《整式的加减》导学案

合集下载

整式的加减导学案

整式的加减导学案

整式的加减导学案一、学习目标:1、使学生初步掌握去括号法则;2、使学生会根据法则进行去括号的运算;3、通过本节课的学习,初步培养学生的“类比”、“联想”的数学思想方法.二、学习重难点重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.三、课前练习:1、3×(2+9)=3×2+3×_____2、8×(-3-4)=______×(-3)-8×_______3、观看本章引言中的问题(3)这段铁路的全长为:100t+120(t-0.5)(千米) ①冻土地段与非冻土地段相差:100t-120(t-0.5)(千米) ②上面的两个式子都带有括号,类比数的运算,它们应如何化简?四、展示交流利用分配律,可以去括号,再合并同类项,得100t+120(t-0.5)=100t+120t-60=220t-60100t-120(t-0.5)=100t-120t+60=-20t+60我们知道,化简带有括号的整式,首先应先去括号.上面两式去括号部分变形分别为:+120(t-0.5)=+120t-60 ③-120(t-0.5)=-120+60 ④比较③、④两式,你能发现去括号时符号变化的规律吗?思路点拨:鼓励学生通过观察,试用自己的语言叙述去括号法则,然后教师板书展示:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.特别地,+(x-3)与-(x-3)可以分别看作1与-1分别乘(x-3).利用分配律,可以将式子中的括号去掉,得:+(x-3)=x-3 (括号没了,括号内的每一项都没有变号)-(x-3)=-x+3 (括号没了,括号内的每一项都改变了符号)去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;另外,括号内原有几项去掉括号后仍有几项.五、合作探究例1.化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).思路点拨:讲解时,先让学生判定是哪种类型的去括号,去括号后,要不要变号,括号内的每一项原来是什么符号?去括号时,要同时去掉括号前的符号.为了防止错误,题(2)中-3(a2-2b),先把3乘到括号内,然后再去括号.六、达标拓展例2.两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,•两船在静水中的速度都是50千米/时,水流速度是a千米/时.(1)2小时后两船相距多远?(2)2小时后甲船比乙船多航行多少千米?思路点拨:根据船顺水航行的速度=船在静水中的速度+水流速度,•船逆水航行速度=船在静水中行驶速度-水流速度.因此,甲船速度为(50+a)千米/时,乙船速度为(50-a)千米/时,2小时后,甲船行程为2(50+a)千米,乙船行程为(50-a)千米.•两船从同一洪口同时出发反向而行,所以两船相距等于甲、乙两船行程之和.去括号时强调:括号内每一项都要乘以2,括号前是负因数时,去掉括号后,•括号内每一项都要变号.为了防止出错,可以先用分配律将数字2•与括号内的各项相乘,然后再去括号,熟练后,再省去这一步,直接去括号.七、教学评价1.课本第68页练习1、2题.2.去掉下列各式中的括号。

人教版七年级数学上册《整式的加减》导学案

人教版七年级数学上册《整式的加减》导学案

《整式的加减(1)》导学案 班级: 姓名:
课题 2.2整式的加减(1)
课型 新授课 主备 审核
数学组
学习目标 1.理解同类项概念,掌握合并同类项法则;
2. 能利用合并同类项化简多项式.
导学过程
一、复习导入
运用运算律计算: 622482⨯+⨯= ;
62(2)48(2)⨯-+⨯-= .
二、新知导学
1.类比上题中的方法完成下面多项式的化简,并说明其中的道理.
6248a a +=
=
2.类比1题的方法,化简下列式子:
(1)6248a a - 22(2)32x x + 22(3)34ab ab -
= = =
= = =
归纳:(1)同类项:所含 相同,并且 也相同的项叫做同类项. 几个 也是同类项. “两相同,两无关”
(2)合并同类项:把多项式中的 合并成一项,叫做合并同类项.
(3)法则:合并同类项时,把同类项的 相加,且字母连同它的指数 。

三、新知应用
挑战一:(小试牛刀,你能行!)
例:找出多项式 中的同类项,并进行合并.
283724x _
22x x x -+++
(2)求多项式 22113333a abc c a c +--+的值,其中 1,2,36
a b c =-==-.
挑战四:(联系实际,我来解决!)
某商店原有5袋大米,每袋大米为x 千克.上午卖出3袋,下午又购进同样包装的大米4袋.进货后这个商店有大米多少千克?
四、我思我进步!。

七年级数学《整式的加减》导学案

七年级数学《整式的加减》导学案

第二章整式的加减
【知识脉络】
【学习目标】
1. 理解并掌握单项式、多项式、整式等概念,弄清它们之间的区别与联系。

2. 理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行同类项的合并和去括号。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

3. 理解整式中的字母表示数,整式的加减运算建立在数的运算基础上;理解合并同类项、去括号的依据是分配律;理解数的运算律和运算性质在整式的加减运算中仍然成立。

4.能够分析实际问题中的数量关系,并用还有字母的式子表示出来。

【要点检索】
理解同类项概念,掌握合并同类项的方法,掌握去括号时符号的变化规律,能正确地进行去括号与同类项的合并。

在准确判断、正确合并同类项的基础上,进行整式的加减运算。

【中考翘望】
整式的概念和简单的运算,是中考必考内容,要求学生能用代数式表示简单的数量关系,能解释一些简单的代数式的实际背景或几何意义,能根据题意求代数式的值。

这部分的题目多以选择题、填空题为主,主要考察同类项、整式的运算、找规律列代数式等,也有可能渗透到综合题中。

整式的加减 复习导学案

整式的加减 复习导学案

第2章整式的加减复习导学案学习目标:1、通过尝试学习的形式来对《整式的加减》前一部分知识进行综合复习,以相应的练习来加强对有关概念和法则的理解;通过合作交流来查漏补缺。

2、进一步加深学生对本章基础知识的理解以及基本技能的掌握。

3、通过复习,培养学生主动分析问题的习惯。

教学重点:结合知识要点进行基础训练。

教学难点:立足基础训练,拓展思维空间。

一、知识回顾:主要概念:1、代数式:由数和字母用连接所成的式子。

单独的一个数或字母也是代数式。

2、代数式的值:用数值代替代数式里的字母,按照代数式中的运算关系计算得出的。

(一代二算,注意格式、运算顺序、运算符号)3、单项式:由数与字母的组成的代数式。

系数:单项式中的因数;次数:所有字母的指数的。

4、多项式:几个单项式的叫做多项式。

项:每个单项式叫做多项式的项;次数:次数最高项的次数。

5、升(降)幂排列:按某一个字母的指数从小到大(从大到小)的顺序排列。

二、例题讲解:例1、【列代数式】(1)a与b的平方和(2)a与b和的平方(3)一个两位数,个位上的数字是x ,十位上的数字是y,若把它的个位和十位上的数字调换位置,得到的新数比原数小多少?练习:(1)比x除以y的2倍大c的数(2)m的相反数比它的倒数的3倍大多少?(3)一船速度为v千米/小时,t小时行驶多少千米?a 与(b-0.5)2互为相反数,求(a+b)2-(a-b)2例2:【求代数式的值】已知1练习:(1)已知a=0.5 ,b=3 ,求代数式2262ab a b +-的值。

(2)已知3m n m n -=+,求代数式3()2()m n m n m n m n -+-+-的值。

例3:【单项式的系数、次数】写出下列单项式的系数、次数:3232a b c - 3223y x z π-练习:(1)-ax2y b-1是关于x 、y 的单项式,且系数是3 ,次数是5,求ab 的值。

(2)已知14(2)m m y x +-是关于x 、y 的七次单项式,试求m 2-2m-3的值。

整式的加减导学案1

整式的加减导学案1

整式的加减导学案(第一课时)学习目标:1.知识目标:(1)使学生理解多项式中同类项的概念,会识别同类项。

(2)使学生掌握合并同类项法则。

(3)利用合并同类项法则来化简整式。

2.能力目标:(1)、在具体的情景中,通过观察、比较、交流等活动认识同类项,了解数学分类的思想;并且能在多项式中准确判断出同类项。

(2)、在具体情景中,通过探究、交流、反思等活动获得合并同类项的法则,体验探求规律的思想方法;并熟练运用法则进行合并同类项的运算,体验化繁为简的数学思想。

3.学习方法:组织学生参与学习、讨论,在合作探究活动中获取知识。

4.情感态度与价值观:激发学生的求知欲,培养独立思考和合作交流的能力,让他们享受成功的喜悦。

学习重点、难点:根据学生的认知水平、认知能力以及教材的特点,确定以下重、难点:重点:同类项的概念、合并同类项的法则及应用。

难点:正确判断同类项;准确合并同类项。

学习过程:一、引入:1、 运用有理数的运算律计算:100×2+252×2=_100×(-2)+252×(-2)= _2、根据(1)中的方法完成下面的运算,并说明其中的道理:100t +252t = _3、下列三个多项式由哪些单项式组成?.每个多项式中的单项式有什么共同特点?(1)3x 2+2x 2 (2)3ab 2-4ab 2 (3)100t-252t二、讲授新课:1.同类项的定义:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

特别指出:几个常数项也是同类项。

2.例题:例1:判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。

(1)3x 与3mx 是同类项。

( ) (2)2a b 与-5a b 是同类项。

( )(3)3x 2y 与-31yx 2是同类项。

( ) (4)5a b 2与-2a b 2c 是同类项。

( )(5)23与32是同类项。

( ) (6)3(s -t)2与-8(t -s)2是同类项。

最新人教版初中七年级数学上册《整式的加减》导学案

最新人教版初中七年级数学上册《整式的加减》导学案

2.2 整式的加减第3课时整式的加减一、新课导入1.课题导入:前面我们学习了合并同类项,去括号等知识,它们是进行整式加减运算的基础,这节课我们来学习整式的加减运算.(板书课题).2.三维目标:(1)知识与技能让学生从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算.(2)过程与方法培养学生的观察、分析、归纳、总结以及概括能力.(3)情感态度认识到数学是解决实际问题和进行交流的重要工具.3.学习重难点:重点:熟练进行整式加减运算.难点:能运用整式加减运算解决简单的实际问题.二、分层学习1.自学指导:(1)自学内容:教材第67页例6的内容.(2)自学时间:6分钟.(3)自学要求:认真阅读课文,理解例6中两个算式的意义,尝试归纳出整式加减运算的解题步骤.(4)自学参考提纲:①第(1)题是计算多项式2x-3y和5x+4y的和;第(2)题是计算多项式8a-7b和4a-5b的差.这说明求几个多项式的和或差的运算时,每个多项式都要用括号括起来.②由例题可归纳出整式加减运算的一般步骤是怎样的?小组同学相互交流一下自己的见解.先去括号,再移项,合并同类项.③尝试解答下列问题,并相互展示自己的计算过程和结果.a.计算:5(3a2b-ab2)-3(ab2+2a2b)原式=15a2b-5ab2-3ab2-6a2b=9a2b-8ab2.b.求12x-2(x-13y2)+(- 32x+13y2)的值,其中x=-2,y=23.原式化简为y2-3x.当x=-2,y=23,原式=(23)2-3×(-2)=589.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂,了解学生是否掌握了去括号法则及自学参考提纲完成情况.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)整式加减的一般步骤:先去括号,再合并同类项.(2)应注意的问题:①去括号时,不能漏乘括号前的系数,并注意符号的变化.②求值时,要先化简,并注意求值的书写格式.(3)练习:教材第69页“练习”的第1、2、3题.1.自学指导:(1)自学内容:教材第68页例7和例8.(2)自学时间:8分钟.(3)自学要求:认清例题中反映的条件,思考问题中要利用的数量关系,正确列出相关的代数式.(4)自学参考提纲:①例7有两种考虑问题的角度.第一种先求出小红和小明买这两种物品分别花费多少钱,再得出花费多少钱,这样可列出式子:(3x+2y)+(4x+3y).第二种先求出买笔记本和买圆珠笔分别花费多少钱,再得共花费多少钱,于是可列出式子:(3x+4x)+(2y+3y).②长方体共有几个面?都是什么形式?相对的两个面大小有什么关系?因此,在例8中,a.小纸盒的表面积是(2ab+2bc+2ca)cm2,大纸盒的表面积是(6ab+8bc+6ca)cm2.b.做两个纸盒共用料多少平方厘米?可列出式子:(2ab+2bc+2ca)+(6ab+8bc+6ca).计算得8ab+10bc+8ca.c.做大纸盒比做小纸盒多用料多少平方厘米,可列出式子(6ab+8bc+6ca)-(2ab+2bc+2ca).计算得4ab+6bc+4ca.2.自学:同学们可结合自学参考提纲进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生的自学情况以及存在的问题.注意在求多项式的和或差时,相应的多项式是不是没加括号.②差异指导: 对个别学生在法则认知上存在的问题或提出的疑点进行点拨和引导.(2)生助生:学生相互交流探讨来解决自学中的疑难问题.4.强化:(1)集中讲解学生自学过程中存在的共性问题.(2)练习:甲村种植小麦a亩,种植水稻面积是小麦面积的2倍,乙村种植小麦b亩,种植水稻的面积比小麦面积的3倍少200亩,求甲、乙两村两种作物的总面积是多少亩?解:甲村种植作物总面积为(a+2a)亩,乙村种植总面积为(b+2b-200)亩.所以甲、乙两村两种作物的总面积为(a+2a)+(b+3b-200)=(3a+4b-200)亩.三、评价1.学生的自我评价(围绕学习目标):自我评价在本节课学习的收获和不足.2.教师对学生的评价:(1)表现性评价:对学生在本节课学习中相关方面情况进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时是在学生掌握了合并同类项、去括号法则的基础上学习的,主要任务是通过探索性练习,引导学生总结归纳出整式加减的一般步骤,并应用其进行整式加减的准确运算,所以可采用以旧带新的方式,让学生在练习中熟悉法则,纠正错误,弥补不足.鼓励学生间互相交流,互相改正问题,充分体现学生自行解决问题的主体作用.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(40分)计算:(1)(5a+4c+7b )+(5c-3b-6a)解:原式=5a+4c+7b+5c-3b-6a=-a+4b+9c(2)(8xy-x 2+y 2)-(x 2-y 2+8xy)解:原式=8xy-x 2+y 2-x 2+y 2-8xy=-2x 2+2y 2(3)(2x 2-12+3x)-4(x-x 2+12)解:原式=2x 2-12+3x-4x+4x 2-2=6x 2-x-52(4)3x 2-[7x-(4x-3)-2x 2]解:原式=3x 2-(7x-4x+3-2x 2)=3x 2-7x+4x-3+2x 2=5x 2-3x-32.(10分)求(-x 2+5+4x )+(5x-4+2x 2)的值,其中x=-2.解:(-x 2+5+4x)+(5x-4+2x 2)=-x 2+5+4x+5x-4+2x 2=x 2+9x+1当x=-2时,原式=(-2)2+9×(-2)+1=4-18+1=-13.3.(10分)已知一个多项式与3x 2+9x 的和等于3x 2+4x-1,求这个多项式.解:这个多项式为(3x 2+4x-1)-(3x 2+9x)=3x 2+4x-1-3x 2-9x=-5x-1.二、综合应用(每题15分,共30分)4.(10分)窗户的形状如图所示(图中长度单位:cm),其上部是半圆形,下部是边长相同的四个小正方形.已知下部小正方形的边长是a cm ,计算:(1)窗户的面积;(2)窗户外框的总长.解:(1)窗户的面积为:22a π+4a 2=π+282a π+ (cm 2) (2)窗户的外框总长是:πa+2a ×3=πa+6a=(π+6)a(cm)5.(10分)观察下列图形并填表(单位:cm).三、拓展延伸(20分)6.(20分)(1)一个两位数的个位上的数是a,十位上的数是b,列式表示这个两位数.(2)列式表示上面的两位数与10的乘积.(3)列式表示(1)中的两位数与它的10倍的和,这个和是11的倍数吗?为什么?解:(1)10b+a;(2)10(10b+a);(3)10b+a+10(10b+a)=11(10b+a),这个和是11的倍数,因为它含有11这个因数.作者留言:非常感谢!您浏览到此文档。

整式加减导学案

整式加减导学案

课题:整式的加减(1)导学案 一.导入新课:2 二.学习目标:21.整式的加减实际上就是去括号、合并同类项这两个知识的综合。

2.整式的加减的一般步骤:①如果有括号,那么先算括号。

②如果有同类项,则合并同类项。

3.求多项式的值,一般先将多项式化简再代入求值,这样使计算简便 三.自主学习 反馈交流10 (一)根据课题预示学习目标 1.本节课我要熟练运用去括号法则 .2.我要会运用合并同类项及去括号法则 . (二)温故知新 1.化简下式计算:(1)(2x-3y )+(5x+4y ) (2)(8a-7b )-(4a-5b ).2.去括号(1)a + (-b+c-d) (2) a-(-b+c-d) (3) a+(b-c) (4) a-(-b+c) (5) (a+b)+(c+d)(6) –(a+b)-(-c+d) (7) (a-b)-(-c+d) (8) –(a-b)+(-c-d) (9))2(2c b a a +--四合作探究,展示交流151.一种笔记本的单价是x (元),圆珠笔的单价是y (元),小红买这种笔记本3本,买圆珠笔2枝;小明买这种笔记本4个,买圆珠笔3枝,买这些笔记本和圆珠笔,小红和小明共花费多少钱?2.做大小两个长方体纸盒,尺寸如下(单位:厘米). (1)做这两个纸盒共用料多少平方厘米?(2)做大纸盒比小纸盒多用料多少平方厘米?(学生小组导学,讨论解题方法.)学法指导:思路点拨:让学生自己归纳整式加减运算法则,发展归纳、表达能力.一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项.)3.求12x-2(x-13y 2)+(-32x+13y 2)的值,其中x=-2,y=23. (思路点拨:先去括号,合并同类项化简后,再代入数值进行计算比较简便,去括号时,特别注意符号问题。

)长宽高小纸盒abc大纸盒1.5a2b2c五.教师点拨,指点迷津3 六.学生总结3 七.自我检测:91.如果a-b=12,那么-3(b-a )的值是( ). A .-35 B .23 C .32 D .162.一个多项式与x 2-2x+1的和是3x-2,则这个多项式为( ).A .x 2-5x+3 B .-x 2+x-1 C .-x 2+5x-3 D .x 2-5x-13 3.先化简再求值:4x 2y-[6xy-3(4xy-2)-x 2y]+1,其中x=2,y=-12;4.已知223,1xx B x x x A +=+++=, 计算:①A+B ② B+A ③ A - B ④ B - A5.一个多项式加上432352x x x---得35334--x x , 求这个多项式6.一个长方形的一边等于2a+3b ,另一边比它小b-a ,计算长方形的周长.7.某轮船顺流航行3小时,逆流航行1.5小时,已知轮船速度为每小时a 千米,水流速度为每小时b 千米,轮船共航行多少千米?八.检测评价,教学反思2课题:整式加减(2)综合运用导学案 一.导入新课:2 二.学习目标:2三.自主学习 反馈交流10 (一)知识点回顾1.整式加减实质就是有括号时先 在合并同类项.2.几个单项式中所含字母 相同的字母 的项叫同类项.3. 请写出三个含有a,b 字母的同类项 .4.已知3a 2b n+1与-2a m b 4是同类项则n= m=5. 去括号并化简-3 (a-2b)+2(3a-4b)-(-a-2b)= = (二)基本知识回顾 1.合并下列各式的同类项 (1)2234ab ab +- (2)333x x + (3)2251xy xy - (42233bab a +-(5)283732422--++-+x y xy y x (6) 26358422-+-+-x x x x2.(1)21,23452222=--++-x x x x x x 其中 (2)22313313c a c abc a +--+其中3,2,61-==-=c b a(3) 211,15.4535.053332332==-+-+-b a b a ab ab b a ab ab 其中3.化简下列各式 1.)635()745(a b c b c a --+++ (2.))8()8(2222xy y x y x xy +--+-(3))2()23(2222a ab b ab b a --+-- (4) 2)()()(+-+-+-x z z y y x(5) )(2)211(2323x x x x -+- (6) )21(4)3212(22+--+-x x x x(7))143()2(32323b b a b b a-++- (8) []222)34(73x x x x ----四合作探究,展示交流151.a 表示十位上的数,b 表示个位上的数,用代数式表示这个两位数;再把这个两位数的十位上的数与个位上的数交换位置,用代数式表示此新两位数。

整式的加减导学案

整式的加减导学案

整式的加减(1)【学习目标】1.能应用运算律探究去括号法则,并且利用去括号法则将整式化简.2.培养观察分析,归纳能力及主动探究合作交流的意识.【学习重点,难点】重点:去括号法则,准确应用法则将整式化简.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.【知识链接】在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么通过非冻土地段的时间多用0.5小时,即_____小时,于是冻土地段的路程为______千米,非冻土地段的路程为___________千米,因此这段跌路全长为___________千米①,冻土地段与非冻土地段相差___________千米②.式子①100t+120(t-0.5)式子②100t-120(t-0.5)都带有括号,如何化简呢?这节课我们继续学习整式的加减【学习过程】一、自主学习(要求静思独做.)1.忆一亿:乘法的分配律:a(b+c)=____________2.算一算:(要求应用乘法的分配律)(1)120×(10-0.5)(2)-120×(10-0.5)(3)120×(t-0.5)(4)-120×(t-0.5)二、问题探究计算:(1)2(50-a)(2)-3(a2-2b)比较上面两式,你能发现去括号的规律吗?如果括号外的因数是正数,去括号后_____________________;如果括号外的因数是负数,去括号后______________________ 特别地+(a-8),-(a-8)可以分别看1×(a-8),-1×(a-8)利用分配律,可以将式子中的括号去掉得+(a-8)=a-8,-(a-8)=-a+8,这也符合以上发现的去括号规律三、合作交流1.对上述问题中不懂的地方,小组交流解决.2.化简下列各式(模仿课本例4,可上台展示)(1)10m+8n+(7m-3n)(2)(7x-5y)-2(x2-3y)思路点拨:(1)先判断是哪种类型的去括号,其次去括号后,括号内各项的符号要不要变号.(2)易错警示:括号外的系数不要漏乘括号里的每一项.括号前是“-”号,去括号时,注意括号里的各项符号都要变号.四、精讲点拨(约5分)1.去括号规律要准确理解,去括号应对括号内的每一项的符号都予考虑,做到要变都变,要不变,则各项符号都不要变.2.括号内原有几项去掉括号后仍有几项.3.有多层括号时,要从里向外逐步去括号.五、能力提升(约5分)细读课本例5,完成下题.飞机的无风航速为a千米/时,风速为20千米/时,飞机顺风飞行4小时的行程是多少?飞机逆风飞行3小时的行程是多少?两个行程相差多少?思路导航:(1)飞机的航速有如下关系:顺风航速=无风航速+风速,逆风航速=无风航速-风速.因此飞机顺风航速为__________千米/时,顺风飞行4小时的行程是_______千米.飞机逆风航速为_________,逆风飞行3小时的行程是___________千米.两个行程相差________千米.解答过程:【课堂小结】:(约3分)1. 去括号是代数式变形的一种常用方法,去括号的法则是:____________________________________________________________________________________________________2. 去括号规律可以简单记为“-”变“+”不变,要变全部变,当括号前带有数字因数时,这个数字要乘以括号内的每一项,切勿漏乘某些项.【达标测评】(约10分)1. 化简:(1)31(9y-3)+2(y+1)(2)-5a+(3a-2)-(3a-7) 2.2x 3y m与-3x n y 2是同类项,则m+n=_____ 3.化简m+n-(m-n)的结果为()A.2mB.-2mC.2nD.-2n4.已知3x 2-4x+6的值为9,则x 2-34x+6的值为().A.7B.18 C.12D.9 5.如果关于x 的多项式ax 4+4x 2-21与3x b +5是同次多项式,求21b 3-2b 2+3b-4的值.6.选做题:〔创新思维〕规定一种新运算:a*b=a+b,a#b=a-b 其中a 、b 为有理数,则化简a 2b*3ab+5a 2b#4ab 并求出当a=5,b=3时的值是多少?整式的加减(2)学习目标:1.初步掌握添括号法则。

6.整式加减导学案

6.整式加减导学案

6.整式的加减导学案【学习目标】:1.会进行整式加减的运算,并能说明其中的算理2.会运用整式的加减化简求值【导学流程】: 【课前学习任务单】一、自学质疑(一)(温故知新)1.已知324b a 与12-n m ba 是同类项,则m= ,n= 。

2.计算1)22222)6(4121x y y x yx xy ---- 2))21()21(22x x x x x -+-++--(二自学课本102-103页内容,明确本节课的学习内容,用红笔勾画出疑惑点观看微课解惑(点击微课视频,可多遍观看,观看时可暂停,思考与观看相结合).(四)自学检测(在微课的帮助下完成,记录你完成检测的时间)1.苹果每公斤a 元,香蕉每公斤b 元,小明买了3公斤苹果和2公斤香蕉,共花了 元,小华买了2公斤苹果和3公斤香蕉共花了 元,小明和小华共花了 元,小明比小华多花了 元。

2.设一个三位数的百位数字是a ,十位数字是b ,个位数字是c ,则这个三位数可表示为 ,交换它的百位数字和个位数字所得新三位数为 ,它们的差是 。

3.单项式y x 25,22xy -,23xy -,y x 24的和是 。

4.计算1)求2225xy y x -与y x xy 2242+-的差。

2)已知一个多项式与xy x -2的和是2232y xy x ++,求这个多项式。

【课中学习任务单】二、训练展示(一) 合作解惑微课学习总结1、整式加减的步骤:2.你觉得进行整式加减应注意哪些问题?1、4x+2与3x-9的差是 。

2、(3b 2-4ab+6)- =5b 2+7ab-3(二)疑难展示例2.计算(先独立思考,然后小组交流)1)7(p 3+p 2-p-1)-2(p 3+p)注意:去括号的实质是乘法分配律,带着符号乘遍每一项。

尝试归纳:解决此类问题时,易错点是什么?如何处理?你有几种算法? 探究新知跟踪练习)23231(32)331(31).23232m n m m n m ---++-巩固练习一:★例3.求代数式 的值,其中巩固练习二:化简求值1)5(3a 2b-ab 2)-4(-ab 2+3a 2b),其中a= -2,b=32)4y 2-(x 2+y)+(x 2-4y 2),其中x=-28,y=18 ★3)3x 2-[x 2-2(3x-x 2)],其中x=-7)23(25)38).(122x xy xy x xy ----)53(2)3(5).222+---x x )42(21)2842(41).32323k k k k k +-+-+-)22(3)6421(31b c c b a a +-+---2012,51,12==-=c b a1、本节课你学会了哪些知识?2、你体会了哪些数学思想和方法?3、你觉得进行整式加减应注意哪些问题?课堂检测1、有8人去红山公园玩,成人有x个人,则儿童有人,若每张成人票5元,每张儿童票3元,儿童票共需元,成人票共需元,这8人应付门票费元。

整式的加减导学案

整式的加减导学案

第二章 整式的加减《2.1整式--单项式》一、学习目标1、会用含有字母的式子表示数量关系,理解字母表示数的意义;2、理解并掌握单项式的有关概念;3、能用单项式表示具体问题中的数量关系。

二、自主学习自学教材54-55页 1、用含字母的式子填空(1)全校学生总数是x ,其中女生占总数48%,则女生人数是 ,男生人数是 (2)每包书有12册,n 包书有 册。

(3)一辆汽车3小时行驶了S 千米,这辆汽车的平均速度是 (4)产量由m 千克增长10%,就达到 千克。

2、列含字母的式子时应该注意的问题(1)数与字母、字母与字母相乘时,常省略乘号“⨯” “⋅”.如:22a a -⨯=-,33a b ab ⨯⨯=,2255x x -⨯=-.(2)数字通常写在字母前面。

如:(7)7mn mn ⨯-=-,3(2)3(2)a b a b ⨯-=-. (3)带分数与字母相乘时要化成假分数。

如:15222ab ab ⨯=,切勿错误写成“122ab ”.(4)除法常写成分数的形式。

如S÷x=xS. 问题:填空中列出的式子有什么特点?归纳:上面列出的式子 ,它们都是 ,这样的式子叫做单项式。

单独的一个数或一个字母也是单项式。

单项式中的 叫做这个单项式的系数。

一个单项式中,所有 叫做这个单项式的次数。

3、自学检测(1)填表(2)把56页练习2做在此三、合作探究1、下列说法正确的是( ) A 、x 的系数为0 B 、223ab 是三次单项式 C 、-7是一次单项式 D 、x1是单项式 2、式子21,2x y ,0,132--b ,222y x -,t s 中单项式一共有( )个A 、 2B 、3C 、 4D 、53、下列单项式中,书写规范的一个是( )A 、1aB 、3x ⨯C 、0.5xyD 、mn 211 4、.若212n x y-是四次单项式,则n =5、一台电视机的原价为a 元,降价4%后的价格为 元四、达标检测1、写出一个系数为5-且含x ,y 的三次单项式2.、有一个三角形的底为x 厘米,高是底的一半,则此三角形的面积是 平方厘米3、单项式232y x m 与y x 22-的次数相同,则m = 4、李老师到文体商店为学校买篮球,篮球的单价为a 元,商店规定:买10个或10个以上的篮球按8折优惠,请你表示:(1)购买30个篮球应付多少钱?(2)购买x 个篮球要付多少钱?五、拓展提高有一列单项式:2x ,32x -,43x ,54x -,……,2019x ,2120x -,…… (1)请你写出第100个、第2010个单项式;(2)请你写出第n 个、第n+1个单项式。

整式的加减导学案

整式的加减导学案

3.5整式的加减导学案5姓名 小组教学目标:1.了解同类项,能进行同类项的合并;2.会进行整式加、减运算,并能说明其中的算理,发展有条理的思考及语言表达能力。

导学重点:理解同类项;导学难点:合并同类项。

一、自主学习:(一)复习回顾:1、单项式322y x -的系数是 、次数是 2、多项式23523m m m +--是 次 项式,其中二次项系数是 一次项是 ,常数项是二、合作探究8n 和5n 都含字母n ,并且n 的指数都是1;-7a 2b 和2都含字母a 和b ,并且a 的指数是2,b 的指数是1.像8n 与5n,-7a 2b 与2a 2b 这样所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

条件:(1)所含字母相同;(2)相同字母的指数分别相同。

把同类项合并成一项叫做合并同类项。

例如;(1)8n+5n (2)-7a 2b+2a 2b三、学习致用:1.下列各式,是同类项的一组是( )(A )y x 222与231yx (B )n m 22与22mn (C )ab 32与abc2.合并同类项:(1)-xy 2+3xy 2 (2)7a+3a 2+2a-a 2+3(3)3a+2b-5a-b (4)-4ab+31b 2-9ab-21b 2四、 能力提升1.合并同类项:(1)-2ab+4-2a 2+7ab-8 (2)7xy-x 2+5x 2-4xy-3x 2(3)2a 3b-21a 2b-ab 22.如果3x 2n-1y m 与-5x m y 3是同类项,则m 和n 的取值是( ) A.3和-2 B.-3和2 C.3和2 D.-3和-2五、中考题1.计算2a-a 正确的结果是( )A.-2a 2B.1 C2 D.a2.计算-2a 2+a 2的结果是( )A.-3aB.-a C-3a 2 D.-a 23.计算a+(-a)的结果是( )A.2aB.0C.-a 2D.-2a4.化简a+2b-b,正确的结果是( )A.a-bB.-2bC.a+bD.a+2六、课堂练习 课本P91 随堂练习七、作业布置 课本P91 习题 1 2八、你的收获 。

整式的加减导学案

整式的加减导学案

《整式的加减》导学案一.课前检测:1. 什么叫同类项2. 合并同类项法则3. 去括号法则4. 添括号法则5.填空:+3xy=5xy x- =2x7x2+ =8x2 -2x2=02x- =x 3xy2- =xy26.已知三角形的第一条边长是a+2b,第二边长比第一条边长大b-2,第三条边长比第二条边小5,求三角形的周长。

二.学习目标:1.从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。

2.培养学生的观察、分析、归纳、总结以及概括能力。

3. 会解决与整式的加减有关的某些简单的实际问题;教学重点和难点:重点:整式的加减。

难点:总结出整式的加减的一般步骤。

三.探究新知:1.整式加减的一般步骤:1.练习:1. (3a2b+41ab2)-(43ab2+a2b) 2. 7(p3+p2-p-1)-2(p3+p)练习:-(-a2+2ab+b2)+(-a2-ab+b2),其中a=151-,b=10.超越自我:已知三角形的第一条边长是a+2b,第二边长比第一条边长大b-2,第三条边长比第二条边小5,求三角形的周长。

变式训练:已知三角形的周长为3a+2b,其中第一条边长为a+b,第二条边长比第一条边长小1,求第三边的边长。

知识升华:(1)一个二次式加上一个一次式,其和是( )A.一次式B.二次式C.三次式D.次数不定 (2)一个二次式减去一个一次式,其差是( ) A.一次式 B.二次式 C.常数 D. 次数不定 (3)一个二次式加上一个二次式,其和是( ) A.一次式 B.二次式C.常数D.二次式或一次式或常数 四.小结:本节课你收获了那些知识?五.快乐考场:1.化简6a 2-2ab-2(3a 2-21ab)所得的结果是A -3abB -abC 3D 9a 2 2.已知x 2+3x+5=7,则代数式3x 2+9x-2的值是 A 0 B 2 C 4 D 63. 一个三位数,十位数字为a-2,个位数字比十位数字的3倍多2,百位数字比个位数字少3.试用多项式表示这个三位数;当a=3时,这个三位数是多少? 课后延伸:对于任意有理数a ,两个整式a 2+a-2与2a 2+a-1中,谁的值较大?为什么?。

整式的加减导学案

整式的加减导学案

4.6 整式的加减(1)学习目标:1.通过实例发现去括号的规律。

2.理解去括号就是将分配律用于代数式运算。

3.掌握去括号法则。

4.会利用去括号、合并同类项将整式化简。

学习重点:去括号法则学习难点:运用去括号法则化简代数式。

一、【课前自学,课中交流】1、知识链接计算这个图形的面积,你有几种不同的方法?方法1:直接看成一个大长方形计算方法2:看成一个小长方形和一个小正方形的和(想一想)(1)用不同的方法求得的面积应当相等,那么你发现了什么?(2)分配律同样适用于代数式的运算吗?2、自主探究:1)根据分配律,你能去括号吗?2)观察上述结论,归纳出去括号法则:括号前是“+”号,把和它前面的号去掉,括号里各项都;括号前是“-”号,把和它前面的号去掉,括号里各项都 .例:去括号:a+(b-c)= a-(b-c)=a+(-b+c)= a-(-b+c)=3、归纳小结:1)去刮号法则的依据是分配律2)去括号,看符号;是号,不变号;是号,全变号。

4、跟踪练习:1)去括号,并合并同类项:2n-(2-n )+(6n-2)2)化简并求值:2(a 2-ab)-3(32a 2-ab ),其中a=-1,b=-2.二、【课堂检测】1)去括号:(1)-(1-6x) (2)2(x 2-3x) (3)-4(x 2-1) (4)-32 (3-6 x 2)2)化简下列各式(1)()b a b a -++528 (2)()()b a b a 23352---3)化简并求值:71,7),()2()(-==+-++-b a b a ab b ab a 其中三、【课后反馈】1.去括号时应将括号前的符号连同括号一起去掉。

2.要注意括号前的符号,特别括号前面是“-”号时,去掉括号后,括号内的各项都要改变符号,不能只改变括号内第一项或者某几项的符号。

3.当括号里第一项是省略“+”号的正数时,去掉括号和它前面的“+”号后,要补上原先省略的“+”号。

4.若括号前有数字因数时,应利用分配律去括号,特别要注意符号。

人教版七年级上册数学第二章《整式的加减》全章导学案

人教版七年级上册数学第二章《整式的加减》全章导学案

第一章整式的加减全章导学案【知识点】一、单项式:(1)由数与字母的积组成的式子叫做单项式,单独的一个数或字母也是单项式;(2)单项式中的数字因数叫做这个单项式的系数;(3)单项式中,所有字母的指数的和叫做这个单项式的次数.【典型例题】疫情期间,口罩的原材料提价,因而厂家决定对口罩进行提价,现有三种方案:(1)第一次提价5%,第二次提价10%;(2)第一次提价10%,第二次提价5%;(3)第一、二次提价均为7.5%,三种方案哪种提价最多,下列说法正确的是()A.方案(1)B.方案(2)C.方案(3)D.三种方案相同【巩固练习】1、下列代数式符合书写要求的是()A.7xy B.ab×9C.D.1÷a2、下列关于单项式﹣的说法正确的是()A.系数是1B.系数是C.系数是﹣1D.系数是﹣3、整式﹣0.3x2y,0,,﹣22abc2,,,ab2﹣a2b中单项式的个数有()A.6个B.5个C.4个D.3个4、单项式﹣5πa2b的系数是.5、如图是一个娱乐场,其中半圆形休息区和长方形游泳池以外的地方都是绿地,已知娱乐场的长为3a,宽为2a,游泳池的长、宽分别是娱乐场长、宽的一半,且半圆形休息区的直径是娱乐场宽的一半,则绿地的面积为.(用含a的代数式表示,将结果化为最简)【知识点】二、多项式:(1)几个单项式的和叫做多项式;(2)多项式中每个单项式叫做多项式的项,不含字母的项叫做常数项;(3)多项式里次数:最高项的次数,叫做多项式的次数.3、整式:单项式和多项式统称为整式.在多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项,几个常数项也是同类项.注意:(1)判断几个单项式(或多项式中的项)是否是同类项有两个条件:①所含字母相同;②相同字母的指数分别相同,同时具备这两个条件者是同类项,二者缺一不可.(2)同类项与系数无关,与字母的排列无关.(3)常数项都是同类项.【典型例题】如图,阴影部分是一个长方形截去两个四分之一的圆后剩余的部分,则它的面积是(其中a>2b)()A.ab﹣B.ab﹣C.ab﹣D.ab﹣【巩固练习】1、小明周末从家里去书店,需要先步行一段路程,然后再坐公交车到书店,步行的速度为4千米每小时,公交车的速度为45千米每小时,小明先步行x分钟,再乘车y分钟,则小明家离书店的路程是()千米.A.45x+4y B.4x+45y C.4x+y D.x+y2、在代数式:x2,3ab,x+5,,﹣4,,a2b﹣a中,整式有()A.4个B.5个C.6个D.7个3、若代数式2x2﹣3x的值是6,则代数式1+x﹣x2的值是()A.﹣2B.4C.﹣4D.84、如图,一个大正方形的两个角被两个大小相同的小正方形覆盖,用图中所给的a,b来表示未被覆盖的阴影部分面积与空白部分面积的差为()A.4ab﹣3b2B.2a2﹣b2C.3a2﹣2ab D.4ab﹣a2﹣b25、把多项式2m3﹣m2n2+3﹣5m按字母m的升幂排列是.6、已知(x2﹣x+1)6=a12x12+a11x11+a10x10+…+a1x+a0,则a11+a9+a7+…+a1+a0的值为.【知识点】三、合并同类项把多项式中的同类项合并成一项,叫做合并同类项.合并同类项的法则是:同类项的系数相加,所得的结果作为结果的系数,字母和字母的指数不变.注意:①只能把同类项合并成一项,不是同类项不能合并;②如果两个同类项的系数互为相反数,合并同类项后,结果为0;③只要不再有同类项,就是最后结果,结果可能是单项式,也可能是多项式.【典型例题】张师傅下岗后做起了小生意,第一次进货时,他以每件a元的价格购进了20件甲种小商品,以每件b元的价格购进了30件乙种小商品(a>b).根据市场行情,他将这两种小商品都以元的价格出售.在这次买卖中,张师傅的盈亏状况为()A.赚了(25a+25b)元B.亏了(20a+30b)元C.赚了(5a﹣5b)元D.亏了(5a﹣5b)元【巩固练习】1、若2x+y=1,﹣y+2z=﹣3,则x+y﹣z的值是()A.1B.2C.3D.42、若多项式3x2﹣kxy﹣5与12xy﹣y2+3的和中不含xy项,则k的值是.3、若﹣4x a+5y3+x3y b=﹣3x3y3,则ab的值是.4、若关于x,y的多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x所取的值无关,则代数式a2﹣2b2﹣(a3﹣3b2)=.【知识点】四、去括号1、如果括号外的因数是正数,去括号后原括号内每一项的符号与原来的符号相同.2、如果括号外的因数是负数,去括号后原括号内每一项的符号与原来的符号相反.3、(1)a+(b+c)= a+b+c;(2)a(b+c)=ab+ac.4、去多重括号含有多重括号的多项式,去括号的一般方法是由内到外,即依次去掉小、中、大括号.也可由外到内去括号:去大括号时,把中括号看成一项;去中括号时,把小括号看成一项;最后去小括号.不论用哪种方法,都要边去括号边合并同类项.注意问题:1、要注意括号前面的符号,它是去括号后括号内各项是否变号的依据.2、去括号时应将括号前的符号连同括号一起去掉.3、要注意,括号前面是“-”时,去掉括号后,括号内的各项均要改变符号,不能只改变括号内第一项或前几项的符号,而忘记改变其余的符号.4、若括号前是数字因数时,应利用乘法分配律先将数与括号内的各项分别相乘再去括号,以免发生错误.5、遇到多层括号一般由里到外,逐层去括号,也可由外到里.数符号"-"的个数确定结果的符号.6、乘除法去括号法则的依据实际是乘法分配律中的一种.【典型例题】计算:(1)7﹣(﹣2)+4+(﹣3);(2)﹣13+(﹣2)÷(﹣)﹣|﹣5|;(3)x2y﹣x2y;(4)(3a﹣2)﹣3(a﹣5).【巩固练习】1、已知a﹣b=3,c+d=2,则(a+c)﹣(b﹣d)的值为()A.1B.﹣1C.5D.﹣52、若|a﹣2|+(b+3)2=0,则式子(a+5b)﹣(3b﹣2a)﹣1的值为()A.﹣11B.﹣1C.11D.13、某同学在做计算A+B时,误将A+B看成了A﹣B,求得的结果是8x2+3x﹣5,已知B=﹣3x2+2x+4,则A+B=.4、如果多项式2a2﹣6ab与﹣a2﹣2mab+b2的差不含ab项,则m的值为.5、如果一个多项式与另一多项式m2﹣2m+3的和是多项式3m2+m﹣1,则这个多项式是.【知识点】五、整式加减计算整式的运算顺序是先去括号,再合并同类项.1、整式的加减,实质上就是去括号和合并同类项.整式加减运算的一般步骤是:(1)根据去括号法则去掉括号;(2)准确找出同类项,按照合并同类项法则合并同类项.2、求多项式的值时,一般先合并同类项,再求值.3、需要注意的几个问题①整式(既单项式和多项式)中,分母一律不能含有字母.②π不是字母,而是一个数字,③多项式相加(减)时,必须用括号把多项式括起来,才能进行计算.④去括号时,要特别注意括号前面的因数.4、数学思想方法(1)整体思想:整体的思想方法就是将一些相互联系的量作为整体来处理的思维方法。

2.2整式的加减(第2课时)去括号(导学案)七年级数学上册(人教版)

2.2整式的加减(第2课时)去括号(导学案)七年级数学上册(人教版)

2.2 整式的加减(第2课时)去括号导学案1. 通过类比讨论、归纳去括号时符号变化的规律.2. 能熟练、准确地应用去括号、合并同类项将整式化简.★知识点:去括号去括号是对多项式变形. 去括号时,括号中符号的处理是难点,也是容易出错的地方,掌握去括号的关键是理解去括号的依据.1. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.2. 如果括号外的因数是,去括号后原括号内各项的符号与原来的符号.问题:青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段. 列车在冻土地段的行驶速度是100km/h,在非冻土地段的行驶速度可以达到120km/h,请根据这些数据回答下列问题:(3)在格尔木到拉萨路段,列车通过冻土地段比通过非冻土地段多用0.5 h,如果列车通过冻土地段要t h,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少km?追问1:上面的式子①②都带有括号,类比数的运算,它们应如何化简?追问2:比较上面两式,你能发现去括号时符号变化的规律吗?归纳:1. 填空(1)a+(b-c)= ;(2)a-(b+c)= ;(3)a-(b-c)= ;(4)(a+b)-(c+d)= ;(5)(a+b)-(c-d)= .2. 判断:(1)3(x+8)=3x+8(2)-3(x-8)=-3x-24(3)4(-3-2x)=-12+8x(4)-2(6-x)=-12+2x例1:化简下列各式:(1)8a+2b+(5a-b);(2)(5a-3b)-3(a2-2b).针对训练:化简:(1)3(a2-4a+3)-5(5a2-a+2);(2)3(x2-5xy)-4(x2+2xy-y2)-5(y2-3xy);(3)abc-[2ab-(3abc-ab)+4abc].例2:两船从同一港口同时出发反向而行,甲船顺水,乙船逆水,两船在静水中的速度都是50 km/h,水流速度是a km/h.(1)2h后两船相距多远?(2)2h后甲船比乙船多航行多少?例3:先化简,再求值:已知x=-4,y=12,求5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.1. 下列去括号中,正确的是()A . a2-(2a-1)=a2-2a-1B . a2+(-2a-3)=a2-2a+3C . 3a-[5b-(2c-1)]=3a-5b+2c-1D . -(a+b)+(c-d)=-a-b-c+d2.不改变代数式的值,把代数式括号前的“-”号变成“+”号,a-(b-3c)结果应是()A. a+(b-3c)B. a+(-b-3c)C. a+(b+3c)D. a+(-b+3c)3. 已知a-b=-3,c+d=2,则(b+c)-(a-d)的值为()A. 1B. 5C. -5D. -14. 化简:(1)12(x-0.5);(2)1515x⎛⎫--⎪⎝⎭;(3)-5a+(3a-2)-(3a-7);(4)1(93)2(1)3y y-++.5. 先化简,再求值:2(a+8a2+1-3a3)-3(-a+7a2-2a3),其中a=-2.6. 飞机的无风航速为a km/h,风速为20 km/h. 飞机顺风飞行4 h的行程是多少?飞机逆风飞行3h的行程是多少?两个行程相差多少?化简下列各式:(1)-(a -b )-(-c -d ); (2)(5a +4c +7b )+(5c -3b -6a );(3)(8xy -x 2+y 2)-(x 2-y 2+8xy ); (4)221123422x x x x ⎛⎫⎛⎫-+--+ ⎪ ⎪⎝⎭⎝⎭; (5)3x 2-[7x -(4x -3)-2x 2]; (6)3b -2c -[-4a +(c +3b )]+c ;(7)4(a +b )+2(a +b )-(a +b ); (8)3(x +y )2-7(x +y )+8(x +y )2+6(x +y )-11(x +y )2.1.(4分)(2020•重庆B 卷5/26)已知a +b =4,则代数式的值122a b ++为( ) A .3 B .1 C .0 D .-12.(4分)(2020•广东14/25)已知x =5-y ,xy =2,计算3x +3y -4xy 的值为 .1. 本节课你学习的主要内容是什么?这些内容中体现了哪些数学思想方法?2. 推导与理解去括号法则的基本依据是什么?利用去括号法则简化运算时,重点要关注什么?3. 本节课你还有哪些收获与感受?①去括号时要将括号前的符号和括号一起去掉;②去括号时首先弄清括号前是“+”还是“-”;③去括号时当括号前有数字因数应用乘法分配律,切勿漏乘.【参考答案】1. 正数;相同;2. 负数;相反.问题:100t +120(t -0.5);100t -120(t -0.5).追问1:100t +120(t -0.5)=100t +120t -120×0.5=220t -60;100t -120(t -0.5)=100t -120t +120×0.5=-20t +60.追问2:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.1.(1)a+b-c;(2)a-b-c;(3)a-b+c;(4)a+b-c-d;(5)a+b-c+d.2.(1)错;(2)错;(3)错;(4)对;例1:解:(1)8a+2b+(5a-b)= 8a+2b+5a-b=13a+b;(2)(5a-3b)-3(a2-2b)= 5a-3b-3a2+6b=-3a2+5a +3b.针对训练:解:(1)原式=3a2-12a+9-25a2+5a-10=-22a2-7a-1;(2)原式=3x2-15xy-4x2-8xy+4y2-5y2+15xy=-x2-8xy-y2;(3)原式=abc-(2ab-3abc+ab+4abc)=abc-3ab-abc=-3ab.例2:解:(1)2(50+a)+2(50-a)=100+2a+100-2a=200(km);(2)2(50+a)-2(50-a)=100+2a-100+2a=4a(km).答:两小时后两船相距200千米,两小时后甲船比乙船多航行4a千米.例3:解:原式=5xy2-(-xy2+2x2y)+2x2y-xy2 =5xy2.当x=-4,y=12时,原式=5×(-4)×2 1 2⎛⎫⎪⎝⎭=-5.1.C;2.D ;3.B ;4. 解:(1)12(x -0.5)=12x -12×0.5=12x -6;(2)1515x ⎛⎫-- ⎪⎝⎭=151(5)55x x ⎛⎫-⨯+-⨯-=-+ ⎪⎝⎭; (3)-5a +(3a -2)-(3a -7)= -5a +3a -2-3a +7=-5a +5;(4)1(93)2(1)3y y -++=119(3)2233y y ⨯+⨯-++=3y -1+2y +2=5y +1.5. 解:原式=-5a 2+5a +2.当a =-2时,原式=-8.6. 解:飞机顺风飞行的速度是(a +20) km/h ,顺风飞行4h 的行程(单位:km )为: 4(a +20)=4a +80.飞机逆风飞行的速度是(a -20) km/h ,逆风飞行3h 的行程(单位:km )为: 3(a -20)=3a -60.两个行程相差的里程(单位:km )是:4(a +20)- 3(a -20)= 4a +80-3a +60=a +140.解:(1)-a +b +c +d ;(2)-a +4b +9c ;(3)-2x 2+2y 2; (4)2562x x --; (5)5x 2-3x -3; (6)4a -2c ; (7)5a +5b ; (8)-x -y .1.【解答】解:当a +b =4时,原式111()1422a b =++=+⨯=1+2=3,故选:A .2.【解答】解:因为x =5-y ,所以x +y =5,当x +y =5,xy =2时,原式=3(x +y )-4 xy =3×5-4×2=15-8=7,故答案为:7.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章 整式的加减 §3.1. 1字母表示数课题§3.1字母表示数(课本第P86——88) 教学目标1、使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2、初步培养学生观察、分析及抽象思维的能力; 3 教学重点和难点重点:用字母表示数的意义难点:正确地说出代数式所表示的数量关系 课前导习1、在小学我们曾学过几种运算律?都是什么?如可用字母表示它们?(用字母a 、b 、c )(1)加法交换律 (2)乘法交换律 (3)加法结合律 (4)乘法结合律(5)乘法分配律2、从甲地到乙地的路程是15千米,步行要3小时,骑车要1小时,乘汽车要0·25小时,试问步行、骑车、乘汽车的速度分别是多少?3、若用s 表示路程,t 表示时间,ν表示速度,你能用s 与t 表示ν吗?4、一个正方形的边长是a 厘米,则这个正方形的周长是多少?面积是多少?课内训练 一、填空(1)每包书有12册,n 包书有__________册;(2)温度由t ℃下降到2℃后是_________℃;(3)棱长是a 厘米的正方体的体积是_____立方厘米;(4)产量由m 千克增长10%,就达到_______千克 二、写出下列式子的数学意义:(1)、 2a+3 (2)、2(a+3); (3)、ab c (4)、a-dc (5)、a 2+b 2 (6)、(a+b) 2三、用含有相关字母的式子表示:(1)m 与n 的和除以10的商; (2)m 与5n 的差的平方;(3)x 的2倍与y 的和; (4)ν的立方与t 的3倍的积 课后练习 1、填空:(1)n 箱苹果重p 千克,每箱重___ __千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为___ __厘米; (3)底为a ,高为h 的三角形面积是___ ___;(4)全校学生人数是x ,其中女生占48%,则女生人数是__ __,男生人数是__ __ (5)一个三角形的三条边的长分别的a ,b ,c ,那么这个三角形的周长 (6)张强比王华大3岁,当张强a 岁时,王华的年龄是 (7)飞机的速度是汽车的40倍,自行车的速度是汽车的31,若汽车的速度是ν千米/时,那么,飞机的速度是 ,自行车的速度是 。

(8)a 千克大米的售价是6元,1千克大米售是 元。

(9)圆的半径是R 厘米,它的面积是 。

2、写出下列式子的数学意义:(1)2a-3c ; (2)ba 53; (3)ab+1; (4)a 2-b 23、用含有相关字母的式子表示:(1)x 与y 的和; (2)x 的平方与y 的立方的差;(3)a 的60%与b 的2倍的和; (4)a 除以2的商与b 除3的商的和(5)长为a ,宽为b 米的长方形的周长; (6)宽为b 米,长是宽的2倍的长方形的周长;(7)长是a 米,宽是长的31的长方形的周长; (8)宽为b 米,长比宽多2米的长方形的周长§3.1. 2代数式课题§3.1.2代数式(课本第P88——90) 教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力 教学重点和难点重点:把实际问题中的数量关系列成代数式难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式 课前导习1、单独的一个数字或单独的 以及用运算符号把数或表示数的字母连接而成的式子叫做 。

2、填空书写代数时像数字与字母、字母与字母相乘可 乘号不写,数与数相乘必须 乘号;除法可写成 形式,数字与字母相乘时,数字要写在字母的 ,当字母和带分数相乘时,要把带分数化成 ,如果代数式后面带有单位名称,是乘除运算结果的直接将单位名称写在代数式后面,若代数式是带加减运算且须注明单位的,要把代数式 后再注明单位。

课内训练1、下列各式中,哪些是代数式,哪些不是代数式。

(1) (2)a (3) 26+38 (4) s=vt (5) a 2+2ab+b 2 (6)(7) 2+3=5 (8)3a>4b (9) 5n+2 (10) 2(x-y)+3 2.下面选项中符合代数式书写要求的是( )A 3⋅ayB a cb 2312C 42ba D cb a ÷⨯3、说出下列代数式的意义:(1) 3a-b (2)3(a-b) (3) a 2-b 2 (4) (a+b)(a-b) (5) (6) 3-a 2 (7) 3a 2 (8) a-课后练习1、下列是代数式的是( )A ,x+y=5B ,4>3C ,0D ,240a b +≠ 2.以下各式不是代数式的是( )A ,0B ,226x x x -+- C ,m+n=n+m D ,25100y 3、下列式子书写正确的有( ) ①2×b; ②m ÷3; ③0050x ; ④122ab ; ⑤90-c A,1个 B, 2个 C, 3个 D,4个 4、.用语言叙述代数式22a b -,正确的是( )A ,a,b 两数的平方差B ,a 与b 差的平方C ,a 与b 平方的差D , b, a 两数的平方差5、说出下列代数式的意义(1)2()a b + 的意义是 (2)22a b + 的意义是 (3)11m n- 的意义是 (4)()()x y x y +-的意义是§3.1. 3代数式课题§3.1.3列代数式(课本第P91——93) 教学目标1、使学生能把简单的与数量有关的词语用代数式表示出来;2、初步培养学生观察、分析和抽象思维的能力 教学重点和难点重点:把实际问题中的数量关系列成代数式难点:正确理解题意,从中找出数量关系里的运算顺序并能准确地写成代数式 课前导习 一、列代数式1、仔细辨别词义 :列代数式时,要先认真审题,抓住关键 ,仔细辩析词义。

如“除”与“除以”,“平方的差(或平方差)”与“差的平方”的词义区分。

2、分清数量关系 :要正确列代数式,只有分清 之间的关系。

如比m 大3的数应为m+3;比一个数大3的数是m ,则这个数为m-3;一个数是a 的3倍,这个数为3a ;a 是这个数的3倍,这个数为a/3。

不要见多就加,见小就减,见倍就乘。

3、注意运算顺序: 列代数式时,一般应在语言叙述的数量关系中,先读的 写,如a 的2倍与b 的3倍的差,为2a-3b ,不同级运算的语言,且又要体现出先低级运算,要把代数式中代表低级运算的这部分起来二、用代数式表示乙数:(1)乙数比甲数大5; (2)乙数比甲数的2倍小3; (3)乙数比甲数的倒数小7; (4)乙数比甲数大16% 解:设甲数为x ,则乙数的代数式为三、用代数式表示:(甲数为a ,乙数为b )(1)甲乙两数和的2倍; (2)甲数的31与乙数的21的差;(3)甲乙两数的平方和; (4)甲乙两数的和与甲乙两数的差的积;(5)乙甲两数之和与乙甲两数的差的积四、用代数式表示:(1)被3整除得n 的数; (2)被5除商m 余2的数五、 设字母a 表示一个数,用代数式表示:(1)这个数与5的和的3倍; (2)这个数与1的差的41;(3)这个数的5倍与7的和的一半; (4)这个数的平方与这个数的31的和 课后练习 一、选择题1、用代数式表示x 与5的差的2倍,正确的是( )A ,x -5×2B ,x+5×2C ,2(x -5)D ,2(x+5) 2、用语言叙述代数式22a b -,正确的是( )A ,a,b 两数的平方差B ,a 与b 差的平方C ,a 与b 平方的差D , b, a 两数的平方差 3、个位数字为a ,十位数字为b 的两位数用代数式可表示为( ) A ,ba B ,b+a C ,10b+a D ,10a+b4、一件工作,甲单独做需a 天完成,乙单独做需b 天完成,如果两人合作7天,完成的工作量是( ) A ,117()a b + B ,7(a -b) C ,7(a+b) D ,117()a b- 5、已知某商场打7折后的价格为a 元,则原价为( ) A ,0070a 元 B ,107a 元 C ,0030a 元 D ,37a 元二、填空题1.n 千克玉米售价为m 元,1千克玉米的售价为 元2.一个三角形的底边长为a ,高为h ,则这个三角形的面积为3.由两种本,一种单价是0.3元,另一种单价是0.5元,买这两种本的本数分别是a 和b ,问供需 元 4.三个连续自然数,中间的一个是n ,则其他两个数分别是 三、解答题1、用代数式表示:(1)比a 与b 的和小3的数;( ) (2)比a 与b 的差的一半大1的数;( ) (3)比a 除以b 的商的3倍大8的数( )(4)比a 除b 的商的3倍大8的数( ) (5)与a-1的和是25的数;( )(6)与2b+1的积是9的数;( )(7)与2x 2的差是x 的数;( ) (8)除以(y+3)的商是y 的数( ) 2、用代数式表示:体校里男生人数占学生总数的60%,女生人数是a ,学生总数是多少?3.如图3-1所示,用代数式表示图中阴影部分的面积§3.2代数式的值课题§3.2代数式的值(课本第P94——97。

) 教学目标1.使学生掌握代数式的值的概念,会求代数式的值; 2.培养学生准确地运算能力,并适当地渗透对应的思想. 教学重点和难点重点:当字母取具体数字时,对应的代数式的值的求法及正确地书写格式. 难点:正确地求出代数式的值. 课前导习1.用数值代替代数式里的 ,按代数式指明的 ,计算后所得的结果,叫做 . 2、代数式的值是由代数式里 确定而确定的,只要代数式里的字母给定一个确定的值,代数式就有 的值与它对应。

3、求代数式的值的一般步骤可以分为 、 、 、 。

4.用语言叙述代数式2n+10的意义.5、某学校为了开展体育活动,要添置一批排球,每班配2个,学校另外留10个,如果这个学校共有n 个班,总共需多少个排球?若学校有15个班(即n=15),则添置排球总数为多少个?若有20个班呢?课内训练1、代数式 5x +y 的值是由( )确定的。

A 、x 的值B 、y 的值C 、x 和 y 的值D 、x 或 y 的值2、当x=21, y =31,则代入代数式(3x -2y)2正确的是:( ) A .2)312213( B. (3×21-2×31)2 C.(3+21-2+31)2 D (3×21)2 -(2×31)23、当 x =-2 时,代数式 x 2+1 的值是 。

4、 当x=7,y=4,z=0时,求代数式x(2x-y+3z)的值.5、一个塑料三角板,形状和尺寸如图所示,(1)求出阴影部分的面积;(2)当a=5cm ,b=4cm ,r=1cm 时,计算出阴影部分的面积是多少。

相关文档
最新文档