。

方法和步骤如下。

2调控方法和步骤2.1根据安全、环保法规调控2.1.1爆破震动从爆源到被保护物的距离应保证被保护物不受到爆破振动作用的破坏,这段距离称为爆破地震安全距离。

可按下式计算:式中:R为爆源中心至被保护建筑物的最小距离,m;Q为炸药总量,kg,齐发爆破取总炸药量,秒差爆破或微差爆破取最大一段的炸药总量;V为被保护建筑物基岩质点的允许安全振动速度,cm/s,可根据《爆破安全规程》确定,例如:一般砖房取V=2~3 cm/s,钢筋混凝土框架房屋取V=5 cm/s;m为药量指数,集中药包取1/3;K、a为与爆破点地形、地质等条件有关的系数和衰减指数。

工程实际中,更多的情况是爆源与需要保护的建筑物之间的距离R一定,要求在爆破地震振动速度不超过建筑物的允许安全振动速度的前提下,计算齐发爆破允许的最大装药量或延期爆破药量最大一段的允许装药量Qmax,可按下式计算:2.1.2爆破飞石(1)几何相似公式。

爆破场地位于山坡上,极易产生爆破飞石,对其危害必须进行预控。

爆破飞石距离的计算公式,我国普遍采用的经验公式:Rf=20Kn2W 式中:Rf为最远抛掷距离;K为安全系数与地形、风向有关;n为爆破作用指数;W为最小抵抗线。

我国《爆破安全规程》(GB***-*****3)中指定,此公式在W25m,n=1左右的硐室爆破中较为准确。

(2)Lundborg统计规律公式。

Lundborg统计规律公式:Rf =KTqdb 式中:KT为与爆破方式、堵塞长度、地质和地形条件有关的系数,取110~115;q为单位炸药消耗量,kg/m3,加入此因数使计算精度超过了德汤尼克公式;db为炮眼直径,mm。

2.1.3其它注意事项例如:高压线下的石方爆破。

光面爆破

光面爆破

光面爆破:光面爆破已被规定为在地下开挖工程中控制周边超挖的标准方法。

它不仅可以得到一个光滑的岩面,同时减少`了围岩中的裂隙,使随后的支护工程量得以减少。

这种方法是20世纪50-60年代由瑞典发展起来的,它不但适用于地下工程,也适用于露天开挖。

一.什么叫光面爆破:在主体岩石爆破后,沿设计轮廓线将爆破孔起爆的爆破方法称光面爆破。

二.光面爆破的基本作业方法:1.预留光爆层:预留设计的光爆层,隧道一般留60-80cm,露天一般留1.5-2.0m,它与孔径有关。

2.一次分段爆破法:主体石方爆破与光面爆破一起进行分段爆破,主爆孔先响,光爆孔后响。

它们的延迟时间一般选择为150-200ms。

三,光面爆破的优点、缺点:优点:1.减少超欠挖,节约工程成本。

2.开挖面完整,可以减少支护工作量,有利于后期作业。

3.露天光爆,环保效果好,对保留岩体破坏小。

缺点:钻孔工艺不当,要求钻孔水平高,钻孔量大,对钻孔人员素质要求高。

四.光面爆破与预裂爆破的区别:1.预裂孔先与主体石方起爆,而光面爆破是在主体石方爆破后起爆,所以预裂爆破的夹制作用大。

2.预裂爆破用药量大,光面爆破用药量小。

五.光面爆破适应条件:1.在坚硬岩石和整体性较好的软岩石中效果明显。

在不均匀岩体,构造发育的岩体中,虽然效果不明显,但对减轻围岩的破坏、超欠挖作用很大。

2.爆破方法的适用性:(1)大于1.5米深(浅孔)范围。

(2)露天深孔爆破。

(3)隧道、导流洞及地下开挖工程,铁、公路、场平等露天开挖工程。

六.光面爆破的设计原理与设计步骤:设计原理:光面爆破设计不仅要考虑周边孔,还必须同时严格控制靠近周边孔的主爆孔的装药。

设计原理:任何主爆孔产生的裂隙破坏区均不能超过周边孔的裂隙破坏区。

瑞典爆炸研究所利用的爆破振动速度计算经验公式:v=70Q0.7/R1.5V:振速,cm/s,Q:单孔药量,kg。

R:距离,m。

一般产生危险的振速范围是v=70-100cm/s。

设计步骤:1.收集资料:开挖断面的大小,循环进尺,岩石种类,构造和物理力学性质。

光面爆破参数的合理确定_secret

光面爆破参数的合理确定_secret

光面爆破参数的合理确定1 炮眼间距的确定1.1 根据应力波与爆生气体综合作用确定炮眼间距炸药爆炸后,首先在岩体中产生爆炸应力波。

在不耦合装药条件下,作用于孔壁上的初始应力峰值为(1)式中:ρ0为装药密度,kg/cm3;D为炸药爆速,m/s;rc,rb分别为药卷半径和炮孔半径,m;n为爆轰产物与孔壁碰撞时压力增大倍数,n=8~11。

爆炸应力波在岩石中传播时,径向压应力σr 与切向拉应力σθ分别为式中:r为所需确定点距爆源的距离;α为应力波衰减系数,α=(2-μ)/(1-μ);μ为岩石泊松比。

孔壁围岩处于拉应力状态,因此岩石处于体积应力状态下。

在静力条件下,岩石破坏强度的经验公式为式中:σ1为岩石破坏时的最大主应力;σ3为作用于岩石上的最小主应力;m,S为常数,取决于岩石性质及原岩的破坏程度,对于完整岩石S=1,破损岩石S<1。

在爆炸应力波作用下,岩石动态抗压强度随应变率增加而提高,大约比静力抗压强度提高约10倍,而动态抗拉强度随应变率增加约只提高1倍,因此,孔壁保护的条件为σr0≤10σ1。

爆炸应力波在岩石中传播,使孔壁处产生裂纹的条件为σθ=σ3(4)由式(2),(4)可确定出孔边裂纹的初始裂纹长度为由式(5)可以看出,孔边初始裂纹长度与岩石性质μ、炮孔半径rb、初始应力峰值σr0有关,σr0和rb愈大,a就愈大。

在裂纹断裂扩展过程中,裂纹尖端的应力强度因子为式中:Pb为爆生气体充满炮眼时的静压,P b =(Pc/Pk)k/n(rc/rb)2k Pk;Pc=ρD2/8;Pk=100MPa;k为凝聚炸药绝热指数,k=1.3。

随着裂纹扩展,其尖端的应力强度因子逐渐减小,最终止裂。

裂纹最终扩展长度b可由下式求出,即K Ⅰ=KIC(7)式中:KIC为岩石断裂韧度,MPa/cm3/2。

显然,炮孔间距E=2b。

如花岗岩的KIC=60.4~65.9MPa/cm3/2,采用2号岩石炸药,将有关数据代入式(7),可得b=15rb ,则E=2b=30rb。

副井重车线光面爆破参数表

副井重车线光面爆破参数表
10-18
9
700
4
36
10.8

3
二圈辅助眼
19-29
11
700
3
33
9.9

4
周边眼
30~48
19
500
2
38
11.4

6
底眼
49~57
9
600
4
36
10.8

合计
57
173
51.9
-480m副井重车线爆破效果表
(岩石质量较好时)
序号
名称
单位
数量
序号
名称
单位
数量
1
每循环炮眼数量

57
9
每循环雷管消耗量

60
2
每循环炮长度
m
142.5
10
每立方岩石雷管消耗量
个/m3
2.38
3
炮眼利用率
%
83
11
每米进尺雷管消耗量
个/m
28.6
4
每循环进尺
m
2.1
5
每循环爆破光面实体
m3
25.2
6
每循环炸药消耗量
kg
51.9
7
每立方岩石炸药消耗量
kg/m3
2.06
8
每米进尺炸药消耗量
kg/m
24.7
-480m副井重车线光面爆破参数表
(岩石质量较差时)
序号
炮眼名称
炮眼序号
眼数
(个)
眼间距(mm)
装药量
起爆顺序
备注
每眼
(卷)
小计
(卷)

隧道开挖光面爆破质量评定标准

隧道开挖光面爆破质量评定标准

开挖光爆质量评定标准
1、允许超挖值
注:最大超挖值系指最大超挖处至设计开挖轮廓切线的垂直距离。

2、平均线性超挖值不大于10cm
超挖面积
平均线性超挖=
爆破设计开挖断面周长(不包括隧底)
3、炮眼痕迹保存率:
拱部:95%,边墙:90%为优良;
拱部:85%,边墙:80%为良好;
拱部:75%,边墙:70%为一般;
拱部:75%以下,边墙:70%以下为较差。

4、炮眼利用率:
炮眼利用率在95%以上为优良;
炮眼利用率在90%~95%范围内为良好;
炮眼利用率在80%~90%范围内为一般;
炮眼利用率在80%以下为较差。

5、相邻两茬炮搭接错台:
错台在5cm内为优良;
在5cm~10cm范围内为良好;
在10cm~15cm范围为良好;
在15cm以上为较差。

6、隧底超挖控制在10cm以内。

7、最大欠挖:
最大欠挖不能大于5cm,且1.0m2内面积不能大于0.1m2;拱、墙脚以上1m范围内断面严禁欠挖,否则必须及时处理。

8、平均每米超挖方量:
根据工程部提供的开挖断面量测资料计算统计。

工程部。

隧道光面爆破参数的选用

隧道光面爆破参数的选用

隧道光面爆破参数的选用隧道光面爆破是一种通过光学爆破技术来实现隧道开挖的工程方法。

它具有施工速度快、破碎效果好、环境污染小等优点。

在进行隧道光面爆破参数选择时,需要综合考虑各种因素,包括岩石性质、材料爆炸参数、装药类型、装药布置等。

一、岩石性质岩石性质是选择隧道光面爆破参数的重要因素。

不同的岩石具有不同的抗压强度、硬度和断裂特性,需要根据实际情况进行选择。

通常情况下,抗压强度较高的岩石适合选择较大的装药量和较高的爆炸能量,而抗压强度较低的岩石则适合选择较小的装药量和较低的爆炸能量。

二、材料爆破参数光面爆破所使用的材料爆破参数主要包括爆破能量、装药密度和装药比例。

爆破能量是指单位体积爆炸材料的能量,它直接影响到破碎效果。

装药密度是指单位体积装药的质量,一般情况下,装药密度越大,能量传递越容易,爆破效果越好。

装药比例是指爆炸材料中炸药和引爆剂的比例,不同的装药比例对爆破效果也有一定的影响。

三、装药类型装药类型主要包括炸药、引爆剂和其他辅助爆破材料。

炸药是产生爆炸能量的主要组成部分,也是影响爆破效果的主要因素。

不同的炸药具有不同的爆炸速度和能量释放特性,需要根据实际需要选择。

引爆剂是引爆炸药的物质,一般需要选择具有较高的敏感性和可靠性的引爆剂。

其他辅助爆破材料主要包括增塑剂和憎水剂等,它们的选择需要根据实际需要进行。

四、装药布置装药布置是指在岩体上进行装药的位置、形式和方式等。

合理的装药布置可以使爆破能量得到最有效地传递,提高爆破效果。

一般情况下,装药布置要遵循均匀分布、高能量集中、对称布置等原则,同时考虑岩石的断裂特性和实际施工情况进行选择。

综上所述,隧道光面爆破参数的选择是一个复杂的过程,需要综合考虑岩石性质、材料爆破参数、装药类型和装药布置等因素。

只有根据实际情况合理选择参数,才能保证施工的安全性和效率。

在实际应用中,还需要根据具体情况进行不断调整和优化,以达到最佳的爆破效果。

光面爆破质量要求

光面爆破质量要求

光面爆破质量要求
光面爆破质量要求
顺序项目硬岩
中硬岩软岩 1 平均线性超挖量/cm 10
15 15 2 最大线性超挖量/cm 20
25 25 3 两炮衔接台阶的最大尺寸/cm 15
15 15 4 炮眼痕迹保存率/% ≥80
≥70 ≥50 5 局部欠挖量/cm 5 5 5
注:①超欠挖的测量以爆破设计开挖线为准;
②平均线性超挖量=(不包括隧道底宽度)
爆破设计开挖断面周长超挖面积;③最大线性超挖量系指最大超挖处至爆破设计开挖轮廓切线的垂直线;④炮眼痕迹保存率=周边炮眼总数
残留有痕迹的炮眼数,应在开挖轮廓面上均匀分布;⑤欠挖范围每平方米内不大于0.1㎡。

隧道光面爆破资料

隧道光面爆破资料

隧道光面爆破资料 Prepared on 22 November 2020隧道光面爆破目前,全局在建隧道座,总长度,绝大部分隧道是需要爆破作业的石质隧道。

做好隧道的光面爆破,对隧道施工的安全、质量、工期及经济效益都具有重大的意义。

为了节省时间,本课不多讲爆破的理论,也不面面俱到,仅针对隧道的光面爆破技术重点谈一点意见。

要谈光面爆破,必须首先要了解爆破的一些基础知识。

一、爆破器材(一)炸药。

工业炸药共分三类:煤矿许用炸药、岩石炸药、露天炸药(见下表)。

隧道工程常用的炸药、性能及适用范围(二)起爆材料:1、火雷管`火雷管是最简单的一种雷管,成本低,使用灵活不复杂,不受散电流影响,使用广泛,但受撞击、磨擦和火花能引起爆炸,火雷管全是即发雷管。

我们目前常用的毫秒导爆雷管共分三个系列:第一系列20段,分别相距25-300ms;第二系列分21段;第三系列分30段。

每段里面段数越大,相隔爆破的时间就越长;雷管按起爆能量大小分为10个等级(号数),号数愈大,起爆能力也愈强,常用的是6号和8号雷管。

2、电雷管毫秒延期电雷管的延期材料为缓燃剂,延期时间较长,精确度不高;所有电雷管抗静电等杂散电流、雷电、射频辐射不强,安全性不高,属于隧道限制使用产品,多用于有瓦斯与煤尘爆炸危险的环境中,它是目前能采用的唯一起爆方法。

3、导火索用来传递火焰给火雷管,配合火花起爆法使用。

导火索的燃速一般在110-130m/s范围内;缓燃导火索则为180-210m/s或200-350m/s,具有一定的防潮耐水性能。

普通导火索不能在有瓦斯或有矿山类爆炸危险的场所使用。

目前,隧道施工中已基本不再使用导火索加火雷管的起爆系统,而使用非电起爆系统。

4、导爆管塑料导爆管是用来传递微弱爆轰力,给非电雷管使之爆炸的传爆器材。

塑料制成外径,内径的半透明管,内壁涂有高性能炸药。

其传爆速度可达1900-2000m/s,其本身须使用非电雷管起爆。

导爆管本身比较安全,扭曲、打结、水下(<80m)均能正常起爆,在火焰和机械的作用下不能燃烧和起爆。

最终边坡光面爆破方案

最终边坡光面爆破方案

最终边坡光面爆破方案根据设计要求,最终边坡预留安全平台4m ,清扫平台7m ,运输平台15m 以上;安全平台和清扫平台相隔设置,最终坡面角70°。

最终边坡采用光面爆破技术,台阶高度15m ,预留宽度6米,长度100米左右,分三次爆破完成。

第一次爆破17米,布11个孔。

使用120mm 潜孔钻进行穿孔,钻孔倾角70°,单耗0.25Kg/m 3,光面孔采用不耦合装药,起爆网络采用3、5段电雷管串联起爆网路,延差时间50ms 。

一、主爆孔参数确定(1)孔深与超深的确定超深:d m m 0.96m H ==⨯=超(8-12)(8-12)120-1.44 取超深m H =超 1.44孔深:/sin 15/sin 70 1.4417.4L H H m α=+=︒+=超 (2)最小抵抗线的确定m i n 30301203.6W d m m m ==⨯= (3)孔距的确定孔距:min 1.2 3.6 4.3a mW m ==⨯= m —炮孔密集系数,取m=1.2(4)装药量的确定min 0.53 4.315 3.6123Q q a L W Kg==⨯⨯⨯=(5)堵塞m i n(0.91.0)(0.91.0)3.63.243.6l W m =-=-⨯=- 取堵塞 3.6l m =,装药长度213.8l m = 炸药采用2号岩石粉状乳化炸药。

二、光面孔参数确定(1)孔深与超深的确定超深:d m m 0.96m H ==⨯=超(8-12)(8-12)120-1.44 取超深m H =超 1.44孔深:/sin 15/sin 70 1.4417.4L H H m α=+=︒+=超(2)最小抵抗线的确定 m i n (1020)(1020)1201.22.4W d m m m =-=-⨯=- 取最小抵抗线min 2.4W m = (3)孔距的确定孔距:min (0.60.8)(0.60.8) 2.4 1.44 1.92a W m =-=-⨯=- 取孔距 1.4a m =,后根据岩石情况再调 (4)装药量的确定m i n 0.251.5152.413.5Q q a L W K g ==⨯⨯⨯= (5)堵塞m i n(0.91.0)(0.91.0)2.42.162.4l W m =-=-⨯=- 取堵塞 2.4l m =,装药长度215l m = (6)药卷直径的确定0.03838d m m m ===药采用炸药厂规格为38—40mm 乳化炸药。

爆破设计说明书

爆破设计说明书

爆破设计说明书爆破设计说明书策划发展部2019年3⽉12⽇⼩铁⼭矿井下掘进巷道采⽤光⾯爆破技术,光⾯爆破的巷道稳定成型,光爆能减少巷道的⽀护⼯程,减少矿⼭的⽀护成本,对矿⼭的⽣产起⾄关重要的作⽤。

⼀、编制的依据《爆破安全规程》(GB6722-2014)《爆破作业单位资质条件和管理》(GA991-2012)《爆破作业项⽬管理要求》(GA991-2012)《民⽤爆炸物品安全管理条例》(国务院令第466号)⼆、爆破参数1、光⾯爆破:(1)光⾯爆破布置⽅式:采⽤光爆技术,沿开挖边界布置密集炮孔,采⽤不耦合装药或装填低威⼒炸药,在主爆区之后起爆,以形成平整轮廓⾯的光⾯爆破作⽤。

⽤YT-28型凿岩机或单臂式凿岩台车凿岩,钎杆长2.2⽶,柱齿形钎头,钎头直径43mm,孔深1.8~2.0⽶,孔径为41mm,凿岩前先定好中线、腰线。

打眼时先打⼀个顶眼中孔及底眼中孔,关键确定巷道中⼼线,防⽌巷道跑偏,然后按炮孔布置图开始按顺序分别凿掏槽眼、周边眼、辅助眼。

(2)光⾯爆破周边眼参数分析及计算:a、钎头直径的确定:炮孔深度⼩于5⽶的爆破为浅孔爆破,对于浅孔爆破的矿⼭,钎头直径⼀般为38~42mm,在此确定钎头直径为D=40mm的柱齿形钎头。

b、炮孔深度的确定:根据经验公式:炮孔深度L=(40~70)D=1.6~2.8⽶,D为炮孔直径,软岩取2.8⽶,硬岩取1.6⽶。

1416⽔平东沿岩性为Mπ的软岩,稳固系数f=2~34。

在此确定东沿的炮孔深度为2⽶。

c、钎杆长度的确定:钎杆的长度取决于炮孔深度,在此确定钎杆的长度为2.2⽶。

d、光爆孔距的确定:根据经验公式周边眼眼距a=(8~12)D,软岩破碎取最⼩值,坚硬完整性好的取最⼤值。

在此取a=460mm。

e、不耦合系数:光⾯爆破的不耦合系数k⼀般为1.5~2.5。

f:线装药密度:线装药密度与岩⽯性质关系很⼤,变化范围在70~350g/m之间,⼀般坚硬岩⽯取最⼤值,软岩、破碎岩⽯取最⼩值。

光面爆破作业指导书

光面爆破作业指导书

1、光面爆破的技术要点光面爆破是周边眼同时起爆,各炮眼的冲击波向其四周作径向传播,相邻炮眼的冲击相遇,则产生应力波的叠加,并产生切向拉力,拉力的最大值发生在相邻炮眼中心连线上形成裂缝,随后,爆炸气的膨胀使裂缝进一步扩展,形成平整的爆裂面。

周边眼常用参数的选择1.1爆破参数选定原则1.1.1周边眼间距E它是直接控制开挖轮廓面平整度的主要因素。

一般情况下E=(12~15)d,其中炮眼直径d=35~45mm。

对于节理发育、层理明显的围岩地段,周边眼间距可适当减小,也可在两炮眼之间增加一个不装药的导向空眼。

1.1.2最小抵抗线W(光面层厚度)W直接影响光面爆破效果和爆碴块度。

其取值在(13~22)d范围内,且W≥E。

1.1.3周边眼密集系数K取K=E/W=0.7~1.0。

1.1.4装药集中度q采用2号岩石炸药进行光面爆破时,若预留光爆层,q=0.15~0.20kg/m;若全断面一次爆破,则q=0.2~0.3kg/m。

如果采用其它炸药,则需进行换算,其换算系数C按下式求得:C=1/2(2#岩石炸药猛度/换算炸药猛度+2#岩石炸药炸力/换算炸药炸力)1.2周边眼装药结构1.2.1软岩周边眼装药结构一般采用两种形式:一种是较破碎围岩采用空气间隔装药,导爆索传爆。

导爆索作为炮眼装药时,按10g/m折算为2号岩石硝铵炸药。

另一种是较完整的软弱岩层采用小直径光爆炸药连续装药。

分别如下图所示:1.2.2硬岩周边眼装药结构硬岩一般采用导爆索间隔装药,装药结构如下图:除周边眼、中空眼外,其余掏槽、底眼、掘进眼的装药结构均为连续装药,只是装药长度不同。

1.3掏槽形式掏槽眼的形式有三种:斜眼、直眼、直眼和斜眼的混合掏槽。

根据本隧道断面大小及工程地质特点,结合现场的钻眼机械设备(YT28凿岩机),一般采用的掏槽方式为斜眼掏槽方式2、光面爆破施工工艺2.1 钻爆设计2.1.1爆破器材雷管采用1-30段非电毫秒雷管,隔段使用;炸药采用2号岩石硝铵炸药,规格为Ø32*200mm;当有水时换成乳化甘油炸药,周边眼使用导爆索引爆。

隧道光面爆破参数的选用

隧道光面爆破参数的选用

赵家岩隧道光面爆破参数的选用1 工程概述赵家岩隧道位于广甘高速公路广元市境内,全长4595米,为双线分离式公路隧道,隧道III级围岩以白云岩、灰岩和砂岩为主。

2 光面爆破主要参数的确定光面爆破对围岩扰动小,又尽可能保存了围岩自身原有的承载能力,从而改善了衬砌结构的受力状况;由于围岩轮廓圆顺、壁面平整,减少了应力集中和局部落石、掉块现象。

确定合理的光面爆破参数,是获得良好光面爆破效果的重要保证。

光面爆破的主要参数有:周边眼间距(E)、周边眼密集系数(K)、最小抵抗线(W)、不耦合系数(D)和装药集中度(γ)。

2.1 炮眼深度炮眼深度受开挖面大小的影响,炮眼过深,周边岩石的夹制作用较大,故炮眼深度不宜过大,一般最大炮眼深度取断面宽度(或高度)的0.5~0.7倍。

L=0.5H=0.5×8.43=4.22m(H为隧道开挖轮廓的高度,H=8.43)钻孔采用YT-28风钻,炮眼孔径为φ42mm,为克服及减少岩石的夹制作用,除掏槽眼和底眼深度L=3.7米外,其余周边眼、辅助眼等炮孔深度L=3.5米。

2.2 光面爆破不耦合系数(D)及装药直径(d)炮眼直径d k与药卷直径d i之比称为不偶合系数,合适的周边眼不偶合系数应使爆炸后作用于炮眼壁的压力小于围岩抗压强度,理论与实践证明,当不偶合系数在1.5~2.0范围时,缓冲作用最佳,光爆效果最好D=d k/d i=(1-a)×{(ρ0/[δc])1/r+a}½式中D——不耦合系数;d k——炮眼直径(cm);d i——装药直径(cm);a——爆生气体分子余容系数,a=0.395;ρ0——爆生气体初始压力,ρ0=6997Pa;[δc]——岩石三轴抗压强度,对于中硬的花岗岩或者砂岩[δc]=800MPa;r——绝热指数,1/r=0.8299。

将上述数据带入后:D= d k/d i=2.01则d i = d k/D=21mm。

在实际使用过程中,我们采用直径为25mm的乳化炸药,即周边眼的不耦合系数D=42/25=1.68,符合D=1.5~2.0的要求。

隧道施工光面爆破参数选择与质量控制措施

隧道施工光面爆破参数选择与质量控制措施

隧道施工光面爆破参数选择与质量控制措施隧道施工最基本的任务是破碎岩体,以形成一个符合设计要求的断面,然后对隧道内部进行支护。

隧道内岩体的破碎,施工中常采用钻眼爆破掘进和掘进机掘进两种方法。

其中,钻眼爆破掘进占绝大多数。

钻眼爆破掘进的方式又分为普通爆破和光面爆破。

目前,在岩层比较稳定、层理和节理不发育,以及围岩比较完整的地质条件下,在隧道施工中应用光面爆破,是较为普遍的一种爆破方法。

一、光面爆破光面爆破也称密眼小炮爆破,是通过合理地选择各种爆破参数,在设计断面的轮廓线上布置间距较小、相互平行的炮眼,严格控制每个炮眼的装药量,选用低密度和低爆速的炸药,采用不耦合装药,同时起爆,使炸药的爆炸作用刚好产生炮眼连线上的贯穿裂缝,并沿各炮眼的连心———隧道轮廓线,将岩石崩落下来,这种人为控制爆破方法称为光面爆破。

光面爆破能使隧道围岩不产生或产生很少的爆震裂缝,保护了围岩的完整性,提高了围岩的稳定性和自身的承载能力,达到了安全可靠的目的;使隧道成形规整,尺寸达到设计要求,减少超挖或欠挖,节省因超挖、欠挖而增加的工程量和费用,提高工程速度和质量;光面爆破还能节省大量材料,降低了支护费用和在服务年限内的隧道维修费用。

二、光面爆破参数的选择爆破参数的选择直接影响着光爆效果,只有合理选取,才能达到围岩既不严重被破坏,又在周边眼间形成贯通裂缝,把光面层整齐地切割下来。

其主要参数为不耦合系数、炮眼间距、炮眼密集系数、起爆时差、炮孔装药量。

1、不耦合系数不耦合系数是指炮眼直径与装药直径之比,它反映炸药与孔壁的接触情况。

不耦合系数选取的原则,是使作用在孔壁上的压力低于岩石的抗压强度,而高于抗拉强度。

一般情况下,光面爆破采用的不耦合系数为~ 。

由于岩石的极限抗拉强度一般仅为岩石极限抗压强度的1/10~1/40 ,因此,随着不耦合系数的增大,爆轰波经空气压缩传递作用时间延长,炮孔周壁上的切向最大应力急剧下降,这种空气间隙即起到降低爆轰波强度的缓冲作用,而不易产生孔壁破碎现象。

光面爆破

光面爆破
14
员工训导词
15
集团公司企业文化 核心理念
诚信
协同
创新
16
17
谢 谢 大 家!
18

4
光面爆破的技术要求
1.周边眼的眼距,预留层厚度 2.周边眼的装药量及装药结构 3. 周边眼的不偶合系数 3.1炮眼直径db与药卷直径dc之比称为不偶合系数. 合适的周边眼不偶合 系数应使爆炸后作用于炮眼壁的压力小于围岩抗压强度.理论与实践证明, 当不偶合系数在1.5~3.43范围时, 缓冲作用最佳, 光爆效果最好. 在我 们现有情况下,周边眼用直径42mm的钻头,现用乳胶炸药直径为27mm, 42/27=1.55此时不偶合系数为1.55在这个允许范围内 . 3.2每米炮孔装药量 每米炮孔装药量q 每米炮孔装药量 q又称线装药密度或装药集中度, 它是指单位长度孔眼中的装药量 (g/m). 适当的q值应该保证沿孔眼连线形成贯穿裂缝而保持新壁面的 完整稳固. 计算q值公式很多, 本文选用公式: q=72.5rE1/2f1/3/D2 式中: r为炮孔半径(m), 一般取r=0.02m; E为周边眼距(m); f为岩石 坚固性系数; D为炸药爆速(km/s).
8Leabharlann 其它技术措施2.2 周边眼的装药结构 在仍使用2号岩石硝铵炸药的情况下, 在仍使用2号岩石硝铵炸药的情况下, 建议在周边眼 中采用图2所示的装药结构. 按计算的线装药密度, 中采用图2所示的装药结构. 按计算的线装药密度, 将炸药 改装成22mm或 的小直径药卷. 采用不偶合装药, 改装成22mm或25mm 的小直径药卷. 采用不偶合装药, 将药卷套在2 将药卷套在2个中空的与眼径相适应的硬纸壳中放入炮眼中 的预定位置. 为克服眼底岩石的夹制力, 的预定位置. 为克服眼底岩石的夹制力, 可在眼底放置半 卷标准药卷(dc=32mm), 两者之间以空气间隔. 卷标准药卷(dc=32mm), 两者之间以空气间隔. 在眼口 小药卷顶端放置一个锥形空心塑料塞, 小药卷顶端放置一个锥形空心塑料塞, 然后按设计长度堵 塞炮泥. 随着炮泥的填塞, 塞炮泥. 随着炮泥的填塞, 空心塑料塞不断扩张而紧贴岩 壁, 既保证炮泥不会填入药卷之中又可达到密封炮眼口的 目的. 目的.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、光面爆破设计
1.光面爆破的起爆顺序。

起爆顺序:掏槽炮→扩槽炮→内圈炮→周边炮→底板炮→底角炮。

2.光面爆破参数的确定
(1)周边孔间距E。

周边眼通常布置在距开挖断面边缘0.1m至0.2m处,光爆孔的孔底的孔底朝隧道开挖轮廓线方向倾斜3~5°。

当爆孔孔径D为40mm时,周边孔间距E =(10~16)D,Ⅱ、Ⅲ级围岩周边眼的间距为0.55m,Ⅳ级围岩约为0.50m比较合适。

(2)光爆层厚度W。

光爆层厚度就是周边眼最小抵抗线,它与开挖的隧道断面大小有关。

断面大,光爆眼所受到的夹制作用小,岩石比较容易崩落,可以大些;断面小,光爆眼受到的夹制力大,光爆层厚度相对要小些。

同时,光爆层厚度与岩石的性质和地质构造有关,坚硬岩石光爆层可小些,松软破碎的岩石光爆层可大些。

凤凰山隧道光爆层厚度W=0.5m~0.8m,Ⅱ、Ⅲ级围岩W取55cm,Ⅳ级围岩W取60cm。

(3)密集系数K。

周边眼密度系数是周边眼间距E与光爆层厚度W的比值,是影响爆破效果的重要因素。

K=E/W(K取值0.8)
(4)孔深L。

围岩循环进尺:L=0.5×B×90%=0.5×6.0×90%=2.70m(隧道宽度B=6.0m)。

除掏槽眼和底角眼取值3.2m外,其余各眼炮孔深度取3.0m。

在实际操作中应视掌子面的凹凸情况,调整各炮眼钻孔长度,使所有炮眼眼底处于同一垂直面上。

(5)装药量Q。

一是确定炸药单耗量q,炸药单耗量对装药效率、炮孔利用率、开挖壁面的平整程度和围岩的稳定性都有较大的影响。

它取决于岩性、断面积、炮孔直径和炮孔深度等多种因素。

q取值1.2kg/m3。

二是装药集中度Q。

光面爆破装药量的计算,主要是确定周边眼光爆层炮眼装药集中度,即
Q=qEW
Q确定为0.11~0.30kg/m。

(6)炮孔数量N。

炮孔数量取决于掘进断面积、岩石性能和炸药性能。

孔数过少将造成大块增多,周壁不平整,甚至会出现炸不开的情况;相反,孔数过多将使凿岩工作量增大。

N=0.0012qS/ad2
式中N—炮孔数量,个;q—单位炸药消耗量, 取1.2kg/m3;S—开挖断面面积,(Ⅳ级围岩S=52m2 ,Ⅱ、Ⅲ级围岩S=42m2)a—炮眼装填系数,取0.62;d—炸药直径,硝铵炸药为32mm。

Ⅱ、Ⅲ级围岩炮孔数量N=95个,Ⅳ级围岩炮孔数量N=118个。

3.装药结构。

周边眼装药采用径向不偶合间隔装药结构,不偶合系数为1.5~2.0。

所有爆眼统一装φ32标准药卷,周边眼间隔装药,岩石炸药与乳化炸药混装,周边眼药卷不需绑在竹片上,直接装入,孔口用炮泥堵塞。

光面爆破装药过程中,如果只注意控制周边眼用药量而忽视内圈辅助眼的药量控制,很难达到理想的爆破效果。

因此,为保证光爆效果,司钻手定岗定位,掏槽眼、底板眼、辅助眼、周边眼(又分拱部、拱墙、边墙)都实行专人负责。

4.起爆方法。

隧道爆破从掏槽眼到辅助眼至周边眼,采用多段微差毫杪雷管起爆由里向外起爆,其中周边眼比辅助眼要跳2段,间隔时间为25~100毫秒,且用同一段雷管同时起爆
四、光面爆破参数的调整
光面爆破是一项能有效控制岩体开挖轮廓减少超欠挖的爆破技术,通过对隧道周边进行正确的钻孔和爆破,可以保留完整的周边轮廓及减少对围岩的扰动。

确定合理的光爆参数,
是获得良好光面爆破效果的重要保证。

凤凰山隧道钻孔直径为φ40mm,钻孔深度为3m(除掏槽眼和底角眼取值3.2m),爆破中使用2号岩石铵梯炸药和乳化炸药。

在施工中分别对周边眼间距为40cm,50cm,55cm,60cm,65cm,70cm、光爆层厚度及炮孔数量等进行多次现场爆破试验,总结出以下爆破技术参数:
1.周边眼间距E:当爆孔孔径D为40mm时,Ⅱ、Ⅲ级围岩周边眼的间距为0.55m,Ⅳ级围岩约为0.50m比较合适。

2.Ⅱ、Ⅲ级围岩光爆层厚度W取55cm,Ⅳ级围岩W取60cm。

3.密集系数K。

K取值0.8
4.孔深L。

隧道光面爆破,周边眼的深度,取决于钻眼精度。

本隧道钻眼深度L取值3.0m,进尺2.70m。

5.装药量Q。

经过现场试验和施工经验数据,装药量Q确定为0.20kg/m。

6.炮孔数量N。

N=0.0012qS/ad2。

考虑到周边眼适当加密,不同围岩级别相应增加8~10个炮孔,Ⅱ、Ⅲ级围岩炮眼总数选取104个,Ⅳ级围岩炮眼总数选取128个。

相关文档
最新文档