外文翻译---应用计算机辅助工程设计重型卡车车架
外文翻译---计算机辅助设计和计算机辅助(CADCAM)
Computer-aided Design and Computer-aided Manufacturing(CAD/CAM)Throughout the history of our industrial society,many invention have been patented and whole new technologies have evolved .Whitney is concept of interchangeable parts,Watt’s steam engine,and Ford is assembly line are but a few developments that are most noteworthy during our industrial period . Each of these developments has impacted manufacturing as we know it,and has earned these individuals deserved recognition in 0ur history hooks. Perhaps the single development that has impacted manufacturing more quickly and significantly than any previous technology is the digital computer.Since the advent 0f computer technology, manufacturing professionals have wanted to automate the design process and use the database developed therein for automating manufacturing processes. Computer—aided design/computer-aided manufacturing (CAD/CAM),when successfully implemented, should remove the “wall” that has traditionally existed between the design and manufacturing components .CAD/CAM means using computers in the design and manufacturing processes. Since the advent of CAD/CAM,other terms have developed:Computer graphics(CG)Computer—aided engineering(CAE)Computer-aided design and drafting(CADD)Computer aided process planning(CAPP)These spin-off terms a11 refer to specific aspects of the CAD/CAM concept CAD/CAM itself is a broader,more inclusive term. It is at the heart of automated and integrated manufacturing.A key goal of CAD/CAM is to produce data that can be used in manufacturing a product while developing the database for the design of that product When successfully implemented, CAD/CAM involves the sharing of a common database between the design and manufacturing components of a company,Interactive computer graphics (ICG) plays an important role in CAD/CAM, Though the use of ICG, designers develop a graphic image of the product being designed while storing the data that electronically make up the graphic image. The graphic image can be presented in a two-dimensional (2+D) , three-dimensional(3-D),or solids format. ICG image are constructed using such basic geometric characters as points, lines, circles, and curves. Once created, these images can be easily edited and manipulated in a variety of ways including enlargements,reductions, rotations, and movements.An lCG system has three main components :1 ) hardware, which consists of the computer and various peripheral devices; 2) software, which consists of the computer programs and technical manuals for the system ; and 3) the human designer, the most important of the three components.A typical hardware configuration for an ICG System include a computer,a display terminal, a disk drive unit for floppy diskettes, a hard disk, or both; and input/output devices such as a keyboard,plotter, and printer. These devices, along with the software, are the tools modern designers use to develop and document their designs.The ICG systems could enhance the design process by allowing the human designer to focus on the intellectual aspects of the design process, such as conceptualization and making judgment-based decisions. The computer performs tasks for which it is better suited, such as mathematical calculations, storage and retrieval of data,and various repetitive operations such as crosshatching.Rationale for CAD/CAMThe rationale CAD/CAM is similar to that used to justify any technology-based improvement in manufacturing . It grows out of a need to continually improve productivity,quality.and,in turn competitiveness. There are also other reasons why a company might make a conversion from manual processes to CAD/CAM:increased productivitybetter qualitybetter communicationcommon database with manufacturingreduced prototype construction costsfaster response to customersIncreased ProductivityProductivity in the design process is increased by CAD/CAM. Time-consuming tasks such as mathematical calculations.data storage and retrieval, and design visualization are handled by the computer,which gives the designer more time to spend on conceptualizing and completing the design. In addition, the amount of time required to document a design can be reduced significantly with CAD/CAM. All of these taken together means a shorter design cycle, shorter overall project completion time, and a higher level of productivity.Better QualityBecause CAD/CAM allows designers to focus more on actual design problems and lesson time-consuming,nonproductive tasks,product quality improves with CAD/CAM. CAD /CAM allows designers to examine a wider range of design alternatives and to analyze each alternative more thoroughly before selecting one. In addition, because labor-intensive tasks are performed by the computer, fewer design errors occur. These all lead to better product quality.Better CommunicationDesign documents such as drawings,parts lists, bills of material, and specifications are tools used to communicate the design to those who will manufacture it. The more uniform , standardized, and accurate these tools are, the better the communication will be. Because CAD/CAM leads to more uniform, standardized, and accurate documentation, it improves communication.Common DatabaseThis is one of the most important benefits of CAD/CAM. With CAD/CAM.the data generated during the design of product can be use in product the product. This sharing of a common database helps to eliminate the age-old “wall” separating the design and manufacturing functionReduced Prototype CostsWith manual design,models and prototypes of a design must be made and tested, adding to the cost of the finished product. With CAD/CAM,3-D computer models can reduce and, in some case, eliminate the need for building expensive prototypes. Such CAD/CAM capabilities as solids modeling allow designers to substitute computer models for prototypes in many cases.Faster Response to CustomersResponse time is critical in manufacturing. How long does it take to fill a customer’s order? The shorter the time, the better it is. A fast response time is one of the keys to being more competitive in an increasingly competitive marketplace. Today, the manufacturer fastest response time is as likely to win a contract as the one with the lowest bid. By shortening the overall design cycle and improving communication between the design and manufacturing components, CAD/CAM can improve a company’s response timeHistorical Development of CAD/CAMThe historical development of CAD/CAM has followed close behind the development of computer technology and has paralleled the development of ICG technology. The significant developments leading to CAD/CAM began in the late 1950s and early 1960s. The first of these was the development, at Massachusetts Institute of Technology (MIT),ofthe Automatically Programmed Tools (APT) computer programming language.The purpose of APT was to simplify the development of parts programs for numerical control machines. It was the first computer language to be used for this purpose. The APT language represented a major step toward automation of manufacturing processes.Another significant development in the history of CAD/CAM followed close behind APT, also developed at MIT, was called the Sketchpad project. With this project, Ivan Sutherland gave birth to the concept of ICG. The Sketchpad project was the first time a computer was used to create and manipulate graphic images on a CRT display in real time. Throughout the remainder of the 1960s and 70s, CAD continued to develop and several vendors made names for themselves by producing and marketing turnkey CAD systems. These were complete systems including hardware,software,maintenance and training sold as a package. These early systems were configured around mainframe and minicomputer. As a result, they were too expensive to achieve wide-scale acceptance by small to medium manufacturing firms.By the late 1970s,it became clear that the microcomputer would eventually play a role in the further development of CAD/CAM. However, early microcomputers did not have the processing power, memory, or graphic capabilities needed for ICG. Consequently, early attempts to configure CAD/CAM systems around a microcomputer failed.In 1983 IBM Introduced the IBM PC,the first microcomputer to have the processing power, memory, and graphic capabilities to be used in CAD/CAM. This led to a rapid increase in the number of CAD/CAM vendors. By l989 the number of CAD/CAM installations based on microcomputers equaled the number based on mainframe and minicomputer.Computer and DesignThe computer has had a major impact on the way everyday tasks associated with design are accomplished. It can be used in many ways to do many things. However, all design tasks accomplished using a computer fall into one of three broad categories:Design modelingDesign analysisDesign reviewIn CAD/CAM design modeling, a geometric model of a product is developed that describes the part mathematically. This mathematical description is converted to graphic form and displayed on a cathode ray tube. The geometric model also allows the graphic image to be easily edited and manipulated once displayed.Design AnalysisThe computer has simplified the design analysis stage of the design process significantly. Once a proposed design has been developed, it is necessary to analyze how it will stand up to the conditions to which it will be subjected. Such analysis methods as heat transfer and stress-strain calculations are time-consuming and complex. With CAD/CAM, special computer programs written specifically for analysis purposes are available.Design ReviewAnother step in the design process that has been simplified by the computer is design review. This involves checking the accuracy of all aspects of the design. There are several ICG capabilities that make design review in CAD/CAM easier than with manual design. CAD-to-CAM InterfaceWith CAD/CAM, the real interface between the design and manufacturing components is the common database they share. This is the essence of CAD/CAM. With manual design and manufacturing, engineers go through each step in the design, drafters produce drawings and other documents to communicate the design, manufacturing personnel use the drawings to develop process plans,and shop personnel actually make the product.With the old approach,until the design and drafting personnel completed their work, the manufacturing personnel did not see it. The design and drafting department did its job and“threw the plans over the wall”to manufacturing so it could do its job. This approach led to continual breakdowns in communication as well as poor relations between the design and manufacturing components. The result was a loss of productivity.With CAD/CAM.manufacturing personnel have access to the data created during the design phase as soon as they are created. At any point in the design process, they can call up information from the design database and use it. Since the data are shared from start to finish, There are no surprises when the completed design is ready to be produced. While designers are creating the database and drafters are documenting the design,manufacturing personnel can be programs.Everything needed by manufacturing personnel to produce the product is contained in the common database. The mathematical models, graphic images,bills of material,parts lists,size,from. locational dimensions, tolerance specifications and material specifications are all contained database计算机辅助设计和计算机辅助(CAD/CAM)纵观人类工业社会的历史,许多发明获得了专利,整个新技术也逐渐形成。
计算机辅助工程分析
日期:2016年11月20日计算机辅助工程分析摘要:计算机辅助工程,即CAE(Computer Aided Engineering),是一个涉及面广、集多学科与工程技术于一体的综合性、知识密集型技术。
在产品开发阶段,企业应用CAE 能有效地对零件和产品进行仿真检测,确定产品和零件的相关技术参数,发现产品缺陷、优化产品设计,并极大降低产品开发成本。
在产品维护检修阶段能分析产品故障原因,分析质量因素等。
目前,CAE 主要应用于汽车、航空、电子、土木工程、通用机械、兵器、核能、石油和化工等行业。
关键词: CAE 有限元前处理后处理1、计算机辅助工程1.1 CAE的由来CAE(Computer Aided Engineering)英文翻译是计算机辅助工程,泛指包括分析、计算和仿真在内的一切研发活动。
传统的CAE主要是指工程设计中的分析计算和分析仿真,其核心是基于计算力学的有限元分析技术。
制造工程协会SAE(Society of Manufacturing Engineering)将计算机辅助工程(CAE)作为CIM (Computer Integrated Manufacturing)技术构成进行如下定义:分析设计和进行运行仿真,以决定它的性能特征和对设计规则的遵循程度。
CAE技术是计算机技术和工程分析技术相结合形成的新兴技术,CAE软件是由计算力学、计算数学、结构动力学、数字仿真技术、工程管理学与计算机技术相结合,而形成一种综合性、知识密集型信息产品。
在近20年来市场需求的推动下,CAE技术有了长足的发展,它作为一项跨学科的数值模拟分析技术,越来越受到科技界和工程界的重视。
21 世纪,是信息时代,随着计算机技术向更高速和更小型化的发展,分析软件的不断开发和完善以及网络通讯的普及,CAE技术的应用将愈来愈广泛并成为衡量一个国家科学技术水平和工业现代化程度的重要标志。
1.2 CAE的发展CAE 是以有限元法、有限差分法及有限体积法为数学基础发展起来的。
重型自卸车举升机构的计算机辅助设计.
2001·4专用汽车Special P ur pose Vehicle ・3・☆设计·研究☆重型自卸车举升机构的计算机辅助设计周廷美崔元捷王仲范(武汉理工大学湖北武汉430070[摘要]根据用户对重型自卸车的设计要求, 采用计算机辅助设计的方法对重型自卸车的举升机构的布置方案、各个不同举升位置的受力计算、举升油缸及液压系统的设计计算进行了探讨。
关键词:重型自卸车举升机构计算机辅助设计中图分类号:U 469. 4. 02文献标识码:A 文章编号:1004-0226(2001 04-0003-03Lift Mechanism CAD of Heavy -duty Dump CarZhou Ting -mei et alAbstract A ccor ding to desig n r equirement o f heavy -duty dump car , CA D method ar e used to make ar-r ang ements fo r lift mechanism layout , calculate active fo rce in differ ent lift lo cation , decide lift hy dr o -cy linder and hy dr aulic system.Key words heavy -duty dump car ; lift mechanism ; CA D随着西部大开发战略的实施, 重型自卸车的使用日益增多, 专用汽车生产厂家也在不断调整生产计划, 在目前已有的底盘基础上进行修改设计以满足市场的需要。
举升机构是自卸车的核心机构, 它直接关系到自卸车的整车及举升性能, 这里将介绍重型自卸车举升机构的布置方案的优选及举升机构的受力分析及液压系统的设计计算方法及程序设计方法, 使得举升机构的设计计算方便、快捷, 可使工程技术人员从烦琐的计算或作图工作中解放出来, 全心致力于方案设计之中。
机械类文献翻译新的计算机辅助工程(CAE)英
DEVELOPMENT Calculation and Simulation Modern CAE systems can now effectively analyse most components and systemswithin an engine. The 3D geometry is however normally generat-ed manually using traditional engineering skills and experience.Integral Powertrain has developed a radical, parametric,rule-based design approach in which templates are used to increase automation and incorporate knowledge, thus re-ducing development time whilst increasing quality.1 IntroductionIn the engineering of new and modified powertrain products, OEMs and engineer-ing consultants are all striving for a com-petitive advantage. This is driving quality and specification upwards whilst reducing project duration. This has resulted in major advances in a number of areas, notably simulation, digital mock -up, rapid proto-typing and sophisticated ‘virtual test bed’techniques for NVH and mechanical valida-tion.Many of these have focused on produc-ing and testing or analysing mature de-signs. Integral Powertrain (IP) decided to al-so investigate the potential for advances in CAE techniques to enable major process im-provements in the generation of designs.By achieving better initial designs, it was anticipated that the end product would be improved and the cost and time required for validation reduced.As a result of this investigation, a re-vised process has been defined and pilot R&D projects run using the cylinder head and crank train as subjects. Most recently,the new process, known as Automated In-telligent Engine Design (AIED), has been ap-plied to commercial projects for the first time, enabling IP to offer its clients im-proved speed and quality of new concept design and powertrain upgrades. Integral Powertrain is also offering the creation of customised templates as a service to its clients, enabling OEMs and suppliers to achieve similar benefits while incorporat-ing their own rules and knowledge.2 The New Design ProcessThe main high-level objectives for the new process were:■time compression: in particular improv-ing communication and reducing the cycle time for defining and optimising geometryBy Luke BarkerWeiterentwicklung einerMotorenfamilie durch moderne CAE-TechnikYou will find the figures mentioned in this article in the German issue of MTZ 7-8/2004 beginning on page 570.New CAE TechniquesAutomate the Creation of Engine Component Design■knowledge capture and re-use: automat-ically incorporating engineering k nowl-edge and tools to improve design quality ■promotion of continuous improvement: enabling the upgrading of models and rules as a result of experience and R&D.2.1 CAE ImprovementsThe latest CAE / PLM tools offer enhance-ments in many areas. The key enabling fea-tures for AIED are:■the ability to create fully and partly parametric models with stability over a wide geometric range■the ability to select or de-select features ■the incorporation of rules, calculations and logic either directly or by interfacing with other software tools.2.2 ParametricsThe basic building block of the new process is the tolerant parametric model (TPM). This is a highly flexible model driven by key parameters, Figure 1. Typically, the model will also contain a number of options or features that can be selected or de-selected. For example, instead of creating a new pis-ton model every time a new design is re-quired, the same model is used for all pis-tons but with appropriate features being selected and with appropriate values for each parameter.This already introduces a level of time compression, since the model structure is already in place. Also, the use of this same basic model ensures a greater level of con-sistency across designs.2.3 RulesOnce the TPM is in place, values of certain k ey parameters, clearances and tolerances can be linked to each other or determined as the result of explicit calculations. As rela-tionships and rules are added, the number of parameters adjusted by the design engineer is reduced, thus allowing further reductions in design time. This approach also automati-cally captures much of the design methodol-ogy, promoting consistency and quality.2.4 Evaluating and Optimising the DesignClearly, by using this approach, a design can be generated very quickly to a consis-tent structure obeying explicit design rules. The criteria for optimisation, however, may be very complex, so that automatically reaching an optimum single solution is im-practical. For example, a crankshaft must meet certain criteria, including pack age, balance, dynamics, weight, stress, bearing loads and cost of manufacture.The approach used in AIED, Figure 2, is to enable designers to carry out a basic analysis of all the key criteria with almostinstant results. In this way, they can ex-plore the ‘design space’ and rapidly con-verge on an optimum solution. Mathemat-ical optimisers are incorporated within thisstructure as appropriate. This analysis canoften be carried out within the CAD soft-ware, although for more complex tech-niques it is generally more efficient to in-terface with other software tools andspreadsheets.2.5 Interfaces withDownstream AnalysisOnce the design satisfies the basic ‘first-pass’ analysis criteria, more extensive tech-niques can be used if required to fine tuneand validate the design. Since the same ba-sic model is re-used, it is efficient to stream-line the generation of mesh and boundaryconditions, so once again timing and quali-ty benefits are achieved.2.6 Template Structure for theWhole EngineSingle component templates can reducethe time taken to generate a viable designfor a given component. In order to gainmaximum reduction in time to generate (oriterate) a design for the whole engine, it isimportant to manage the interaction ofcomponent designs. It must also be possi-ble to rapidly review the status of key at-tributes in a dynamic design environment.These are primarily issues of communica-tion.2.7 Publishing andCommunicationFor each template, it is possible to publish asummary containing accurate design infor-mation in a structured manner. This will in-clude key dimensions likely to affect othercomponents, mass properties, etc. It may al-so contain business or commercial infor-mation such as cost estimation or requiredvalidation activities. Publishing helps to co-ordinate components into systems andstreamline communication across the busi-ness and with suppliers.2.8 System TemplatesIn many cases, there are clear interactionsbetween key dimensions in the engine. Forexample, the crank pin, bearing insert andconnecting rod big end must be consistentwith one another. These are controlled byintroducing higher-level “system” tem-plates to control the relationships betweencomponents, Figure 3.2.9 Vertical TemplatesPublished information can also be collectedacross system templates and combined togive an overall view of important attribut-es and of project or business issues.3 IT System ImpactImplementing the new design processgives rise to two important issues:■control of links between models■interfacing of vertical templates.In a traditional design process, the CADmodel contains pure geometry, and the on-ly link that exists is between the model andthe drawing. In the case of the AIED ap-proach, the template model contains farmore information. For example, the geom-etry is driven by links to analytical tools orother models. In addition, a complex com-ponent like a cylinder head is made up of anumber of sub-models that, when assem-bled, define the complete component. Thismulti-model structure further increases thenumber of links.This places great demands on the PDMsystem in order to manage the associativelinks and change process. For this reason, itis essential to review PDM capability andplan the implementation of necessary up-grades in parallel with changes to the de-sign process.The successful incorporation of verticaltemplates is a different challenge. Thestructure is less complex in this direction,but the systems used (e.g. resource plan-ning, cost control, etc.) are likely to be basedaround different platforms and to varygreatly between companies. Maximumflexibility is assured if the horizontal tem-plates are considered simply as informa-tion providers. The key requirement in thiscase is that information is published in aconsistent form and can be read andprocessed by the vertical templates.4 The Pilot ProjectIn order to prove the process, it was neces-sary to ensure that it could work for com-plex components. We therefore selected thecylinder head. Figure 4shows the high-lev-el structure comprised of linked sub-mod-els. Each of these is parametrically drivenand incorporates design rules and method-ology.Figure 5shows the sub-model used togenerate the inlet port and injector pack-age. This includes basic port parametersand rules to generate throat and seat ma-chining. Other models relate to valve trainpackage, combustion chamber design, boltbosses, etc.Development of this structure began in1999, using Catia V4, Figure 6, althoughthe functionality was limited. Adoption ofV5 software in 2002 enabled more complex DEVELOPMENT Calculation and Simulationdesign rules and logic to be embedded and also enabled automated link s with other engineering software tools. Development of the system on the Catia V5 platform has continued ever since, and after extensive internal testing and evaluation, the AIED approach was applied in a customer project for the first time in late 2003.5 Continuous Improvement Since the manufacture of the initial proto-type cylinder head tool, templates have now been developed for the cylinder block and crank train (crank, con rod and piston)components. The cylinder head flexibility has also been improved to cover a number of different valve train options.The benefits of the new process in con-cept design have since been well estab-lished. Typically, a more thorough investi-gation of alternatives can be carried out in a given time, and the fast optimisation cy-cle enables better decisions concerning key dimensions. Aggressive specifications can therefore be met with a greatly reduced risk, Figure 7.The parametric, rule-based approach has also proven to be a very powerful driver towards improving best practice. Design rules that limit the package or performance are easily identified. Further detailed work can then be carried out to improve under-standing and develop more aggressive rules, Figure 8. There is also a natural ten-dency for the rules to evolve: successful de-sign rules continue to be used whilst un-successful rules are modified or replaced.This tendency towards continuous im-provement has also been used successfully to investigate powertrain upgrade poten-tial. Firstly, competitor engine geometry is rapidly reproduced using the appropriate AIED tools. The integrated optimisation tools are then used to assess the design and make comparisons with benchmark values.Potential upgrade plans can then be devel-oped and assessed against the benchmarks.6 Applying AIED to an Engine Upgrade StudyThe AIED tool set has recently been applied to a customer engine upgrade study. The client required a thorough feasibility study covering a variable valve train, increased engine capacity, higher engine speed and pressure-charged derivatives consistent with defined manufacturing constraints of a mature engine family.Facsimile models of the client’s cylinder head, valve train and crank train geometry were developed using AIED templates. This enabled the customer’s current design to be thoroughly benchmarked. The comprehen-sive rule base in the AIED also enabled the rapid definition and evaluation of potential upgrade paths. Each iteration was supported by a complete set of simulations to collect benchmark data covering engine forces and balancing, valve train dynamics and drive loads, engine performance, component load-ing and durability, NVH characteristics,gas/coolant flow and heat transfer.Four new engine concepts were present-ed to the customer after six weeks of engi-neering activity and were supported by comprehensive benchmark data generated by the tools. A similar study using tradi-tional modelling and analysis methods would tak e approximately twelve week s.This gives a good illustration of the benefits gained from the new tools.7 ConclusionThe latest CAE and PLM capability enables complex engine component geometry to be generated using a parametric, rule-based process. When compared to existing design processes, this greatly reduces the time re-quired to generate and optimise concept designs whilst simultaneously improving their quality. The new approach is also highly compatible with benchmarking and the promotion of continuous improve-ment.It is suggested that the generation of better initial geometry will substantially improve the end product and reduce the time and cost associated with validation.■DEVELOPMENT Calculation and Simulation4 The Pilot Project Figure 6: Concept of an Atkinson-cycle cylinder head generated using a prototype AIED tool5 Continuous ImprovementFigure 7: V12 engine designed in five weeks using AIED。
重型汽车传动系统结构分析与优化设计
重型汽车传动系统优化设计
轻量化设计
减轻重量:通过使 用轻质材料和优化 结构设计,降低传 动系统的重量
提高效率:减轻重 量可以提高传动系 统的效率,降低能 耗
增加寿命:轻量化 设计可以降低传动 系统的磨损,提高 使用寿命
环保节能:减轻重 量可以降低燃油消 耗,减少排放,符 合环保要求
智能化:采用智能控制技术, 优化传动系统效率,降低能 耗
未来重型汽车传动系统的发展趋势
节能环保:提 高燃油效率, 减少排放
轻量化:减轻 重量,提高燃 油经济性
智能化:实现 自动变速、智 能驾驶等功能
模块化:提高 通用性,降低 成本
电动化:发展 纯电动、混合 动力等新能源 汽车
网联化:实现 车辆与车辆、 车辆与基础设 施的互联互通
THANK YOU
汇报人:
离合器的功能是实现发动 机与传动系统的分离和结 合,保证汽车平稳起步和 换挡。
变速器的功能是改变传动 比,扩大驱动轮转矩和转 速的变化范围,以适应不 同行驶条件的需要。
传动轴的功能是将动力传 递给驱动桥,实现动力的 传递。
差速器的功能是实现左右 驱动轮的差速转动,保证 汽车在转弯时的行驶稳定 性。
驱动桥的功能是将动力传 递给驱动轮,实现汽车的 行驶。
智能化设计的应用:在重型汽车传动系 统优化设计中,智能化设计已经得到了 广泛的应用,如自动变速器、电控系统 等。
重型汽车传动系统性能评价
传动效率评价
影响传动效率的因素:齿轮 啮合、轴承摩擦、油液粘度 等
传动效率的定义:输入功率 与输出功率的比值
提高传动效率的方法:优化 齿轮设计、降低轴承摩擦、
机械毕业设计英文外文翻译72车架
附录附录AThe frame is the most basic test bench car, all the suspension and turned to connect components are installed in frame above. If car frame flexible is too big, can make cars can neither turned, also cannot normal control. And if the car too rigid frame structure, and would cause unnecessary vibration passed to the driver and passenger's seat cabins. Auto frame and suspension structure design is not only the vehicle noise size and the decision of the vibration amplitude strength, but also will affect the quality of the car and the normal control vehicle. Car manufacturers in their production car are used in several different frame structure. Among them, through the seventy s the most commonly used is shell and girders of fission structure.At present it is still in large trucks, small tonnage truck and a truck on the application. In car shell and the beam structure in the fission, engine, transmission device, transmission gear and the car is through shell insulation devices in the body on the sole fixed. The frame of the internal insulation devices is artificial rubber pad to be able to stop road uneven and engine noise and vibration of the work related to the driver and passenger's cockpit. The second isthe single structure of automobile frame. This kind of design so far in the modern car is the most commonly used. According to the strength of the frame monomer to points, design have light structure. In this car structure as part of the beam frame welding to be directly on the shell. The weight of the chassis increased the strength of the beam. Transmission gears and transmission device via big and soft artificial rubber insulation mat installed in the frame monomer. Insulation pad weakened the noise transmission and vibration. If the insulation pad too soft, will cause transmission gears and transmission device displacement. The displacement called soft quantity, it will affect the manipulation of car performance and control performance. If the insulation pad too hard, cannot play its isolation and reduce the role of the vibration noise. Car manufacturers well-designed insulation mat, put them in proper place device car, in order to reduce the noise, vibration, make the transmission buffer for driving car, drivers and passengers take comfort. The performance of the insulation mat with use fixed number of year changing, when the old car becomes the performance of the original also changed.He third kind of structure is the first two kinds of structure of the main characteristics unifies in together. It in front of the car used car beam, in the short HouCang use a frame. A monomer, and shortrigid part of the beam's action is insulation to enhance the car.Car manufacturers in the car that choose low production cost and at the same time to meet with noise, vibration control performance requirements of high driving frame structure. The old large vehicles, trucks, and trucks often use shell and girders of fission structure. A new, smaller vehicles often use single structure frame.Engine piston connecting rod groupThe piston connecting rod group of piston, piston, piston pins, connecting rod, connecting rod bearings etc.Function: the piston is the work of gas pressure to bear, and through the piston pin to connecting rod rotation, the piston driven crankshaft top or part of the combustion chamber. Working conditions: the piston in high temperature and high pressure, high speed, bad lubrication under the conditions of the job. The piston directly with high temperature, gas contact instantaneous temperatures up to 2500 K above, therefore, heat, and cooling conditions and serious is very poor, so the piston work temperature is very high, the top as high as 600 to 700 K, and the temperature distribution is not uniform; The piston top bear gas pressure to do work, especially the greatest pressure, the gasoline engine trip up to 3 ~ 5 MPa, diesel engine as high as 6 ~ 9 MPa, this makes the piston impact, and bear the role of the lateral pressure, therefore,the piston should have enough heat resistance, to try to reduce the piston, piston cooling heating strengthen heat transfer surface, suitable enlargement, make the tops of the pistons. The highest temperature drop Inside the cylinder piston at high speed (8 to 12 m/s) reciprocating motion, and speed changing constantly, which has made a big inertia force, driving the piston is much additional load. The piston in this harsh conditions, can produce deformation work and accelerated wear, still can produce additional load and thermal stress, and the chemical corrosion function by gas. In order to reduce reciprocating inertia force, must reduce the weight of the piston as much as possible. The piston is in high temperature and high pressure, high speed (piston average speed can reach 101115 m/s) under the working conditions of the poor, the lubrication, piston and cylinder wall friction between serious. To reduce the friction, the piston surface must wear-resisting. Requirements:1)To have enough stiffness and strength, power transmission and reliable;2)Thermal conductivity, resistance to high pressure, high temperature resistant, wear resistance;3) Quality, light weight, small to minimize reciprocating inertia force. Aluminum alloy material basically meet the above requirements,therefore, the piston typically use the high-strength aluminum alloy, but in some low speed diesel engine USES the senior cast iron or heat resistant steel.Suspension systemSuspension shock absorbers and control including a spring, connecting rod device. It must be able to support the body weight and enough to load. Suspension also should be able to withstand the engine and braking to it an opposite reaction. Suspension system is the most important function of the tire and road surface contact time as far as possible the long. In support of body and load, even in rough roads should be more so. The four tire tread come in contact with the car is the only part. All output power, engine to force and power system through come in contact with the pavement of the tire tread work. Whenever tires and road surface contact or car started when the car skid, control ability (power, to force, braking force) will be weakened or even lost.Car body is supported by spring, spring can be divided into the spiral, steel plate type, twist bar type and inflatable. The spiral spring is the most widely used in modern car type. The spiral, torsion bar type and inflatable spring is need to use the connecting rod and connecting with the wheel arm in place. Leaf spring provide the horizontal and vertical vehicle control, in order to prevent thecar wheel in cars, they often unnecessary displacement with truck in the van and truck.Suspension system is along with the development of the passenger car and change and improvement. A luxury car, special vehicle, small cars and light trucks are designed completely different. Modern tire improvement continuously improve the vehicles operating performance, it is the improvement and shock absorbers, steering system and suspension control device of synchronous improvement together.In modern car of the manipulation conditions need to tires and the road, so that safe, correct contact to control and motor vehicles. To want to maximum driving safety, to remember this four tires must in any time and the road phase contact. At the same time to consider the vehicle steering flexibility, tire wear resistance, automobile driving comfort and driving safety, in order to achieve the effective control of the car. Suspension system is divided into front suspension and after suspension.The front suspension design has been rapid development. From relatively coarse hard shaft structure to the development of the modern light, high strength, support type independent suspension structure, and by increasing the connecting rod device and make the car's performance is improved. Suspension structure isimproved with the improvement of the road, and drivers need and the improvements.Most lead the engine, rear wheel drive car USES a simple after the dependency of the suspension. But a rear wheel drive independent suspension structure is complex, and high cost, and only used for a bus.To lead the engine of the car front wheel drive, through the transmission device, moved to the front suspension after only used to regulate driving control and the reaction of braking. This has the simplified of independent suspension institutions, half independent suspension institutions and independent suspension after the application, the latter a large institutions used in the design of the structure of new vehicles.附录B车架是汽车最基本的台架,所有的悬架和转向连接部件都安装在车架上面。
重型卡车悬架参数的计算机优化外文翻译
重型卡车悬架参数的计算机优化道格拉斯•布鲁福特汽车公司(此前屈于美国宾夕法尼亚州立大学),美国Bohdan T. Kulakowski宾夕法尼亚大学,美国摘要一种考虑整车性能的重型卡车悬架参数的最优化设计方法已被提出。
四项性能测试被用来评价整体性能:对路面的损坏,驾驶舒适性,刹车距离以及操控性。
这种方法用了重卡模拟程序来进行数值最优化并且考虑了一种复杂的对整午性能。
该方法采用一项敏感性分析来帮助选择设计变量,另外还有十二种最优化方案。
这个论文表明一个复杂的重卡仿真模型可以采用悬架最优化设计,并且在每一次性能测试屮的显著提升都能为典型半挂车做出贡献。
而且,将实施横滚和偏航稳定性作为优化参考项。
介绍一个重型卡车悬架系统设计师的目标是确保一辆卡车的耐用性、经济性,以及提供合理的舒适性和操作性。
卡车正在变得更大、更有力、更完善。
这些因素,以及近年来逐渐增长的公路安全和经济性能对设计者提出了更高的要求。
卡车预计将会继续变得更安全、舒适且对路而的破坏更少,那么能用最经济的方式实现这些目标的制造商将会是最成功的。
可以用计算机辅助设计來使设计过程更加高效,而且这己经成为竞争激烈的行业制造商必不可少的工具。
本文演示了重型卡车悬挂系统设计的计算机辅助中的一个应用程丿子,以及数字优化。
优化典型重型较接式卡车被动悬架参数时使用了一个程序以提高卡车的总体性能。
这种方法可以更高效的选择常用典型被动悬浮液重型卡车参数。
然后,该程序被用在了典型半挂牵引卡车上。
背景优化道路车辆悬架的冬种方法向來一直被使用,甲期的一些方法采用反复试验,以及小的分析模型。
基于计算机的悬架优化第一次出现在1967年,其中就有Bender[l]o 一些研究人员从那个时候开始研究,主要利用1/4或1/2汽车模型,但据文献记载,应用在狡接汽车悬架设计上的数字最优化设计技术的仅有尝试是由El-Madany[2]完成的。
El-Madany优化的悬架限制了线性半挂拖拉机模型的包括垂直和螺旋自由度在内的六个白由度。
应用计算机辅助工程设计重型卡车车架 外文翻译 精品
应用计算机辅助工程设计重型卡车车架Carlos Cosme, Amir Ghasemi and Jimmy GandeviaWestern Star Trucks, Inc. 摘要:近年来,重型卡车市场变得非常的注重重量和降低成本。
这对设计工程师是重大挑战,因为这些车辆被用在各种各样的公路环境,从高速公路到严重的越野环境。
目前的挑战是在不牺牲耐用性和性能降低的前提下满足质量和成本。
本文论述了运用计算机集成、计算机辅助设计和工程软件代码(Pro / Engineer,ADAMS软件和ANSYS)来辅助设计更改车架。
特别是,本文集中论述了一个ADAMS多体动力学模型,一个完整的卡车和拖车来模拟车辆的侧翻稳定性,平顺性,和耐久性载荷。
该模型包括一个采用灵活的框架模型模态综合模式,探讨了有限元分析程序。
之间的多体仿真链接与有限元程序也可以用来传输、加载应力分析有限元模型。
所有代码之间紧密连结,确保新的设计并行计算可快速用于设计和分析。
一个说明这是如何已被使用的技术详细的个案研究也包括在内。
简介最近,重卡行业经历了汽车降低成本和重量的大发展。
这一直是卡车制造商的主要挑战,在不牺牲耐用性和性能的前提下,寻找好的方式来优化他们的汽车设计。
由于车架是车辆系统的重要组成部分,它经常被用于完善。
本文概述了电脑辅助工程(CAE)分析更改车架以及这些变化会如何影响车辆性能。
重型卡车的车架是该车辆的骨干,上面集成了主要的卡车组成系统,如车轴,悬架,动力总成,驾驶室。
典型的结构框架是梯形框架,中间交叉几根横梁。
纵梁的断面尺寸变化很大,根据在卡车上的受力而定。
而且,需要考虑各种因素:重量,复杂性和成本。
这些变化将取决于横梁的作用和位置。
请参考图1插图,一辆卡车的车架。
然而,横梁布置的变化带来的影响还无法看出来。
例如,如果横梁的抗扭刚度降低,对汽车的侧倾稳定性和耐久性的影响是怎么的呢?设计工程师们需要对这些类型的问题给出答案以指导他们的工作。
机械设计制造与计算机辅助技术结合应用
机械设计制造与计算机辅助技术结合应用随着计算机技术的发展,计算机辅助技术在机械设计制造领域中的应用越来越广泛,已经成为现代化机械工业技术发展的重要推动力量。
机械设计制造领域中的计算机辅助技术包括计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助工程(CAE)等。
机械设计制造与计算机辅助技术结合应用,不仅提高了机械制造企业的开发设计能力和产品研发水平,而且大大缩短了机械制造的生产周期,提高了生产效率和产品质量。
1、产品设计领域计算机辅助设计(CAD)是机械设计制造中最常用的计算机辅助技术之一,主要是利用计算机图形处理能力实现机械产品的三维建模和设计。
计算机辅助设计可以帮助设计工程师快速并准确地完成设计方案,减少错误和单调的设计工作。
同时,利用CAD技术可以对设计方案进行实时展示和交流,使得设计师和生产工艺人员等多个团队能够快速协同工作,提高产品设计的质量和效率。
2、制造工艺领域计算机辅助制造(CAM)是一种基于数字化技术,将产品设计数据转换为机床运动指令并实现自动化加工的制造方式。
利用CAM技术,可以高效地实现数控加工、激光切割、数控冲压等先进的自动化加工方式。
采用计算机辅助制造技术,不仅可以简化制造工艺的流程和提高加工效率,而且能够大幅度提高产品的精度和质量。
3、力学分析领域计算机辅助工程(CAE)是机械设计和制造中的一种重要工具,利用计算机进行综合的有限元分析、热力学分析、流体动力学分析等。
借助CAE技术,工程师们可以进行复杂结构的分析计算,得到完整的分析结果,以判断产品承受的各种载荷情况,并对设计加以调整和完善,最终提高产品的安全性和可靠性。
智能制造是指利用现代科技手段,实现制造过程的自动化、数字化、智能化,从而提高制造效率和产品质量,并为制造业转型升级提供支撑。
机械设计制造与计算机辅助技术结合应用可以实现智能制造的关键。
借助人工智能技术、机器学习技术和物联网技术,机械制造企业可以实现智能化生产管理和智能制造流程控制,利用数据分析实现制造优化和质量控制,提高生产效率和产品质量。
计算机制造外文文献翻译
计算机制造1.1计算机辅助生产和控制系统制造技术已经发展了很多年了,这些年来,它经历了很多变化,从简单到复杂。
这些变化的动力是人们为了满足自己衣食住行的基本需要。
为了满足这些愿望,方法已经发展成从为了获取食物而制造简单的设备到今天的先进制造系统,它用计算机制造这样的产品:例如电视机,交通工具等。
计算机在制造系统中的作用已经越来越重要,计算机的能力之一是接收和处理数据,使系统更加多功能。
计算机制造的使用是新时代的到来。
计算机在生产制造控制进程方面的应用被称做计算机辅助制造(CAM)。
它是被建立在这样的系统上:数控(NC),辅助控制(AO,机器人学,自动牵引系统(AGVS),自动贮存/恢复系统(AS/RS),和柔性制造单元(FMS).一些新的应用进行了如下简要讨论。
更详细的讨论,会在以后的章节中提出。
许多有联系的制造事件被组合在一起进而组成一个特别的应用系统,可以被称为生产和控制系统( PACS),生产和控制系统从一个制造设备到另一个。
它被定义为在总制造设备中的一个子系统。
也许是一个独立的系统,或者是一个复杂的组合系统,生产和控制系统工作情况如图1.1所示。
为了满足人们设计功能的要求,应该被设计成与其他系统相互功能独立,因此,生产和控制系统应该能够和其他的系统结合成一个整体,总系统中的每一个系统都对总系统中的其他系统有一定的影响,系统的操作方法必须考虑以下原因:为防止数据丢失做好备份使重要的信息有效的传送到系统让每一个生产和制造系统知道它和其它的联系和它怎样影响别的系统让总的生产和制造系统的功能更加有效和实际图1.1生产和控制系统在制造系统中的作用计算机是目前为止被用来集成和操纵一系列的生产和控制活动的功能最强大的单一方法。
它已经把制造技术带到了一个智能领域,生产技术的进步带来了计算机技术和制造技术并带来了制造技术的进步,这样的结合是计算机辅助制造和控制(CAPACS)的基础,计算机带动了CAPACS的发展,所以,计算机辅助制造和控制系统增强了智能机器在生产和控制功能的作用,增加作用的智能机器要求有更亲密之间的交流和互动等功能,例如设计,生产,财务,生产,人性化和市场营销,概念化,形式化,排挤化的生产经营方式将由CAPACS改变在制造业中典型的研究如下:CAD 计算机辅助设计CAIN 计算机辅助检验CAM 计算机辅助制造CAPP计算机辅助程序计划CAQC计算机辅助质量检测控制CIPM 计算机集成生产管理DNC直接数字控制GT 成组技术图1.2计算机辅助制造和控制系统在制造系统中的相互关系图1.2对计算机辅助制造和控制系统相互关联的功能由一个综合数据库系统做了概述,设计数据是通过研究之间的相互作用产生的,它是一个集合了所有的介绍产品及相关操作的信息。
机械工程专业英语文章翻译
机械工程专业英语文章翻译机械工程专业英语题目:Computer-Aided Design and Manufacturing学号:20110334304班级:数控121姓名:康振平Computer-Aided Design and Manufacturing计算机辅助设计与制造Computer-aided design(CAD)involves the use of computers tocreate design drawings and product models. Computer-aided design is usually associated with interactive computer graphics(known as a CAD system). Computer-aided design systems are powerful tools and are used in the mechanical design and geometric modeling of products and components.计算机辅助设计(CAD)是指用计算机来创造设计图纸和产品模型。
计算机辅助设计通常是与交互式计算机图形学(称为CAD系统)有关系的。
计算机辅助设计系统是功能强大的工具,被用于在机械设计以及产品和零件的几何建模。
In CAD,the drawing board is replaced by electronic input and output devices. When using a CAD system,the designer canconceptualize the object to be designed more easily on the Graphics screen and can consider alternative designs or modify a particular design quickly to meet the necessary design requirements or changes. The designer can then subject the design to a variety of engineering analyses and can identify potential problems (such as an excessive load or deflection).The speed and accuracy of such analyses far surpass what is available from traditional methods.在CAD(计算机辅助设计)中,传统的画图板被电子输入和输出设备所替换。
CADAndCAM计算机辅助设计(CAD)和计算机辅助制造(CAM)外文翻译
CAD And CAMThe term CAD/CAM is a shortening of Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM). Well then, what is a general CAD system?The general CAD system was developed by considering a wide range of possible uses of such a system. The following were considered in detail:(1) Mechanical engineering design;(2) Building design;(3) Structural engineering design;(4) Electronic circuit design;(5) Animation and graphic design.It was postulated that four basic processes involving graphics occurred, to various degrees, in each field, namely:(1) Pure analysis - standard design and analysis processes.(2) Pure draughting–production of a drawing or picture by the manual creation and manipulation of lines, arcs, etc.(3) Drawing by analysis–the production of a picture or part of a picture directly from analysis: for example, production of cam profiles.(4) Analysis of drawing–evaluation of the properties of an item described graphically, for example the production of a quantity list by anal ysis of a builder’s plan drawing.For the system to be able to support pure analysis it must contain facilities for the running of analysis programs of unlimited length and for the storage and rapid retrieval of large amounts of data.It was considered important that the user should be able to communicate directly and graphically with analysis programs. Graphics facilities were provided which were considered to be sufficient for a general design draughting system. However, the range of graphical construction techniques is so large in practice that the system contained only as many facilities as could practically be incorporated in the draughting system, leaving other more specialized techniques to be developed by the applications programmer.For both the production of drawing items by analysis and the analysis of drawings, it is essential that there is a simple efficient link between data produced by the draughting system and analysis programs. It is also essential that graphic data can be annotated in a way which is recognized by analysis programs but which does not affect the draughting system.It was thought that for most practical application the general draughting system would be incorporated in a much larger specific applications system. For this reason the draughting system was as simple as possible consistent with reasonable running efficiency, so that it could be incorporated into an applications system with the minimum of effort.The facilities embodied in the general CAD system are now described. These facilities are aimed at allowing a user to input graphical information into the computer and file it. Initial data entry is made by digitizing rough sketches. The system also permits the user to access the data, manipulate it, process it, output it in hard-copy form, or re-file it for permanent storage.There are many reasons for using CAD; the most potent driving force is competition. In order to win business, companies used CAD to produce better designs more quickly and more cheaply than their competitors. Productivity is much improved by a CAD program enabling you to easily draw polygons, ellipses, multiple parallel lines and multiple parallel curves. Copy, rotate and mirror facilities are also very handy when drawing symmetrical parts. Many hatch patterns are supplied with CAD programs. Filling areas in various colors is a requirement in artwork and presentations. Different style fonts for text are always supplied with any CAD programs. The possibility of importing different graphic file formats and scanning of material (photographs) into a CAD program is also an asset especially as the image can be manipulated, retouched and animated.Another advantage of a CAD system is its ability to store entities, which are frequently used on drawings. Libraries of regularly used parts can be purchased separately or can be created by the draughtsman. For repetitive use on a drawing, a typical item may be retrieved and positioned in seconds, also oriented at any angle to suit particular circumstances.Using CAD products, assembly drawings can be constructed by inserting existing component drawings into the assembly drawing and positioning them as required.Clearance between different components can be measured directly from the drawing, and if required, additional components designed using the assembly as reference.CAD is very suitable for fast documentation. Previously, engineers and drafters wasted almost 30% of their time looking for drawings and other documents. Editing drawings to effect revisions and produce updated parts lists is quick and easy using a CAD product.When you’re working on paper and a customer wants to change a drawing, you have to draw it all over again; In CAD, you make the change immediately and print out a new drawing in minutes, or you can transmit it via E-mail or Internet all over the world instantly. On paper creating complex geometry often involves a lot of measuring and location of reference points; In CAD it is a breeze and revisions are even simpler. Many CAD programs include a macro or an add-on programming language that allows customizing it.Customizing your CAD programs to suit your specific needs and implementing your ideas can make your CAD system different from yourrivals. CAD can enable companies to producebetter designs that are almost impossible to produce manually and to eliminate dubious options during the conceptual design phase.Many CAD systems permit the rapid generation of models of proposed designs as wireframes. The solid modeling created in CAD can be transferred to a Finite Element Analysis (FEA) program, which will then verify whether the suggested design will be capable of supporting the expected loads.CAD will be linked to CAM (Computer Aided Manufacturing) whenever possible.CAD/CAM systems could produce computerized instructions for computerized machine controllers: lathes, mills, machining centers, turret punches, welding equipment, automated assemblies, etc.The CAM parts have evolved from the technology of Numerical Controlled (NC) machines. Early NC machines had their own on-board electronic control systems for their servo drives and motors, and where programmed by punched paper tape. In time, that becomes equivalent to a control stream of ASCII text data typed into a text editor.Each machine maker developed their own control code scheme, usually a very cryptic set of letters for machine actions and numbers for the values of speed, depth, etc., and position coordinates.NC machines include a computer with a screen and keyboard. These use a “conventional” control language. Modern CAD/CAM systems automatically generate tool paths from a 3D model, and can simulate the cutting action on-screen. The most CAD/CAM systems are modular that means you can buy whichever modules do the option you want and they integrates into a unified system.CIM (Computer Integrated Manufacturing) means complete integration of all aspects of manufacturing utilizing computerized information.CIM is the use of component data created by CAD in the CAM environment. In other words, the part geometry for manufacturing use in computerized form is used for NC programming. This stage of development may be termed small-scale integration.The most highly developed form of CIM is the creation of a database containing all the information required for flexible manufacturing of components produced by the plant, in a form in which it can be retrieved and used by anyone who needs it. Flexible manufacturing means the ability to make any components in small numbers or well as large, quickly, at economical cost, thus reducing tool charges, work in process and costly inventory.The main information flows involved in computer integrated manufacturing were clearly outlined by Helberg. CAD generates product model and product describing data that are transformed by CAPP (computer aided process planning) into routings and control programs for the CAM systems. The PPC (production planning and control systems) systemsgenerate andmanage all operational data that are used for controlling in the CAM area. CAQ (computer aided quality assurance) on a short-term basis corrects deviations in the manufacturing process and in the long run influences the development of products and methods with regard to quality assurance.Helberg’s outline does not include further necessary or desirable informational connections between the systems, such as a connection of CAD/CAPP and PPC for an accompanying calculation during design and routing generation, or feedback from manufacturing to planning. Furthermore, at least in the case of single-parts manufacturing, processes like design and process planning can be regarded as elements of the lead time of an order and therefore can be planned and controlled by the PPC system in the same way as the actual manufacturing and assembly processed. In that case a corresponding feedback becomes necessary.System integration and rationalization is not simply a technological matter, as the CIM theorists suggest. To integrate disperse and incompatible systems we must change traditional procedure, not just throw in more money and equipment. Whenever we try to change procedures we find resistance. The larger the company and the more independent the network, the more difficult it is to turn policies and procedures around. Yet, as Fig. 21.1 suggests, a condition for successful system integration is that it extends along functional and support lines, in the global sense of the distributed environment.FUNCTIONAL(LINES OFPRODUCTS ANDSERVICES)Fig. 21.1 System IntegrationFig. 21.1 System integration should be accomplished along three different axes of reference: distributed environment (topology), functional support, software and hardware.Because the tangible and intangible benefits of CIM are long term, theusual discounted-cash-flow and return-on-investment methods cannotjustify a CIM installation of a flexiblemanufacturing process frequently. Instead, strategic advantages and intangible benefits must be used to weigh the desirability of investment in CIM.CAD And CAM术语CAD/CAM是计算机辅助设计(CAD)和计算机辅助制造(CAM)的缩写。
cad和cab技术范文 -回复
cad和cab技术范文-回复CAD和CAB技术范文CAD(计算机辅助设计)和CAB(计算机辅助制造)技术是现代工业生产中不可或缺的工具。
它们提供了前所未有的设计和制造效率,同时还减少了人为错误,提高了产品质量。
在这篇文章中,我将逐步回答有关CAD和CAB技术的问题,并探讨它们对工业生产的重要性。
首先,让我们来了解CAD技术的概念和应用。
CAD是指使用计算机软件来辅助设计和绘图的过程。
它能够将设计师的想法转化为数字模型,并提供各种工具和功能来优化设计过程。
CAD技术广泛应用于建筑、机械、电子、汽车等各个领域。
它能够帮助设计师在短时间内创建出高质量的设计,节省了大量的时间和精力。
接下来,让我们来了解CAB技术。
CAB是指使用计算机软件来辅助制造的过程。
它能够将CAD中创建的数字模型传输到制造生产线,并利用数控机床等设备进行自动化生产。
CAB技术提高了生产效率,减少了人为错误,大大提高了产品质量。
它可以实现定制化生产,满足市场需求的多样性。
CAD和CAB技术的相互关系密切。
CAD可以为CAB提供数字模型,这样制造过程中的物理原型就可以由数字模型替代,减少了生产成本和时间。
CAB技术则可以反馈给CAD技术,使设计师能够更好地理解和应用制造的约束条件,进一步优化设计。
CAD和CAB技术对工业生产的重要性不容忽视。
首先,它们提高了生产效率和质量。
通过使用CAD 和CAB 技术,生产过程可以实现自动化和数字化,从而减少了人力成本和时间浪费。
其次,它们提供了高度定制化的生产能力。
CAD技术可以根据需要进行设计调整,并将数字模型传输给CAB技术进行定制化生产。
这满足了市场需求的多样性,提高了产品的竞争力。
最后,CAD 和CAB 技术也为企业创新提供了良好的基础。
它们使设计师能够更快速、更准确地实施创新想法,推动产品不断革新,适应市场的快速变化。
尽管CAD 和CAB 技术带来了许多好处,但它们也面临一些挑战。
首先是技术更新速度快。
计算机辅助设计与制造外文文献翻译、中英文翻译、外文翻译
毕业设计(论文)外文翻译题目计算机辅助设计与制造专业名称班级学号学生姓名指导教师填表日期20** 年03 月11 日计算机辅助设计与制造CAD/CAM是表示计算机辅助设计和计算机辅助制造的专业术语。
它是一种使用计算机完成某些设计和生成功能的技术。
在生产企业里,人们通常把设计和制造是为两项有着明显不同职能的分工,而这项技术正朝着设计与制造的更大程度一体化方向发展。
最终,CAD/CAM将会为未来的计算机集成工厂提供技术基础。
计算机辅助设计(CAD)可定义为运用计算机系统对设计的创意、修改、分析或优化予以辅助。
这些由硬件和软件构成的计算机系统,用于完成用户公司要求的特定设计功能。
CAD硬件通常包括:一台计算机,一个或多个图形显示终端,键盘和其他外围设备。
CAD软件包括各种计算机制图程序,这些程序便于用户公司完成设计职能,如:零部件的应变分析,机构的动态响应,热传输计算和数控零件编程。
由于用户的生产流程、制造工艺和销售市场方面的差异,应用程序的配置也将因用户而异。
这些因素均导致对CAD系统要求的差异性。
计算机辅助制造(CAM)可定义为通过直接或间接与厂家生产资源相适应的计算机界面,使用计算机系统来规划、管理和控制制造工厂的运行。
正如定义所表示的那样,CAM应用程序可分为两大类:1.计算机监控程序;2. 制造程序。
二者之间的区别是理解计算机辅助制造的基础。
计算机辅助制造的应用程序,除了为监控制造过程而直接使用计算机界面的应用程序之外,还包括在工厂生产运行过程中由计算机提供支持的间接应用程序。
在这些应用程序中,计算机并不直接与制造过程相联接。
相反,在脱机状态下,计算机可用来提供计划书、进度表、预报、指令和使厂家生产资源管理更加有效的信息资料。
计算机和制造过程间的关系如下图所示。
图中虚线用来说明交流和控制处于脱即状态下,需要人来完善界面。
目前,CAM的应用需要由人来为计算机输入程序,解释计算机的输出,并采取所要求的措施。
机械专业中英文对照翻译
机械专业中英文对照翻译In the field of mechanical engineering, there are numerous terms and concepts that require precise translation between English and Chinese. Understanding these terms and how they relate to one another is essential for effective communication in the industry.机械工程领域有很多术语和概念需要在英文和中文之间进行精确翻译。
理解这些术语及其之间的关系对该行业内的有效沟通至关重要。
Below are some key terms and their translations:以下是一些关键词汇及其翻译:1. Mechanical engineering 机械工程学2. Kinematics 运动学3. Dynamics 动力学4. Thermodynamics 热力学5. Fluid mechanics 流体力学6. Mechanics of materials 材料力学7. Robotics 机器人学8. Machine design 机械设计9. Manufacturing 制造业10. CAD (Computer-aided design) 计算机辅助设计11. CAM (Computer-aided manufacturing) 计算机辅助制造12. CNC (Computer numerical control) 计算机数控13. Finite element analysis 有限元分析14. Stress 应力15. Strain 应变16. Fatigue 疲劳17. Fracture 断裂18. Yield point 屈服点19. Elastic modulus 弹性模量20. Plastic deformation 塑性变形21. Shear stress 剪切应力22. Tensile stress 拉伸应力23. Compression stress 压缩应力24. Torque 扭矩25. Power 功率26. Efficiency 效率27. Lubrication 润滑28. Bearing 轴承29. Gear 齿轮30. Spring 弹簧31. Shaft 轴32. Coupling 联轴器33. Fastener 紧固件34. Welding 焊接35. Machining 加工36. Turning 车削37. Milling 铣削38. Drilling 钻孔39. Grinding 磨削40. Assembly 装配When translating these terms, it is important to consider their context within a particular field or industry. For example, the term “shear stress” may have a slightly different connotation in the context of civil engineering compared to mechanical engineering. Additionally, some terms may have multiple translations depending on the specific application or use case.当翻译这些术语时,考虑到它们在特定领域或行业中的背景非常重要。
中英文翻译计算机辅助制造
计算机辅助制造1.绪论当今的工业的竞争已经是真正意义上的国际市场竞争。
高效的运输网络建立了一个我们每天都要参与的 “世界市场”。
对于任何工业化国家要参与这个市场竞争,就必须采用一种适时的方式为其客户提供经济、优质的产品。
将产品设计和过程设计进行集成的重要性,在产品系统被怎么强调都不为过。
但是, 即使一种设计最终被落实, 制造业者一定愿意通过允许最后的工程设计变化,而没有通过影响装运进度表,或者改变产品质量来适应他们的用户。
大多数美国的生产公司基于趋向计算机辅助设计(CAD )/计算机辅助制(CAM )和CIM 为他们的制造系统提供灵活性。
今天,计算机用于制造已经很平常。
现在不仅为零件生产设计制造系统,而且为零件从一台机器运送到另一台机器的命令顺序设计了制造系统,如图(1),它还包含一个经济区域的制造经济计划在美国和其他国家,手工产品总是还有一些市场的,此外真正的工业产品对于特殊的“one-of-a-kind ”技术项目还是需要的。
“one-of-a-kind ”通过大量的货物来表明、各种各样的工业需要各种各样的加工方法。
有些系统将看起来像我们的祖父母曾经工作过的工厂,而其它则呈现出一种未来派的情景。
在后文中,我们将展开讨论柔性制造系统。
Volume-productionPer partNumber HighLowHigh IntegratedAutomationTechnologies Transter LinesDedicated SystemsFlexible Systems Automated CellsJob ShopsVariety-Part Numbers Per System图(1)2.柔性制造系统柔性制造系统(FMS)像人们通常知道的那样的,能使用一个可编程的制造系统自动地生产各种各样的产品。
自从亨利·福特率先提出并且使流水生产线实现现代化,我们就已经能自动执行多种生产的生产。
计算机辅助工程的研究与应用
计算机辅助工程的研究与应用第一章:介绍计算机辅助工程(Computer Aided Engineering, CAE)是指利用计算机技术对工程问题进行模拟、分析、优化和设计的过程。
随着计算机技术的发展,CAE已经成为了工程设计过程中非常重要的一环。
CAE广泛应用于机械、电子、航空航天、汽车、船舶、建筑等领域,成为了现代工业设计过程中不可或缺的一环。
第二章:CAE的基本概念CAE主要包括计算机辅助设计(Computer Aided Design, CAD)、计算机辅助制造(Computer Aided Manufacturing, CAM)和计算机辅助工程分析(Computer Aided Engineering Analysis, CAEA)三个方面。
CAD主要用于设计以及原型制作;CAM主要用于生产制造;而CAEA则用于工程分析,包括结构分析、流体分析、热传导分析、疲劳分析、动力学分析等。
第三章:CAE的研究内容CAE的主要研究内容包括有限元方法、计算流体力学、计算机辅助制造、逆向工程、虚拟样机等领域。
其中最为重要的是有限元方法。
有限元方法是利用数学方法将连续体离散化为有限个单元,通过计算得到每个单元上的位移、应力等物理量,并将结果拼接成整个模型,以得出其应力、热应力、疲劳等相应结果。
第四章:CAE的应用CAE广泛应用于航空航天、汽车制造、机械制造、电子制造、石油化工、建筑工程、城市规划等领域。
例如在航空航天领域,工程师可以使用CAE软件来设计、模拟飞行器结构,确定其承受能力和稳定性,以及在不同环境下的性能等;在汽车制造领域,则可以用CAE技术进行碰撞测试、车架设计、发动机性能分析等。
第五章:CAE的优势和发展CAE能够快速、准确地进行复杂工程问题的分析,能够大大提高设计效率和设计性能,并降低开发成本和风险。
CAE的发展也极为迅速,目前已成为工业界普遍采用的一种技术,越来越多的工程师和设计师利用CAE技术来进行设计和分析,提高产品质量和效率。
计算机辅助下的机械工程文档翻译——以某汽车《维修手册》为案例
计算机辅助下的机械工程文档翻译——以某汽车《维修手册》为案例王春艳【摘要】This paper makes an analysis of the requirements and fulfillmentof language, format, terminology, text style and teamwork coordination for computer-aided mechanics literature translation, using an automobile service manual translation as a case study. CAT technology maximizes human and machine capacities by defining stage tasks to human and software parties according to strength of each and controlling the translation progress to avoid terminology inconsistency and achieve style decency effectively. Large size translation projects are thus controllableand translation quality and efficiency expectable.%选取某汽车《维修手册》为案例,在分析其语言、项目、格式特点及其在术语、风格等方面易出现的问题的基础上,探讨计算机辅助翻译在机械工程文档中的翻译流程和功能。
结果发现:计算机辅助翻译能充分发挥人和软件的各自优势,细化翻译流程,明确每个环节的任务;并能通过相应的操作工具,使翻译项目管理变得有章可循,有法可依,从而有效地提高翻译质量和效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用计算机辅助工程设计重型卡车车架Carlos Cosme, Amir Ghasemi and Jimmy GandeviaWestern Star Trucks, Inc. 摘要:近年来,重型卡车市场变得非常的注重重量和降低成本。
这对设计工程师是重大挑战,因为这些车辆被用在各种各样的公路环境,从高速公路到严重的越野环境。
目前的挑战是在不牺牲耐用性和性能降低的前提下满足质量和成本。
本文论述了运用计算机集成、计算机辅助设计和工程软件代码(Pro / Engineer,ADAMS软件和ANSYS)来辅助设计更改车架。
特别是,本文集中论述了一个ADAMS多体动力学模型,一个完整的卡车和拖车来模拟车辆的侧翻稳定性,平顺性,和耐久性载荷。
该模型包括一个采用灵活的框架模型模态综合模式,探讨了有限元分析程序。
之间的多体仿真链接与有限元程序也可以用来传输、加载应力分析有限元模型。
所有代码之间紧密连结,确保新的设计并行计算可快速用于设计和分析。
一个说明这是如何已被使用的技术详细的个案研究也包括在内。
简介最近,重卡行业经历了汽车降低成本和重量的大发展。
这一直是卡车制造商的主要挑战,在不牺牲耐用性和性能的前提下,寻找好的方式来优化他们的汽车设计。
由于车架是车辆系统的重要组成部分,它经常被用于完善。
本文概述了电脑辅助工程(CAE)分析更改车架以及这些变化会如何影响车辆性能。
重型卡车的车架是该车辆的骨干,上面集成了主要的卡车组成系统,如车轴,悬架,动力总成,驾驶室。
典型的结构框架是梯形框架,中间交叉几根横梁。
纵梁的断面尺寸变化很大,根据在卡车上的受力而定。
而且,需要考虑各种因素:重量,复杂性和成本。
这些变化将取决于横梁的作用和位置。
请参考图1插图,一辆卡车的车架。
然而,横梁布置的变化带来的影响还无法看出来。
例如,如果横梁的抗扭刚度降低,对汽车的侧倾稳定性和耐久性的影响是怎么的呢?设计工程师们需要对这些类型的问题给出答案以指导他们的工作。
特别是,及时的设计和分析程序是必需的,这样新的设计可以快速评估。
图1重型载货汽车车架计算机辅助工程在过去的二十年中汽车自动化设计工具CAE得到了巨大的发展。
这项技术的已被很多汽车制造商采用以改善汽车设计来满足快速增长的市场要求。
当今的结构设计通常是使用两个CAE工具:有限元分析(FEA)和多体系统(MSS),结合CAD提高设计和分析。
在过去十五年里,CAD系统已取代绘图板作为首选设计方法。
它们使设计师和工程师能够快速画出卡车零部件,汽车真实模型和设计图纸。
先进的CAD 系统功能丰富,如参数化实体建模和大型装配管理。
他们已经发展成为主要的数据库,为工程信息尤其是CAD系统提供下游CAE应用的重要数据。
工程师通常使用有限元分析研究结构构件的强度。
典型的有限元分析的重点是结构应力,挠度和自然频率。
首先对通常被称为网格的离散结构进行分析。
该网格是由节点和元素组成,而且经常从CAD创建几何系统。
这些节点代表位移计算的结构。
他们定义的局部质量,刚度和阻尼性能结构。
有关这些数量方程,可以自动开发节点位移。
其他投入,如边界条件,载荷和材料特性,必须是由用户定义。
所有这些效果都需要小心的判断和对有意义的结果进行认真的分析。
结果后处理包括图像变形负载结构,彩色应力轮廓,振型动画。
MSS多体系统仿真方法研究了运动部件和组件,并经常用来研究车辆暂停或车辆的操作和动态响应。
一个典型的完整的车型MSS将刚体组成(车轮,车轴,车架,发动机,驾驶室)模拟成关节连接和理想化力元。
MSS代码自动发展非线性微分方程和代数方程定义模型中的物体运动。
该方程在数值上集成刚体位移,速度,加速度和受力。
结果以图形和动画显示该系统的运动。
至于有限元分析,CAD数据经常使用MSS的发展模式。
CAD几何数据是用于建立MSS的布局模式,如接头和力量元素的位置。
CAD实体模型数据也可以用来估计每个刚体的位置,质心和惯性特性。
作用在刚体上的力可以用作MSS的输入负载,有限元分析确定该刚体的结构应力。
CAE技术在本文所讨论的工具包括基与CAD的Pro / Engineer,ANSYS进行有限元分析,以及基于ADAMS的MSS。
下面的讨论引用的是某型卡车的车架有限元分析。
CAE重型汽车建模如上所述,在目前提供的C AD与CAE工具提供了大量的整合。
尽管如此,这些工具是非常粗略的分析,仍然需要努力分析重型卡车和卡车车架。
为了充分了解车架影响汽车操纵的变化,滚动稳定性,平顺性和持久性,需要一个详细的MSS模型,可以模拟所有这些影响。
使用ADAMS软件代码,建立了WesterStar 卡车的模型。
图二展示了在ADAMS环境下的模型。
图2 ADAMS的MSS的模型该模型包括以下几个特点:•100刚体•180力元•45共同元素•415度-的自由度固定的机构包括车架,驾驶室,车桥,车轮,发动机,引擎盖,散热器,钢板弹簧,悬挂臂,传动轴。
对于许多质量属性这些机构采用简化的实体模型。
受力的元素包括线性和非线性衬套,橡胶隔震支座模型元素,如驾驶室和发动机的座椅。
非线性单分力用于模拟空气弹簧和减震器。
这些元素的数据来自供应商执行的部件测试。
转动关节和球形接头是用来连接点模型,如轮毂轴承和扭矩杆支点。
Pro / Engineer的组件是用来确定这些元素的几何位置。
由于重卡行业提供各种各样的车辆布局,为便于进行修改参数,卡车的许多子系统的被分开。
例如,前桥组件(车轮,车轴,钢板弹簧和减震器)被链接到一个变量界定前桥纵向位置。
使用这种技术,不同的汽车型号,通过改变这个变量前轴位置可快速开发。
这一程序是复制以下组件:后悬挂,驾驶室,发动机,引擎盖。
轮胎与路面接触处理内置在ADAMS轮胎程序,包括处理模型和轮胎耐用性。
在ADAMS路面输入作为一个类似三角形有限元网格。
自定义软件程序,然后翻译成两个文件的ADAMS的网格,以确定轮胎/路面相互作用力,图形查看在后面处理成动画。
这些文件存储在一个共同的目录,便于检索。
自定义控制算法开发,以控制车辆行驶速度,转向,传动扭矩。
这些功能可以快速修改,以执行不同的车辆如滚筒稳定,高速行车变化,或耐久性颠簸类似的试验场。
模拟运行后,受力和扭矩作用在车架上的数据写入数据文件。
一个定制软件程序然后用来提取特定的负载时间步骤,并将其写入一个ANSYS加载文件。
该加载文件然后读入ANSYS和应用到有限元模型的车架。
然后,车架计算使用惯性释放的解决方案。
总之,该模型使用定制软件程序与含代码的CAD和CAE,评定一个定制环境耐用的重型卡车。
但是,模型假设车架是刚性的。
在现实中,卡车车架包含了大量的灵活性,会影响车辆性能及稳定。
因此,这些影响必须捕获到多体系统仿真。
CAE解决方案的框架灵活性前人技法- 在过去,一些技术已经使用捕捉画面灵活性的MSS的模型。
流行的三种方法是:轴套无质量的梁单元,超单元和有限元分析。
第一种方法车架分为两种更为严格的机构或以刚性元素连接在一起有套管式的车架:刚性和三个阻尼方向。
套管性能调整总体车架弯曲和扭转刚度。
随着可以预计,这种方法使用起来很麻烦,如果适当调整,这将是唯一的能够捕捉基本弯曲和扭转的框架模式。
第二种方法的框车架分为刚体无质量的梁互联元素。
这是类似于套管的方法,但许多更为严格的机构通常使用,而且它们的连接用的是无质量的梁单元的方程(Timoshenko梁理论),更适合货车车架纵梁和交叉的横梁。
然而,用此方法建立一个车架很费时,详细的梁单元的调整仍需捕获弯曲响应。
第三种方法是最准确的,并且是基于有限元的代表性框架。
在此方法中的有限元模型,减少到具有代表性的总体刚度超单元和质量属性浓缩到一个主集节点。
减少的模型是检查原有限元模型,以确保重要动态参数的捕获。
导入MSS的环境下,超单元和主节点转换为等价表示刚性机构和力量的元素。
虽然这种方法是在有限元解的基础上,它仍然可以实现难以精确的结果。
例如,必须选择主节点,以确保质量和刚度冷凝过程的准确。
上述所有方法很难用于创建一个卡车精确灵活的车架。
在一般情况下,他们只是捕捉基本响应:最初的几个弯扭、总的框架模式和刚度。
在工作中需要很大的努力来调整其属性,配合一些诸如静挠度测试的参考,模态测试,或有限元模拟结果。
因此,无论一个方法是同时使用合适的设计和分析环境,它只会对模型进行修改,并没有足够的空间分辨捕捉微妙的设计改变。
模态综合技术- 在有限元分析和MSS整合最新进展克服了上述方法的困难。
现在可以用有限元模型,直接在多体仿真采用模态叠加,作为模态综合(CMS)的知名技术。
利用模态叠加,一个结构变形可以说是由它的每一个贡献模式。
通常,一个模式是非常大的数目,需要准确地捕捉点的变形。
约束应用到结构。
发达国家解决了这个问题。
它结合了正常模式与约束模式。
这些约束模式或静态形状,捕捉到关键领域变形而不必维持正常模式结构。
因此,他们在计算上更有效率。
CMS的程序代码采用的是在ADAMS基于对克雷格-班普顿修改后的版本方法。
这种方法的结构被认为是有约束和接口点力量应用,并且每个接口点最多可以有六个自由度:三个平移和三个旋转。
该结构的议案,然后用一个两套组合模式:约束接口点的模式和固定接口的正常模式。
第一种约束模式是计算每个自由度的一个接口点,它描述的静态形状是对这种结构的自由度给出一个单位偏斜度,同时保持所有自由度的其他接口点固定。
此过程反复所有的接口模式。
由于约束模式是静态的形状,其频率的信息是未知的。
固定接口正常模式代表了整个结构的正常模式,对自由度的所有接口点是固定的。
在这种形式下,克雷格.班普顿模式不适合集成理想的多体方程。
例如,添加刚体约束模式,可在ADAMS非线性刚体上作用。
此外,约束模式可能包含高频率,很难解决。
Adams可以解决这些在处理克雷格-班普顿模式的问题。
它标识刚体模式使它们很容易禁用。
它还增加频率信息的约束模式,这是设置的宝贵积分参数。
正交化后,修改设置存在的模式:正常模式,无约束结构(如类似的模式在特征值计算的有限元分析运行一个典型)和界面的自由度。
所有的模态计算,上述是在ANSYS的环境中进行的。
为了计算模式,用户选择的节点代表接口点在受力和限制进入的框架,然后运行宏,执行适当的ANSYS命令。
正常模式包括在计算时传递到宏参数。
最后一组的方式写入到一个模态中性文件,可读取ADAMS。
这种模态叠加方法的优点很多,包括:•框架是由一个单一的模态中性文件。
因此,很容易重复使用其他型号的MSS。
这些文件可以存储在共同目下方便以后使用。
在MSS的模型中被表示为一个单一灵活的组织,并没有大量的刚体。
这使得它更容易操作。
•每个弹性体模式可将一个自由度仿真。
使前面的方法添加更多的自由度,因为他们使用了大量的刚性机构和上述每个自由度。