椭圆的轨迹方程PPT课件

合集下载

椭圆的标准方程(第二课时)课件-2024-2025学年高二上学期数学人教A版选择性必修第一册

椭圆的标准方程(第二课时)课件-2024-2025学年高二上学期数学人教A版选择性必修第一册
变 式 : 等 腰 三 角 形 的 顶 点 A的 坐 标 是 4, 2 , 底 边 一 个 端 点 B的 坐 标 是 3,
5
,求另一个端点的轨迹方程.
解:依题意得,AC AB
3 4
2
5 2 10
2
故C点的轨迹为以A 4, 2 为圆心,以 10为半径的圆,

P
M
O
D
相关点法:
因为点P(x0,y0)在圆x2+y2=4上,所以
x02+y02=4
2

4
+ 2 = 1

所以点M的轨迹是椭圆.
利用已知方程上的点来表
示所求点,结合已知方程整
理化简得所求轨迹方程,这
种方法叫做相关点法.
x
题型讲解——轨迹方程
1.△ABC的顶点B,C的坐标分别为(0,0),(4,0), AB边上的中
2.动点M x , y 与定点F 4, 0 的距离和M到定直线l:x 的距离是常数 ,求动点
4
5
M的轨迹
解:设d是点M到直线l:x
就是集合

MF
4


P M |

d
5



x 4 y2
2
由此得
25
的距离,根据题意,动点M的轨迹
4
25
x
4

4
,化简得9 x 2 25 y 2 225
5
x2 y2


1
25 9
题型讲解——轨迹方程
例4:动圆M与圆C1 : x 1 y 36相内切,与圆C 2 :: x 1 y 2 4相外切,

《轨迹方程的求法》课件

《轨迹方程的求法》课件
结合现代科技手段,如人工智能、大数据等,对 轨迹方程进行数据分析和挖掘,揭示隐藏的运动 规律和模式。
THANKS
感谢观看
05
总结与展望
轨迹方程的重要性和意义
轨迹方程是描述物体运动规律的 重要工具,对于物理学、工程学 、航天科学等领域具有重要意义

通过轨迹方程,我们可以精确地 预测物体未来的位置和运动状态 ,为实际应用提供重要的参考依
据。
掌握轨迹方程的求法,有助于提 高我们对物体运动规律的认识和 理解,为相关领域的研究和发展
04
1. 根据已知条件,确定动点坐标之间的关 系。
2. 运用代数方法,将坐标关系转化为轨迹 方程。
05
06
3. 化简轨迹方程,得到最终结果。
参数法
定义:参数法是指引入参数来
适用范:适用于已知条件较
步骤
表示动点的坐标,从而得到轨
迹方程的方法。
01
为复杂,需要引入参数来表示
动点坐标的情况。
02
03
1. 引入参数,表示动点的坐标 。
3. 根据轨迹上点的坐标,推导出轨迹 方程。
03
常见轨迹方程的求解示例
圆轨迹方程的求解
总结词
通过已知条件,利用圆上三点确定一个圆的定理,求解圆心 和半径。
详细描述
首先确定圆上的三个点,然后利用圆上三点确定一个圆的定 理,即圆心在三个点的中垂线交点上,半径等于三个点到圆 心距离的和的一半,求解出圆心和半径,即可得到圆的轨迹 方程。
轨迹方程可以用来描述行星、卫星等 天体的运动轨迹,帮助我们理解宇宙 中的运动规律。
在物理中,有时需要研究两物体碰撞 后的运动轨迹,通过建立轨迹方程并 求解,可以了解碰撞后的运动状态。

椭圆的简单几何性质ppt课件

椭圆的简单几何性质ppt课件

由 e 1 ,得 1 k 1 ,即 k 5 .
2
94
4
∴满足条件的 k 4 或 k 5 .
4
例3:酒泉卫星发射中心将一颗人造卫星送入到 距地球表面近地点(离地面 近的点)高度约200km, 远地点(离地面最远的点)高度约350km的椭圆轨 道(将地球看作一个球,其半径约为6371km),求 椭圆轨道的标准方程。(注:地心(地球的中心)位
2.椭圆的标准方程
标准方程 图形
焦点在x轴上
x2 + y2 = 1a > b > 0
a2 b2
y P
F1 O F2
x
焦点在y轴上
x2 + y2 = 1a > b > 0
b2 a2
y
F2
P
O
x
F1
焦点坐标 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c,F2 0,c
分别叫做椭圆的长轴和短轴。 A1
o
A2 x
B2(0,-b)
a、b分别叫做椭圆的长半轴长和短半轴长。
思考:椭圆的焦点与椭圆的长轴、短轴有什么关系? 焦点落在椭圆的长轴上
椭圆的简单几何性质
长轴:线段A1A2; 长轴长
短轴:线段B1B2; 短轴长
注意
焦距
|A1A2|=2a |B1B2|=2b |F1F2| =2c
y
B2(0,b)
①a和b分别叫做椭圆的 A1 (-a, 0)
b
a
A2 (a, 0)
长半轴长和短半轴长;
F1 a
o c F2 x
② a2=b2+c2,|B2F2|=a;
B1(0,-b)

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件

课后作业
1.必做题:P51 练习4,5.
2.选做题:求与圆(x 2)2 y2 1 外切,且与圆 (x 2)2 y2 49 内切的动圆圆心的轨迹方程 3.思考题:Ax2 By 2 1什么时候表示椭圆?焦 点在哪个轴?
椭圆光学性质欣赏及探索
感谢大家的指导 谢谢
椭圆及其标准方程
01
圆锥曲线
现场演示观察
用一个圆锥形杯子,往杯子里倒入有色的 液体,然后倾斜杯子,请观察液体的水平 面是什么形状?
圆锥曲线
用一个平面去截圆锥面,当圆锥的 轴与截面所成的角不同时,可以得到不 同的截口曲线,它们分别是圆、椭圆、 抛物线和双曲线,我们这些曲线统称为 圆锥曲线.
生活中的椭圆
实例(-2,0),(2,0),
,并且 并解由2所解由2所解由2所aaa:=:=椭以椭以且:=椭以经由由圆圆由圆bb((经b(552222522于于的的过 于的===过aa椭椭定定22a椭定222))2--)点 22点-圆圆义义2圆义ccc的的知知((22的知(2===(焦焦2323焦cc236652c6))==..)=22点点.2点222,,,,在在在(((2355xx225x2轴轴)轴222, 上上))上)22求2,,,(((椭可可可232323设设))圆设)222其其其的22标标2标标11准准1准000,,方方准,方程程程方解解解为为为得得程得aaxxax2222aa.22a===
图形
标准方程 x2 y2 = 1(a>b>0)
a2 b2
y2 a2
x2 b2
=
1(a>b>0)
a, b, c的关系
a2__b2=c2
焦点
(-c, 0),(c, 0)
(0, -c),(0, c)

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件
依题意有
( 3)2
(-2)2
+ 2
2

(-2 3)2
1
+ 2
2
2
轴上时,设椭圆的标准方程为 2
= 1,
2 = 15,
解得 2

=
5,
= 1,
2
故所求椭圆的标准方程为
15
+
2
=1.
5
+
2
=1(a>b>0).
2
②当焦点在 y
(-2)2
( 3)2
+
2

2
1
(-2 3)2
+ 2
2
接设所求椭圆方程为mx2+ny2=1(m>0,n>0,m≠n).
解 (1)因为椭圆的焦点在 x 轴上,
2
所以设它的标准方程为 2

+
2
=1(a>b>0).
2
因为 2a= (5 + 4)2 + (5-4)2 =10,所以 a=5.
又 c=4,所以 b2=a2-c2=25-16=9.
2
故所求椭圆的标准方程为25
O
为什么?
D
解1:(相关点代入法) 设点M的坐标为(x, y),点P的坐标
为(x0, y0),则点D的坐标为(x0, 0).
y0
寻求点M的坐标(x,y)中x, y
.
由点M是线段PD的中点,得 x x0 ,y
2
与x0, y0之间的关系,然后消
∵点P ( x0 ,y0 )在圆x 2 y 2 4上, ∴x02 y02 4,
2
a
a c

3.1.1 椭圆及其标准方程 课件(共34张PPT).ppt

3.1.1 椭圆及其标准方程 课件(共34张PPT).ppt

焦点在x轴上:
x2 a2
y2 b2
1(a
b
0)
焦点在y轴上:
y2 a2
x2 b2
1(a
b
0)
y
O
x
其中, PF1 PF2 2a, F1F2 2c,c2 a2 b2.
问题4:若焦点F1、F2 在y轴上,且F1(0,-c),F2 (0,c),a,b的意义同上, 则椭圆的方程是什么?
F1(c,0), F2(c,0) F1(0,c), F2 (0,c)
概念辨析1:椭圆的定义
1.命题甲: 动点P到两定点A、B的距离之和| PA | | PB | 2a(a为常数,a 0)
命题乙: 动点P的轨迹是椭圆.
则命题甲是命题乙的___B____条件.
A.充分不必要条件
B.必要不充分条件
甲 / 乙 乙甲
C.充要条件
D.既不充分也不必要条件
2.若两定点F1, F2,且 F1F2 10,则满足下列条件的动点P 的轨迹是什么? ① PF1 PF2 10; 线段F1F2 ② PF1 PF2 16; 椭圆 ③ PF1 PF2 6. 不存在
1(a
b 0),
(法1) 2a
22 3
2
5
22 3 5 2
( 15
3)2
( 15
3)2 2 15,
a 15,b2 15 5 10,方程 y2 x2 1为所求.
15 10
(法2)
代入(2,3)得
9 a2
4 b2
1,
又b2
a2
5,
联立解得a2
15或3(3
设为 y2
a2
x2
b2
1(a
b 0)

课件椭圆及其标准方程_人教版高中数学选修PPT课件_优秀版

课件椭圆及其标准方程_人教版高中数学选修PPT课件_优秀版

思 考 为什么要求 2a2c?
当绳长等于两定点间
距离即2a=2c 时,
M
轨迹为线段;
F1
F2
当绳长小于两定点
间距离即2a<2c时,
轨迹不存在。
F1
F2
例1:命题甲:动点P到两定点A,B的距离之 和|PA|+|PB|恒等于一个常数;命题乙:点P 的轨迹是椭圆.则命题甲是命题乙的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
y (x5); AM x5
k 同理,直线BM的斜率
y (x5); BM x5
由已知有 y y 4(x5)
x5 x5 9
化简,得点M的轨迹方程为
x2
y2 1( x 5).
25 100
9 椭圆
A.(1,+∞)
B.(-∞,-1)
C.(-1,1)
D.(-1,0)∪(0,1)
D
例3已:知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),
并且经过点P 5 , 3 ,求它的标准方程.
2 2
y
解:因为椭圆的焦点在 x轴上,设
x2 a2
by22
1(ab0)
由椭圆的定义知
F1 O
F2 P x
MFMFa, 为什么要求
已知椭圆两个焦点的坐标分别是( -2, 0 ), (2,0),
并且经过点P
那么,如何求椭圆1的方程呢? 2
y M ,求它的标准方程.
又设M与F1, F2的距离的和等于2a
a b c, 2 2 又因为 , 所以
那么,如何求椭圆的方程呢?
2
(1)距离的和2a 大于焦距2c ,即2a>2c>0.

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件
PF1 PF2 2a , F1 F2 2c,求动点 P 的轨迹方程.
y
y
y
O
F1
2
F2
2
x
y
2 1
2
a
b
P ( x, y )
P ( x, y )
P ( x, y )
x
F1
x c
a2
x
F2
2
2
y
2 1
b
x
F2
F1
x c
a2
2
y2
2 1
b
16
已知:在平面内有两个定点 F1 、F2 和动点 P ,满足
(2)设椭圆的焦距 F1F2 2c c 0
(3)椭圆上任意一点到两焦点的距离之和为常数
2a a c .
8
探究二
例1 用定义判断下列动点的运动轨迹是否为椭圆.
(1) 在平面内,到 F1 2,0 , F2 2,0 的距离之和为6
的点的轨迹.

(2) 在平面内,到 F1 2,0 , F2 2,0 的距离之和为4
结果?
线段 F1F2
4.如果绳子的长度小于F1F2的距离时,你是否还能
画出图形? 不存在运动轨迹
7
探究二
思考:你能否根据以上实验操作,类比圆的定义,
归纳总结出椭圆的定义?
椭圆定义 平面内到两定点 F1 、F2 的距离之和等于
常数(大于 F1F2 )的点的集合叫作椭圆。
(1)焦点:定点 F1 、F2
建系
设点
列式
化简
证明
10
已知:在平面内有两个定点 F1 、F2 和动点 P ,满足

北师大版(2019)高中数学选择性必修1第2章1.1椭圆及其标准方程课件(共18张PPT)

北师大版(2019)高中数学选择性必修1第2章1.1椭圆及其标准方程课件(共18张PPT)

y
M
b=


1
O


+
=



( − )
(x,y)


2
椭圆的标准方程:
x
观察左图, 你能从中找出表示
a 、 c、 − 的线段吗?

+ = (a>b>0)



焦点在轴上
思考3:如果椭圆旋转° ,则它的标准方程又
是怎么推导?
探究
y
求椭圆标准方程的一般步骤:
M
M
M
F2
F1
线段
轨迹为___.
椭圆
轨迹为___.
不存在
(2)绳长小于两定点之间的距离,则轨迹____.
记笔记
三、形成概念
1.椭圆的定义:
平面内到两定点F1、F2的距离之和等于常数
(大于|F1F2|)
M
的点的集合叫做椭圆.
这两个定点F1、F2叫做椭圆的焦点,
1
2
两个焦点F1、F2间的距离叫做椭圆的焦距.
1
O
2
x
3、列式: ∵ = ∴ (−, ), (, )
∵ + = a

− (−)

+ ( − ) +
建立平面直角坐标系通常遵循的
原则:“对称美”、“简洁美”


+ ( − ) =2a
4、化简: ( + ) + + ( − ) + =2a
(2)由椭圆的标准方程可以求出三个参数a、b、c的值。
(3)a、b、c的关系:a2=b2+c2。

椭圆及其标准方程ppt课件

椭圆及其标准方程ppt课件

令b=POI=√a²-c², 那么方程⑤就
由于方程②③的两边都是非负实数,因此方程①到方程⑥的变形都是同解变 形.这样,椭圆上任意一点的坐标(x,y) 都满足方程⑥;反之,以方程⑥的解为 坐标的点(x,y)与椭圆的两个焦点(c,0),(-c,0)的距离之和为2a, 即以方程⑥的 解为坐标的点都在椭圆上.则方程⑥是椭圆的方程,这个方程叫做圆的标准方 程.它表示焦点在x 轴上,两个焦点分别是F(-c,0),F₂ (c,0) 的椭圆,这里
所以点M 的轨迹是椭圆.
例3如图,设A,B 两点的坐标分别为(-5,0),(5,0).直线AM,BM 相交于点M, 且它们的斜率之积是 ,求点M 的轨迹方程.

解 :设点M 的坐标为(x,y),因为点A 的坐标是(-5,0), 所以直线AM的斜率 同理,直线 BM 的斜率 由已知有
化简得点M 的轨迹方程为
设M(x,y )是椭圆上任意一点,椭圆的焦距为2c(c>0), 那么焦点F,F₂ 的 坐 标分别为(-c,0),(c,0) ,根据椭圆的定义,设点M 与焦点F,F₂ 的距离的和等于 2a.
由椭圆的定义可知,椭圆可看作点集P={M||MF₁I+|MF₂I=2a}. 因为IMFI= √ (x+c)²+y²,IMF₂F= √ (x-c)²+y², 所以J(x+c)²+y²+ √ (x-c)²+y²=2a.① 化简得√(x+c)²+y²=2a-√(x-c)²+y².② 对方程②两边平方得(x+c)²+y²=4a²-4aJ(x-c)²+y²+(x-c)²+y². 整理得a²-cx=aJ(x-c)²+y².③

人教版高中数学选修2-1第二章椭圆及其标准方程(二)(共19张PPT)教育课件

人教版高中数学选修2-1第二章椭圆及其标准方程(二)(共19张PPT)教育课件
例 2 如图,在圆 x2+y2=4 上任取一点 P,过点 P 作 x 轴的垂线段 PD,D 为垂足.当点 P 在
圆上运动时,线段 PD 的中点 M 的轨迹是什 么?为什么?
解 设点 M 的坐标为(x,y),点 P 的坐标为(x0,y0),
则 x=x0,y=y20.因为点 P(x0,y0)在圆 x2+y2=4 上,
之前有个网友说自己现在紧张得不得了 ,获得 了一个 大公司 的面试 机会, 很不想 失去这 个机会 ,一天 只吃一 顿饭在 恶补基 础知识 。不禁 要问, 之前做 什么去 了?机 会当真 就那么 少?在 我看来 到处都 是机会 ,关键 看你是 否能抓 住。运 气并非 偶然, 运气都 是留给 那些时 刻准备 着的人 的。只 有不断 的积累 知识, 不断的 进步。 当机会 真的到 来的时 候,一 把抓住 。相信 学习真 的可以 改变一 个人的 运气。 在当今社会,大家都生活得匆匆忙忙, 比房子 、比车 子、比 票子、 比小孩 的教育 、比工 作,往 往被压 得喘不 过气来 。而另 外总有 一些人 会运用 自己的 心智去 分辨哪 些快乐 或者幸 福是必 须建立 在比较 的基础 上的, 而哪些 快乐和 幸福是 无需比 较同样 可以获 得的, 然后把 时间花 在寻找 甚至制 造那些 无需比 较就可 以获得 的幸福 和快乐 ,然后 无怨无 悔地生 活,尽 情欢乐 。一位 清洁阿 姨感觉 到快乐 和幸福 ,因为 她刚刚 通过自 己的双 手还给 路人一 条清洁 的街道 ;一位 幼儿园 老师感 觉到快 乐和幸 福,因 为他刚 给一群 孩子讲 清楚了 吃饭前 要洗手 的道理 ;一位 外科医 生感觉 到幸福 和快乐 ,因为 他刚刚 从死神 手里抢 回了一 条人命 ;一位 母亲感 觉到幸 福和快 乐,因 为他正 坐在孩 子的床 边,孩 子睡梦 中的脸 庞是那 么的安 静美丽 ,那么 令人爱 怜。。 。。。 。

8.1.1 椭圆的标准方程(课件)(共20张PPT)-中职数学人教版基础模块下

8.1.1 椭圆的标准方程(课件)(共20张PPT)-中职数学人教版基础模块下
因为2 = 10,2 = 8,所以
=5, = 4, 2 = 2 − 2 =52 − 42 =9,即 = 3.
2 2
2
因此,这个椭圆的标准方程是 2 + 2 =1,即
5
3
25
+
2
=1.
9
例题讲解
例2
2
分别求出椭圆 :
4
2
2
+ =1与椭圆 :
3
3
+
2
=1的焦点。
(2) = 4,焦点为1 (0, − 3),2 (0,3) ;
(3) = 1,焦点为1 (− 15,0),2 ( 15,0);
(4)焦点在轴上,且 = 6,焦距为4 2.
巩固练习
2.求下列椭圆的焦点和焦距:
2
(1)
25
2
+ =1;
16
2
(2)
144
+
2
=1;
169
(3)2 2 + 2 = 8; (4)3 2 + 4 2 = 12.
4
解 因为4>3,所以椭圆1 的焦点在轴上,椭圆2 的焦点在
轴上.2 =4, 2 =3, = 2 − 2 = 1.
所以椭圆1 的两个焦点分别为(-1,0)和(1,0),椭圆2 的两个
焦点分别为(0,-1)和(0,1).
巩固练习
1.写出适合下列条件的椭圆的标准方程:
(1) = 4,焦点为1 (−3,0),2 (3,0);
4 − 22 + 2 2 = 2 2 − 22 + 2 2 + 2 2 ,
整理,得 (2 − 2 ) 2 + 2 2 = 2 (2 − 2 ).

椭圆的轨迹方程教学课件

椭圆的轨迹方程教学课件

研究量子力学
在量子力学中,椭圆轨迹 方程被用来描述粒子的波 函数,进而研究粒子的运 动规律。
分析力学系统
椭圆轨迹方程也被用来分 析力学系统的运动,如开 普勒三定律等。
在工程学中的应用
机械设计
在机械设计中,椭圆轨迹方程被 用来描述机器部件的运动轨迹,
如凸轮、曲柄等。
航空航天
在航空航天领域,椭圆轨迹方程被 用来描述飞行器的运动轨迹,如卫 星、火箭等。
THANKS
感谢观看
对未来学习的建议
注重基础
01
在学习更复杂的曲线和方程时,要注重基础知识的学习和掌握,
如二次曲线、极坐标方程等。
加强几何直观
02
在学习曲线和方程时,要加强几何直观的理解和应用,通过几
何图形来帮助理解方程的意义和性质。
提高解题能力
03
在学习曲线和方程时,要注重提高解题能力,通过不同类型的
题目来训练思维能力和解题技巧。
椭圆轨迹方程在天文学中 有着广泛的应用,用来描 述行星、卫星等天体的运 动轨迹。
预测天文现象
通过椭圆轨迹方程,可以 预测一些天文现象的发生, 如日食、月食等。
研究星系结构
椭圆轨迹方程也被用来研 究星系的结构和演化。
在物理学中的应用
描述粒子运动
在物理学中,椭圆轨迹方 程被用来描述粒子的运动 轨迹,如电子、质子等。
等。
学习方法总结
1 2 3
理解定义和方程 学习椭圆轨迹方程的关键是理解其定义和方程, 包括焦点位置、大小和形状等方面。
掌握解题方法 学习椭圆轨迹方程的另一个关键是掌握解题方法, 如如何根据已知条件求解未知量,如何分析曲线 的性质等。
多做练习题 学习椭圆轨迹方程需要大量的练习,通过不同类 型的练习题来加深对知识点的理解和掌握。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年9月28日
汇报人:云博图文 日期:20XX年10月10日
21
2020年9月28日
y
M O
Ax
18
练习解答
解:设M (x, y),A(5,0), B(5,0)
y
y
kMA x 5 , kMB x 5
B
yy
kMA
kMB
2
x5
x
5
2
y
M O
Ax
y2 2x2 50 2x2 y2 50
2020年9月28日
M的轨迹方程为:x2 y2 1 25 50
y0 2
x0
x, y0
2y
点P(x0 , y0 )在圆 x2 y2 4 上,所以
x02 y02 4 x2 4 y2 4
x2 y2 1 轨迹是焦距为2 3,e 3 的椭圆
4
2
2020年9月28日
y
P
M
x
O
D
4
椭圆的第一定义——点的轨迹
y
如图:在圆C:(x 1)2 y2 16内有一点A(1, 0). B为圆C上一点,AB的垂直平分线与CB的连
C1
求圆心P的轨迹
P C2
2020年9月28日
x
9
典型例题 y 解:动圆P与C1外切,与C2内切
PC1 RP RC1
PC2 RC2 RP
PC1 PC2 RP RC1 RC2 RP
PC1 PC2 RC1 RC2 16
C1
C1,C2为定点 P到两个定点的距离为定值
动点P的轨迹是椭圆 2a 16 2c C1C2 8
整理可得:9x2 25y2 225 标准方程为:x2 y2 1
25 9
a5 b3
M的轨迹是长轴长为10,短轴长为6的椭圆
2020年9月28日
y
Md
H
O
F
x
l
13
动点与两定点的斜率之积为定值
如图,已知A, B两点坐标为(5, 0),(5, 0). 直线AM , BM 相交于点M,且他们的 斜率之积是 4 ,求点M的轨迹方程. B
a 8 c 4 b2 48
2020年9月28日
x2 y2 1 64 48
P C2
x
10
第二定义——点到定直线的距离和定点的距离为定比
y
点M (x, y)与定点F (4, 0)的距离和 它到直线l:x 25的距离比是
4
M
H
O
F
x
常数 4,求点M的轨迹.
l
5
2020年9月28日
11
典型例题
B
E D
C
A
x
线交于点E,求E点的轨迹方程.
2020年9月28日
5
典型例题
解:DE是AB的中垂线,则 ADE≌ BDE BE AE
CE AE CE BE CB r 4
A是定点(1, 0) C是定点(1, 0)
则点E到两个定点的距离的和定值
E的轨迹是椭圆
2a 4 2020年9月28日 2c 2
2020年9月28日
2
圆的伸缩变形——圆上的点的中点轨迹
在圆x2 y2 4上任取一点P,过点P作 x轴的垂线PD,D为垂足.当点P在圆上 运动时,线段PD中点M的轨迹是什么?
y
P
M
x
O
D
2020年9月28日
3
典型例题
解:设点M的坐标为(x, y),点P的坐标为(x0, y0 )
x
x0 , y
解:MF (x 4)2 y2
d x 25 4
MF 4 (x 4)2 y2 4
d5
x 25
5
4
5 (x 4)2 y2 4 x 25 4x 25 4
25x2 200x 400 5y2 16x2 200x 625
2020年9月28日
y
Md
H
O
F
x
l
12
典型例题
9
2020年9月28日
y
M O
Ax
14
典型例题
y
解:设M (x, y),A(5,0), B(5,0)
kMA
y x 5 , kMB
y x5
M
B
O
Ax
kMA
kMB
49
9 y2 4x2 100 4x2 9 y2 100
M的轨迹方程为:x2 y2 1 25 100
2020年9月28日
思考:x 5是为什么?
9 15
课堂练习
如图,已知A, B两点坐标为(5, 0),(5, 0). 直线AM , BM 相交于点M,且他们的
B
斜率之积是 1,求点M的轨迹方程.
2020年9月28日
y
M O
Ax
16
练习解答
解:设M (x, y),A(5,0), B(5,0)
kMA
x
y 5
, kMB
x
A.B为定点 P到两个定点的距离为定值
动点P的轨迹是椭圆 2a 10 2c 6 a 5 c 3 b 4 x2 y2 1
25 16
2020年9月28日
y
A
B
x
P
8
典型例题
y 已知两圆C1 : (x 4)2 y2 9
和C2:(x 4)2 y2 169,动圆
P与C1外切,与C2内切,
a 2 c 1 b 3
x2 y2 1
43
y
B
E D
C
A
x
6
第一定义——与两圆相切 或者过点与圆相切
y
已知圆A:(x 3)2 y2 100,圆A内一 定点B(3, 0),圆P过点B且与圆A内切, 求圆心P的轨迹方程.
A
B
x
P
2020年9月28日
7
典型例题
解:圆P与圆A内切,则PA RA RP RA 10 RP PB PA PB 10
19
课堂小结
记动点与两定点的斜率之积为常数
<1 动点轨迹是焦点在x轴的椭圆
1 动点轨迹是圆
>1 动点轨迹是焦点在y轴的椭圆
2020年9月28日
20
谢谢您的指导
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
y 5
B
kMA
kMB
1
x
y 5
y x5
1
y
M O
Ax
y2 x2 25 x2 y2 25
2020年9月28日
M的轨迹方程为:x2 y2 1 25 25
17
课堂练习
如图,已知A, B两点坐标为(5, 0),(5, 0). 直线AM , BM 相交于点M,且他们的 斜率之积是 2,求点M的轨迹方程. B
2.2.4 椭圆的轨迹方程
2020年9月28日
1
求曲线的方程的步骤
1.建立适当的坐标系 设点的坐标为(x, y);
两个点:以两个点为x轴,以中垂线为y轴
一个点和一条线:过点作线的垂线,垂线为x轴,点和垂足的中垂线为y轴
2.代入坐标,依题意列出方程
3.化成f (x, y) 0为最简形式
4.去除不符合的点
相关文档
最新文档