勾股定理 PPT优秀课件
合集下载
勾股定理数学优秀ppt课件
实际应用
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
在建筑、工程等领域,经常需要利用勾股定理求解直角三角形的边长问题,如计算梯子抵墙 时的长度等。
判断三角形类型问题
判断是否为直角三角形
01
若三角形三边满足勾股定理公式,则该三角形为直角三角形。
判断直角三角形的直角边和斜边
02
在直角三角形中,斜边是最长的一边,通过勾股定理可以判断
哪条边是斜边,哪条边是直角边。
06
总结回顾与展望未来
关键知识点总结回顾
勾股定理的定义和表达式
在直角三角形中,直角边的平方和等于斜边的平方,即a²+b²=c²。
勾股定理的证明方法
通过多种几何图形(如正方形、梯形等)的面积关系来证明勾股定 理。
勾股定理的应用场景
在几何、三角学、物理学等领域中广泛应用,如求解三角形边长、 角度、面积等问题。
勾股定理与其他数学定理关系探讨
与三角函数关系
勾股定理是三角函数的基础,通 过勾股定理可以推导出正弦、余 弦、正切等三角函数的基本关系。
与向量关系
在向量空间中,勾股定理可以表示 为两个向量的点积等于它们模长的 平方和,这进一步揭示了勾股定理 与向量的紧密联系。
与几何图形关系
勾股定理在几何图形中有着广泛的 应用,如求解直角三角形、矩形、 菱形等图形的边长、面积等问题。
勾股定理是数学中的基本定理之一, 也是几何学中的基础概念,对于理 解三角形、圆等几何形状的性质具 有重要意义。
历史发展及应用
历史发展
勾股定理最早可以追溯到古埃及时期,但最为著名的证明是由 古希腊数学家毕达哥拉斯学派给出的。在中国,商高在周朝时 期就提出了“勾三股四弦五”的勾股定理的特例。
应用
勾股定理在几何、三角、代数、物理等多个领域都有广泛应用, 如求解三角形边长、角度、面积等问题,以及力学、光学等领 域的计算。
勾股定理公开课PPT课件
国清末数学家华蘅芳就提供了二十多种精彩的证法。
在这数百种证明方法中,有的十分精彩,有的十分简洁,
有的因为证明者身份的特殊而非常著名。
现在在网络上看到较多的是16种,包括前面的6种,还有:
欧几里得证明、
利用相似三角形性质证明、
杨作玫证明、
李锐证明、
利用切割线定理证明、
利用多列米定理证明、
作直角三角形的内切圆证明、利用反证法证明、
编辑版pppt
C Aa c
b B
SA+SB=SC探
SA=a2 索
SB=b2 勾
SC=c2 股
a2+b2=c2
定 理
猜想
7
编辑版pppt
如果直角三角形的两条直角边
长分别为a,b,斜边长为c,那么 探
c2=a2+b2.
索
勾
勾a
c弦 股 定
b股
理
试一试?
8
编辑版pppt
请利用此图象,证明勾股定理 :
a2+b2=c2
角的手臂的上半部分称为“勾”,下半部分称为“股”。商高那段
话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4 (长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事
实说成“勾三股四弦五”。由于勾股定理的内容最早见于商高的
话中,所以人们就把这个定理叫作"商高定理"。 毕达哥拉斯(Pythagoras)是古希腊数学家,他是公元前五
编辑版pppt
13
勾股定理,想得再多一点
如图,受台风莫拉克影响,一棵树在离地面4 米处断裂,树的顶部落在离树跟底部3米处,这棵 树折断前有多高?
4米
3米
编辑版pppt
人教版八年级数学下册《勾股定理》PPT课件
b
a
c b
a
c a
b
证明:∵S大正方形=c2,
cb
S小正方形=(b - a)2,
a b- a
赵爽弦图
∴S大正方形=4·S三角形+S小正方形,
∴c2 4 1 ab b a2 a2 b2.
2
“赵爽弦图”表现了我国古人对数学的钻研精神和
聪明才智,它是我国古代数学的骄傲.因此,这个图案
被选为2002年在北京召开的国际数学家大会的会徽.
分称为“勾”,下半部分称为“股”. 我国古代学者把 直角三角形较短的直角边称为“勾”,较长的直角边 称为“股”,斜边称为“弦”.
勾股
勾2 + 股2 = 弦2
利用勾股定理进行计算
例1 如图,在 Rt△ABC 中, ∠C = 90°.
(1) 若 a = b = 5,求 c;
(2) 若 a = 1,c = 2,求 b.
问题1 试问正方形 A、B、 C 面积之间有什么样的数 量关系?
S正方形A S正方形B S正方形C
AB C
问题2 图中正方形 A、B、C 所围成的等腰直角三 角形三边之间有什么特殊关系?
AB C
一直角边2 + 另一直角边2 = 斜边2
问题3 在网格中一般的直角三角形,以它的三边为 边长的三个正方形 A、B、C 是否也有类似的面积关 系?观察下边两幅图(每个小正方形的面积为单位1):
C A
B
C A
B
左图:SC
4
1 2
2
3
11
13
右图: SC
4
1 2
4
3
11
25
你还有其 他办法求C 的面积吗?
根据前面求出的 C 的面积直接填出下表:
《勾股定理》PPT优质课件(第1课时)
A. 3
B.3
C. 5
D.5
E
课堂检测
基础巩固题
1. 若一个直角三角形的两直角边长分别为9和12,则斜边的
长为( C)
A.13
B.17
C. 15
D.18
2.若一个直角三角形的斜边长为17,一条直角边长为15,则
另一直角边长为( A )
A.8
B.40
C.50
D.36
3.在Rt△ABC中,∠C=90°,若a︰b=3︰4,c=100,则 a= _6_0___,b = __8_0___.
课堂检测
4.如图,所有的四边形都是正方形,所有的三角形都是直角三角 形,其中最大的正方形的边长为7cm,则正方形A,B,C,D的面 积之和为_____4_9_____cm2 .
C D
B A
7cm
课堂检测
能力提升题
在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
形,拼成一个新的正方形.
探究新知 剪、拼过程展示:
b
a ca
朱实
b 朱实 黄实朱实
c 〓b
ba
朱实
a
M a P bb
N
探究新知 “赵爽弦图”
c
朱实
b
朱实
黄实 朱实
a
朱实
证明:∵S大正方形=c2, S小正方形=(b-a)2,
∴S大正方形=4·S三角形+S小正方形,
探究新知
毕达哥拉斯证法:请先用手中的四个全等的直角三角形按图 示进行拼图,然后分析其面积关系后证明吧.
因此设a=x,c=2x,根据勾股定理建立方程得 (2x)2-x2=152,
勾股定理- 完整版课件
A
(x+1)米 x米
5米
B
4.如图,某公园有这样两棵树,一棵树高8m,另 一棵树高2m,两树相距8m,一只小鸟从一棵树 的树梢飞到另一棵树的树梢,至少飞了多少米?
A
8m
C
B
2m
8m
5.在我国古代数学著作《九章算术》中记载了一道
有趣的问题,这个问题的意思是:有一个水池,水
面是一个边长为10尺的正方形,在水池的中央有一
bc
a
d
8.如图,甲船以16n mile/h的速度离开港口,向东南航 行。乙船在同时同地向西南方向航行,已知它们离开 港口1.5h后分别到达B,A两点,且知AB=30n mile。问乙 船每小时航行多少海里?
1海里 =1.852公里(千米) 中国标准
9.如图所示,公路MN和公路PQ在点P处交汇,∠QPN=30° ,点A处有一所中学,AP=160m。假设一拖拉机在公路上 沿PN方向行驶,周围 100m以内会受到噪音的影响。 (1)问该学校是否会受到噪音的影响? 请说明理由。 (2)若受影响,已知拖拉机的速度为18km/h, 则学校受 影响的时间有多长?
a2 b2 c2
知识回忆 :☞
勾股定理及其数学语言表达式:
直角三角形两直角边a 、b的平方和等于斜边c的平 B 方。
ac
b
C
a2 b2 c2
A
一个门框的尺寸如图所示,一块长3m,宽2.2m的 薄木板能否从门框内通过?为什么?
大于 能
DC
2m
AB
1m
一架2.6m长的梯子AB,斜
靠在一竖直的墙AO上,这
类型二:利用勾股定理求几何表面上的最短 路线及最值问题。
例 :有一个圆柱形油罐,如图所示,要从点A环绕油罐 建梯子,正好到点A的正上方点B。问梯子最短需要多少 米?已知油罐的底面周长是12m,高AB是5m。 解:如图展开之后构成Rt△AA’B’
(x+1)米 x米
5米
B
4.如图,某公园有这样两棵树,一棵树高8m,另 一棵树高2m,两树相距8m,一只小鸟从一棵树 的树梢飞到另一棵树的树梢,至少飞了多少米?
A
8m
C
B
2m
8m
5.在我国古代数学著作《九章算术》中记载了一道
有趣的问题,这个问题的意思是:有一个水池,水
面是一个边长为10尺的正方形,在水池的中央有一
bc
a
d
8.如图,甲船以16n mile/h的速度离开港口,向东南航 行。乙船在同时同地向西南方向航行,已知它们离开 港口1.5h后分别到达B,A两点,且知AB=30n mile。问乙 船每小时航行多少海里?
1海里 =1.852公里(千米) 中国标准
9.如图所示,公路MN和公路PQ在点P处交汇,∠QPN=30° ,点A处有一所中学,AP=160m。假设一拖拉机在公路上 沿PN方向行驶,周围 100m以内会受到噪音的影响。 (1)问该学校是否会受到噪音的影响? 请说明理由。 (2)若受影响,已知拖拉机的速度为18km/h, 则学校受 影响的时间有多长?
a2 b2 c2
知识回忆 :☞
勾股定理及其数学语言表达式:
直角三角形两直角边a 、b的平方和等于斜边c的平 B 方。
ac
b
C
a2 b2 c2
A
一个门框的尺寸如图所示,一块长3m,宽2.2m的 薄木板能否从门框内通过?为什么?
大于 能
DC
2m
AB
1m
一架2.6m长的梯子AB,斜
靠在一竖直的墙AO上,这
类型二:利用勾股定理求几何表面上的最短 路线及最值问题。
例 :有一个圆柱形油罐,如图所示,要从点A环绕油罐 建梯子,正好到点A的正上方点B。问梯子最短需要多少 米?已知油罐的底面周长是12m,高AB是5m。 解:如图展开之后构成Rt△AA’B’
(精选幻灯片)勾股定理ppt课件
2 2 22
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
“总统证法”. 比较上面二式得 c2=a2+b2
16
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
17
做一做:
A
625
P
C
B
400
P的面积 =___2_2__5________ AB=_2__5_______ BC=__2_0_______
b c
a2+b2=c2吗?
• 1881年,伽菲尔 德就任美国第二
A b 1 E aB ∵ S梯形ABCD= 2 a+b2
十任总统.后来, 1
人们为了纪念他 对勾股定理直观、 简捷、易懂、明
= (a2+2ab+b2) 2
又∵ S梯形 ABCD=S
AED+S
EBC+S
CED
了的证明,就把 这一证法称为
1 1 11 = ab+ ba+ c2= (2ab+c2)
33
34
C A
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
B C
图2-1
A
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么
B 图2-2
关系吗?
(图中每个小方格代表一个单位面积) SA+SB=SC
即:两条直角边上的正方形面积之和等于
斜边上的正方形的面积
3
s1 s2
s3
返 拼回 图 4
合作 & 交S流1+☞S2=S3
a等²+腰a直²=角c三²角形两直角边
数学文化1-2(勾股定理) ppt课件
(一)赵爽证法 (二)刘徽证法 (三)毕达哥拉斯证法 (四)欧几里得证法 (五)总统证法
ppt课件
19
(一)赵爽证法
公元3世纪我国汉代数学家赵爽在为《周髀算经》
作注时给出的“弦图”:
c
b b-a c
a c
,
S正
c2
4 c1 2
ab
(b
a)2
a b c 化简得: 2
2
2
ppt课件
第二十四届:2002年8 月20日至28日中国北京。 来自100多个国家和
地区的约4000名数
学家出席了大会。大会
期间,有20位数学家
做大会一小时报告,1
74人做45分钟报告。
大会主席吴文俊、诺贝
尔经济学奖获得者纳什
等做了以数学史和博弈 论为题的公众报告。
ppt课件
4
为2002北京“国际数学家大会”发行的 纪念邮资明信片 JP108
ppt课件
23
证法四:(欧几里得证法公元前3世纪)
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、 ABED都是正方形,CN⊥DE,连接BK、CD。
AK=AC ∠KAB=∠CAD
AB=AD
△KAB≌△CAD
S S △KAB =
△CAD
1 AK AC 1 AD AM
AK AC AD AM
例3如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A
爬到点B处吃食,要爬行的最短路程( 取3)是
(B )
A.20cm
B.10cm
C.14cm D.无法确定 周长的一半
2O
蛋糕 B
C6
B
勾股定理ppt课件
体会数形结合的思想。(重点)
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
2.会用勾股定理进行简单的计算。(难点)
情境引入
学习目标
1.经历勾股定理的探究过程,了解关于勾股定理的 一 些文化历史背景,会用面积法来证明勾股定理, 体会数形结合的思想。(重点) 2.会用勾股定理进行简单的计算。(难点)
一、勾股定理的认识 让我们一起穿越回到2500年前,跟随毕达哥拉
直角三角形两直角边的平方和等于斜边的平方. 如果直角三角形的两条直角边长分别为a,b,斜边 长为c,那么有a2+b2=c2.
a c2 - b2 , b c2 - a2 , c a2 b2
(a、b、c为正数)
三、学以致用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c; (2)若a=1,c=2,求b.
归纳 已知直角三角形两边关系和第三边的长求未知两 边时,要运用方程思想设未知数,根据勾股定理列方 程求解.
变式2:在Rt△ABC中,AB=4,AC=3,求BC的长.
解:本题斜边不确定,需分类讨论:
当AB为斜边时,如图,BC 42 32 7;
当BC为斜边时,如图,BC 42 32 5.
B B
斯再去他那位老朋友家做客 我们也来观察一下地面的图案,看看从中能发
现什么?
问题1:观察构成正方形A、B、C的等腰直角三角形之间有什么关系?试 问三个正方形面积之间有什么样的数量关系?
AB C
这些小的等腰直角三角形都全等
发现:SA+SB=SC
问题2:若正方形A、B、C边长分别为a、b、c,根据面积关系,猜想等 腰直角三角形三边之间有什么关系?
AB C
ab c
SA+SB=SC
猜想:a2+b2=c2
勾股定理的应用PPT课件
2
0.3
0.2
A
B
A
B
C
2m
(0.2×3+0.3×3)m
选作: 1. 如图,长方形中AC=3,CD=5,DF=6,求蚂蚁沿表面从A爬到F的最短距离.
3
5
6
A
C
D
E
B
F
已知:如图,在△ABC中,∠ACB=90º,AB=5cm,BC=3cm,CD⊥AB于D,求CD的长.
已知:如图,在 中, ,是 边上的中线, 于, 求证:.
如图,将长为10米的梯子AC斜靠 在墙上,BC长为6米。
A
B
C
10
6
(1)求梯子上端A到墙的底端B的距离AB。
(2)若梯子下部C向后移动2米到C1点,那么梯子上部A向下移动了多少米?
A1
C1
2
一位工人叔叔要装修家,需要一块长3m、宽2.1m的薄木板,已知他家门框的尺寸如图所示,那么这块薄木板能否从门框内通过?为什么?
B
C
A
3
2
1
B
C
A
(1)当蚂蚁经过前面和上底面时,如图,最短路程为
解:
A
B
2
3
A
B
1பைடு நூலகம்
C
AB=
=
=
(2)当蚂蚁经过前面和右面时,如图,最短路程为
A
B
3
2
1
B
C
A
AB=
=
=
(3)当蚂蚁经过左面和上底面时,如图,最短路程为
A
B
AB=
=
=
3
2
1
B
C
A
2.如图,是一个三级台阶,它的每一级的长、宽、高分别为2m、0.3m、0.2m,A和B是台阶上两个相对的顶点,A点有一只蚂蚁,想到B点去吃可口的食物,问蚂蚁沿着台阶爬行到B点的最短路程是多少?
《勾股定理》PPT课件精选全文
化简得: a2 b2 c2
方法三:
c
b b-a c
a c
c
S正
c2
4
1 2
ab
(b
a)2
,
化简得: a2 b2 c2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁
20
算
得
4 个单位面积.
C
正方形C的面积是
A
8 个单位面积.
B
(图中每个小方格代表图一2个单位面积)
SA+SB=SC在图3中还成立吗?
2.观察右边两个图 并填写下表:
A
A的面积 B的面积 C的面积
图3
16 9
25
即:两条直 角边上的正
C B
图3
方法
(1)式子SA+SB=SC能用直角三角形 的三边a、b、c来表示吗?
17.1勾股定理
复习提问
1、任意三角形三边满足怎样的关系?
2、对于等腰三角形,三边之间存在 怎样的特殊关系?等边三角形呢?
3、对于直角三角形,三边之间存在 怎样的特殊关系?
2002年在北京召开了第24届国际数学家大 会,它是最高水平的全球性数学科学学术 会议,被誉为数学界的“奥运会”,这就 是本届大会会徽的图案。
C A
B
C A
B
SA SB SC
a2 b2 c2
(2)你能发现直角三角形三边长度之间存在什么 关系吗?
勾股定理ppt课件
人教版八年级(下册)
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
17.1 勾股定理
创设情景 引入新课
说一说:它是由哪些基本几何图形组成?
师生互动 探究规律
毕达哥拉斯
假设每个小等腰直角三角形的面积为1.
三个正方形A, B,C面积SA , SB , SC分别是多少?
SA=2, SB=2, SC=4.
SA , SB , SC之间有什么等量关系呢?
勾 股
弦 勾
股
观察欣赏 感知文化
2000多年来,人们对勾股定理的证明颇感兴趣.不但因为这个定理重要、基本,还因为这个 定理贴近人们的生活实际.以至于古往今来,下至平民百姓,上至帝王总统都愿意探讨、研究它 的证明,新的证法不断出现,现约有500种证明方法,是数学定理中证明方法最多的定理之一.
a b
c
b
ac
b
ac
b
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
b ca
S小正方形= S大正方形- 4S直角三角形.
(a-b)2 = c2 -
.
a2-2ab+ b2 = c2 - 2ab .
∴ a2+ b2 = c2 .
动手实践 验证猜想
猜想 如果直角三角形的两条直角边长分别为a,b,斜边长为 c, 那么a2+b2=c2.
归纳总结 畅谈收获 本节课中你还有其他的收获吗?
美丽的勾股树
课后作业 深化新知
作业:
(1)整理课堂上所提到的勾股定理的证明方法; (2)教材中的练习; (3)通过上网等方式查找勾股定理的相关资料.
例1. 求出下列直角三角形中未知的边:
D
A
10
勾股定理ppt
勾股定理与两直线垂直的关系
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
如果一个直角三角形的斜边为c,其中一条直角边为a,另一条直角边为b,那么 以a和b为直径的圆与斜边c相切。
勾股定理与三角函数的联系
勾股定理与正弦函数的关系
正弦函数是三角函数的一种,它表示直角三角形中锐角度数 的对边与斜边的比值,即sinA=a/c。
勾股定理与余弦函数的关系
勾股定理的逆定理
逆定理的表述
勾股定理的逆定理是指如果三角形的三边长a、b、c满足a²+b²=c²,那么这 个三角形是直角三角形。
逆定理的证明方法
勾股定理逆定理的证明方法比较简单,可以通过三角形全等的判定方法“边 边边”进行证明。也可以通过反证法进行证明,假设三角形不是直角三角形 ,则可以推导出矛盾的结果,从而证明了逆定理的正确性。
间的距离、求圆的直径等。
勾股定理在日常生活中的应用
建筑学
勾股定理在建筑学中有着广泛的应用,例如确定建筑物的结构、设计建筑物的外 观等。
制作直角工具
勾股定理可以用来制作直角工具,例如勾股尺、勾股定理板等。
勾股定理在金融和投资领域的应用
确定投资组合
在金融和投资领域中,勾股定理可以用来确定投资组合,以 实现最大收益和最小风险。
勾股定理的一般形式
勾股定理不仅仅适用于直角三角形,对于一般的三角形同样适用,其一般形 式为:c² = a² + b² - 2abcosθ,其中θ为两直角边的夹角。
勾股定理与平面几何的联系
勾股定理与三角形面积的关系
勾股定理可以用来求三角形的面积,其中一条直角边为底边,另外两条为高,三 角形的面积为1/2底边乘以高。
学习技巧
学习技巧包括制定学习计划、合理安排时间、掌握学习重点 和难点、积极参与课堂讨论等。同时,需要注重实践和应用 ,将理论知识应用到实际问题的解决中。
《勾股定理》PPT课件
AC 2 6
1.在△ABC中,∠C=90°.
练 习
(1)若a=6,c=10,则b=
;
(2)若a=12,b=9,则c= (3)若c=25,b=15,则a=
; ;
2.等边三角形边长为10,求它的高及面积。 C 3.如图,在△ABC中,C=90°,
CD为斜边AB上的高,你可以得 b 出哪些与边有关的结论? A m h
c2
;
a c
c a
b a
∵ c2= 4•ab/2 +(b-a)2 =2ab+b2-2ab+a2 =a2+b2 ∴a2+b2=c2
a
b
b c
b c
2 (a+b) 大正方形的面积可以表示为 ;
也可以表示为 c2 +4•ab/2
a b
a
b
c
c
a
b
c
∵ (a+b)2 = c2 + 4•ab/2 a2+2ab+b2 = c2 +2ab ∴a2+b2=c2
a
B D n
如图,在△ABC中,AB=AC,D点在CB延长线上, A 求证:AD2-AB2=BD· CD
证明:过A作AE⊥BC于E ∵AB=AC,∴BE=CE D 在Rt △ADE中, AD2=AE2+DE2 在Rt △ABE中, AB2=AE2+BE2 ∴ AD2-AB2=(AE2+DE2)-(AE2+BE2) B E C
a b
c
勾股定理的证明
证明方法3:赵爽弦图,动手拼图
勾股定理的证明
证明方法4:美国总统加菲尔德的证明方法
a b
勾股定理优秀PPT课件
b
c
a
a
这种证明方法从几何图形的面积变化入手,运用了数形结合的思 想方法.
18
-
<四>练习提升
1.议一议:观察下图,用数格子的方法判断图中三角形的三 边长是否满足a2+b2=c2.
2.一个直角三角形的斜边为20cm ,且两直角边长度比为3:4, 求两直角边的长.
19
-
<五>勾股定理的文化价值
(1) 勾股定理是联系数学中数与形的第一定理.
(2) 勾股定理反映了自然界基本规律,有文明的宇宙“人”都应 该认识它,因而勾股定理图被建议作为与“外星人”联系的信号. (3) 勾股定理导致不可通约量的发现,引发第一次数学危机. (4) 勾股定理公式是第一个不定方程,为不定方程的解题程序 树立了一个范式.
20
-
<六>小结反思
学生反思:我最大的收获; 我表现较好的方面; 我学会了哪些知识; 我还有哪些疑惑……
AB2+AC2=BC2.
11
-
第三种类型:以刘徽的“青朱出入图”为代表,证明不 需用任何数学符号和文字,更不需进行运算,隐含在图中的 勾股定理便清晰地呈现,整个证明单靠移动几块图形而得出, 被称为“无字证明”.
约公元 263 年,三国时代魏国的数学家刘徽为古籍《九 章算术》作注释时,用“出入相补法”证明了勾股定理.
方法一:三国时期吴国数学家赵爽在为《周髀算经》作注解时, 创制了一幅“勾股圆方图”,也称为“弦图”,这是我国对 勾股定理最早的证明.
2002年世界数学家大会在北京召开,这届大会会标的中央图案正是 经过艺术处理的“弦图”,标志着中国古代数学成就.
6
-
c
由面积计算,得 c2 41ab(ba)2. 2
《勾股定理》PPT
综合题:3.如图,在△ABC中,AD⊥BC,∠B=45°,∠C=30°,AD=1,求 △ABC的周长.
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
小贴士
为什么叫勾股定理这个名称呢? 在中国古代,人们把弯曲成直角的手臂的上半部分称 为“勾”,下半部分称为“股”.我国古代学者把直角三 角形较短的直角边称为“勾”,较长的直角边称为 “股”,斜边称为“弦”.由于命题1反映的正好是直 角三角形三边的关系,所以叫做勾股定理.
勾
股
勾2+股2=弦2 国外又叫毕达哥拉斯定理
当BC为斜边时,如图,BC 42 32 5.
B B
4
3
C 图 A
4
A
3
图
C
归纳 当直角三角形中所给的两条边没有指明是斜边或 直角边时,其中一较长边可能是直角边,也可能是斜 边,这种情况下一定要进行分类讨论,否则容易丢解.
当堂练习
1.下列说法中,正确的是
( C)
A.已知a,b,c是三角形的三边,则a2+b2=c2
新知应用
例1 如图,在Rt△ABC中, ∠C=90°.
(1)若a=b=5,求c;
B
(2)若a=1,c=2,求b.
a
解:(1)在Rt△ABC中, ∠C=90°
C
c a2 b2 52 52 50 5 2;
c
A
b
(2)在Rt△ABC中, ∠C=90°
b c2 a2 22 12 3.
注意:1.看好哪个角是直角,选择正确的公式来求边长
C
问题2 图中正方形A、B、C所围成的等腰直角三角 形三边之间有什么数量关系?
AB C
S正方形A S正方形B S正方形C
一直角边2 +
另一直角边2 =
斜边2
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
益。──高尔基 • ● 生活就像海洋,只有意志坚强的人,才能到达彼岸。──马克思 • ● 浪费别人的时间是谋财害命,浪费自己的时间是慢性自杀。──列
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
△KAB≌△CAD
S S △KAB = △CAD
1 AK • AC 1 AD • AM
AK • AC AD • AM
G
2
2
H
S S 正方形KACH = 四边形ADNM
C
F
S S 同理: 正方形BCGF = 四边形BENM
K
b
a
c
S S S S 正方形KACH + 正方形BCGF = 四边形ADNM + 四边形BENM
C A
B
C A
B
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
左图
4
右图
16
B的面积
9 9
C的面积
13 25
SA SB SC
结论2 以直角三角形两直角边为 边长的小正方形的面积的和,等于以 斜边为边长的正方形的面积.
议一议:
(1)你能用直角三角形的两直角边的长a、b和 斜边长c来表示图中正方形的面积吗?
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
即:以等腰直角三角形两条直角边上的正方
形面积之和等于斜边上的正方形的面积
探究活动二:
(1)观察右边
两幅图:
C
A
B
C A
B
(2)填表(每个小正方形的面积为单位1):
左图 右图
A的面积
4 16
B的面积
9 9
C的面积
? ?
(3)你是怎样得到正方形C的面积的?与同伴交流.
探究活动
分成四人小组,每个小组 课前准备好4个全等的直角三 角形和以直角三角形各边为边 长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼 出一些正方形吗?试试看,你能拼几种.
b ac
a a
b b
cb a
图1
b ac
bc a
a cb
ca b
图2
c
b b-a c
a c
c
图3
方法一: b a
火,已知梯子的底部离墙的距
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角
边求斜边
?
20
C
15
我国古代两种证法:
1、公元3世纪我国汉代数学家赵爽在为《周髀算经》 作注时给出的“弦图”:
c ba
我国有记载的最早勾股定理的证明,是三国时,我国古 代数学家赵爽在他所著的《勾股方圆图注》中,用四个 全等的直角三角形拼成一个中空的正方形来证明的。每 个直角三角形的面积叫朱实,中间的正方形面积叫黄实, 大正方形面积叫弦实,这个图也叫弦图。2002年的 国际数学家大会将此图作为大会会徽.
2、我国数学家刘徽在他的《九章算术注》中给出 的“青朱出入图” :
青入
朱出
朱方 青入
朱入
青方 青出
青出
证法四:(伽菲尔德证法1876年)
D
如图,Rt△ABE≌Rt△ECD, A
可知∠AED=90°;
梯形ABCD的面积=
B
1 (a b)(a b)
E
C
2
梯形ABCD的面积= 1 ab 1 ab 1 c 2
2
2
2
∴ 1 (a b)(a b) 1 ab 1 ab 1 c2
2
2
2
2
∴
a2 b2 c2
证法五:(欧几里得证法公元前3世纪)
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、 ABED都是正方形,CN⊥DE,连接BK、CD。
AK=AC ∠KAB=∠CAD
AB=AD
A
M
B
S S S 正方形KACH + 正方形BCGF = 四边形ADEB
∴ a2 b2 c2
D
N
E
“新娘的轿椅”或“修士的头巾”
• ● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 • ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 • ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 • ──爱因斯坦 • ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 • ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有
• 这个图案就是我 国汉代数学家赵 爽在证明勾股定 理时用到的,被 称为“赵爽弦图”
情景引入
相传2500年前,毕达哥拉斯有一次在朋友 家做客时,发现朋友家的用砖铺成的地面 中反映了直角三角形的某种数量关系。
C
A
B
探究活动一: (1)观察图1
C A
正方形A中含有9 个 小方格,即A的面积是
9 个单位面积。
则 a2 b2 c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为"勾",下半部分称为"股"。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
ac
a
b ac
a cb
b
cb
bc
ca
ba
a
b
因为 S1 S 2(a b)2,
而
S1
a2
b2
4
1 2
ab ,
S2
c2
4
1 2
ab ,
所以 a2 b2 4 1 ab c2 4 1 ab.
2
2
即
a2 b2 c2.
方法二:
b ac
a cb
bc a
ca b
S正
(a
b)2
4
1 2
ab
c2 ,
C A
B
C A
B
SA SB SC
a2 b2 c2
(2)你能发现直角三角形三边长度之间存在什么 关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
表示为:Rt△ABC中,∠C=90°
B 图1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2
18 个单位面积。
(图中每个小方格代表一个单位面积)
123
你是怎样得到C的面积 的?与同伴交流交流。
(2)(3)
C A
S正方形c
B C
图1
A
4 1 3 3 18 2
B
(单位面积)
图2
(图中每个小方格代表一个单位面积)
分割成若干个直角边 为整数的三角形
返回
C A
S正方形c
B C
图1
A
B
图2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
返回
C A
(2)在图2中,正方 形A,B,C中各含有 多少个小方格?它们 的面积各是多少?
B C
图1
A
(3)你能发现图1中 三个正方形A,B,C 的面积之间有什么关
17.1勾股定理
2020/4/17
复习提问
1、任意三角形三边满足怎样的关系?
2、对于等腰三角形,三边之间存在 怎样的特殊关系?等边三角形呢?
3、对于直角三角形,三边之间存在 怎样的特殊关系?
2002年在北京召开了第24届国际数学家大 会,它是最高水平的全球性数学科学学术 会议,被誉为数学界的“奥运会”,这就 是本届大会会徽的图案。
化简得: a 2 b2 c 2
方法三:
c
b b-a c
a c
c
S正
c2
4
1 2
ab (b
a)2 ,
化简得: a 2 b2 c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁20算得快 方法小结: 可用勾股定理建立方程.
!
2、湖的两端有A、B两点,从与BA方向成直
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在20米高处的楼层失火
,消防员取来25米长的云梯救
宁
• ● 哪里有天才,我是把别人喝咖啡的工夫都用在工作上的。──鲁迅 • ● 完成工作的方法,是爱惜每一分钟。──达尔文 • ● 没有伟大的愿望,就没有伟大的天才。──巴尔扎克 • ● 读一切好的书,就是和许多高尚的人说话。──笛卡尔 • ● 成功=艰苦的劳动+正确的方法+少谈空话。 ──爱因斯坦
△KAB≌△CAD
S S △KAB = △CAD
1 AK • AC 1 AD • AM
AK • AC AD • AM
G
2
2
H
S S 正方形KACH = 四边形ADNM
C
F
S S 同理: 正方形BCGF = 四边形BENM
K
b
a
c
S S S S 正方形KACH + 正方形BCGF = 四边形ADNM + 四边形BENM
C A
B
C A
B
“割”
“补”
“拼”
(4)分析填表数据,你发现了什么?
A的面积
左图
4
右图
16
B的面积
9 9
C的面积
13 25
SA SB SC
结论2 以直角三角形两直角边为 边长的小正方形的面积的和,等于以 斜边为边长的正方形的面积.
议一议:
(1)你能用直角三角形的两直角边的长a、b和 斜边长c来表示图中正方形的面积吗?
B
系吗?
图2
(图中每个小方格代表一个单位面积) SA+SB=SC
即:以等腰直角三角形两条直角边上的正方
形面积之和等于斜边上的正方形的面积
探究活动二:
(1)观察右边
两幅图:
C
A
B
C A
B
(2)填表(每个小正方形的面积为单位1):
左图 右图
A的面积
4 16
B的面积
9 9
C的面积
? ?
(3)你是怎样得到正方形C的面积的?与同伴交流.
探究活动
分成四人小组,每个小组 课前准备好4个全等的直角三 角形和以直角三角形各边为边 长的3个正方形(如右图).
运用这些材料(不一定全用),你能另外拼 出一些正方形吗?试试看,你能拼几种.
b ac
a a
b b
cb a
图1
b ac
bc a
a cb
ca b
图2
c
b b-a c
a c
c
图3
方法一: b a
火,已知梯子的底部离墙的距
离是15米。问消A防队员能否进
入该楼层灭火?
已知两直角
边求斜边
?
20
C
15
我国古代两种证法:
1、公元3世纪我国汉代数学家赵爽在为《周髀算经》 作注时给出的“弦图”:
c ba
我国有记载的最早勾股定理的证明,是三国时,我国古 代数学家赵爽在他所著的《勾股方圆图注》中,用四个 全等的直角三角形拼成一个中空的正方形来证明的。每 个直角三角形的面积叫朱实,中间的正方形面积叫黄实, 大正方形面积叫弦实,这个图也叫弦图。2002年的 国际数学家大会将此图作为大会会徽.
2、我国数学家刘徽在他的《九章算术注》中给出 的“青朱出入图” :
青入
朱出
朱方 青入
朱入
青方 青出
青出
证法四:(伽菲尔德证法1876年)
D
如图,Rt△ABE≌Rt△ECD, A
可知∠AED=90°;
梯形ABCD的面积=
B
1 (a b)(a b)
E
C
2
梯形ABCD的面积= 1 ab 1 ab 1 c 2
2
2
2
∴ 1 (a b)(a b) 1 ab 1 ab 1 c2
2
2
2
2
∴
a2 b2 c2
证法五:(欧几里得证法公元前3世纪)
如图,Rt△ ABC中,∠ACB=90°,四边形ACHK、BCGF、 ABED都是正方形,CN⊥DE,连接BK、CD。
AK=AC ∠KAB=∠CAD
AB=AD
A
M
B
S S S 正方形KACH + 正方形BCGF = 四边形ADEB
∴ a2 b2 c2
D
N
E
“新娘的轿椅”或“修士的头巾”
• ● 一个不注意小事情的人,永远不会成功大事业。──卡耐基 • ● 一个能思考的人,才真是一个力量无边的人。──巴尔扎克 • ● 一个人的价值,应当看他贡献了什么,而不应当看他取得了什么。 • ──爱因斯坦 • ● 一个人的价值在于他的才华,而不在他的衣饰。 ──雨果 • ● 一个人追求的目标越高,他的才力就发展得越快,对社会就越有
• 这个图案就是我 国汉代数学家赵 爽在证明勾股定 理时用到的,被 称为“赵爽弦图”
情景引入
相传2500年前,毕达哥拉斯有一次在朋友 家做客时,发现朋友家的用砖铺成的地面 中反映了直角三角形的某种数量关系。
C
A
B
探究活动一: (1)观察图1
C A
正方形A中含有9 个 小方格,即A的面积是
9 个单位面积。
则 a2 b2 c2
议一议:判断下列说法是否正确,并说明理由: (1)在△ABC中,若a=3,b=4,则c=5 (2)在Rt△ABC中,如果a=3,b=4,则c=5. (3)在Rt△ABC中,∠C=90° , 如果a=3,b=4,则c=5.
勾 股
在中国古代,人们把弯曲成直角的手臂的上 半部分称为"勾",下半部分称为"股"。我国古代 学者把直角三角形较短的直角边称为“勾”,较 长的直角边称为“股”,斜边称为“弦”.
ac
a
b ac
a cb
b
cb
bc
ca
ba
a
b
因为 S1 S 2(a b)2,
而
S1
a2
b2
4
1 2
ab ,
S2
c2
4
1 2
ab ,
所以 a2 b2 4 1 ab c2 4 1 ab.
2
2
即
a2 b2 c2.
方法二:
b ac
a cb
bc a
ca b
S正
(a
b)2
4
1 2
ab
c2 ,
C A
B
C A
B
SA SB SC
a2 b2 c2
(2)你能发现直角三角形三边长度之间存在什么 关系吗?
勾股定理(gou-gu theorem)
如果直角三角形两直角边分别为a、b, 斜边为c,那么
a2 b2 c2 a c
b
即 直角三角形两直角边的平方和等 于斜边的平方。
表示为:Rt△ABC中,∠C=90°
B 图1
C A
B
正方形B的面积是 9 个单位面积。 正方形C的面积是
图2
18 个单位面积。
(图中每个小方格代表一个单位面积)
123
你是怎样得到C的面积 的?与同伴交流交流。
(2)(3)
C A
S正方形c
B C
图1
A
4 1 3 3 18 2
B
(单位面积)
图2
(图中每个小方格代表一个单位面积)
分割成若干个直角边 为整数的三角形
返回
C A
S正方形c
B C
图1
A
B
图2
(图中每个小方格代表一个单位面积)
把C看成边长为6的 正方形面积的一半
1 62 2
18(单位面积)
返回
C A
(2)在图2中,正方 形A,B,C中各含有 多少个小方格?它们 的面积各是多少?
B C
图1
A
(3)你能发现图1中 三个正方形A,B,C 的面积之间有什么关
17.1勾股定理
2020/4/17
复习提问
1、任意三角形三边满足怎样的关系?
2、对于等腰三角形,三边之间存在 怎样的特殊关系?等边三角形呢?
3、对于直角三角形,三边之间存在 怎样的特殊关系?
2002年在北京召开了第24届国际数学家大 会,它是最高水平的全球性数学科学学术 会议,被誉为数学界的“奥运会”,这就 是本届大会会徽的图案。
化简得: a 2 b2 c 2
方法三:
c
b b-a c
a c
c
S正
c2
4
1 2
ab (b
a)2 ,
化简得: a 2 b2 c 2
1.求下列图中表示边的未知数x、y、z的值.
81 144
144 169
z
625 576
①
②
③
2.求下列直角三角形中未知边的长:
比
5
一
比8
17
看
x
16
x 12
看
x
谁20算得快 方法小结: 可用勾股定理建立方程.
!
2、湖的两端有A、B两点,从与BA方向成直
角的BC方向上的点C测得CA=130米,CB=120米,
则AB为 ( )
A
A.50米 B.120米 C.100米 D.130米
A
130
?
C
120 B
某楼房在20米高处的楼层失火
,消防员取来25米长的云梯救