半导体主要有以下几个方面的重要特性

合集下载

半导体的特性

半导体的特性

半导体的特性
半导体主要有以下特性。

1、半导体:导电能力随着掺入杂质、输入电压(电流)、温度和光照条件的不同而发生很大变化,人们把这一类物质称为半导体。

2、载流子:半导体中存在的两种携带电荷参与导电的“粒子”。

自由电子:带负电荷。

空穴:带正电荷。

特性:在外电场的作用下,两种载流子都可以做定向移动,形成电流。

3、电子技术的核心是半导体半导体之所以得到广泛的应用,是因为人们发现半导体有一下的三个特性。

(1)掺杂性:在纯净的半导体中掺入及其微量的杂质元素,则它的导电能力将大大增强。

(2)热敏性:温度升高,将使半导体的导电能力打发增强。

(3)光敏性:对半导体施加光线照射时,光照越强,导电能力越强。

3.P型半导体和N型半导体(重点)N型半导体:主要靠电子导电的半导体。

即:电子是多数载流子,空穴是少数载流子。

P型半导体:主要靠空穴导电的半导体。

即:空穴是多数载流子,电子是少数载流子。

PN结:经过特殊的工艺加工,将P型半导体和N型半导体紧密地结合在一起,则在两种半导体的交界面就会出现一
个特殊的接触面,称为PN 结。

半导体的特性

半导体的特性

一、本征半导体的导电特性1.导体、绝缘体和半导体自然界中的物质从其电结构和导电性能上区分,可分为导体、绝缘体和半导体。

如金、银、铜、铝、铁等金属材料很容易导电,我们称它们为导休。

导体的电阻率小于10-6cm。

如陶瓷、云母、塑料、橡胶等物质很难导电,我们称它们为绝缘体。

绝缘体的电阻率大于108cm。

有一类物质,如硅、锗、硒、硼及其一部分化合物等,它们的导电能力介于导体和绝缘体之间,故称之为半导体。

半导体的电阻率在10-6~108之间。

众所周知,导体具有良好的导电性,绝缘体具有良好的绝缘性,它们都是很好的电工材料。

我们用导体制成电线,用绝缘体来防止电的浪费和保障安全。

而半导体却在很长时间被人们所不齿,因为它的导电性能不好,绝缘性能又差。

然而它的不公正待遇随着人们对它所产生的愈来愈浓厚的兴趣消失了,它终于登上了大雅之堂!这是为什么呢?这是因为它具有一些可以被人们所利用的奇妙特性。

半导体在不同情况下,导电能力会有很大差别,有时犹如导体。

在什么情况下呢?①掺杂:在纯净的半导体中适当地掺入极微量(百万分之一)的杂质,就可以引起其导电能力成百万倍的增加。

②温度:当温度稍有变化,半导体的导电能力就会有显著变化。

如温度稍有增高,半导体的电阻率就会显著减小。

同理光照也会影响半导体的导电能力。

2.本征半导体的原子结构本征半导体——非常纯净且原子排列整齐的半导体。

(纯度约为99.999999999%。

即杂质含量为10的9次方分之一。

)硅原子一14个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在三层电子轨道上。

锗原子一32个带负电的电子围绕带正电的原子核运动,并按一定的规律分布在四层电子轨道上。

由于原子核带正电与电子电量相等,正常情况下原子呈中性。

由于内层电子受核的束缚较大,很少有离开运动轨道的可能。

所以它们和原子核一起组成惯性核。

外层电子受原子核的束缚较小。

叫做价电子。

硅、锗都有四个价电子,故都是四价元素,其简化图见电子课件。

半导体主要有以下几个方面的重要特性

半导体主要有以下几个方面的重要特性

半导体主要有以下几个方面的重要特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。

例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。

温度的细微变化,能从半导体电阻率的明显变化上反映出来。

利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。

值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性.
2.光敏特性
半导体的电阻率对光的变化十分敏感。

有光照时、电阻率很小;无光照时,电阻率很大。

例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时.电阻一下子降到几十千欧姆,电阻值改变了上千倍。

利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等.广泛应用在自动控制和无线电技术中。

3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。

例如.在纯硅中掺人.百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0。

4Ω·cm.也就是硅的导电能为提高了50多万倍。

人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件.可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的.。

半导体基本知识总结

半导体基本知识总结

半导体基本知识总结半导体是一种介于导体(如金属)和绝缘体(如橡胶)之间的材料。

它的电导率介于导体和绝缘体之间,可以在特定条件下导电或导热。

半导体材料通常由硅(Si)或锗(Ge)等元素组成。

半导体具有以下几个重要特性:1. 带隙: 半导体具有能带隙,在原子之间存在禁止带,使得半导体在低温状态下几乎没有自由电子或空穴存在。

当半导体受到外部能量或掺杂杂质的影响时,带隙可以被克服,进而产生导电或导热行为。

2. 导电性: 半导体的电导性取决于其材料内部的掺杂情况。

掺杂是指将杂质元素(如硼或磷)引入半导体材料中,以改变其电子特性。

N型半导体中的杂质元素会提供额外的自由电子,增加导电性;P型半导体中的杂质元素会提供额外的空穴,也可以增加导电性。

3. PN结: PN结是由P型半导体和N型半导体通过特定方式连接而成的结构。

PN结具有整流特性,只允许电流在特定方向上通过。

当正向偏置(即正端连接正极,负端连接负极)时,电流可以自由通过;而反向偏置时,几乎没有电流通过。

4. 半导体器件: 多种半导体器件被广泛使用,如二极管、晶体管和集成电路。

二极管是一种具有正向和反向导电特性的器件,可用于整流和电压稳定等应用。

晶体管是一种具有放大和开关功能的半导体器件。

集成电路是把多个晶体管、电阻和电容等器件集成在一起,成为一个小型电路单元,用于各种电子设备。

半导体的发现和发展极大地推动了现代电子技术的进步。

它不仅广泛应用于计算机、通信设备和电子产品,还在光电子学、太阳能电池和传感器等领域发挥着重要作用。

随着半导体技术的不断发展,人们对于半导体材料与器件的研究仍在进行,为电子技术的未来发展提供了无限可能性。

半导体的基本特性

半导体的基本特性

半导体的基本特性自然界的物质依照导电程度的难易可大略分为三大类导体、半导体和绝缘体顾名思义半导体的导电性介於容易导电的金属导体和不易导电的绝缘体之间。

半导体的种类很多有属於单一元素的半导体如矽Si和锗Ge也有由两种以上元素结合而成的化合物半导体如砷化镓GaAs和砷磷化镓铟GaxIn1-xAsyP1-y等。

在室温条件下热能可将半导体物质内一小部分的原子与原子间的价键打断而释放出自由电子并同时产生一电洞。

因为电子和电洞是可以自由活动的电荷载子前者带负电后者带正电因此半导体具有一定程度的导电性。

电子在半导体内的能阶状况可用量子力学的方法加以分析见图一。

在高能量的导电带内Ec以上电子可以自由活动自由电子的能阶就是位於这一导电带内。

最低能区Ev以下称为「价带」被价键束缚而无法自由活动的价电子能阶就是位於这一价带内。

导电带和价带之间是一没有能阶存在的「禁止能带」或称能隙Eg在没有杂质介入的情况下电子是不能存在能隙里的。

在绝对温度的零度时一切热能活动完全停止原子间的价键完整无损所有电子都被价键牢牢绑住无法自由活动这时所有电子的能量都位於最低能区的价带价带完全被价电子占满而导电带则完全空著。

价电子欲脱离价键的束缚而成为自由电子必须克服能隙Eg提升自己的能阶进入导电带。

热能是提供这一能量的自然能源之一。

以矽半导体为例能隙Eg为1.1电子伏特在室温300 K下热能打断价键而产生电子和电洞的速率与电子和电洞的再结合速率达到帄衡时电子的密度约为1.5×1010cm-3。

因为矽的原子密度约为5×1022cm-3可知因室温热能而被打断的价键数在比例上是微乎其微的。

在电子被释放出来的同时必然留下一带正电荷的电洞在价带上见图一a。

温度越高被热能释放出来的电子和电洞的数量也越多。

因此纯半导体又称本质半导体的导电性遂因温度的升高而增大这与金属导体的电阻随温度的升高而变大的现象正好相反。

我们再以矽半导体为例来探讨杂质的掺入对於半导体导电性的影响。

1.1半导体基础知识

1.1半导体基础知识
无外电场力作用时,扩散与漂移达到动态平衡,空间电荷 区具有一定宽度,形成PN结。有电位差Uho、无电流。
P、N两区杂质浓度相等——对称结 P、N两区杂质浓度不相等——不对称结 高掺杂浓度区域 用N+表示
离子密 度小
P
_ _ _ _ _ _
空间电荷 层较厚
+ + + + + +
N+
离子密 度大
空间电荷 层较薄
导电。
半导体--导电性能介于导体和绝缘体之间的物质。
大多数半导体器件所用的主要材料是硅(Si)和锗(Ge)。
半导体的几个重要特性: (1) 热敏特性
(2)光敏特性 (3)掺杂特性 半导体导电性能是由其原子结构决定的。
最常用的半导体材料


硅(Si)、锗(Ge),均为四价元素,它们原子的最外层电子
受原子核的束缚力介于导体与绝缘体之间。
二、 PN 结的单向导电性
PN结正向偏置—— 当外加直流电压使PN结P型半导体的一
端的电位高于N型半导体一端的电位时,称PN结正向偏置, 简称正偏。 PN结反向偏置—— 当外加直流电压使PN结N型半导体的一 端的电位高于P型半导体一端的电位时,称PN结反向偏置,
简称反偏。 正向偏置——PN结外加正向电压(P+,N-)
杂质半导体有两种 N (Negative)型半导体 P (Positive)型半导体
一、 N 型半导体
掺入五价杂质元素(如磷、砷)的杂质半导体
掺入少量五价杂质元素磷 +4 +4 +4
P
+4
+4
+4
+4
+4
+4

什么叫半导体材料的特性

什么叫半导体材料的特性

什么叫半导体材料的特性?
半导体材料是一类具有特殊电学特性的材料,在现代电子学领域发挥着重要的作用。

半导体材料的特性主要表现在以下几个方面:
1. 晶体结构
半导体材料通常具有晶体结构,其中原子排列有序。

这种结构使得电子在材料中以禁带形式出现,能够在受激励时跃迁到导带中形成载流子。

2. 禁带宽度
半导体材料中的禁带宽度是指能带结构中导带和价带之间的能隙大小。

禁带宽度的大小直接影响了半导体材料的导电性能,如禁带宽度较小的半导体容易被激发产生导电行为。

3. 拓扑结构
半导体材料的电子结构和晶体结构决定了其拓扑性质,如在一维拓扑材料中,存在着边界态等特殊性质。

这些拓扑性质决定了半导体材料的一些特殊电学特性。

4. 光学性质
半导体材料通常具有良好的光学性质,如能够实现光电二极管、激光器等光电器件。

这些光学性质使得半导体材料在光电子领域有着广泛的应用。

5. 热电性质
部分半导体材料具有较好的热电性质,能够在温差作用下产生电能。

这种热电性质使得半导体材料在热电传感器、热电发电等领域具有应用前景。

总的来说,半导体材料具有晶体结构、禁带宽度、拓扑结构、光学性质和热电性质等多种特性,这些特性使得半导体材料在电子学、光电子学、热电领域有着广泛的应用和研究价值。

半导体材料有哪些重要特性

半导体材料有哪些重要特性

半导体材料的重要特性
半导体材料是一类在电学特性上介于导体和绝缘体之间的材料,具有许多独特的特性,使其在电子器件和光电器件中得到广泛应用。

下面将介绍几种半导体材料的重要特性。

1. 禁带宽度
禁带宽度是半导体材料的一个重要特性,它代表了在材料中带电子和空穴运动的能量范围。

禁带宽度的大小直接影响着半导体材料的导电性能和光电性能。

2. 基本电荷载流子
半导体材料中的基本电荷载流子包括电子和空穴。

电子带负电荷,空穴带正电荷,它们在半导体材料中进行载流子输运,是实现半导体器件功能的基础。

3. 能带结构
半导体材料的能带结构是指在半导体中,导带和价带之间的能级分布。

通过控制能带结构,可以实现半导体材料的导电性质调控。

4. 激子效应
激子是电子和空穴之间形成的一对电子振动态,具有不同于单独电子和空穴的性质。

激子效应在半导体光电器件中发挥重要作用。

5. 能带偏移
能带偏移是指在不同半导体材料接触界面或异质结构中,由于晶格不匹配等原因导致的带隙位置的偏移现象,影响半导体器件的性能。

结语
半导体材料具有多种重要特性,包括禁带宽度、基本电荷载流子、能带结构、激子效应和能带偏移等。

这些特性使得半导体材料在电子器件和光电器件中具有广泛的应用前景。

要深入了解半导体材料的性质和应用,需要进一步研究和实践。

01本征半导体

01本征半导体

+14 Si
284
+32 Ge
2 8 18 4
+4
硅、锗原子 硅原子结构示意图 锗原子结构示意图 的简化模型
上页 下页 返回
模拟电子技术基础
2. 本征半导体
本征半导体就是完全纯净的半导体
立体结构
平面结构
+4
+4
+4
+4
+4
+4
+4
+4
+4
上页 下页 返回
模拟电子技术基础
+4 +4 +4
+4
+4
共价键
上页 下页 返回
+4
+4
上页 下页 返回
模拟电子技术基础
U

+4




+4


+4
+4
+4
+4
+4
+4
+4
上页 下页 返回
模拟电子技术基础
U

+4




+4


+4
+4
+4
+4
+4
+4
+4
上页 下页 返回
模拟电子技术基础
U

+4




+4


+4
+4
+4

半导体的三个特性

半导体的三个特性

铟)而形成,也称为(空穴半导体)。
多余 电子
+ +++++
++4+ + ++4+ +
+ + +-+-+-+- - - + + +-+-+-+- -N载-型流半子导是体什中么的?
杂质型半+导体+ 多+ 子+和+少+子的移+ 动+都+能-+形-成+-电+-流。-但-由于数
量 质的浓关度系相++,等5起。+ 导+ 电++作4+用+的主要+ 是N+多型+子-半+。导-近+体-似+-认为-多-子与杂
6.1 半导体
6.1.1 半导体的三个特性
6.1.2 PN 结
6.1 半导体
导体:自然界中很容易导电的物质称为导体,金属一般都是 导体,如铁、铜、铝等。
绝缘体:有的物质几乎不导电,称为绝缘体,如橡皮、陶瓷、 塑料和石英。
半导体:另有一类物质的导电特性处于导体和绝缘体之间,称为 半导体,如锗、硅、砷化镓和一些硫化物、氧化物等。
HOME
2.掺杂特性 往纯净半导体中掺入某些杂质,会使其导电能力明显改变。
N 型半导在体本:征在半硅导或体锗中晶掺体入中某掺些入微少量量的的杂五质价,元就素会磷使(半或导锑体)
的导电性能而发形生成显。著也变称化为。(其电原子因半是导掺体杂)半。导体的某种 P 型载半流导子体浓:度在大硅大或增锗加晶。体中掺入少量的三价元素,如硼(或

半导体基础知识

半导体基础知识

现代电子学中,用的最多的半导 体是硅和锗,它们的最外层电子 (价电子)都是四个。
Ge
Si
电子器件所用的半导体具有晶体结构,因 此把半导体也称为晶体。
2、半导体的导电特性
1)热敏性 与温度有关。温度升高,导电能力增强。 2)光敏性 与光照强弱有关。光照强,导电能力增强 3)掺杂性 加入适当杂质,导电能力显著增强。
图 二极管的结构示意图 (a)点接触型
(2) 面接触型二极管—
PN结面积大,用 于工频大电流整流电路。
往往用于集成电路制造工 艺中。PN 结面积可大可小,用 于高频整流和开关电路中。
(b)面接触型
(3) 平面型二极管—
(c)平面型 图 二极管的结构示意图
2、分类
1)按材料分:硅管和锗管 2)按结构分:点接触和面接触 3)按用途分:检波、整流…… 4)按频率分:高频和低频
---- - - ---- - - ---- - - ---- - -
+ +++++ + +++++ + +++++ + +++++
空间电荷区
扩散运动 (浓度差产生)
阻挡多子扩散
2)内电场的形成及其作用{ 促进少子漂移 漂移运动
P型半导体
、所以扩散和 移这一对相反- - - - - - 运动最终达到 衡,相当于两- - - - - - 区之间没有电- - - - - - 运动,空间电 区的厚度固定- - - - - - 变。
在常温下,由于热激发,使一些价电子 获得足够的能量而脱离共价键的束缚,成 为自由电子,同时共价键上留下一个空位, 称为空穴。

半导体五大特性

半导体五大特性

半导体五大特性∶电阻率特性,导电特性,光电特性,负的电阻率温度特性,整流特性。

★在形成晶体结构的半导体中,人为地掺入特定的杂质元素,导电性能具有可控性。

★在光照和热辐射条件下,其导电性有明显的变化。

晶格:晶体中的原子在空间形成排列整齐的点阵,称为晶格。

共价键结构:相邻的两个原子的一对最外层电子(即价电子)不但各自围绕自身所属的原子核运动,而且出现在相邻原子所属的轨道上,成为共用电子,构成共价键。

自由电子的形成:在常温下,少数的价电子由于热运动获得足够的能量,挣脱共价键的束缚变成为自由电子。

空穴:价电子挣脱共价键的束缚变成为自由电子而留下一个空位置称空穴。

电子电流:在外加电场的作用下,自由电子产生定向移动,形成电子电流。

空穴电流:价电子按一定的方向依次填补空穴(即空穴也产生定向移动),形成空穴电流。

本征半导体的电流:电子电流+空穴电流。

自由电子和空穴所带电荷极性不同,它们运动方向相反。

载流子:运载电荷的粒子称为载流子。

导体电的特点:导体导电只有一种载流子,即自由电子导电。

本征半导体电的特点:本征半导体有两种载流子,即自由电子和空穴均参与导电。

本征激发:半导体在热激发下产生自由电子和空穴的现象称为本征激发。

复合:自由电子在运动的过程中如果与空穴相遇就会填补空穴,使两者同时消失,这种现象称为复合。

动态平衡:在一定的温度下,本征激发所产生的自由电子与空穴对,与复合的自由电子与空穴对数目相等,达到动态平衡。

载流子的浓度与温度的关系:温度一定,本征半导体中载流子的浓度是一定的,并且自由电子与空穴的浓度相等。

当温度升高时,热运动加剧,挣脱共价键束缚的自由电子增多,空穴也随之增多(即载流子的浓度升高),导电性能增强;当温度降低,则载流子的浓度降低,导电性能变差。

结论:本征半导体的导电性能与温度有关。

半导体材料性能对温度的敏感性,可制作热敏和光敏器件,又造成半导体器件温度稳定性差的原因。

杂质半导体:通过扩散工艺,在本征半导体中掺入少量合适的杂质元素,可得到杂质半导体。

半导体 光催化材料-概述说明以及解释

半导体 光催化材料-概述说明以及解释

半导体光催化材料-概述说明以及解释1.引言1.1 概述概述:半导体材料在光催化领域扮演着重要的角色,其光电化学性质使得其具有光催化活性,可以促进光催化反应的进行。

随着环境污染问题的日益严重,光催化技术作为一种清洁、高效的能源转化和环境净化方法备受研究和关注。

本文将重点介绍半导体光催化材料的特性、光催化反应原理以及其在环境净化、水分解、CO2还原等领域的应用。

通过系统地介绍和分析,旨在深入探讨半导体光催化材料的机制及其在实际应用中的潜力。

1.2 文章结构文章结构部分应该简要介绍本文的整体结构,说明各个部分的内容和主题。

在这篇关于半导体光催化材料的文章中,文章结构内容可以包括以下内容:本文分为引言、正文和结论三个部分。

在引言部分,我们将对半导体光催化材料进行概述,介绍本文的结构和目的。

在正文部分,我们将重点探讨半导体材料的特性,光催化反应的原理以及半导体光催化材料在不同领域的应用。

最后,在结论部分,我们将对本文进行总结,展望未来的发展方向,并提出一些个人的感想和建议。

通过这样清晰的文章结构,读者可以更好地理解整篇文章的内容和框架,帮助他们更好地把握文章的核心思想和观点。

1.3 目的:本文的目的在于探讨半导体光催化材料在环境保护、能源利用、水处理等领域的应用及发展前景。

通过对半导体材料特性、光催化反应原理以及现有应用案例的研究和分析,旨在深入了解半导体光催化材料的工作原理、优势和局限性,为未来相关领域的研究和应用提供理论支持和实践指导。

同时,也旨在引起更多科研工作者和工业界的关注,共同推动半导体光催化材料技术的进步,为解决环境问题和实现可持续发展贡献力量。

2.正文2.1 半导体材料的特性半导体材料是一种具有特定电子结构和导电性质的材料,具有以下几个主要特性:1. 带隙能量:半导体材料具有较宽的禁带带隙能量,介于导体和绝缘体之间。

这使得半导体材料在受到光照激发后可以产生电子-空穴对,并参与光催化反应。

2. 电导率可控:半导体材料的电导率可以通过控制材料的杂质浓度或施加外加电场进行调控。

半导体的特性

半导体的特性

半导体的特性大家知道:半导体的导电性能比导体差而比绝缘体强。

实际上,半导体与导体、绝缘体的区别在不仅在于导电能力的不同,更重要的是半导体具有独特的性能(特性)。

1.在纯净的半导体中适当地掺入一定种类的极微量的杂质,半导体的导电性能就会成百万倍的增加—-这是半导体最显著、最突出的特性。

例如,晶体管就是利用这种特性制成的。

2.当环境温度升高一些时,半导体的导电能力就显著地增加;当环境温度下降一些时,半导体的导电能力就显著地下降。

这种特性称为“热敏”,热敏电阻就是利用半导体的这种特性制成的。

3.当有光线照射在某些半导体时,这些半导体就像导体一样,导电能力很强;当没有光线照射时,这些半导体就像绝缘体一样不导电,这种特性称为“光敏”。

例如,用作自动化控制用的“光电二极管”、“光电三极管”和光敏电阻等,就是利用半导体的光敏特性制成的。

由此可见,温度和光照对晶体管的影响很大。

因此,晶体管不能放在高温和强烈的光照环境中。

在晶体管表面涂上一层黑漆也是为了防止光照对它的影响。

最后,明确一个基本概验:所谓半导体材料,是一种晶体结构的材料,故“半导体”又叫“晶体”一个PN结构成晶体二极管P性半导体和N型半导体----前面讲过,在纯净的半导体中加入一定类型的微量杂质,能使半导体的导电能力成百万倍的增加。

加入了杂质的半导体可以分为两种类型:一种杂质加到半导体中去后,在半导体中会产生大量的带负电荷的自由电子,这种半导体叫做“N型半导体”(也叫“电子型半导体”);另一种杂质加到半导体中后,会产生大量带正电荷的“空穴”,这种半导体叫“P型半导体”(也叫“空穴型半导体”)。

例如,在纯净的半导体锗中,加入微量的杂质锑,就能形成N型半导体。

同样,如果在纯净的锗中,加入微量的杂质铟,就形成P型半导体。

一个PN结构成晶体二极管----设法把P型半导体(有大量的带正电荷的空穴)和N型半导体(有大量的带负电荷的自由电子)结合在一起,见图1所示。

敏感材料与传感器作业1-2答案

敏感材料与传感器作业1-2答案

《敏感材料与传感器》作业(1、2次合并)1.解释:传感器、传感器技术、敏感材料、磁阻效应、双金属敏感元件、LB膜、SA膜、形变规、约瑟夫逊(Josephson)效应、色谱法、形状记忆现象、陶瓷材料、压电效应、热释电效应、空穴、有效质量、压阻效应(1)传感器:传感器是能够感受被测量并按照一定的规律将其转换成为可用信号(如电信号、光信号)的器件或装置,它通常有敏感元件、转换元件及相应的机械结构和电子线路所构成。

(2)传感器技术:传感器技术是一个汇聚物理、化学、材料、器件、机械、电子、生物工程等多类型的交叉学科,涉及传感检测原理、传感器件设计、传感器开发和应用的综合技术。

(3)敏感材料:敏感材料是指对电、光、声、力、热、磁、气体分布等测量的微小变化而表现出性能明显改变的功能材料。

(4)磁阻效应:物质在磁场中电阻发生变化的现效应象。

(5)双金属敏感元件:是将热膨胀系数不同的两种金属片贴合而成的敏感元件。

(6)LB膜:将含有亲水基和疏水基的两性分子正在水面上形成的一个分子层厚度的膜(即单分子膜),以一定的方式累计到基板上的技术。

(7)SA膜:分子自组装膜是分子通过化学键相互作用自发吸附在固/液或气/固界面而形成的热力学稳定和能量最低的有序膜。

(8)形变规:形变规是利用物质因受力而使其电阻发生变化的敏感元件。

(9)约瑟夫逊效应:在两个导体间插入纳米量级的绝缘体,超导电流会从一块超导体无阻通过绝缘体到另外一块超导体。

此超导体/绝缘体/超导体结被称为约瑟夫逊结。

(10)色谱法:使混合物中各组分在两相间进行分配,其中一相是不动的(固定相),另一相(流动相)携带混合物流过此固定相,与固定相发生作用,在同一推动力下,不同组分在固定相中滞留的时间不同,依次从固定相中流出,又称色层法,层析法。

(11)形状记忆现象:具有一定形状(初始形状)的固体材料,在某一低温状态下经过塑性变形后(另一形状),通过加热到这种材料固有的某一临界温度以上时,材料又恢复到初始的形状。

半导体的主要特性

半导体的主要特性
半导体的主要特性
一、半导体的概念
自然界中的物质,按导电能力强弱不同,可分为三大类: 导体、半导体和绝缘体。故半导体是导电能力介于导体和 绝缘体之间的物质穴数目很少,
所以本征半导体的导电性能比较差。但温度升高或光照增
强时,本征半导体内电子运动加剧,载流子数目增多,导
• 2、PN 结的单向导通特性。
电性提高,这就是半导体的热敏特性和光敏特性。在本征
半导体中掺入三价或五价元素后分别形成P型半导体或N
半导体,半导体的导电性能大大提高,这就是半导体的掺
杂特性。
三、半导体的种类
• 本征半导体、N型半导体和P型半导体。
四、PN结及其导电特性
• 1、PN结的形成 采用掺杂工艺是P型半导体和N型半导体做在一起,在P型 半导体和N型半导体的交界面会形成一个具有特殊电性能 的薄层,成为PN结。

at可做半导体的元素

at可做半导体的元素

at可做半导体的元素
在元素周期表中金属和非金属的分界处,可以找到半导体材料,如硅、锗、镓等
另外还有半导体的特性:
半导体是导电能力介于导体和绝缘体之间的物质.它的重要特性表现在以下几个方面:
(1)热敏性半导体材料的电阻率与温度有密切的关系.温度升高,半导体的电阻率会明显变小.例如纯锗(Ge),温度每升高10度,其电阻率就会减少到原来的一半.
(2)光电特性很多半导体材料对光十分敏感,无光照时,不易导电;受到光照时,就变的容易导电了.例如,常用的硫化镉半导体光敏电阻,在无光照时电阻高达几十兆欧,受到光照时电阻会减小到几十千欧.半导体受光照后电阻明显变小的现象称为“光导电”.利用光导电特性制作的光电器件还有光电二极管和光电三极管等.
近年来广泛使用着一种半导体发光器件--发光二极管,它通过电流时能够发光,把电能直接转成光能.目前已制作出发黄,绿,红,蓝几色的发光二极管,以及发出不可见光红外线的发光二极管.
另一种常见的光电转换器件是硅光电池,它可以把光能直接转换成电能,是一种方便的而清洁的能源.
(3)搀杂特性纯净的半导体材料电阻率很高,但掺入极微量的“杂质”元素后,其导电能力会发生极为显著的变化.例如,纯硅的电阻率为
214×1000欧姆/厘米,若掺入百万分之一的硼元素,电阻率就会减小到0.4欧姆/厘米.因此,人们可以给半导体掺入微量的某种特定的杂质元素,精确控制它的导电能力,用以制作各种各样的半导体器件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

半导体主要有以下几个方面的重要特性:
1.热敏特性
半导体的电阻率随温度变化会发生明显地改变。

例如纯锗,湿度每升高10度,它的电阻率就要减小到原来的1/2。

温度的细微变化,能从半导体电阻率的明显变化上反映出来。

利用半导体的热敏特性,可以制作感温元件——热敏电阻,用于温度测量和控制系统中。

值得注意的是,各种半导体器件都因存在着热敏特性,在环境温度变化时影响其工作的稳定性。

2.光敏特性
半导体的电阻率对光的变化十分敏感。

有光照时、电阻率很小;无光照时,电阻率很大。

例如,常用的硫化镉光敏电阻,在没有光照时,电阻高达几十兆欧姆,受到光照时.电阻一下子降到几十千欧姆,电阻值改变了上千倍。

利用半导体的光敏特性,制作出多种类型的光电器件,如光电二极管、光电三极管及硅光电池等.广泛应用在自动控制和无线电技术中。

3.掺杂特性
在纯净的半导体中,掺人极微量的杂质元素,就会使它的电阻率发生极大的变化。

例如.在纯硅中掺人.百万分之—的硼元素,其电阻率就会从214000Ω·cm一下于减小到0.4Ω·cm.也就是硅的导电能为提高了50多万倍。

人们正是通过掺入某些特定的杂质元素,人为地精确地控制半导体的导电能力,制造成不同类型的半导体器件。

可以毫不夸张地说,几乎所有的半导体器件,都是用掺有特定杂质的半导体材料制成的。

相关文档
最新文档