文丘里管射流器的主要性能参数研究
文丘里喷射输送原理
文丘里喷射输送原理介绍:文丘里喷射器采用由鼓风机或者空压缩机产生的正压空气流经喷射器时产生吸力,抽吸走位于喷射器上方的物料,并使之在正压气动输送系统中输送粉体、颗粒及散装物料。
在输送过程中,文丘里喷射器推压固体物料与空气的混合物,由此提供足够的压力来弥补下流管道的压力降。
产品特点:1、无回气传统的气力输送系统所采用的旋转阀多有回气。
如果输送的物料是非常细的或易磨损的,回气可造成下料不畅以及磨损问题,产生高的维修费用,导致低输送性能及粉尘飞扬。
文丘里喷射器与传统转阀相比,最大优点在于无回气,部件不易磨损,无需维修(见图2)2、无机械运动部件文丘里喷射器无任何机械运动部件,无需维修。
3、型号参数:●标准型尺寸:DN25 –200mm●材质:不锈钢304,不锈钢316,碳钢,陶瓷内衬,镍铬合金Inconel,蒙乃尔Monel,哈氏合金Hastelloy等●卫生/CIP清洗型:DN25 –100 mm●陶瓷内衬的喷射器:DN38 –DN150mm●连接方式:NTP,BSP,法兰等4、特殊结构的文丘里喷射器陶瓷内衬的文丘里喷射器易磨损性物料能造成旋转阀的过度磨损最终导致停止生产。
FOX陶瓷内衬与工具钢内衬的喷射器可输送极其磨损性物料,保证长工作时间及很高的可靠性。
卫生级文丘里喷射器- USDA认证制药及食品行业要求设备符合卫生标准,FOX已设计出符合CIP清洗要求的喷射器,该装置经USDA认证。
材质采用304/316不锈钢,内表面抛光处理。
该装置也经常被用于如输送调色剂,颜料等物料,每批料完成后进行CIP清洗保证产品间不交叉污染安装方式喷射器安装使用见图二有三种连接口(见图1):产品应用文丘里喷射器无任何运动部件,无需维修,常用来取代旋转阀,消除回气及磨损。
尤其适合处理易磨损物料如塑料颗粒、石英粉末等及高温物料如水泥窑灰、热矿石粉末等。
●建筑业:石膏灰,浮石粉,水泥行业●非金属:陶瓷,玻璃,石英,硅石,云母●环保及污染控制:活性炭,碳酸钠,吸附剂●食品:糖,盐,香料,奶粉,咖啡豆等●金属:铝粉,铁粉,金属粉,镍矿石(600℃)●塑料:注塑机的塑料颗粒,塑料薄片●电力/焚烧:焦炭,吸附剂,活性炭,抑制炉渣产生的助剂,碳酸钙。
文丘里管射流装置的结构及工作原理讲课稿
文丘里管射流装置的结构及工作原理文丘里管射流装置的结构及工作原理作者:西南科技大学王海军着现代工业的加速发展,在工农业生产的诸多领域对射流技术的需求日渐广泛。
如金属切割、打磨、工件的表面清洗等,因此,提高射流装置的效率,降低其成本,具有重要意义。
现有的液体加压射流喷射器装置,主要是以气压机与泵相结合的加压喷射器装置为主。
进入2O世纪8O年代以来,各国多把注意力集中在如何形成一种特殊的脉冲射流发生器上,许多研究人员为此进行了大量的研究与实验,提出了各种类型的脉冲水射流发生装置,但对于改进射流喷头方面并没有太大的发展,尤其是结构的简化方面。
传统设备在生产工艺上虽然可以满足实际需求,但是其结构复杂、体积相对较大,且不能满足一些特殊的要求,如强腐蚀性液体、磨液、易堵高粘稠性液体等对设备损坏较大,造成设备无法正常运行,折旧速度加快。
笔者利用文丘里管结合气压机的射流装置,革新了喷射器部分。
在本设计中真空度主要由“文丘里管(真空泵主要构件)”产生,而且可以达到要求;若采用两根“文丘里管”串连,则产生的真空度达原来的十几倍。
射流的压力大小主要由速度决定,调节气流的相关参数即可以对射流进行调节。
本设计将原有普通连续水射流喷射器结构与文丘里管结构相结合,利用喷管高压空气流从小孔吹出的方式而使液室产生真空引力引起气液在混合室混合。
因此,可以由空气吹出速度的大小来调节真空度的大小。
该装置减少了原有的加压喷射器需要泵提供液体注入动力,节约了能量、减小了体积。
图1 文丘里管射流实验装置结构示意图压力表1、2、3分别测量文丘里管人口、喉、出口,B1、B2分别为调节阀,α、β分别为文丘里管的前后倾角。
其中α=15° β=12°,管直径a=50 mm,文丘里管的喉部直径b=15.6 mm,全管的长度为400 mm。
2 分析与结果2.1 原理文丘里管射流装置的工作原理可以用伯努利方程和连续方程来表达:伯努利方程:连续方程:V· A=常数 (2)式中,V-流体流速,m/s;g——重力加速度,n;ρ——流体压力,Pa;γ——流体比重,M/n3;z--流体势能,m;A——过流截面,m2。
洗消消防车用文丘里射流器的吸气性能分析
的分布规律,出口环境为空气的射流器压力在后段表现
右,水从喷嘴喷出后带动气体进入喉管,在喉管内与气
为先降低再升高,变化趋势比较明显,相比出口环境为
体进行充分混合,由于气体的加入,水的流通面积减小,
水,其变化趋势比较平缓,而且当出口环境为空气时,在
流速进一步增大,两相之间的作用加快了水的流速,在
喉管段产生的最大负压值是出口环境为水时的 3.5 倍
53 气体体积分布分析
如图 10 所示,出口环境为空气和出口环境为水的
a. 射流器出口环境为空气
文丘里射流器对称面空气体积分布云图,可知空气和水
在喷嘴出口和喉管入口处开始混合,在喉管中空气和水
逐渐混合充分,进入扩散段后,在湍流弥散力和径向离
心力的作用下,水逐渐由中心向壁面扩散,形成中心低
压区,使得空气向中心移动。通过对比可以发现出口环
耗散设置为二阶迎风格式,体积分数设置为 QUICK,以
残差值低于 10 及气体入口流量不变作为收敛标准。
-5
类似,以入口流速为 6 m/s 时为例,对两种出口环境下射
流器内部的压力场、速度场和气体体积分数进行分析。
51 压力场分析
如图 7 所示,出口环境为空气和出口环境为水的文
丘里射流器对称面压力分布云图,可知当压力水从喷嘴
孔口型喷嘴射流泵进行数值模拟,结果表明,相同工况
下孔口型喷嘴抽气效率更高。Yadav 等[9]通过数值模拟
比较了射流器吸入室直径、渐缩角及喉嘴间距对抽气性
能的影响,发现相比之下,吸入室的结构对射流器的影
[10]
响更大。陈韶华等
通过对射流器内部流动进行数值
里射流器的研究大多围绕结构参数对其性能的影响,鲜
综上所述,研究结果初步揭示了文丘里射流器吸气
高效射流器说明
高效射流器
射流器的工作原理:带压工作(动力)流体从射流器入口进入到喷射腔内形成高速喷射流体,高速流体产生压降使得待加入的物质(液/气)从吸入口吸入并进入到工作流体内,由此形成的混合液,经扩散段流速减慢压力部分回升后,从出口流出。
GW系列文丘里射流器混合效率高,工作压力范围宽,进出口之间很小的压差下即可形成负压吸入液体或气体。
目前已广泛应用于各种污水处理用气浮、曝气充氧、抽真空、水产养殖等。
射流器原理图
GW系列射流器特点:
1)安装简便、布置灵活;
2)长期运行性能不变,免维修,工作可靠;
3)效率高、投资省、能耗低;
4)噪音低、无污染;
5)使用寿命长、管理维修方便;
6)只须配备一定的工作水量和压力即可完成抽吸气体或液体
适用范围
1)各类工业和城市污水处理曝气充氧;
2)纯氧射流曝气;
3)臭氧氧化消毒、二氧化氯添加;
4)农业灌溉施肥;
5)脱铁除锰充氧、气浮加气;
6)河道、湖泊、水池富氧,水产养殖增氧;
7)射流抽真空;
8)其他液-液、气-液混合。
GW系列射流器性能参数
GW系列射流器吸气性能参数表(空气)
GW系列射流器产品安装尺寸图
部分业绩
焦化废水处理GW系列
射流器。
经典文丘里管的参数化设计 -回复
经典文丘里管的参数化设计-回复标题:经典文丘里管的参数化设计一、引言文丘里管,是一种广泛应用在气体流量测量中的装置。
其工作原理基于伯努利定理,即流体速度增加时,其静压会下降。
因此,通过测量文丘里管前后压力差,可以推算出流体的流量。
本文将详细介绍如何进行经典文丘里管的参数化设计。
二、文丘里管的工作原理和结构1. 工作原理:当流体流经文丘里管时,由于管径的突然收缩,流速会加快,根据伯努利定理,流体的静压会降低。
这个压力差被用来测量流量。
2. 结构:文丘里管主要由入口段、收缩段和喉部组成。
入口段的直径较大,用于稳定流体流动;收缩段则逐渐缩小管道直径,以加速流体流动;喉部是管道最窄的部分,流体在此处达到最大速度。
三、文丘里管的参数化设计步骤1. 确定设计参数:包括入口直径D1、喉部直径D2、收缩角α等。
2. 计算流量系数:流量系数C是描述文丘里管性能的重要参数,可以通过实验或计算得到。
对于经典的文丘里管,C值通常在0.95-0.99之间。
3. 设计计算:首先,根据实际需要的流量Q和流体的密度ρ,以及已知的流量系数C,可以计算出喉部的压力P2:P2 = P1 - ρ* Q^2 / (2 * C^2 * A^2)其中,P1是入口的压力,A是喉部面积。
4. 根据喉部压力P2和已知的流体性质,可以进一步计算出喉部的速度V2:V2 = sqrt(2 * (P1 - P2) / ρ)5. 根据入口直径D1、喉部直径D2和喉部速度V2,可以计算出收缩角α:tan α= (D1 - D2) / L其中,L是从入口到喉部的距离。
6. 根据以上计算结果,可以绘制出文丘里管的三维模型,并进行物理验证或数值模拟,以优化设计。
四、结论经典文丘里管的参数化设计是一项涉及多学科知识的任务,需要对流体力学、机械设计和数值计算等方面有深入的理解。
通过合理的选择设计参数,精确的计算和优化,我们可以设计出满足特定需求的文丘里管,提高流量测量的精度和效率。
文丘里射流系统技术说明
440
395
12-φ22
80
304/316/316L不锈钢
表1-3-17 WQL系列文丘里射流器型号及参数
型号
动力流量/(m³/h)
进口压力/(kgf/cem²)
装机功率/kW
最大吸空气能力
制造材质
吸空气压力latm下
吸空气压力1.6atm下
WQL200
7.5~3.3
0.35~7.03
0.11~9
文丘里射流系统技术说明
1、适用范围:臭氧与水体混合
2、设备特点
WQL系列文丘里射流器氧气传递效率高,安装维修简便。
避免了占地面积大、噪声高、设备管道复杂、检修繁复、设备由于堵塞老化而效能下降等一系列问题。
三、WQL系列文丘里射流器性能规格。
四、WQL系列文丘里射流器外形如图1-3-9所示,尺寸规格和型号及参数见表1-3-16、表1-3-17。
37
94
304/316/316L不锈钢或PVDF
WQL300
17~74
0.35~7.03
0.3~20
56
142
304/316/316L不锈钢或PVDF
WQL400
30~103
0.35~4.22
0.5~18
111
284
304/316/316L不锈钢
WQL800
82~303
0.35~4.92
1.5~58
图1-3-9 WQL系列文丘里射流器外形
表1-3-16 WQL系列文丘里射流器尺寸规格
型号
公称直径DN/mm
外部连接安装尺寸/mm
吸入口口径DN/mm
材质
L
D
K
n-φ
文丘里管标准
文丘里管标准
文丘里管是一种测量流量的装置,也称为文丘里流量计。
它由收缩段、喉部和扩散段三部分组成,其基本原理是利用流体在通过收缩段时流速增加,压力降低,而在喉部流速达到最大值,压力最低,然后在扩散段流速逐渐减小,压力逐渐回升的原理进行流量测量。
文丘里管的优点是结构简单、测量范围广、精度高、可靠性好,适用于各种流体的测量,特别是对于大口径、高流速的流体测量具有优势。
此外,文丘里管还可以通过加装压力传感器、温度传感器等附件,实现对流体的多参数测量。
文丘里管的应用领域非常广泛,包括石油、化工、冶金、电力、造纸、食品等行业。
在工业生产中,文丘里管常用于测量气体、液体的流量,以及控制流体的流量和压力等参数。
文丘里管是一种非常重要的流量测量装置,具有结构简单、测量范围广、精度高、可靠性好等优点,广泛应用于工业生产和科学研究等领域。
文丘里实验报告原理(3篇)
第1篇一、实验背景文丘里实验是一种经典的流体力学实验,主要用于研究流体在收缩和扩张管道中的速度分布和压力分布。
该实验由意大利物理学家恩尼奥·文丘里(Enrico Bernardi)在19世纪末提出,并广泛应用于水力学、空气动力学等领域。
本实验旨在通过文丘里实验装置,观察和测量流体在收缩和扩张管道中的速度和压力变化,从而验证流体力学的基本原理。
二、实验原理1. 流体连续性原理流体连续性原理指出,在稳态流动的情况下,流过任意截面的流体质量流量是恒定的。
即:ρ1A1v1 = ρ2A2v2其中,ρ表示流体的密度,A表示截面积,v表示流速。
2. 能量守恒原理能量守恒原理指出,在稳态流动的情况下,流过任意截面的流体动能、势能和压力能之和是恒定的。
即:ρgh1 + 1/2ρv1^2 + P1 = ρgh2 + 1/2ρv2^2 + P2其中,h表示流体高度,P表示压力。
3. 马赫数马赫数(M)是描述流体速度与声速之间关系的无量纲参数。
当流体速度接近声速时,会产生激波,从而引起压力、密度和温度的变化。
马赫数计算公式如下:M = v/a其中,v表示流体速度,a表示声速。
三、实验装置及步骤1. 实验装置文丘里实验装置主要由文丘里管、直管、压力计、流量计、计时器等组成。
文丘里管是实验的核心部件,它由收缩段、扩张段和喉部组成。
2. 实验步骤(1)将文丘里实验装置安装好,连接好各部件。
(2)打开水源,调整流量,使流体在文丘里管中稳定流动。
(3)记录流量计和压力计的读数,计算流体在收缩段和扩张段的流速和压力。
(4)改变流量,重复上述步骤,获取不同流量下的流速和压力数据。
(5)根据实验数据,绘制流速和压力随流量变化的关系曲线。
四、实验结果与分析1. 流速分布实验结果表明,在收缩段,流速随着管道截面积的减小而增大;在扩张段,流速随着管道截面积的增大而减小。
这与流体连续性原理相符。
2. 压力分布实验结果表明,在收缩段,压力随着流速的增大而减小;在扩张段,压力随着流速的减小而增大。
文丘里管射流器的主要性能
文丘里管射流器的主要性能参数研究在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。
关键词:引射;吸风量;水雾活塞随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。
放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。
喷雾方式控制煤矿粉尘是经济的,也是有效的。
在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。
图1 文丘里管工作原理示意图1 文丘里管射流器的工作原理1.1 文丘里管的工作原理如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。
1.2 文丘里管中流体流动特性分析文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。
因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。
文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。
在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。
文丘里管设计参数
文丘里管设计参数文丘里是一种用于收发电信号的管道系统,由于它的设计参数对于电信信号的传输和接收具有重要的影响,因此需要特别关注。
下面是几个设计参数,以确保文丘里管系统的高效运行。
1.管道尺寸和形状:文丘里管的尺寸和形状对于电信信号的传输具有重要影响。
一般来说,管道的直径越大,传输的带宽就越大。
此外,管道的形状也需要尽量避免急转弯和突然的变化,以减少信号的损失和衰减。
2.电磁屏蔽:为了减少外界电磁干扰对信号传输的影响,文丘里管系统需要进行良好的电磁屏蔽。
可以采用金属材质的管道,并在管道表面涂覆导电性材料,以建立有效的屏蔽层。
此外,还可以在管道的周围设置地线,进一步增强屏蔽效果。
3.信号损失:文丘里管系统中的信号损失是一个重要的参数。
主要的信号损失包括传导损耗和辐射损耗。
传导损耗是因为信号在管道内部传输时逐渐衰减,这通常与管道材质和尺寸相关。
辐射损耗是因为信号从管道中辐射出去损失的能量,主要与管道的形状和电磁屏蔽效果有关。
要减少信号损失,可以采用高导电性的管道材质,并且在管道表面进行良好的屏蔽处理。
4.管道布局:文丘里管系统的管道布局对于信号接收和传输的效果也具有重要影响。
一般来说,管道应该尽量避免与其他电子设备、电缆或金属结构的接触,以减少干扰和信号损失。
此外,管道的走向和路径应该尽量短,以减少信号传输的延迟和损失。
5.管道连接和接头:文丘里管系统的连接和接头需要具备良好的导电性和屏蔽性能,以保证信号的正常传输。
连接和接头的安装和固定也需要可靠,以防止松动和断开导致的信号损失。
综上所述,文丘里管系统的设计参数包括管道尺寸和形状、电磁屏蔽、信号损失、管道布局以及管道连接和接头等。
通过科学合理的设计和优化,可以确保文丘里管系统的高效运行和稳定的信号传输。
文丘里管射流器的主要性能参数研究知识分享
文丘里管射流器的主要性能参数研究在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。
关键词:引射;吸风量;水雾活塞随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。
放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。
喷雾方式控制煤矿粉尘是经济的,也是有效的。
在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显⑴。
图1文丘里管工作原理示意图1文丘里管射流器的工作原理1.1文丘里管的工作原理如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少, 从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体, 此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的⑵。
1.2文丘里管中流体流动特性分析文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。
因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的⑻。
文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。
在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。
2耗水量及吸风量的理论计算2.1耗水量的计算⑷根据薄壁孔口流量计算及管嘴流量计算公式:式中△ p --- 孔口前后压差,Pa;A ――孔口面积,m2p―― 体的密度,kg/m3;卩一一量系数,与喷嘴出口结构有关;q――流量,即耗水量,m3/s。
文丘里管射流器的主要性能参数研究知识分享
文丘里管射流器的主要性能参数研究在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。
关键词:引射;吸风量;水雾活塞随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。
放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。
喷雾方式控制煤矿粉尘是经济的,也是有效的。
在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。
图1 文丘里管工作原理示意图1 文丘里管射流器的工作原理1.1 文丘里管的工作原理如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。
1.2 文丘里管中流体流动特性分析文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。
因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。
文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。
在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。
文丘里管射流器的主要性能参数研究
文丘里管射流器的主要性能参数研究射流器是一种常见的流体控制装置,主要通过将流体经过喷嘴加速并形成射流,以实现对流体的控制和调节。
在工业领域中射流器被广泛应用,例如喷雾器、喷涂装置、燃烧器等。
本文将主要对射流器的主要性能参数进行研究,包括流量、速度、喷射角度和效率等。
一、流量是指射流器单位时间内喷出流体的体积或质量,通常用单位时间内喷流通过喷嘴的体积或质量来表示。
流量的大小决定了射流器的排液能力,对液体喷涂、清洗等应用具有重要意义。
流量与喷嘴直径、压力、介质性质等因素有关,通常使用公式或表格来计算和查找。
二、速度是指射流器中喷流的速度。
速度的大小对于流体的喷射、飞溅、混合等过程十分重要。
速度一般通过喷射出的射流的喷头露出面积和流量来计算。
通常情况下,喷头的流速越高,流体粒子的速度越大,喷射距离也相应增加。
三、喷射角度是指射流器中射流喷洒的角度范围。
喷射角度的大小与喷嘴设计和射流器的工作状态有关,对于控制喷涂覆盖范围、清洗范围等具有重要意义。
喷射角度可通过调整喷嘴的形状(如圆锥形、扇形、平面喷嘴等)和喷嘴开口的大小来实现,也可以通过改变射流器的工作压力和流量等参数来调节。
四、效率是指射流器在流体控制过程中能量转化的有效性。
射流器的效率与能量损失和利用有关,通常通过对流体的压力变化、能量损失以及流体喷射的速度、流速等进行综合分析来评估。
同时,射流器的效率也与喷射距离、喷射范围等因素有关。
除了上述主要性能参数外,射流器的设计和使用还需要考虑其他因素,例如流体的黏度、密度、温度、喷射室的形状和大小等。
这些因素会直接影响到射流器的性能和应用效果。
因此,在进行射流器的设计和选择时,需要综合考虑上述参数以及其他相关因素,以实现对流体的有效控制和调节。
综上所述,射流器的主要性能参数包括流量、速度、喷射角度和效率等。
这些参数对于射流器的设计和应用具有重要意义,能够影响到射流器的喷涂、清洗、混合等过程。
因此,在进行射流器的研究和开发时,需要对这些参数进行综合分析和优化设计,以满足不同应用场景的需求。
实验三 文丘里实验
p1 p 2
A1 2 ) 1] A2
QT=CT h CT 为文丘里的理论常数。由于实际液体在运动中存在水头损失,故实际通过的流量 Q 与理论流量 QT 有误差,所以把 Q/QT 叫做文丘里管流量系数,用μ表示: μ=
Q QT
四、实验步骤: 熟悉实验指导书,了解实验目的、原理和设备结构。 打开尾阀,接通水泵电源,给水箱供水。 关闭尾阀,排除管道和测压管中的气体,直到测压管的水位读数相等。 打开尾阀,使管道通过较大流量,且测压管的水位均能读数。等到水流稳定后,开始测 定测压管水位和流量,并记录。 5. 控制尾阀,减小流量,使测压管水位差减小 2cm 左右,等到水流稳定后,继续测定。 6. 测次大于 6 次后,且压差分布均匀,实验可以结束。 7. 关闭电源。 流量数据记录表:(仅供参考) 量测水箱水平面积:A=145cm2 测次 初高 1 2 3 4 5 6 文丘里管断面直径、面积:d1= cm d2= cm A1= cm
实验三
一、实验目的:
文丘里实验
1. 测定文丘里管流量系数μ值。 2. 绘制文丘里管的流量 Q 与压差计压差△h 之间的关系曲线。 3. 学习、了解自动量测系统的使用方法。 二、实验设备:
测压管 水箱 2 尾阀 溢流管 量测 水箱 回水管 水箱 抽水机 供水管
实验装置由实验桌、供水系统、回水系统、文丘里管等组成,其中文丘里管由收缩段、喉管 和扩散段组成。在收缩段和喉管上开有测压孔,并与测压管连通。实验装置另外配备有自动 测压和流量自动量测系统。 三、实验原理: 首先列出 1 断面和 2 断面的能量方程式,并设 a1≈1,a2≈1,且不考虑两断面之间的水头损 失,则有:
p1
∵
+
2 v12 p 2 v 2 = + 2g 2g
射流曝气机(说明书),射流曝气机的选型手册,射流曝气机工作原理
SLB-D系列不锈钢射流曝气机使用说明书浏阳嘉禾环保科技有限公司地址:湖南省浏阳市浏阳大道485号1、原理及用途SLB射流曝气机采用文丘里喷嘴,工作水泵出水通过射流器的喷嘴,随着喷嘴直径变小,液体以极高的速度从喷嘴喷射出来,高速流动的液体穿过吸气室进入喉管,在喉管形成局部真空,通过导气管吸入(或压入)的大量空气进入喉管后,在喷水压力的作用下被分割成大量微小的气泡,与水形成混合体。
气液混合体通过扩散管向外排出,其速度减慢,压力增强,形成强力喷射流,对废水搅拌充氧。
气泡经多次切割,喷射扰动后,变成无数的细小气泡,其表面积很大,使空气中的氧更易快速溶解于水中。
由于气泡直径小,上升速度缓慢,从而延长了大气中氧气溶解于水的时间,促使废水和氧气充分混合接触。
SLB型射流曝气机适用于污水处理厂曝气池、曝气沉砂池、混合搅拌、臭氧接触氧化工艺、净水工艺的除铁锰、对污水污泥的混合液进行充氧及混合以及养殖塘增氧或供水设备混合气体或液体使用。
2、性能特点a)充氧效率高:根据射流原理,采用大口径水力喷头,在水泵驱动下自身产生负压抽吸空气,空气与高速通过的水流同时进入气水反应腔,在气水反应腔内氧气通过高压原理迅速溶解到水体当中,并同时冲入水体。
与传统充氧设备相比氧转移效率明显提高。
b)系统结构简单:充氧曝气采用自吸(负压)式负压吸气或鼓风机强制供气(有压)式,不需要复杂的水下空气管线及易坏的微孔曝气头,仅靠水力驱动,设计简单操作便捷容易维护;c)射流(曝气)深度大:常规射流曝气器的最大适用射流深度达到5.0m,高效射流器射流深度可达到15m,而不需要专门的辅助设备(如鼓风机等),射流深度远远超过传统水射器及其它充氧曝气机。
d)射流曝气器可同时实现污水处理系统的充氧曝气、搅拌过程,可完全取代污水生物处理工艺中的充氧曝气设备(如鼓风机等),并省去所有繁杂的供气管线系统,整个污水的生化处理系统只保留污水管道,可大大节省设备、管道的投资,降低工程安装难度,加快安装进度。
文丘里管射流装置的结构及工作原理
文丘里管射流装置的结构及工作原理作者:西南科技大学王海军着现代工业的加速发展,在工农业生产的诸多领域对射流技术的需求日渐广泛。
如金属切割、打磨、工件的表面清洗等,因此,提高射流装置的效率,降低其成本,具有重要意义。
现有的液体加压射流喷射器装置,主要是以气压机与泵相结合的加压喷射器装置为主。
进入2O世纪8O年代以来,各国多把注意力集中在如何形成一种特殊的脉冲射流发生器上,许多研究人员为此进行了大量的研究与实验,提出了各种类型的脉冲水射流发生装置,但对于改进射流喷头方面并没有太大的发展,尤其是结构的简化方面。
传统设备在生产工艺上虽然可以满足实际需求,但是其结构复杂、体积相对较大,且不能满足一些特殊的要求,如强腐蚀性液体、磨液、易堵高粘稠性液体等对设备损坏较大,造成设备无法正常运行,折旧速度加快。
笔者利用文丘里管结合气压机的射流装置,革新了喷射器部分。
在本设计中真空度主要由“文丘里管(真空泵主要构件)”产生,而且可以达到要求;若采用两根“文丘里管”串连,则产生的真空度达原来的十几倍。
射流的压力大小主要由速度决定,调节气流的相关参数即可以对射流进行调节。
本设计将原有普通连续水射流喷射器结构与文丘里管结构相结合,利用喷管高压空气流从小孔吹出的方式而使液室产生真空引力引起气液在混合室混合。
因此,可以由空气吹出速度的大小来调节真空度的大小。
该装置减少了原有的加压喷射器需要泵提供液体注入动力,节约了能量、减小了体积。
图1 文丘里管射流实验装置结构示意图压力表1、2、3分别测量文丘里管人口、喉、出口,B1、B2分别为调节阀,α、β分别为文丘里管的前后倾角。
其中α=15° β=12°,管直径a=50 mm,文丘里管的喉部直径b=15.6 mm,全管的长度为400 mm。
2 分析与结果2.1 原理文丘里管射流装置的工作原理可以用伯努利方程和连续方程来表达:伯努利方程:连续方程:V· A=常数(2)式中,V-流体流速,m/s;g——重力加速度,n;ρ——流体压力,Pa;γ——流体比重,M/n3;z--流体势能,m;A——过流截面,m2。
经典文丘里管的参数化设计
经典文丘里管是一种用于测量流体流速和流量的装置,其设计通常包括以下几个参数:
1. 入口直径(D):这是文丘里管的最小直径,通常根据流量和流体性质来确定。
2. 出口直径(d):这是文丘里管的出口直径,通常比入口直径小,以产生收缩效应。
3. 长度(L):这是文丘里管的长度,通常根据安装空间和使用需求来确定。
4. 收缩角(θ):这是入口和出口直径之间的夹角,通常在15°到25°之间。
5. 扩张角(β):这是出口和入口直径之间的夹角,通常在15°到25°之间。
在进行参数化设计时,需要考虑以下几个因素:
1. 流体性质:不同的流体具有不同的粘度、密度和压缩性,这些因素会影响文丘里管的性能。
2. 流量范围:文丘里管的设计需要考虑到流量范围,以确保在所需流量范围内获得准确的测量结果。
3. 压力损失:文丘里管的设计需要考虑到压力损失,以确保流体在通过文丘里管时不会受到过大的阻力。
4. 安装空间:文丘里管的尺寸和形状需要考虑到安装空间和使用需求。
5. 经济性:文丘里管的设计需要考虑成本和制造工艺,以确保在满
足性能要求的同时降低成本。
在具体的设计过程中,可以通过数值模拟或实验测试来验证设计的有效性,并进一步优化设计参数。
射流器理论教程(杂项)
射流器(文丘里混合器\水射器\气水、液混合器)文丘里混合器,又称为喷射式混合器,是一种本身没有运动部件,它是由喷嘴、吸入室、扩压管三部分组成。
具有一定压力的工作流体通过喷嘴高速喷出,使压力能转化速度能,在喷嘴出口区域形成真空,从而将被抽介质吸引出来,二股介质在扩压管内进行混合及能量交换,并使速度能还原成压力能,最后以高于大气压力而排出。
文丘里混合器是一种集吸气和混合反应于一体的设备。
独特的混合气室设计,强劲的水流与空气或液体混合喷射,使搅拌均匀、完全,产生的气泡多而细腻,促使气体溶解效率提高。
常见于液~气相混合,液~液相混合,还可以用于气~气相混合以及气~液相混合。
射流器结构简单、工作可靠、噪音低、无污染、使用寿命长、极少维修、管理使用方便、便于综合利用。
尤其适用于作为传质和化学混合反应设备或抽吸气体。
文丘里混合器俗称射流器、水射器等。
制造材料有金属,塑料等。
一般通量较大需定制。
采用模具压铸的文丘里混合器有以下三种材料:、氟塑料()材料黑色,耐强氧化、耐强酸碱腐蚀、耐臭氧。
寿命长,广泛用于臭氧水混合、污水处理、加药领域。
规格较为齐全,规格参数详见下表。
型号口径参数总长度()通水量()进出口:”外牙,吸入口:”外牙和”软管接口进出口:”外牙,吸入口:”外牙和”软管接口进出口:”外牙,吸入口:”外牙和”软管接口进出口:. ”外牙,吸入口:”外牙和”软管接口进出口:”外牙,吸入口:”外牙进出口:”外牙,双吸入口:”外牙、聚丙烯()材料乳白色,材料常用在一般耐酸碱条件下。
进出口径有以下规格有:寸() ,可配软管接口。
、透明有机玻璃材料无色透明,透明的有机玻璃则通常应用于可直观了解射流效果的场合,如实验室。
进出口径有以下规格有:分(),寸()无软管接口。
文丘里管——精选推荐
文丘里管连接于封闭管道中的检出元件。
它按节流装置的原理,测量液体、气体和蒸汽的流量。
意大利物理学家G.B.文丘里于1791年发表用文丘里管测量流量的研究结果。
后由美国C.赫谢尔于1886年制成实用的测量装置。
文丘里管(见图)是一段截面不同的管段,两端向中部逐渐缩小,中部是一段等直径的喉部。
文丘里管已有国际标准 (ISO5167)。
流体流经文丘里管时在管道入口和喉部处产生压差,在取压孔处测出此压差,即可算出流量。
美国机械工程师协会曾对具有不同管道和喉部直径比值的文丘里管进行试验,当雷诺数超过2×105时,流出系数为常数,其值为0.984。
文丘里管的压力损失较孔板和喷嘴低,仅为压差的10~15%。
真空发生装置即文丘里管的原理文氏管是文丘里管的简称,文丘里效应的原理则是当风吹过阻挡物时,在阻挡物的背风面上方端口附近气压相对较低,从而产生吸附作用并导致空气的流动。
文氏管的原理其实很简单,它就是把气流由粗变细,以加快气体流速,使气体在文氏管出口的后侧形成一个“真空”区。
当这个真空区靠近工件时会对工件产生一定的吸附作用。
如图所示A-压缩空气入口 B-喷嘴 C-消音器 D-吸附腔入口压缩空气从文丘里管的入口A进入,少部分通过截面很小的喷管B排出。
随之截面逐渐减小,压缩空气的压强增大,流速也随之变大。
`这时就在D吸附腔的进口内产生一个真空度,致使周围空气被吸入文氏管内,随着压缩空气一起流进扩散腔内增加气体的流速,之后通过消音装置减少气流震荡。
真空发生器就是利用正压气源产生负压的一种新型,高效,清洁,经济,小型的真空元器件,这使得在有压缩空气的地方,或在一个气动系统中同时需要正负压的地方获得负压变得十分容易和方便。
真空发生器广泛应用在工业自动化中机械,电子,包装,印刷,塑料及机器人等领域。
真空发生器的传统用途是吸盘配合,进行各种物料的吸附,搬运,尤其适合于吸附易碎,柔软,薄的非铁,非金属材料或球型物体。
文丘里管射流装置的结构及工作原理
文丘里管射流装置的结构及工作原理作者:西南科技大学王海军着现代工业的加速发展,在工农业生产的诸多领域对射流技术的需求日渐广泛。
如金属切割、打磨、工件的表面清洗等,因此,提高射流装置的效率,降低其成本,具有重要意义。
现有的液体加压射流喷射器装置,主要是以气压机与泵相结合的加压喷射器装置为主。
进入2O世纪8O年代以来,各国多把注意力集中在如何形成一种特殊的脉冲射流发生器上,许多研究人员为此进行了大量的研究与实验,提出了各种类型的脉冲水射流发生装置,但对于改进射流喷头方面并没有太大的发展,尤其是结构的简化方面。
传统设备在生产工艺上虽然可以满足实际需求,但是其结构复杂、体积相对较大,且不能满足一些特殊的要求,如强腐蚀性液体、磨液、易堵高粘稠性液体等对设备损坏较大,造成设备无法正常运行,折旧速度加快。
笔者利用文丘里管结合气压机的射流装置,革新了喷射器部分。
在本设计中真空度主要由“文丘里管(真空泵主要构件)”产生,而且可以达到要求;若采用两根“文丘里管”串连,则产生的真空度达原来的十几倍。
射流的压力大小主要由速度决定,调节气流的相关参数即可以对射流进行调节。
本设计将原有普通连续水射流喷射器结构与文丘里管结构相结合,利用喷管高压空气流从小孔吹出的方式而使液室产生真空引力引起气液在混合室混合。
因此,可以由空气吹出速度的大小来调节真空度的大小。
该装置减少了原有的加压喷射器需要泵提供液体注入动力,节约了能量、减小了体积。
图1 文丘里管射流实验装置结构示意图压力表1、2、3分别测量文丘里管人口、喉、出口,B1、B2分别为调节阀,α、β分别为文丘里管的前后倾角。
其中α=15°β=12°,管直径a=50 mm,文丘里管的喉部直径b=15.6 mm,全管的长度为400 mm。
2 分析与结果2.1 原理文丘里管射流装置的工作原理可以用伯努利方程和连续方程来表达:伯努利方程:连续方程:V· A=常数(2)式中,V-流体流速,m/s;g——重力加速度,n;ρ——流体压力,Pa;γ——流体比重,M/n3;z--流体势能,m;A——过流截面,m2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在研究文丘里管工作原理的基础上,提出了确定文丘里管射流器的主要性能参数:耗水量与吸风量的计算方法,并通过实验验证了该计算方法的正确性,有利于文丘里管射流器在煤矿降尘工作中的进一步推广。
关键词:引射;吸风量;水雾活塞
随着放顶煤工艺的逐渐推广,放煤口成为放顶煤综采工作面的最大产尘源之一。
放煤时的瞬时粉尘浓度有时可高达万余mg/m3,对作业人员的身体健康危害性极大。
喷雾方式控制煤矿粉尘是经济的,也是有效的。
在适中的喷雾压力和较少耗水量的情况下,文丘里式喷雾降尘装置对煤矿粉尘,尤其是呼吸性粉尘的降尘效果非常明显[1]。
图1 文丘里管工作原理示意图
1 文丘里管射流器的工作原理
1.1 文丘里管的工作原理
如图1所示,高速水流经过文丘里管的变径后,速度急剧增大,压力减少,从喷嘴喷出的水雾锥体,在直径等于引射管内径后受管壁约束而变为圆柱体,此水雾圆柱称为水雾活塞,随着水雾从喷嘴喷出,水雾活塞沿引射管高速运动并从喷射出口高速射出,水雾锥的后部形成真空,外部空气源源不断地从吸气口吸入引射管,这些新吸进的气体在引射喷射管内与水雾锥碰撞混合,并随水雾从喷射口喷出,若吸入的是含尘气体,则粉尘被强制在水雾中运动湿润或粘结成较大颗粒被喷射出引射管后,很快失去在空气中的悬浮能力而降落下来,从而实现降尘的目的[2]。
1.2 文丘里管中流体流动特性分析
文丘里管是利用流体在变截面管道中流速、压力和状态的变化来实现预期的能量转换的目的。
因为高压喷雾并引射含尘空气,所以可根据稀颗粒群两相流动中的均相流动模型,可把流经文丘里管的雾流和含尘空气假定为均匀、理想的流体,流动过程也是可逆且绝热的[3]。
文丘里管中的混合流体经过管中变径后,马赫数会有突变,即速度会有很大的变化。
在喷嘴结构参数确定的条件下,文丘里管中的水流速度直接影响整个装置的吸风能力,所以,有必要进一步研究文丘里管射流器在不同喷嘴开口条件下的吸风量与耗水量的大小。
2 耗水量及吸风量的理论计算
2.1 耗水量的计算[4]
根据薄壁孔口流量计算及管嘴流量计算公式:
式中△p——孔口前后压差,Pa;
A——孔口面积,m2ρ——流体的密度,kg/m3;μ——流量系数,与喷嘴出口结构有关; q——流量,即耗水量,m3/s。
可知:喷嘴耗水量与孔口大小及孔口前后压差有关。
2.2 水流流速的计算[4]
根据理想流体连续性方程的推导公式:
式中q——喷嘴耗水量,m3/S; d——喷嘴开口直径,m; V——水流流速,m/s。
将式(1)代入式(2)计算出喷嘴流速:
2.3 风速的计算
根据伯努利定理的特殊形式[5],对于完全气体可压缩等熵流,伯努利方程变为:
式中γ——大气温度的直降率,对于双原子气体γ取1.4;
ψ——体积力场的势能,并且它只是空间位置的函数;
ρ——空气密度;
V——空气流速,根据均相流模型理论,该空气流速为喷嘴出口水流流速[4];
C——常数。
根据图2所示,取A1及A2两断面,相对于标准大气压,取中心线为基准平面,联立伯努利方程
图2 模型简图及流体断面选取
因为取管中心线为基准,即z为0,所以可得断面A2处的风速
式中,V为喷嘴水流流速。
2.4 吸风量的计算
将上述所得V2代入理想流体连续性方程,即可得到吸风量:
A2为接受管截面积与喷嘴截面积的面积差,由式(7)可得出吸风量主要跟喷嘴前后压差、
接受管面积、喷嘴结构及开口大小、喷管截面积有关。
3 计算举例
以孔口直径1.5mm,孔口前后压差6MPa为例,由式(1)可计算出耗水量为6.96L/min,由式(3)可得断面A1水流速度为65.7m/s,由式(5)和式(6)可得断面A2处的风速为52.2m/s,由式(7)得吸风量为16.36m3/s(接受管直径为90mm,喷管外径取为38mm)。
4 文丘里管射流器的实验研究
4.1 实验系统设计
实验室研究文丘里管射流器,主要考察2个参数:射流器耗水量和吸风量。
在引射风量一定的情况下,希望耗水量越小越好,这样不但能节约用水,还可以减少对废水的处理工作。
图3 测试系统
实验室测试系统如图3所示。
该系统中高压泵对进水加压,经压力表及流量计进入射流装置的喷嘴,在射流器喷管中以水雾活塞形式向外喷出。
可以用溢流阀调节系统进水压力的大小,满足实验设计的要求。
用皮托管负压计可以测得文丘里管所产生的负压值,进一步可以算出文丘里管吸风量,由流量计可以测得射流器的耗水量,计算耗水量与吸风量的比值,就可以得到文丘里管射流器的液气比[6]。
4.2 实验数据收集
影响文丘里管射流器吸风量的最重要因素有:供水压力和喷嘴结构[6]。
实验时对3种不同直径的喷嘴进行实验:d=1.2mm;d=1.5mm;d=2.0mm。
实验结果如表1所示。
表1 实验系统设计
从实验数据可知,当喷嘴直径d=1.5mm,压力为6MPa时,耗水量为7.1L/min,吸风量为16.92m3/min,与举例的计算值很接近,其误差值在4%以内。
由实验数据可以得到不同喷嘴开口下的耗水量、压力及吸风量(接受管直径D=90mm)之间的关系曲线如图5所示。
图5 耗水量、水压、吸风量相关曲线图
5 小结
通过对文丘里管射流器工作参数的理论计算,得出在装置结构确定的情况下,吸风量与耗水量的计算方法,并且通过实验数据的验证,证明该计算方法合理可用,实验结果表明对于确定结构的文丘里管射流器,其工作水压与耗水量及吸风量成线性增加关系,耗水量及吸风量的大小受工作水压的影响最大,其次是喷嘴和接受管结构等。
文中基于流体力学理论的耗水量及吸风量的计算公式,概念清晰,实用可信,为文丘里管射流装置在煤矿产尘点的推广应用提供了理论依据。