完整版导数的概念与计算练习题带答案
导数专题(含答案
说明:导数的几何意义
可以简记为"k= ",
强化这一句话"斜率导数,导数斜率"
导数的物理意义:s=s<t>是物体运动的位移函数,物体在t= 时刻的瞬时速度是 .可以简记为 =
例1、已知函数 的图象在点 处的切线方程是 ,则 .
2、若函数 的导函数在区间[a,b]上是增函数,则函数 在区间[a,b]上的图像可能是〔〕
〔2〕设函数 则 〔〕
A.有最大值B.有最小值C.是增函数D.是减函数
3〕设 分别是定义在R上的奇函数和偶函数,当 时,
的解集为▲.
3>已知函数的单调性求参数范围
方法:常利用导数与函数单调性关系:即
"若函数单调递增,则 ;若函数单调递减,则 "来求解,注意此时公式中的等号不能省略,否则漏解.从而转化为不等式恒成立问题或利用数形结合来求参数〔 是二次型〕
[例]1函数y = f < x > = x3+ax2+bx+a2,在x = 1时,有极值10,则a = ,b =.
15.已知函数f<x>=-x3+3x2+9x+a.
〔I〕求f<x>的单调递减区间;
〔II〕若f<x>在区间[-2,2]上的最大值为20,求它在该区间上的最小值.
解:〔I〕f’<x>=-3x2+6x+9.令f‘<x><0,解得x<-1或x>3,
综上,
4某单位用2160万元购得一块空地,计划在该地块上建造一栋至少10层、每层2000平方米的楼房.经测算,如果将楼房建为x〔x 10〕层,则每平方米的平均建筑费用为560+48x〔单位:元〕.为了使楼房每平方米的平均综合费用最少,该楼房应建为多少层?
导数的计算练习题及答案
导数的计算练习题及答案1. 计算函数f(x) = 3x^2 - 4x + 2的导数f'(x)。
解答:根据函数f(x) = 3x^2 - 4x + 2,使用导数的定义来计算导数f'(x)。
f'(x) = lim(delta x -> 0) (f(x + delta x) - f(x)) / delta x代入函数f(x)的表达式:f'(x) = lim(delta x -> 0) [(3(x + delta x)^2 - 4(x + delta x) + 2) -(3x^2 - 4x + 2)] / delta x化简并展开:f'(x) = lim(delta x -> 0) [3(x^2 + 2x * delta x + (delta x)^2) - 4x - 4 * delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [3x^2 + 6x * delta x + 3(delta x)^2 - 4x - 4* delta x + 2 - 3x^2 + 4x - 2] / delta xf'(x) = lim(delta x -> 0) [6x * delta x + 3(delta x)^2 - 4 * delta x] / delta xf'(x) = lim(delta x -> 0) [6x + 3 * delta x - 4]由于求导数时delta x趋近于0,所以delta x也可以看作一个无穷小量,其平方项可以忽略不计,即delta x^2 = 0。
化简结果:f'(x) = 6x - 4所以函数f(x) = 3x^2 - 4x + 2的导数f'(x)为6x - 4。
2. 计算函数g(x) = 2sin(x) + 3cos(x)的导数g'(x)。
高二数学导数练习题及答案
高二数学导数练习题及答案导数是高中数学中的重要概念之一,它在数学和实际问题中具有广泛的应用。
为了帮助高二学生巩固导数的知识和提高解题能力,本文为大家准备了一些高二数学导数练习题及答案。
希望通过这些练习题的训练,同学们能够更好地理解导数的概念和运用。
练习题一:1. 求函数 f(x) = 2x^3 - 3x^2 + 4x - 1 在点 x = 2 处的导数。
2. 已知函数 f(x) = x^2 + 3x,求函数 f(x) = x^2 + 3x 的导函数。
3. 求函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数。
答案一:1. 函数 f(x) = 2x^3 - 3x^2 + 4x - 1 的导数为:f'(x) = 6x^2 - 6x + 4。
2. 函数 f(x) = x^2 + 3x 的导函数为:f'(x) = 2x + 3。
3. 函数 f(x) = (x + 1)(x - 2)(x + 3) 在点 x = -1 处的导数为:f'(-1) = 0。
练习题二:1. 求函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点及极值。
2. 已知函数 f(x) = x^3 - 6x^2 + 9x + 2,求函数 f(x) = x^3 - 6x^2 + 9x+ 2 的拐点。
3. 求函数 f(x) = x^3 - 3x 在其定义域内的极值点。
答案二:1. 函数 f(x) = 3x^4 - 2x^3 + 5x^2 - 4x + 1 的极值点为 x = 1/2,极值为 f(1/2) = 47/16。
2. 函数 f(x) = x^3 - 6x^2 + 9x + 2 的拐点为 x = 2。
3. 函数 f(x) = x^3 - 3x 在其定义域内的极值点为 x = 1。
练习题三:1. 求函数 f(x) = e^x 的导数。
2. 已知函数 f(x) = ln(x),求函数 f(x) = ln(x) 的导函数。
导数的概念及运算--附答案
3.1导数的概念及运算(学案) 姓名【一.导数的意义】1.函数y =f (x )在x =x 0处的瞬时变化率 0000()()limlimx x f x x f x yx x∆→∆→+∆-∆=∆∆ 称为函数()y f x =在0x x =处的导数.其几何意义为:【二.导数的运算公式】①()c '= ;②()nx '= ;③(sin )x '= ;④(cos )x '= ;⑤()xa '= ;⑥()x e '= ;⑦(log )a x '= ;⑧(ln )x '= ;⑨1()x'=;⑩'= ; 【三.导数的运算法则】①.和差的导数:[()()]f x g x '±= ;②.[()]C f x '⋅= ;其中C 为常数。
③.积的导数:[()()]f x g x '= ;④.商的导数:()()f x g x '⎛⎫ ⎪⎝⎭=(()0)g x ≠。
【四.复合函数的导数】设函数()u g x =在点x 处有导数x u ',函数()y f u =在点x 的对应点u 处有导数u y ',则复合函数(())y f g x =在点x 处也有导数,且x y '=__ ______, 【五.求导】1.求导:①)5'⋅xa x (=5x 4·a x +x 5·a x ln a;② sin(2)3x π'⎛⎫+ ⎪⎝⎭=③2ln 1x x '⎛⎫ ⎪+⎝⎭=2.已知 f (x )=x 2+3x (2)f ',则(2)f '=__-2___.3.求函数y =(x -1)(x -2)·…·(x -100) (x >100)的导数.解析:两边取对数得ln y =ln(x -1)+ln(x -2)+…+ln(x -100).两边对x 求导:y ′y =1x -1+1x -2+…+1x -100.∴y ′=⎝⎛⎭⎫1x -1+1x -2+…+1x -100·(x -1)(x -2)·…·(x -100).【六.导数的几何意义】4.已知曲线y =13x 3+43.(1)求曲线在(2,4)处的切线方程;(2)求曲线过点(2,4)的切线方程.解 (1)∵y =13x 3+43,∴y ′=x 2,∴曲线在点(2,4)处的切线的斜率k =y ′|x =2=4 由y -4=4(x -2),得4x -y -4=0.∴曲线在点(2,4)处的切线方程为 4x -y -4=0(2)设曲线y =13x 3+43与过点P (2,4)的切线相切于点A ⎝⎛⎭⎫x 0,13x 30+43 则切线的斜率k =y ′|x =x 0=x 20. ∴切线方程为y -⎝⎛⎭⎫13x 30+43=x 20(x -x 0),即y =x 20x -23x 30+43∵点P (2,4)在切线上,∴4=2x 20-23x 30+43即x 30-3x 20+4=0,∴x 30+x 20-4x 20+4=0, ∴x 20(x 0+1)-4(x 0+1)(x 0-1)=0, ∴(x 0+1)(x 0-2)2=0,解得x 0=-1或x 0=2,故所求的切线方程为4x -y -4=0或x -y +2=05.在平面直角坐标系xOy 中,已知P 是函数f (x )=e x (x >0)的图象上的动点,该图象在点P 处的切线l 交y 轴于点M ,过点P 作l 的垂线交y 轴于点N ,设线段MN 的中点的纵坐标为t ,则t 的最大值是___max 11()2t e e=+_____. 解析:设00(,),xP x e 则00000:(),(0,(1))x x x l y ee x x M x e -=-∴-,过点P 作l 的垂线000000(),(0,)x x x x y e e x x N e x e ---=--+,00000000011[(1)]()22x x x x x x t x e e x e e x e e --=-++=+-00'01()(1)2x x t e e x -=+-,所以,t 在(0,1)上单调增,在(1,)+∞单调减,max 11()2t e e=+。
高等数学第二章导数试题及答案
第二章 导数一.导数与微分概念 1.导数的定义如果极限()()xx f x x f x yx x ∆-∆+=∆∆→∆→∆0000limlim 存在, 称此极限值为函数()x f 在0x 处的导数导数定义的另一等价形式,令x x x ∆+=0,0x x x -=∆, 则()()()000limx x x f x f x f x x --='→h x f h x f x f h )()(lim)(0000-+='→或hx f h x f x f h ---='→)()(lim )(0000我们也引进单侧导数概念。
右导数:()()()()()x x f x x f x x x f x f x f x x x ∆-∆+=--='++→∆→+000000lim lim 0左导数:()()()()()xx f x x f x x x f x f x f x x x ∆-∆+=--='--→∆→-000000lim lim 0则有()x f 在点0x 处可导()x f ⇔在点0x 处左、右导数皆存在且相等。
2.导数的几何意义与物理意义如果函数()x f y =在点0x 处导数()0x f '存在,则在几何上()0x f '表示曲线()x f y =在点()()00,x f x 处的切线的斜率。
切线方程:()()()000x x x f x f y -'=-法线方程:()()()0001x x x f x f y -'-=-()()00≠'x f 3.函数的可导性与连续性之间的关系如果函数()x f y =在点0x 处可导,则()x f 在点0x 处一定连续,反之不然,即函数()x f y =在点0x 处连续,却不一定在点0x 处可导。
例如,()x x f y ==,在00=x 处连续,却不可导。
4.微分的定义设函数()x f y =在点0x 处有增量x ∆时,如果函数的增量()()00x f x x f y -∆+=∆有下面的表达式()()x x x A y ∆+∆=∆00()0→∆x其中()0x A 为与x ∆无关,()x ∆0是0→∆x 时比x ∆高阶的无穷小。
导数的概念及运算专题练习(含参考答案)
数学 导数的概念及运算1.已知函数f (x )=1x cos x ,则f (π)+f ′⎝⎛⎭⎫π2=( ) A .-3π2B .-1π2C .-3πD .-1π2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=03.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .84.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .45.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1 B .2 C .22D .36.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.7.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.9.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-23.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.4.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标.6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.【参考答案】1.已知函数f (x )=1xcos x ,则f (π)+f ′⎝⎛⎭⎫π2=( )A .-3π2B .-1π2C .-3πD .-1π解析:选C .因为f ′(x )=-1x 2cos x +1x (-sin x ),所以f (π)+f ′⎝⎛⎭⎫π2=-1π+2π·(-1)=-3π. 2.曲线y =e x -ln x 在点(1,e)处的切线方程为( ) A .(1-e)x -y +1=0 B .(1-e)x -y -1=0 C .(e -1)x -y +1=0D .(e -1)x -y -1=0解析:选C .由于y ′=e -1x ,所以y ′|x =1=e -1,故曲线y =e x -ln x 在点(1,e)处的切线方程为y -e =(e -1)(x -1),即(e -1)x -y +1=0.3.已知f (x )=ax 4+b cos x +7x -2.若f ′(2 018)=6,则f ′(-2 018)=( ) A .-6 B .-8 C .6D .8解析:选D.因为f ′(x )=4ax 3-b sin x +7.所以f ′(-x )=4a (-x )3-b sin(-x )+7=-4ax 3+b sin x +7. 所以f ′(x )+f ′(-x )=14.又f ′(2 018)=6,所以f ′(-2 018)=14-6=8,故选D.4.如图,y =f (x )是可导函数,直线l :y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),其中g ′(x )是g (x )的导函数,则g ′(3)=( )A .-1B .0C .2D .4解析:选B .由题图可得曲线y =f (x )在x =3处切线的斜率等于-13,即f ′(3)=-13.又因为g (x )=xf (x ),所以g ′(x )=f (x )+xf ′(x ),g ′(3)=f (3)+3f ′(3),由图可知f (3)=1,所以g ′(3)=1+3×⎝⎛⎭⎫-13=0. 5.若点P 是曲线y =x 2-ln x 上任意一点,则点P 到直线y =x -2距离的最小值为( ) A .1B .2C .22D .3解析:选B .因为定义域为(0,+∞),令y ′=2x -1x =1,解得x =1,则在P (1,1)处的切线方程为x -y =0,所以两平行线间的距离为d =22= 2. 6.(2018·高考全国卷Ⅱ)曲线y =2ln x 在点(1,0)处的切线方程为________.解析:由题意知,y ′=2x ,所以曲线在点(1,0)处的切线斜率k =y ′|x =1=2,故所求切线方程为y -0=2(x -1),即y =2x -2. 答案:y =2x -27.(2019·南昌第一次模拟)设函数f (x )在(0,+∞)内可导,其导函数为f ′(x ),且f (ln x )=x +ln x ,则f ′(1)=________.解析:因为f (ln x )=x +ln x ,所以f (x )=x +e x , 所以f ′(x )=1+e x ,所以f ′(1)=1+e 1=1+e. 答案:1+e8.(2017·高考天津卷)已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.解析:因为f ′(x )=a -1x ,所以f ′(1)=a -1,又f (1)=a ,所以切线l 的方程为y -a =(a -1)(x -1),令x =0,得y =1.答案:19.已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ).(1)若函数f (x )的图象过原点,且在原点处的切线斜率为-3,求a ,b 的值; (2)若曲线y =f (x )存在两条垂直于y 轴的切线,求a 的取值范围. 解:f ′(x )=3x 2+2(1-a )x -a (a +2).(1)由题意得⎩⎪⎨⎪⎧f (0)=b =0,f ′(0)=-a (a +2)=-3,解得b =0,a =-3或a =1.(2)因为曲线y =f (x )存在两条垂直于y 轴的切线,所以关于x 的方程f ′(x )=3x 2+2(1-a )x -a (a +2)=0有两个不相等的实数根,所以Δ=4(1-a )2+12a (a +2)>0, 即4a 2+4a +1>0, 所以a ≠-12.所以a 的取值范围为⎝⎛⎭⎫-∞,-12∪⎝⎛⎭⎫-12,+∞. 10.已知函数f (x )=x 3+x -16.(1)求曲线y =f (x )在点(2,-6)处的切线的方程;(2)直线l 为曲线y =f (x )的切线,且经过原点,求直线l 的方程及切点坐标; (3)如果曲线y =f (x )的某一切线与直线y =-14x +3垂直,求切点坐标与切线的方程.解:(1)可判定点(2,-6)在曲线y =f (x )上. 因为f ′(x )=(x 3+x -16)′=3x 2+1.所以f (x )在点(2,-6)处的切线的斜率为k =f ′(2)=13. 所以切线的方程为y =13(x -2)+(-6), 即y =13x -32. (2)设切点为(x 0,y 0),则直线l 的斜率为f ′(x 0)=3x 20+1, 所以直线l 的方程为y =(3x 20+1)(x -x 0)+x 30+x 0-16,又因为直线l 过点(0,0),所以0=(3x 20+1)(-x 0)+x 30+x 0-16,整理得,x 30=-8, 所以x 0=-2,所以y 0=(-2)3+(-2)-16=-26, k =3×(-2)2+1=13.所以直线l 的方程为y =13x ,切点坐标为(-2,-26). (3)因为切线与直线y =-14x +3垂直,所以切线的斜率k =4. 设切点的坐标为(x 0,y 0), 则f ′(x 0)=3x 20+1=4, 所以x 0=±1.所以⎩⎪⎨⎪⎧x 0=1,y 0=-14或⎩⎪⎨⎪⎧x 0=-1,y 0=-18,即切点坐标为(1,-14)或(-1,-18), 切线方程为y =4(x -1)-14或y =4(x +1)-18. 即y =4x -18或y =4x -14.1.(2019·成都第二次诊断检测)若曲线y =f (x )=ln x +ax 2(a 为常数)不存在斜率为负数的切线,则实数a 的取值范围是( )A .⎝⎛⎭⎫-12,+∞ B .[-12,+∞)C .(0,+∞)D .[0,+∞)解析:选D.f ′(x )=1x +2ax =2ax 2+1x (x >0),根据题意有f ′(x )≥0(x >0)恒成立,所以2ax 2+1≥0(x >0)恒成立,即2a ≥-1x 2(x >0)恒成立,所以a ≥0,故实数a 的取值范围为[0,+∞).故选D.2.已知f (x )=ln x ,g (x )=12x 2+mx +72(m <0),直线l 与函数f (x ),g (x )的图象都相切,且与f (x )图象的切点为(1,f (1)),则m 的值为( )A .-1B .-3C .-4D .-2解析:选D.因为f ′(x )=1x ,所以直线l 的斜率为k =f ′(1)=1, 又f (1)=0,所以切线l 的方程为y =x -1.g ′(x )=x +m ,设直线l 与g (x )的图象的切点为(x 0,y 0),则有x 0+m =1,y 0=x 0-1,y 0=12x 20+mx 0+72,m <0,于是解得m =-2. 3.(2019·云南第一次统考)已知函数f (x )=ax ln x +b (a ,b ∈R ),若f (x )的图象在x =1处的切线方程为2x -y =0,则a +b =________.解析:由题意,得f ′(x )=a ln x +a ,所以f ′(1)=a ,因为函数f (x )的图象在x =1处的切线方程为2x -y =0,所以a =2,又f (1)=b ,则2×1-b =0,所以b =2,故a +b =4.答案:44.设曲线y =e x 在点(0,1)处的切线与曲线y =1x (x >0)上点P 处的切线垂直,则P 的坐标为________.解析:y ′=e x ,曲线y =e x 在点(0,1)处的切线的斜率k 1=e 0=1,设P (m ,n ),y =1x (x >0)的导数为y ′=-1x 2(x >0),曲线y =1x (x >0)在点P 处的切线斜率k 2=-1m 2(m >0),因为两切线垂直,所以k 1 k 2=-1,所以m =1,n =1,则点P 的坐标为(1,1).答案:(1,1)5.设有抛物线C :y =-x 2+92x -4,过原点O 作C 的切线y =kx ,使切点P 在第一象限.(1)求k 的值;(2)过点P 作切线的垂线,求它与抛物线的另一个交点Q 的坐标. 解:(1)由题意得,y ′=-2x +92.设点P 的坐标为(x 1,y 1),则y 1=kx 1,① y 1=-x 21+92x 1-4,② -2x 1+92=k ,③联立①②③得,x 1=2,x 2=-2(舍去). 所以k =12.(2)过P 点作切线的垂线, 其方程为y =-2x +5.④ 将④代入抛物线方程得,x 2-132x +9=0.设Q 点的坐标为(x 2,y 2),则2x 2=9, 所以x 2=92,y 2=-4.所以Q 点的坐标为⎝⎛⎭⎫92,-4. 6.已知函数f (x )=ax 3+3x 2-6ax -11,g (x )=3x 2+6x +12和直线m :y =kx +9,且f ′(-1)=0.(1)求a 的值;(2)是否存在k ,使直线m 既是曲线y =f (x )的切线,又是曲线y =g (x )的切线?如果存在,求出k 的值;如果不存在,请说明理由.解:(1)由已知得f ′(x )=3ax 2+6x -6a , 因为f ′(-1)=0, 所以3a -6-6a =0, 所以a =-2.(2)存在.由已知得,直线m 恒过定点(0,9),若直线m 是曲线y =g (x )的切线, 则设切点为(x 0,3x 20+6x 0+12). 因为g ′(x 0)=6x 0+6,所以切线方程为y -(3x 20+6x 0+12)=(6x 0+6)(x -x 0), 将(0,9)代入切线方程,解得x 0=±1. 当x 0=-1时,切线方程为y =9; 当x 0=1时,切线方程为y =12x +9. 由(1)知f (x )=-2x 3+3x 2+12x -11, ①由f ′(x )=0得-6x 2+6x +12=0, 解得x =-1或x =2.在x =-1处,y =f (x )的切线方程为y =-18; 在x =2处,y =f (x )的切线方程为y =9, 所以y =f (x )与y =g (x )的公切线是y =9.②由f′(x)=12得-6x2+6x+12=12,解得x=0或x=1.在x=0处,y=f(x)的切线方程为y=12x-11;在x=1处,y=f(x)的切线方程为y=12x-10,所以y=f(x)与y=g(x)的公切线不是y=12x+9.综上所述,y=f(x)与y=g(x)的公切线是y=9,此时k=0.。
完整版)导数测试题(含答案)
完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
2.2导数的概念及其几何意义(讲义+典型例题+小练)(解析版)
2.2导数的概念及其几何意义(讲义+典型例题+小练)一.导数的定义:0000000()()()'()'|lim()()()'()'limx x x x f x x f x y f x x x f x y xf x x f x y f x f x y x=∆→∆→+∆-====∆+∆-===∆1.(1).函数在处的导数: (2).函数的导数:2.利用定义求导数的步骤:①求函数的增量:00()()y f x x f x ∆=+∆-;②求平均变化率:00()()f x x f x y x x+∆-∆=∆∆; ③取极限得导数:00'()lim x yf x x∆→∆=∆例1:1.设()()22lim2x f x f x x∆→+∆--∆=-∆,则曲线()y f x =在点()()22f ,处的切线的倾斜角是( ) A .4π B .3π C .34π D .23π 【答案】C 【分析】根据导数的概念可得()21f '=-,再利用导数的几何意义即可求解. 【详解】 因为()()()022lim222x f x f x f x∆→+∆--∆'==-∆,所以()21f '=-,则曲线()y f x =在点()()22f ,处的切线斜率为1-,故所求切线的倾斜角为34π. 故选:C2.已知函数()y f x =在0x x =处的导数为1,则()()000lim 2x f x x f x x∆→+∆-=∆( )A .0B .12C .1D .2【分析】由已知结合导数的定义即可直接求解. 【详解】解:因为函数()y f x =在0x x =处的导数为1, 则()()()()()0000000111limlim 2222x x f x x f x f x x f x f x x x ∆→∆→+∆-+∆-'===∆∆.故选:B . 【点睛】本题考查导数的概念,涉及极限的性质,属于基础题.举一反三:1.设()f x 是可导函数,且()()000lim 2x f x x f x x∆→+∆-=-∆,则0()f x '=( )A .2B .1-C .1D .2-【答案】D 【分析】由导数的定义可得()()0000lim ()x f x f x f x x x∆→+-'=∆∆,即可得答案.【详解】 根据题意,()()0000lim()2x f x f x f x x x∆→∆+-'==-∆,故0()2f x '=-. 故选:D . 【点睛】本题考查导数的定义,属于基础题. 2.若()02f x '=,则()()000lim2h f x h f x h→+-=______.【答案】1 【解析】 【分析】根据导数的几何定义即可计算.()()()()()000000011limlim 1222h h f x h f x f x h f x f x h h →→+-+-'===.故答案为:1.二.导数的几何意义:函数()f x 在0x 处导数的几何意义,曲线()y f x =在点()()00,P x f x 处切线的斜率是()0k f x '=。
导数高中试题及解析答案
导数高中试题及解析答案1. 计算函数 \( f(x) = x^3 - 3x^2 + 2x \) 在 \( x = 1 \) 处的导数。
解析:首先,我们需要找到函数 \( f(x) \) 的导数。
根据导数的定义,我们有:\[ f'(x) = \frac{d}{dx}(x^3 - 3x^2 + 2x) \]对每一项分别求导,我们得到:\[ f'(x) = 3x^2 - 6x + 2 \]现在,将 \( x = 1 \) 代入 \( f'(x) \) 得到:\[ f'(1) = 3(1)^2 - 6(1) + 2 = 3 - 6 + 2 = -1 \]答案:函数 \( f(x) \) 在 \( x = 1 \) 处的导数为 \( -1 \)。
2. 已知函数 \( g(x) = \sin(x) \),求 \( g'(x) \)。
解析:根据三角函数的导数规则,我们知道 \( \sin(x) \) 的导数是\( \cos(x) \)。
因此,我们可以直接写出 \( g(x) \) 的导数:\[ g'(x) = \cos(x) \]答案:函数 \( g(x) \) 的导数是 \( \cos(x) \)。
3. 计算复合函数 \( h(x) = (x^2 - 1)^4 \) 的导数。
解析:这是一个复合函数,我们可以使用链式法则来求导。
首先,设\( u = x^2 - 1 \),那么 \( h(x) = u^4 \)。
对 \( u \) 求导得到:\[ u' = \frac{d}{dx}(x^2 - 1) = 2x \]然后,对 \( h(x) \) 求导:\[ h'(x) = \frac{d}{dx}(u^4) = 4u^3 \cdot u' = 4(x^2 - 1)^3\cdot 2x \]答案:复合函数 \( h(x) \) 的导数是 \( 8x(x^2 - 1)^3 \)。
导数练习题及答案
导数练习题及答案导数是微积分中的重要概念,它描述了函数在某一点的变化率。
掌握导数的概念和计算方法对于解决实际问题和理解数学原理都至关重要。
在学习导数的过程中,练习题是必不可少的一环。
本文将介绍一些常见的导数练习题及其答案,帮助读者更好地理解和掌握导数的概念和计算方法。
一、基本函数的导数1. 常数函数的导数常数函数f(x) = c的导数为0,其中c为常数。
这是因为常数函数在任意一点的变化率都为0,即斜率为0。
2. 幂函数的导数幂函数f(x) = x^n的导数为f'(x) = nx^(n-1),其中n为正整数。
这是根据导数的定义和幂函数的性质得出的。
3. 指数函数的导数指数函数f(x) = a^x的导数为f'(x) = a^x * ln(a),其中a为正实数,ln(a)为以e为底的对数。
这是根据指数函数和对数函数的性质以及导数的定义得出的。
4. 对数函数的导数对数函数f(x) = ln(x)的导数为f'(x) = 1/x,其中x为正实数。
这是根据对数函数和指数函数的性质以及导数的定义得出的。
二、基本运算法则1. 和差法则如果函数f(x)和g(x)都可导,则它们的和函数(f+g)(x)和差函数(f-g)(x)也可导,并且有以下公式:(f+g)'(x) = f'(x) + g'(x)(f-g)'(x) = f'(x) - g'(x)2. 积法则如果函数f(x)和g(x)都可导,则它们的乘积函数(f*g)(x)也可导,并且有以下公式:(f*g)'(x) = f'(x) * g(x) + f(x) * g'(x)3. 商法则如果函数f(x)和g(x)都可导,并且g(x)不为0,则它们的商函数(f/g)(x)也可导,并且有以下公式:(f/g)'(x) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2三、常见函数的导数1. 正弦函数和余弦函数的导数正弦函数f(x) = sin(x)的导数为f'(x) = cos(x)。
导数公式的练习题及答案
导数公式的练习题及答案1. 导数的物理意义:瞬时速率。
一般的,函数y?f在x?x0处的瞬时变化率是?x?0limf?f,?x我们称它为函数y?f在x?x0处的导数,记作f?或y?|x?x0,即f?=lim?x?0f?f?x2. 导数的几何意义: 当点Pn趋近于P时,函数y?f 在x?x0处的导数就是切线PT的斜率k,即k?lim3. 导函数二.导数的计算1. 基本初等函数的导数公式. 导数的运算法则. 复合函数求导?x?0f?f?f?xn?x0y?f和u?g,称则y可以表示成为x的函数,即y?f)为一个复合函数 y??f?)?g?三.导数在研究函数中的应用 1.函数的单调性与导数:.函数的极值与导数极值反映的是函数在某一点附近的大小情况. 求函数y?f的极值的方法是:如果在x0附近的左侧f??0,右侧f??0,那么f是极大值; 如果在x0附近的左侧f??0,右侧f??0,那么f是极小值;.函数的最大值与导数函数极大值与最大值之间的关系.求函数y?f在[a,b]上的最大值与最小值的步骤求函数y?f在内的极值;将函数y?f的各极值与端点处的函数值f,f比较,其中最大的是一个最大值,最小的是最小值.四.生活中的优化问题1、已知函数f?2x?1的图象上一点及邻近一点,则2?y等于?xA.4B.4?xC.4?2?xD.4?2?x2、如果质点M按规律S?3?t2运动,则在一小段时间[2,2.1]中相应的平均速度为A.4B.4.1C.0.41D.33、如果质点A按规律S?2t3运动,则在t?3秒的瞬时速度为A.B.18C.54D.8111在点处的切线斜率为_________,切线方程为__________________. x225、已知函数f?ax?2,若f??1,则a?__________.4、曲线y??6、计算:f?5x?7,求f?;f?y?221x?2,求f?;21,求y?|x?0 x?17、在自行车比赛中,运动员的位移与比赛时间t存在函数关系S?10t?5t2,t?20,?t?0.1时的求t?20的速度. 1、函数y??S; ?t的导数是1?4?141323A.xB.xC.x5D.?x55555112、曲线y?x2在点处切线的倾斜角为225???A.1B.?C.D.4443、已知曲线y?x?2x?2在点M处的切线与x轴平行,则点M的坐标是A.B. C.D.2x在点处的切线方程为____________________.x?135、曲线y?x在点处的切线与x轴、直线x?2所围成的三角形面积为__________.4、曲线y?6、求下列函数的导数:y?x?log3x;y??2x?1.13?;y?cos2x.sinx?cosx求f在点处的切线方程;求过点的切线方程.、函数y?的导数是A.6x5?12x B.4?2x C.2 D.2?3x、已知y?333321sin2x?sinx,那么y?是A.仅有最小值的奇函数B.既有最大值又有最小值的偶函数 C.仅有最大值的偶函数D.非奇非偶函数 10、曲线y?e1x2在点处的切线与坐标轴所围三角形的面积为2C.2e D.e22211、已知f?ln,若f??1,则实数a的值为__________. A.e2B.4e12、y?sin3x在处的切线斜率为__________________.1?x,?1?x?1. 1?x13、求下列函数的导数:f?f?e?x2?2x?3;y?lncos2x??14、已知f? ,求f.1?sin2x41、函数f?e的单调递增区间是A. B.C. D.2、设函数y?f在定义域内可导,y?f的图象如图1所示,则导函数y?f?可能为A2xB C D3、若函数f?x?ax?x?6在内单调递减,则实数a的取值范围是A.a?1B.a?13C.a?1D.0?a?14、函数f?ax?x在R上为减函数,则实数a的取值范围是______________.、求函数f?2x?lnx的单调区间.、设函数f?xe.kx2求曲线y?f在点)处的切线方程;求函数f的单调区间;若函数f在区间内单调递增,求k的取值范围.、函数y?4x2?1的单调递增区间是 x11A. B. C.D.8、若函数y?x3?x2?mx?1是R上的单调函数,则实数m 的取值范围是A. B.D..函数f?lnx?1313131312x的图象大致是10、如果函数y?f的导函数的图象如下图所示,给出下列判断:①函数y?f在区间内单调递增;②函数y?f在区间内单调递减;③函数y?f在区间内单调递增;④当x?2时,函数y?f有极小值;⑤当x??12121时,函数y?f有极大值.32则上述判断中正确的是____________.11、已知函数f?x?ax?bx?c,g?12x?4,若f?0,且f 的图象在点)处的切线方程为y?g.求实数a,b,c的值;求函数h?f?g的单调区间 12、已知函数f?13、已知函数f?12x?lnx?x在上是增函数,求实数a的取值范围.x?1?alnx,f的单调区间.1.C .B3.C4.4;y?4x?4.?7.210.5;2101?1?381x111.C.C .B4.y??x?2.6.;?;ln?233xln3?sinx?cosx7.y?4x?3;y?e;1?x814.?9111.D.D .A4.a?0.增区间,减区间22116.y?x;k?0时,增区间,减区间kk11k?0时,增区间,减区间;[?1,0)?和,减区间12.a?213.a?0时,增区间为a?0时,在基本初等函数的导数公式及导数运算法则练习姓名班级713?1.曲线y=x-2在点?-1,-处切线的倾斜角为?3?A.30°B.45° C.135°D.60°.设f=31A641-1x2xf′等于57B.C.-667D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为A.4x-y-3=032B.x+4y-5=0C.4x-y+3=0 D.x+4y+3=04.已知f=ax+9x+6x-7,若f′=4,则a的值等于A.193B.16101 D.3314325.已知物体的运动方程是st-4t+16t,则瞬时速度为0的时刻是A.0秒、2秒或4秒B.0秒、2秒或16秒C.2秒、8秒或16秒 D.0秒、4秒或8秒6.曲线y=x-2x+1在点处的切线方程为A.y=x-1B.y=-x-1 D.y=-2x-23C.y=2x-2x7.若函数f=esinx,则此函数图象在点)处的切线的倾斜角为A.π2B.0C.钝角D.锐角?ππ8.曲线y=xsinx在点?-,处的切线与x轴、直线x=π所围成的三角形的面积为 ?22?πA.21222B.π C.2πD.+π)29.设f0=sinx,f1=f0′,f2=f1′,…,fn+1=fn′,n∈N,则f2011等于A.sinxB.-sinx C.cosxD.-cosx10.f与g是定义在R上的两个可导函数,若f、g满足f′=g′,则f与g满足A.f=g B.f-g为常数C.f=g=0 11.函数y=在x=1处的导数等于A.1 B.2C.D.412.若对任意x∈R,f′=4x,f=-1,则f=第 - 1 - 页共 1页32D.f+g为常数A.x34mB.x-D.x+21*}的前n项和是 f44C.4x-513.设函数f=x+ax的导数为f′=2x+1,则数列{ A.n+2nn+1B. C.D.n+1n+1n-1nn14.二次函数y=f的图象过原点,且它的导函数y=f′的图象是过第一、二、三象限的一条直线,则函数y=f的图象的顶点在A.第一象限32B.第二象限C.第三象限D.第四象限15.函数y=的导数为A.6x+12xB.4+2xC.24252332D.2·3x316.若函数f=ax+bx+c满足f′=2,则f′=A.-1B.- C.2D.031017.设函数f=,则f′=A.0B.-1 C.-60D.6018.函数y=sin2x-cos2x的导数是π??A.2cos?2x-?4??π??B.cos2x-sin2xC.sin2x+cos2x D.22cos?2x +?4??119.已知曲线y=-3lnx的一条切线的斜率为,则切点的横坐标为42A.3B. C.11D.x220.设函数f是R上以5为周期的可导偶函数,则曲线y=f在x=5处的切线的斜率为1A51B.5D.5?π1221.设f=ax-bsinx,且f′=1,f′?=a=________,b=________.?3?222.设f=x-3x-9x+1,则不等式f′<0的解集为________.3.曲线y=cosx在点P?32?π,1处的切线的斜率为______.?32?x24.已知函数f=ax+be图象上在点P处的切线与直线y=-3x平行,则函数f的解析式是____________.25.若f=x,φ=1+sin2x,则f[φ]=_______,φ[f]=________.6.设函数f=cos,若f+f′是奇函数,则φ=________.7.函数y=的导数为________.8.函数y=x1+x的导数为________.三、解答题第 - - 页共 1页22829.求下列函数的导数:1111+x1x24x4xy=x;y=;y=sin+cosy=xx44x1-x1x30.求下列函数的导数:e+1x+cosxy=xsinx; y=ln;yx y=.e-1x+sinx22x.31.求下列函数的导数:y=cos;y=cosx·sin3x; y=xloga; y=log2 2sinx232.设f=f′=·g,求g.1+x33.求下列函数的导数:是可导函数)第 - - 页共 1页222x-1. x+1?1?2y=f??;y=fx+1).?x?34.已知两条曲线y=sinx、y=cosx,是否存在这两条曲线的一个公共点,使在这一点处,两条曲线的切线互相垂直?并说明理由.17.已知曲线C1:y=x与C2:y=-.直线l与C1、C2都相切,求直线l的方程.18.求满足下列条件的函数f:f是三次函数,且f=3,f′=0,f′=-3,f′=0;f′是一次函数,xf′-f=1.222第 - - 页共 1页基本初等函数的导数公式及导数运算法则答案一、选择题7?13?1.曲线yx-2在点?-1,-?处切线的倾斜角为?3?A.30° C.135° [答案] B[解析] y′|x=-1=1,∴倾斜角为45°..设f31A67C6[答案] B1-1B.45° D.60°x2xx,则f′等于5B.67D.63.若曲线y=x的一条切线l与直线x+4y-8=0垂直,则l的方程为 A.4x-y-3=0C.4x-y+3=0[答案] A [解析] ∵直线l的斜率为4,而y′=4x,由y′=4得x=1而x=1时,y=x=1,故直线l的方程为:y-1=4即4x-y-3=0.4.已知f=ax+9x+6x-7,若f′=4,则a的值等于 A.C.193103B.D.16313332344B.x+4y-5=0 D.x+4y+3=0[答案] B[解析] ∵f′=3ax+18x+6,16∴由f′=4得,3a-18+6=4,即a=.3∴选B.第 - - 页共 1页2基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?x2lnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=基本初等函数的导数公式及导数运算法则1.y?x31导数为 x22.y=xsin2x导数为3.y?xlnx导数为ex4.y?导数为 x5.函数y=2在x=1处的导数等于6.函数y=2的导数为7.设函数f=10,则f′=8.函数y=sin2x-cos2x的导数是9.函数y=1+x的导数为________.10.若对任意x∈R,f′=4x3,f=-1,则f=11.江西)若函数f=ax4+bx2+c满足f′=2,则f′=。
高中数学之导数的定义与计算含答案
专题01 导数的定义与计算1.已知的导函数为,且满足,则()A.-2B.2C.-1D.1【答案】C【解析】依题意,故,所以,故选C.2.函数在点处切线的斜率为()A.B.C.D.【答案】A【解析】时,k=-1,故选A.3.若函数,则函数的平均变化率为()A.B.C.D.【答案】B【解析】由可得,因为为一次函数,所以平均值即为的中点值,易得,故平均值为,故选B。
4.下列导数运算正确的是()A.B.C.D.【答案】C【解析】选项A中,由于,所以A不正确;选项B中,由于,所以B不正确;选项C中,由于,所以C正确;选项D中,由于,所以D不正确.故选C.5.函数在[1,]上的平均变化率是( )A.2B.2x C.D.【答案】C【解析】依题意,所求平均变化率为,故选C.6.下列导数运算正确的是( )A.B.C.D.【答案】B【解析】(sin x)′=cos x;()′;(3x)′=3x ln3;()′,故选:B.7.已知函数的导函数为,且满足关系式,则的值等于( )A.B.C.D.【答案】A【解析】∵,∴,令,解得.∴,∴.故选A.8.已知函数处的导数为,则()A.B.C.D.【答案】D【解析】由题意,可得,故选D。
9.设f0(x)=sin x,f1(x)=f0′(x),f2(x)=f1′(x),…,f n+1(x)=f n′(x),n∈N,则f2019(x)=()A.sin x B.-sin x C.cos x D.-cos x【答案】D【解析】由题意可得:,,据此可得的解析式周期为,注意到,故.本题选择D选项.10.已知一个物体的运动方程为,其中位移的单位是,时间的单位是,则物体的初速度为()A.B.C.D.【答案】D【解析】因为,可得,所以,故选D。
11.已知点在曲线上移动,设曲线在点处的切线斜率为,则的取值范围是()A.B.C.D.【答案】B【解析】因为,所以恒成立,故切线斜率,故选B。
12.若,则等于()A.-2B.-1C.1D.2【答案】C【解析】由导数的定义可知:,则.本题选择C选项.13.若函数,则__________.【答案】【解析】对函数求导得到解得.故答案为:.14.如果函数f(x)=cos x,那么_____.【答案】【解析】解:由题意知,f(x)=cosx,∴cos,f′(x)=﹣sinx,∴sin,故答案为:.15.曲线在点M(π,0)处的切线方程为________.【答案】【解析】由函数的解析式可得:,所求切线的斜率为:,由于切点坐标为,故切线方程为:.16.已知曲线在点处的切线与直线垂直,则实数__________.【答案】【解析】因为的导函数为,可得曲线在点处的切线斜率为由切线与直线垂直可得,解得.故答案为:17.求满足下列条件的函数.(1) 是三次函数,且(2) 是二次函数,且.【答案】(1) (2)【解析】(1)由题意设则由已知得解得,故(2)由题意设,则.所以,化简得,因为此式对任意x都成立,所以,解得,故.18.求下列函数的导数:(1)(2)y=【答案】(1);(2)【解析】(1);(2). 19.已知函数(1)求(2)求曲线在点处的切线的方程;【答案】(1)(2)【解析】(1)(2)可判定点在曲线上.在点处的切线的斜率为.切线的方程为即20.已知曲线.(Ⅰ) 求曲线处的切线方程;(Ⅱ) 求曲线过原点的切线方程.【答案】(Ⅰ) (Ⅱ)【解析】(Ⅰ)由题意得,所以,,可得切线方程为,整理得。
导数概念 公式知识点总结+习题含详细讲解
.《导数及其应用》知识点总结一、导数的概念和几何意义1. 函数的平均变化率:函数()f x 在区间12[,]x x 上的平均变化率为:2121()()f x f x x x --。
2. 导数的定义:设函数()y f x =在区间(,)a b 上有定义,0(,)x a b ∈,若x ∆无限趋近于0时,比值00()()f x x f x y x x+∆-∆=∆∆无限趋近于一个常数A ,则称函数()f x 在0x x =处可导,并称该常数A 为函数()f x 在0x x =处的导数,记作0()f x '。
函数()f x 在0x x =处的导数的实质是在该点的瞬时变化率。
3. 求函数导数的基本步骤:(1)求函数的增量00()()y f x x f x ∆=+∆-;(2)求平均变化率:00()()f x x f x x+∆-∆;(3)取极限,当x ∆无限趋近与0时,00()()f x x f x x+∆-∆无限趋近与一个常数A ,则0()f x A '=.4. 导数的几何意义:函数()f x 在0x x =处的导数就是曲线()y f x =在点00(,())x f x 处的切线的斜率。
由此,可以利用导数求曲线的切线方程,具体求法分两步:(1)求出()y f x =在x 0处的导数,即为曲线()y f x =在点00(,())x f x 处的切线的斜率; (2)在已知切点坐标和切线斜率的条件下,求得切线方程为000()()y y f x x x '-=-。
当点00(,)P x y 不在()y f x =上时,求经过点P 的()y f x =的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P 点的坐标代入确定切点。
特别地,如果曲线()y f x =在点00(,())x f x 处的切线平行与y 轴,这时导数不存在,根据切线定义,可得切线方程为0x x =。
5. 导数的物理意义:质点做直线运动的位移S 是时间t 的函数()S t ,则()V S t '=表示瞬时速度,()a v t '=表示瞬时加速度。
导数的概念试题及解析
导数的概念试题及解析一、选择题1.函数在某一点的导数是( )A .在该点的函数值的增量与自变量的增量的比B .一个函数C .一个常数,不是变数D .函数在这一点到它附近一点之间的平均变化率[答案] C[解析] 由定义,f ′(x 0)是当Δx 无限趋近于0时,Δy Δx 无限趋近的常数,故应选C.2.如果质点A 按照规律s =3t 2运动,则在t 0=3时的瞬时速度为( )A .6B .18C .54D .81[答案] B[解析] ∵s (t )=3t 2,t 0=3,∴Δs =s (t 0+Δt )-s (t 0)=3(3+Δt )2-3·32=18Δt +3(Δt )2∴Δs Δt =18+3Δt .当Δt →0时,Δs Δt →18,故应选B.3.y =x 2在x =1处的导数为( )A .2xB .2C .2+ΔxD .1 [答案] B[解析] ∵f (x )=x 2,x =1,∴Δy =f (1+Δx )2-f (1)=(1+Δx )2-1=2·Δx +(Δx )2∴Δy Δx =2+Δx当Δx →0时,Δy Δx →2∴f ′(1)=2,故应选B.4.一质点做直线运动,若它所经过的路程与时间的关系为s (t )=4t 2-3(s (t )的单位:m ,t 的单位:s),则t =5时的瞬时速度为( )A .37B .38C .39D .40[答案] D[解析] ∵Δs Δt =4(5+Δt )2-3-4×52+3Δt =40+4Δt , ∴s ′(5)=li m Δt →0 Δs Δt =li m Δt →0(40+4Δt )=40.故应选D. 5.已知函数y =f (x ),那么下列说法错误的是( )A .Δy =f (x 0+Δx )-f (x 0)叫做函数值的增量B.Δy Δx =f (x 0+Δx )-f (x 0)Δx叫做函数在x 0到x 0+Δx 之间的平均变化率 C .f (x )在x 0处的导数记为y ′D .f (x )在x 0处的导数记为f ′(x 0)[答案] C[解析] 由导数的定义可知C 错误.故应选C.6.函数f (x )在x =x 0处的导数可表示为y ′|x =x 0,即( )A .f ′(x 0)=f (x 0+Δx )-f (x 0)B .f ′(x 0)=li m Δx →0[f (x 0+Δx )-f (x 0)] C .f ′(x 0)=f (x 0+Δx )-f (x 0)ΔxD .f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx[答案] D[解析] 由导数的定义知D 正确.故应选D.7.函数y =ax 2+bx +c (a ≠0,a ,b ,c 为常数)在x =2时的瞬时变化率等于( )A .4aB .2a +bC .bD .4a +b [答案] D[解析] ∵Δy Δx =a (2+Δx )2+b (2+Δx )+c -4a -2b -c Δx=4a +b +a Δx ,∴y ′|x =2=li m Δx →0 Δy Δx =li m Δx →0(4a +b +a ·Δx )=4a +b .故应选D. 8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( )A .圆B .抛物线C .椭圆D .直线 [答案] D[解析] 当f (x )=b 时,f ′(x )=0,所以f (x )的图象为一条直线,故应选D.9.一物体作直线运动,其位移s 与时间t 的关系是s =3t -t 2,则物体的初速度为( )A .0B .3C .-2D .3-2t[答案] B[解析] ∵Δs Δt =3(0+Δt )-(0+Δt )2Δt=3-Δt , ∴s ′(0)=li m Δt →0 Δs Δt=3.故应选B. 10.设f (x )=1x ,则li m x →a f (x )-f (a )x -a等于( ) A .-1a B.2aC .-1a 2 D.1a 2[答案] C[解析] li m x →a f (x )-f (a )x -a =li m x →a 1x -1ax -a=li m x →a a -x(x -a )·xa =-li m x →a 1ax =-1a 2.二、填空题11.已知函数y =f (x )在x =x 0处的导数为11,则li m Δx →0f (x 0-Δx )-f (x 0)Δx =________;li m x →x 0 f (x )-f (x 0)2(x 0-x )=________.[答案] -11,-112[解析] li m Δx →0 f (x 0-Δx )-f (x 0)Δx=-li m Δx →0 f (x 0-Δx )-f (x 0)-Δx =-f ′(x 0)=-11;li m x →x 0 f (x )-f (x 0)2(x 0-x )=-12li m Δx →0 f (x 0+Δx )-f (x 0)Δx=-12f ′(x 0)=-112.12.函数y =x +1x 在x =1处的导数是________.[答案] 0[解析] ∵Δy =⎝ ⎛⎭⎪⎫1+Δx +11+Δx -⎝ ⎛⎭⎪⎫1+11=Δx -1+1Δx +1=(Δx )2Δx +1,∴Δy Δx =Δx Δx +1.∴y ′|x =1=li m Δx →0 ΔxΔx +1=0.13.已知函数f (x )=ax +4,若f ′(2)=2,则a 等于______.[答案] 2[解析] ∵Δy Δx =a (2+Δx )+4-2a -4Δx =a ,∴f ′(1)=li m Δx →0 ΔyΔx =a .∴a =2.14.已知f ′(x 0)=li m x →x 0 f (x )-f (x 0)x -x 0,f (3)=2,f ′(3)=-2,则li m x →3 2x -3f (x )x -3的值是________.[答案] 8[解析] li m x →3 2x -3f (x )x -3=li m x →3 2x -3f (x )+3f(3)-3f (3)x -3=lim x →3 2x -3f (3)x -3+li m x →3 3(f (3)-f (x ))x -3.由于f (3)=2,上式可化为li m x →3 2(x -3)x -3-3li m x →3 f (x )-f(3)x -3=2-3×(-2)=8.三、解答题15.设f (x )=x 2,求f ′(x 0),f ′(-1),f ′(2).[解析] 由导数定义有f ′(x 0)=li m Δx →0 f (x 0+Δx )-f (x 0)Δx=li m Δx →0 (x 0+Δx )2-x 20Δx =li m Δx →0 Δx (2x 0+Δx )Δx=2x 0,16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s 2,枪弹从枪口射出时所用时间为1.6×10-3s ,求枪弹射出枪口时的瞬时速度.[解析] 位移公式为s =12at 2∵Δs =12a (t 0+Δt )2-12at 20=at 0Δt +12a (Δt )2∴Δs Δt =at 0+12a Δt ,∴li m Δt →0 Δs Δt =li m Δt →0 ⎝ ⎛⎭⎪⎫at 0+12a Δt =at 0,已知a =5.0×105m/s 2,t 0=1.6×10-3s ,∴at 0=800m/s.所以枪弹射出枪口时的瞬时速度为800m/s.17.在曲线y =f (x )=x 2+3的图象上取一点P (1,4)及附近一点(1+Δx,4+Δy ),求(1)Δy Δx (2)f ′(1).[解析] (1)Δy Δx =f (1+Δx )-f (1)Δx=(1+Δx )2+3-12-3Δx=2+Δx .(2)f ′(1)=lim Δx →0 f (1+Δx )-f (1)Δx=lim Δx →0(2+Δx )=2. 18.函数f (x )=|x |(1+x )在点x 0=0处是否有导数?若有,求出来,若没有,说明理由.[解析] f (x )=⎩⎪⎨⎪⎧ x +x 2 (x ≥0)-x -x 2 (x <0)Δy =f (0+Δx )-f (0)=f (Δx )=⎩⎪⎨⎪⎧ Δx +(Δx )2 (Δx >0)-Δx -(Δx )2 (Δx <0)∴lim x →0+ Δy Δx =lim Δx →0+ (1+Δx )=1,lim Δx →0- Δy Δx =lim Δx →0- (-1-Δx )=-1,∵lim Δx →0- Δy Δx ≠lim Δx →0+ Δy Δx ,∴Δx →0时,ΔyΔx 无极限.∴函数f (x )=|x |(1+x )在点x 0=0处没有导数,即不可导.(x →0+表示x 从大于0的一边无限趋近于0,即x >0且x 趋近于0)。
【2021新高考数学】导数的概念及计算导数的概念及计算(含答案)
等函数的导数公式
基本初等函数
导函数
f(x)=c(c 为常数) f(x)=xα(α∈Q*)
f(x)=sin x f(x)=cos x
f(x)=ex f(x)=ax(a>0)
f(x)=ln x
f(x)=logax (a>0,a≠1)
三.导数的运算法则 若 f′(x),g′(x)存在,则有: (1)[f(x)±g(x)]′=f′(x)±g′(x); (2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f′(x)=ex f′(x)=axlna
f′(x)=1 x
f′(x)= 1 xln a
(2)[f(x)·g(x)]′=f′(x)g(x)+f(x)g′(x);
f(x) (3) g(x) ′=f′(x)g(x)-f(x)g′(x)(g(x)≠0).
[g(x)]2
四.复合函数的导数
复合函数 y=f(g(x))的导数和函数 y=f(u),u=g(x)的导数间的关系为 yx′=yu′·ux′.
【举一反三】
1.下列求导运算正确的是( )
A.㺀 ʒ산 ᙰ ʒ ʒ
B.㺀 ʒ산 ᙰ ʒ(其中 e 为自然对数的底数)
C.㺀ʒ ͳ ʒ 산 ᙰ ʒ ͳ ʒ 【答案】B
D.㺀
ʒ cosʒ
산
ᙰ
cosʒ ʒsinʒ cos ʒ
【解析】分析:运算导数的加减乘除的运算法则进行计算.
详解:㺀 ʒ산 ᙰ ʒln ,㺀 ʒ산 ᙰ 㺀 ʒ산 ᙰ
ᙰ
;②若
ʒ
ᙰ
ʒ,则
ᙰ
⚪㺀ʒ산 ᙰ ʒ,则 ⚪ 㺀 산 ᙰ ,其中正确的个数是________________.
ʒ;③若 ᙰ ʒ ,则 ᙰ
初中数学导数题型汇编(含答案)--
重难点突破 | 导数题型汇编角度一:导数的概念及运算【例题1】知函数f (x +1)=2x +1x +1,则曲线y =f (x )在点(1,f (1))处切线的斜率为【解析】由f (x +1)=2x +1x +1,知f (x )=2x -1x =2-1x∴f ′(x )=1x 2,∴f ′(1)=1,由导数的几何意义知,所求切线的斜率k =1【变式1】已知y =f (x )是可导函数,如图,直线y =kx +2是曲线y =f (x )在x =3处的切线,令g (x )=xf (x ),g ′(x )是g (x )的导函数,则g ′(3)= .【解析】由题图可知曲线y =f (x )在x =3处切线的斜率等于-13,∴f ′(3)=-13.∵g (x )=xf (x ),∴g ′(x )=f (x )+xf ′(x ),∴g ′(3)=f (3)+3f ′(3), 又由题图可知f (3)=1,∴g ′(3)=1+3×⎝⎛⎭⎫-13=0. 【变式2】函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )图象可能是( )【解析】设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3, 由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0; 当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),函数f (x )在(-∞,x 1),(x 2,x 3)上递减,在(x 1,x 2),(x 3,+∞)上递增,选D角度二:求不含参数函数的单调性【例题2】定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )单调递增区间是____【分析】确定函数单调区间的步骤:(1)确定函数f (x )的定义域.(2)求f ′(x ).(3)解不等式 f ′(x )>0,得到单调递增区间.(4)解不等式f ′(x )<0,得到单调递减区间. 【解析】f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2∪⎝⎛⎭⎫0,π2, 即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2.【变式3】已知函数f (x )=(-x 2+2x )e x (x ∈R ,e 为自然对数的底数),则函数f (x )的单调递增区间为________.【解析】因为f (x )=(-x 2+2x )e x ,所以f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0,因为e x >0,所以-x 2+2>0,解得-2<x <2, 所以函数f (x )的单调递增区间为(-2,2). 【变式4】已知函数f (x )=x 4+a x -ln x -32,其中a ∈R ,且曲线y =f (x )在点(1,f (1))处的切线垂直于直线y =12x .(1)求a 的值;(2)求函数f (x )的单调区间. 【解析】(1)对f (x )求导得f ′(x )=14-a x 2-1x,由f (x )在点(1,f (1))处的切线垂直于直线y =12x 知f ′(1)=-34-a =-2,得a =54.(2)由(1)知f (x )=x 4+54x -ln x -32(x >0).则f ′(x )=x 2-4x -54x 2.令f ′(x )=0,且x >0,∴x =5(x =-1舍去).当x ∈(0,5)时,f ′(x )<0;当x >5时,f ′(x )>0. 所以函数f (x )的增区间为(5,+∞),减区间为(0,5).角度三:讨论含参数函数的单调性【例题3】已知函数f (x )=x 2e-ax-1(a 是常数),求函数y =f (x )的单调区间【分析】(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为零的点和函数的间断点. 【解析】当a =0时,f (x )=x 2-1,函数在(0,+∞)上单调递增,在(-∞,0)上单调递减. 当a ≠0时,f ′(x )=2x e-ax+x 2(-a )e-ax=e-ax(-ax 2+2x ).因为e-ax>0,所以令g (x )=-ax 2+2x =0,解得x =0或x =2a.①当a >0时,函数g (x )=-ax 2+2x 在(-∞,0)和⎝⎛⎭⎫2a ,+∞上有g (x )<0,即f ′(x )<0,函数y =f (x )单调递减;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤0,2a 上有g (x )≥0, 即f ′(x )≥0,函数y =f (x )单调递增.②当a <0时,函数g (x )=-ax 2+2x 在⎝⎛⎭⎫-∞,2a 和(0,+∞)上有g (x )>0,即f ′(x )>0,函数y =f (x )递增;函数g (x )=-ax 2+2x 在⎣⎡⎦⎤2a ,0上有g (x )≤0,即f ′(x )≤0,函数y =f (x )递减. 综上所述,当a =0时,函数y =f (x )单调递增区间为(0,+∞),单调递减区间为(-∞,0); 当a >0时,函数y =f (x )的单调递减区间为(-∞,0),⎝⎛⎭⎫2a ,+∞,单调递增区间为⎣⎡⎦⎤0,2a ; 当a <0时,函数y =f (x )的单调递增区间为⎝⎛⎭⎫-∞,2a ,(0,+∞),单调递减区间为⎣⎡⎦⎤2a ,0.【变式5】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19. 所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式6】函数f (x )=bex -1(b ∈R )在点(0,f (0))处切线经过点(2,-2).讨论函数F (x )=f (x )+ax (a ∈R )的单调性.【解析】f (0)=b -1,过点(0,b -1),(2,-2)直线斜率k =b -1-(-2)0-2=-b +12,而f ′(x )=-b e x ,,f ′(0)=-b =-b +12,所以b =1,f (x )=1e x -1.则F (x )=ax +1e x -1,F ′(x )=a -1ex ,当a ≤0时,F ′(x )<0恒成立;当a >0时,由F ′(x )<0,得x <-ln a ,由F ′(x )>0,得x >-ln a .故当a ≤0时,函数F (x )在R 上单调递减;当a >0时,函数F (x )在(-∞,-ln a )上单调递减,在(-ln a ,+∞)上单调递增. 【变式7】已知函数f (x )=12ax 2-(a +1)x +ln x (a >0),讨论函数f (x )的单调性.【解析】f ′(x )=ax -(a +1)+1x =(ax -1)(x -1)x(x >0),①当0<a <1时,1a >1,由f ′(x )>0,解得x >1a 或0<x <1,由f ′(x )<0,解得1<x <1a .②当a =1时,f ′(x )≥0在(0,+∞)上恒成立.③当a >1时,0<1a <1,由f ′(x )>0,解得x >1或0<x <1a ,由f ′(x )<0,解得1a<x <1.综上,当0<a <1时,f (x )在⎝⎛⎭⎫1a ,+∞和(0,1)上单调递增,在⎝⎛⎭⎫1,1a 上单调递减; 当a =1时,f (x )在(0,+∞)上单调递增,当a >1时,f (x )在(1,+∞)和⎝⎛⎭⎫0,1a 上单调递增,在⎝⎛⎭⎫1a ,1上单调递减.角度四:利用单调性求参数的取值范围【例题4】已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围. 【解析】(1)h (x )=ln x -12ax 2-2x ,x ∈(0,+∞),所以h ′(x )=1x -ax -2,由于h (x )在(0,+∞)上存在单调递减区间,所以当x ∈(0,+∞)时,1x -ax -2<0有解,即a >1x 2-2x有解.设G (x )=1x 2-2x ,所以只要a >G (x )min 即可.而G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1.又因为a ≠0,所以a 的取值范围为(-1,0)∪(0,+∞).(2)因为h (x )在[1,4]上单调递减,所以当x ∈[1,4]时,h ′(x )=1x-ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.由(1)知G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1,所以G (x )max =-716(此时x =4), 所以a ≥-716,又因为a ≠0,所以a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). 【变式8】函数f (x )=x ln x -ax 2在(0,+∞)上单调递减,则实数a 的取值范围是________【解析】f ′(x )=ln x -2ax +1,若f (x )在(0,+∞)上单调递减,则ln x -2ax +1≤0在(0,+∞)上恒成立,即a ≥ln x +12x 在(0,+∞)上恒成立.令g (x )=ln x +12x ,x ∈(0,+∞),则g ′(x )=-ln x2x 2,令g ′(x )>0,解得0<x <1,令g ′(x )<0,解得x >1, 故g (x )在(0,1)上单调递增,在(1,+∞)上单调递减, 故g (x )max =g (1)=12,故a ≥12.【变式9】若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值 范围是________.【解析】对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a . 由题意知,f ′(x )>0在⎣⎡⎭⎫23,+∞上有解,当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )最大值为f ′⎝⎛⎭⎫23=29+2a . 令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞.【变式10】 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是________.【解析】f ′(x )=1-23cos 2x +a cos x ==-43cos 2 x +a cos x +53,f (x )在R 上单调递增,则f ′(x )≥0在R 上恒成立.令cos x =t ,t ∈[-1,1],则-43t 2+at +53≥0在[-1,1]上恒成立,即4t 2-3at -5≤0在t ∈[-1,1]上恒成立.令g (t )=4t 2-3at -5,则⎩⎪⎨⎪⎧g (1)=4-3a -5≤0,g (-1)=4+3a -5≤0,解得-13≤a ≤13.【变式11】 若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 范围是____ 【解析】易知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )=0有2个不同的实根. 需满足a ≠0,且Δ=36+12a >0,解得a >-3, 所以实数a 的取值范围是(-3,0)∪(0,+∞).角度五:根据图象定性判定极值问题【例题5】设函数f (x )在R 上可导,其导函数为f ′(x ),且函数y =(1-x )f ′(x )的图象如图所示,则下列结论中一定成立的是( )A .函数f (x )有极大值f (2)和极小值f (1)B .函数f (x )有极大值f (-2)和极小值f (1)C .函数f (x )有极大值f (2)和极小值f (-2)D .函数f (x )有极大值f (-2)和极小值f (2) 【解析】由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值.【变式12】 函数f (x )的定义域为R ,导函数f ′(x )的图象如图所示,则函数f (x )( )A .无极大值点、有四个极小值点B .有三个极大值点、一个极小值点C .有两个极大值点、两个极小值点D .有四个极大值点、无极小值点【解析】设f ′(x )的图象与x 轴的4个交点的横坐标从左至右依次为x 1,x 2,x 3,x 4. 当x <x 1时,f ′(x )>0,f (x )为增函数,当x 1<x <x 2时,f ′(x )<0,f (x )为减函数, 则x =x 1为极大值点,同理,x =x 3为极大值点,x =x 2,x =x 4为极小值点,故选C.角度六:处理含参(不含参)函数的极值(最值)【例题6】函数f (x )=a ln x -bx 2(x >0),若函数f (x )在x =1处与直线y =-12相切.(1)求实数a ,b 的值;(2)求函数f (x )在⎣⎡⎦⎤1e ,e 上的最大值. 【解析】(1)由f (x )=a ln x -bx 2(x >0),得f ′(x )=ax-2bx ,∵函数f (x )在x =1处与直线y =-12相切,∴⎩⎪⎨⎪⎧f ′(1)=a -2b =0,f (1)=-b =-12,解得⎩⎪⎨⎪⎧a =1,b =12. (2)由(1)知,f (x )=ln x -12x 2,则f ′(x )=1x -x =1-x 2x ,当1e ≤x ≤e 时,令f ′(x )>0,得1e≤x <1, 令f ′(x )<0,得1<x ≤e ,∴f (x )在⎣⎡⎭⎫1e ,1上单调递增;在(1,e]上单调递减, ∴f (x )max =f (1)=-12.【变式13】 函数f (x )=ln x -ax (a ∈R ).讨论函数f (x )在定义域内极值点的个数.【分析】运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.【解析】函数的定义域为(0,+∞),f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点;当a >0时,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0,当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点,当a >0时,函数y =f (x )有一个极大值点,且为x =1a .【变式14】 已知函数f (x )=ln x -ax (a ∈R ). (1)求函数f (x )的单调区间;(2)当a >0时,求函数f (x )在[1,2]上的最小值.【分析】求最值一般步骤:第一步:(求导数)求函数f (x )的导数f ′(x );第二步:(求极值)求 f (x )在给定区间上的单调性和极值;第三步:(求端点值)求f (x )在给定区间上的端点值; 第四步:(求最值)将f (x )的各极值与f (x )的端点值进比较,确定f (x )的最大值与最小值; 【解析】(1)f ′(x )=1x-a (x >0),①当a ≤0时,f ′(x )=1x -a >0,即函数f (x )的单调递增区间为(0,+∞)②当a >0时,令f ′(x )=1x -a =0,可得x =1a,当0<x <1a 时,f ′(x )=1-ax x >0;当x >1a 时,f ′(x )=1-ax x <0,故函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ 综上可知,当a ≤0时,函数f (x )的单调递增区间为(0,+∞);当a >0时,函数f (x )的单调递增区间为⎝⎛⎭⎫0,1a ,单调递减区间为⎝⎛⎭⎫1a ,+∞ (2)①当1a ≤1,即a ≥1时,函数f (x )在[1,2]上是减函数,所以f (x )的最小值是f (2)=ln 2-2a .②当1a ≥2,即0<a ≤12时,函数f (x )在[1,2]上是增函数,所以f (x )的最小值是f (1)=-a③当1<1a <2,即12<a <1时,函数f (x )在⎣⎡⎦⎤1,1a 上是增函数,在⎣⎡⎦⎤1a ,2上是减函数. 又f (2)-f (1)=ln 2-a ,所以当12<a <ln 2时,最小值是f (1)=-a当ln 2≤a <1时,最小值为f (2)=ln 2-2a .[11分]综上可知,当0<a <ln 2时,函数f (x )的最小值是f (1)=-a当a ≥ln 2时,函数f (x )的最小值是f (2)=ln 2-2a角度七:利用极值或最值求参数的取值或范围【例题7】函数f (x )=ax +ln x ,a 为常数,若f (x )在区间(0,e]上最大值为-3,求a 值.【分析】求函数在无穷区间(或开区间)上最值,不仅要研究极值情况,还要研究单调性,通过单调性和极值情况,画出函数的大致图象,借助图象得到最值. 【解析】f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎡⎭⎫1e,+∞. ①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数,∴f (x )max =f (e)=a e +1≥0,舍去.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a ;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a<x ≤e.从而f (x )在⎝⎛⎭⎫0,-1a 上为增函数,在⎝⎛⎦⎤-1a ,e 上为减函数,∴f (x )max =f ⎝⎛⎭⎫-1a =-1+ln ⎝⎛⎭⎫-1a . 令-1+ln ⎝⎛⎭⎫-1a =-3,得ln ⎝⎛⎭⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.【变式15】 若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上有极值点,则实数a 的 取值范围是________.【解析】函数f (x )在区间⎝⎛⎭⎫12,3上有极值点等价于f ′(x )=0有2个不相等的实根且在⎝⎛⎭⎫12,3内有根, 由f ′(x )=0有2个不相等的实根,得a <-2或a >2. 由f ′(x )=0在⎝⎛⎭⎫12,3内有根,得a =x +1x 在⎝⎛⎭⎫12,3内有解, 又x +1x ∈⎣⎡⎭⎫2,103,所以2≤a <103.综上,a 的取值范围是⎝⎛⎭⎫2,103.【变式16】 已知函数f (x )=-x 3+ax 2-4在x =2处取得极值,若m ∈[-1,1],则f (m )的 最小值是________.【解析】f ′(x )=-3x 2+2ax ,由f (x )在x =2处取得极值知f ′(2)=0,即-3×4+2a ×2=0,故a =3.由此可得f (x )=-x 3+3x 2-4. f ′(x )=-3x 2+6x ,由此可得f (x )在(-1,0)上单调递减,在(0,1)上单调递增, ∴当m ∈[-1,1]时,f (m )min =f (0)=-4.【变式17】 设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围.【解析】(1)由f ′(x )=ln x -2ax +2a ,可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x.又a >0,当x ∈⎝⎛⎭⎫0,12a 时,g ′(x )>0,函数g (x )递增,当x ∈⎝⎛⎭⎫12a ,+∞时,g ′(x )<0,函数g (x )递减. ∴函数y =g (x )的单调递增区间为⎝⎛⎭⎫0,12a ,单调递减区间为⎝⎛⎭⎫12a ,+∞. (2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝⎛⎭⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝⎛⎭⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝⎛⎭⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝⎛⎭⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意.综上可知,实数a 的取值范围为⎝⎛⎭⎫12,+∞.角度八:证明或判定不等式大小【例题8】已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 【解析】因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数, 所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A.【变式18】 已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2 019)>(m -2 019)f (2),则实数m 的取值范围为 【解析】令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0,∴函数h (x )在(0,+∞)上单调递减, ∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2).∴m -2 019<2且m -2 019>0,得2 019<m <2 021.∴实数m 的取值范围为(2 019,2 021).【变式19】 设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是__________________. 【解析】∵当x >0时,⎣⎡⎦⎤f (x )x ′=x ·f ′(x )-f (x )x 2<0,∴φ(x )=f (x )x 在(0,+∞)减函数,φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).角度九:不等式恒成立求参数的取值范围【例题9】已知函数f (x )=x ln x (x >0).(1)求f (x )的单调区间和极值;(2)若对任意x ∈(0,+∞),f (x )≥-x 2+mx -32恒成立,求实数m 的最大值.【解析】(1)由f (x )=x ln x (x >0),得f ′(x )=1+ln x , 令f ′(x )>0,得x >1e ;令f ′(x )<0,得0<x <1e.∴f (x )的单调增区间是⎝⎛⎭⎫1e ,+∞,单调减区间是⎝⎛⎭⎫0,1e . 故f (x )在x =1e 处有极小值f ⎝⎛⎭⎫1e =-1e,无极大值. (2)由f (x )≥-x 2+mx -32及f (x )=x ln x ,得m ≤2x ln x +x 2+3x恒成立,问题转化为m ≤⎝⎛⎭⎫2x ln x +x 2+3x min .令g (x )=2x ln x +x 2+3x (x >0),则g ′(x )=2x +x 2-3x 2,由g ′(x )>0⇒x >1,由g ′(x )<0⇒0<x <1.所以g (x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以g (x )min =g (1)=4,因此m ≤4,所以m 的最大值是4.【变式20】 已知函数f (x )=e x -1-x -ax 2.(1)当a =0时,求证:f (x )≥0;(2)当x ≥0时,若不等式f (x )≥0恒成立,求实数a 范围. 【证明】(1) 当a =0时,f (x )=e x -1-x ,f ′(x )=e x -1. 当x ∈(-∞,0)时,f ′(x )<0;当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,0)上单调递减,在(0,+∞)上单调递增,f (x )min =f (0)=0,∴f (x )≥0. 【解析】(2) f ′(x )=e x -1-2ax ,令h (x )=e x -1-2ax ,则h ′(x )=e x -2a .①当2a ≤1,a ≤12时,在[0,+∞)上,h ′(x )≥0,h (x )递增,h (x )≥h (0),f ′(x )≥f ′(0)=0,∴f (x )在[0,+∞)上为增函数,∴f (x )≥f (0)=0,∴当a ≤12时满足条件.②当2a >1,即a >12时,令h ′(x )=0,解得x =ln(2a ),在[0,ln(2a ))上,h ′(x )<0,h (x )递减,∴当x ∈(0,ln(2a ))时,有h (x )<h (0)=0,即f ′(x )<f ′(0)=0,∴f (x )在(0,ln(2a ))上为减函数, ∴f (x )<f (0)=0,不合题意.综上,实数a 的取值范围为⎝⎛⎦⎤-∞,12. 【变式21】 已知函数f (x )=sin xx (x ≠0).(1)判断函数f (x )在区间⎝⎛⎭⎫0,π2上的单调性; (2)若f (x )<a 在区间⎝⎛⎭⎫0,π2上恒成立,求实数a 的最小值.【分析】利用导数研究含参数的不等式问题,若能够分离参数,则常将问题转化为形如 a ≥f (x )(或a ≤f (x ))的形式,通过求函数y =f (x )的最值求得参数范围. 【解析】(1)f ′(x )=x cos x -sin xx 2,令g (x )=x cos x -sin x ,x ∈⎝⎛⎭⎫0,π2,则g ′(x )=-x sin x , 当x ∈⎝⎛⎭⎫0,π2时,g ′(x )=-x sin x <0,即函数g (x )在区间⎝⎛⎭⎫0,π2上单调递减,且g (0)=0. g (x )在区间⎝⎛⎭⎫0,π2恒小于零,f ′(x )在区间⎝⎛⎭⎫0,π2上恒小于零,函数f (x )在区间⎝⎛⎭⎫0,π2上递减. (2)不等式f (x )<a ,x ∈⎝⎛⎭⎫0,π2恒成立,即sin x -ax <0恒成立. 令φ(x )=sin x -ax ,x ∈⎝⎛⎭⎫0,π2,则φ′(x )=cos x -a ,且φ(0)=0. 当a ≥1时,在区间⎝⎛⎭⎫0,π2上φ′(x )<0,即函数φ(x )单调递减, 所以φ(x )<φ(0)=0,故sin x -ax <0恒成立.当0<a <1时,φ′(x )=cos x -a =0在区间⎝⎛⎭⎫0,π2上存在唯一解x 0, 当x ∈(0,x 0)时,φ′(x )>0,故φ(x )在区间(0,x 0)上单调递增,且φ(0)=0, 从而φ(x )在区间(0,x 0)上大于零,这与sin x -ax <0恒成立相矛盾.当a ≤0时,在区间⎝⎛⎭⎫0,π2上φ′(x )>0,即函数φ(x )单调递增,且φ(0)=0,得sin x -ax >0恒成立,这与sin x -ax <0恒成立相矛盾.故实数a 的最小值为1.角度十:不等式能成立求参数的取值范围【例题10】 函数f (x )=m ⎝⎛⎭⎫x -1x -2ln x (m ∈R ),g (x )=-mx ,若至少存在一个x 0∈[1,e],使得f (x 0)<g (x 0)成立,求实数m 的取值范围.【解析】依题意,不等式f (x )<g (x )在[1,e]上有解, ∴mx <2ln x 在区间[1,e]上有解,即m 2<ln xx能成立.令h (x )=ln xx ,x ∈[1,e],则h ′(x )=1-ln x x 2.当x ∈[1,e]时,h ′(x )≥0,h (x )在[1,e]上是增函数,∴h (x )的最大值为h (e)=1e .由题意m 2<1e ,即m <2e 时,f (x )<g (x )在[1,e]上有解.∴实数m 的取值范围是⎝⎛⎭⎫-∞,2e .【变式22】 已知函数f (x )=ln x -ax +1-a x -1(a ∈R ).设g (x )=x 2-2bx +4,当a =14时,若∀x 1∈(0,2),总存在x 2∈[1,2],使f (x 1)≥g (x 2),求实数b 的取值范围.【解析】依题意知f (x )在(0,2)上的最小值不小于g (x )在[1,2]上的最小值,即f (x )min ≥g (x )min . 当a =14时,f (x )=ln x -14x +34x -1,所以f ′(x )=1x -14-34x 2=-(x -1)(x -3)4x 2,则当0<x <1时,f ′(x )<0,当1<x <2时,f ′(x )>0,所以当x ∈(0,2)时,f (x )min =f (1)=-12.又g (x )=x 2-2bx +4,①当b <1时,可求得g (x )min =g (1)=5-2b ,则5-2b ≤-12,解得b ≥114,这与b <1矛盾;②当1≤b ≤2时,可求得g (x )min =g (b )=4-b 2,则4-b 2≤-12,得b 2≥92,与1≤b ≤2矛盾;③当b >2时,可求得g (x )min =g (2)=8-4b ,由8-4b ≤-12,得b ≥178.综合①②③得实数b 的取值范围是⎣⎡⎭⎫178,+∞.【变式23】 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围. 【解析】(1)当a =1时,f (x )=x 3-x 2+10,所以f ′(x )=3x 2-2x ,所以k =f ′(2)=8.又f (2)=14,所以切线方程为y =8x -2. (2)由已知得:a >x 3+10x 2=x +10x 2至少有一个实数x 使之成立,即a >⎝⎛⎭⎫x +10x 2min . 设g (x )=x +10x 2(1≤x ≤2),则g ′(x )=1-20x3,因为1≤x ≤2,所以g ′(x )<0.所以g (x )在[1,2]上是减函数,所以g (x )min =g (2)=92,a >92,即a 的取值范围是⎝⎛⎭⎫92,+∞.角度十一:判定零点个数问题【例题11】 已知函数f (x )=a +x ·ln x (a ∈R ),试求f (x )的零点个数. 【解析】f ′(x )=(x )′ln x +x ·1x =x (ln x +2)2x ,令f ′(x )>0,解得x >e -2,令f ′(x )<0,解得0<x <e -2,所以f (x )在(0,e -2)上单调递减,在(e -2,+∞)上单调递增.f (x )min =f (e -2)=a -2e ,显然当a >2e 时,f (x )min >0,f (x )无零点,当a =2e 时,f (x )min =0,f (x )有1个零点,当a <2e 时,f (x )min <0,f (x )有2个零点.【变式24】 设函数f (x )=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3的零点的个数.【解析】(1)由题设,当m =e 时,f (x )=ln x +ex ,则f ′(x )=x -ex2(x >0),由f ′(x )=0,得x =e.∴当x ∈(0,e)时,f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞)时,f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee=2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x ≥0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减.∴x =1是φ(x )的唯一极值点,且是极大值点,因此x =1也是φ(x )的最大值点, ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点.综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.角度十二:根据零点个数求参数的取值范围【例题12】 已知函数f (x )=ax 2(a ∈R ),g (x )=2ln x ,且方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围.【解析】由已知可得方程a =2ln xx2在区间[2,e]上有两个不等解,令φ(x )=2ln xx 2,由φ′(x )=2(1-2ln x )x 3易知φ(x )在(2,e)为增函数,在(e ,e)为减函数,则φ(x )max =φ(e)=1e ,由于φ(e)=2e 2,φ(2)=ln 22,φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 22e 2e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2).所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时,a 的取值范围为⎣⎡⎭⎫ln 22,1e .【变式25】 已知函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103. (1)求函数f (x )的单调递增区间;(2)若函数g (x )=f (x )-2m +3有3个零点,求m 的取值范围. 【解析】(1)因为函数f (x )=a 6x 3-a4x 2-ax -2的图象过点A ⎝⎛⎭⎫4,103, 所以32a 3-4a -4a -2=103,解得a =2,即f (x )=13x 3-12x 2-2x -2,所以f ′(x )=x 2-x -2.由f ′(x )>0,得x <-1或x >2.所以函数f (x )的单调递增区间是(-∞,-1),(2,+∞). (2)由(1)知f (x )极大值=f (-1)=-13-12+2-2=-56,f (x )极小值=f (2)=83-2-4-2=-163,由数形结合,可知要使函数g (x )=f (x )-2m +3有三个零点,则-163<2m -3<-56,解得-76<m <1312.所以m 的取值范围为⎝⎛⎭⎫-76,1312.【变式26】 已知函数f (x )=x ln x ,g (x )=-x 2+ax -3(a 为实数),若方程g (x )= 2f (x )在区间⎣⎡⎦⎤1e ,e 上有两个不等实根,求实数a 的取值范围. 【解析】由g (x )=2f (x ),可得2x ln x =-x 2+ax -3,a =x +2ln x +3x ,设h (x )=x +2ln x +3x (x >0),所以h ′(x )=1+2x -3x 2=(x +3)(x -1)x 2.所以x 在⎣⎡⎦⎤1e ,e 上变化时,h ′(x ),h (x )的变化情况如下:又h ⎝⎛⎭⎫1e =1e +3e -2,h (1)=4,h (e)=3e +e +2.且h (e)-h ⎝⎛⎭⎫1e =4-2e +2e<0. 所以h (x )min =h (1)=4,h (x )max =h ⎝⎛⎭⎫1e =1e +3e -2,所以实数a 的取值范围为4<a ≤e +2+3e , 即a 的取值范围为⎝⎛⎦⎤4,e +2+3e . 、【变式27】 函数f (x )=(3-a )x -2ln x +a -3在⎝⎛⎭⎫0,14上无零点,求实数a 的取值范围. 【解析】当x 从0的右侧趋近于0时,f (x )→+∞,所以f (x )<0在⎝⎛⎭⎫0,14上恒成立不可能.故要使f (x )在⎝⎛⎭⎫0,14上无零点,只需对任意的x ∈⎝⎛⎭⎫0,14,f (x )>0恒成立,需x ∈⎝⎛⎭⎫0,14时,a >3-2ln x x -1恒成立.令h (x )=3-2ln x x -1,x ∈⎝⎛⎭⎫0,14, 则h ′(x )=2ln x +2x -2(x -1)2,再令m (x )=2ln x +2x -2,x ∈⎝⎛⎭⎫0,14,则m ′(x )=-2(1-x )x 2<0, 于是在⎝⎛⎭⎫0,14上m (x )为减函数,故m (x )>m ⎝⎛⎭⎫14=6-4ln 2>0,所以h ′(x )>0在⎝⎛⎭⎫0,14恒成立, 所以h (x )在⎝⎛⎭⎫0,14上为增函数,所以h (x )<h ⎝⎛⎭⎫14在⎝⎛⎭⎫0,14上恒成立. 又h ⎝⎛⎭⎫14=3-163ln 2,所以a ≥3-163ln 2,故实数a 的取值范围是⎣⎡⎭⎫3-163ln 2,+∞.角度十三:零点综合问题【例题13】 若函数f (x )=2x 3-ax 2+1(a ∈R )在区间(0,+∞)内有且只有一个零点,求f (x )在[-1,1]上的最大值与最小值的和.【解析】f ′(x )=6x 2-2ax =2x (3x -a )(a ∈R ),当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,则f (x )在(0,+∞)上单调递增,又f (0)=1, 所以此时f (x )在(0,+∞)内无零点,不满足题意. 当a >0时,由f ′(x )>0得x >a 3,由f ′(x )<0得0<x <a3,则f (x )在⎝⎛⎭⎫0,a 3上递减,在⎝⎛⎭⎫a3,+∞上递增,又f (x )在(0,+∞)内有且只有一个零点, 所以f ⎝⎛⎭⎫a 3=-a 327+1=0,得a =3,所以f (x )=2x 3-3x 2+1,则f ′(x )=6x (x -1), 当x ∈(-1,0)时,f ′(x )>0,f (x )单调递增,当x ∈(0,1)时,f ′(x )<0,f (x )单调递减.则f (x )max =f (0)=1,f (-1)=-4,f (1)=0,则f (x )min =-4,所以f (x )在[-1,1]上的最大值与最小值的和为-3.【变式28】 已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的单调递增区间;(2)当0<-1a <e 时,若f (x )在区间(0,e)上的最大值为-3,求a 的值;(3)当a =-1时,试推断方程|f (x )|=ln x x +12是否有实数根. 【解析】(1)由已知可知函数f (x )的定义域为{x |x >0}, 当a =-1时,f (x )=-x +ln x (x >0),f ′(x )=1-xx(x >0); 当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0。
(完整版)导数的概念与计算练习题带答案.docx
导数概念与计算1.若函数 f ( x) ax4bx2 c ,足 f '(1) 2 , f '(1)()A .1B.2C.2D. 02.已知点P在曲 f (x)x4x 上,曲在点P的切平行于直 3 x y0 ,点P的坐()A . (0,0)B.(1,1)C.(0,1)D. (1,0)3.已知 f ( x) x ln x ,若 f'(x0 ) 2 , x0()A . e2B. e C. ln 2D.ln224.曲 y e x在点 A(0,1) 的切斜率()A . 1B. 2C. e D.1e5. f 0 ( x)sin x , f1 ( x)f0'( x) , f 2 ( x)f1 '(x) ,⋯, f n1 ( x)f n '(x) ,n N ,f2013( x)等于()A .sin x B.sin x C. cosx D. cosx6.已知函数 f (x) 的函数 f '( x) ,且足 f ( x)2xf'(1) ln x, f '(1)()A . e B.1C.1D. e7.曲 y ln x 在与 x 交点的切方程________________ .8.原点作曲 y e x的切,切点的坐________,切的斜率 ____________.9.求下列函数的数,并尽量把数形因式的或商的形式:( 1) f (x) ax 1( 2) f (x)e x2ln x1 ax2 x( 3) f (x) x1ax2ln(1 x)( 4) y xcos x sin x2( 5) y xe1 cos x( 6) y e x1e x110.已知函数 f ( x) ln( x 1)x .(Ⅰ)求 f (x) 的单调区间;(Ⅱ)求证:当 x 1 时,11ln( x 1) x .x111.设函数 f (x)ax b ,曲线y f (x)在点(2, f (2))处的切线方程为7 x 4 y120 .x(Ⅰ)求 f ( x)的解析式;(Ⅱ)证明:曲线y f (x)上任一点处的切线与直线x0 和直线y x 所围成的三角形面积为定值,并求此定值.12.设函数 f (x) x2e x xe x.(Ⅰ)求 f (x) 的单调区间;(Ⅱ)若当x [ 2,2] 时,不等式 f (x) m 恒成立,求实数m 的取值范围.导数作业 1 答案——导数概念与计算1.若函数 f ( x)ax4bx2 c ,足 f '(1) 2 , f '( 1) ()A .1B.2C.2D. 0B .2.已知点P在曲 f (x)x4x 上,曲在点P的切平行于直 3 x y0 ,点P的坐()A . (0,0)B. (1,1)C. (0,1)D. (1,0)解:由意知,函数43-1= 3,f( x)= x - x 在点 P 的切的斜率等于3,即 f ′( x0)= 4x0∴x0=1,将其代入 f ( x)中可得 P(1,0). D .3.已知 f ( x)x ln x ,若 f '(x0 ) 2 , x0()A . e2B. e C. ln 22解: f(x)的定域(0,+∞),f′( x)= ln x+ 1,由 f′( x0)= 2,即ln x0+ 1= 2,解得 x0=e.D.ln2B .4.曲 y e x在点 A(0,1) 的切斜率()A . 1B. 2C. e 解:∵ y′= e x,故所求切斜率k= e x|x=0= e0= 1.A .D.1e5. f 0 ( x)sin x , f1 ( x) f0'( x) , f 2 ( x)f1 '(x) ,⋯, f n 1 ( x)f n '(x) ,n N ,f2013( x)等于()A .sin x B.sin x C. cosx D.cosx解:∵ f0( x)= sin x, f1( x)= cos x,f2( x)=- sin x,f 3( x)=- cos x, f4( x)= sin x,⋯∴f n( x)= f n+4( x),故 f2 012( x)= f0( x)= sin x,∴f2 013( x)= f′2012( x)= cos x.C.6.已知函数 f (x) 的函数 f '( x) ,且足 f ( x) 2xf '(1) ln x , f '(1)()A .e B.1C.1D. e解:由 f( x)= 2xf′( 1)+ ln x,得 f′(x)= 2f′(1)+1,x∴f ′( 1)= 2f ′( 1)+ 1,则 f ′( 1)=- 1.选 B .7.曲线 y ln x 在与 x 轴交点的切线方程为 ________________ .解:由 y = ln x 得, y ′= 1,∴ y ′|=x x 1= 1,∴曲线 y =ln x 在与 x 轴交点( 1,0)处的切线方程为y =x - 1,即 x - y - 1= 0.8.过原点作曲线 y e x 的切线,则切点的坐标为________,切线的斜率为 ____________.解:y ′= e x,设切点的坐标为 ( x 0,y 0)则y 0= ex 0,即 ex 0= ex 0,∴ x 0= 1.因此切点的坐标为( 1,x 0 x 0e ),切线的斜率为 e.9.求下列函数的导数,并尽量把导数变形为因式的积或商的形式:1 ( 1) f (x)ax2ln xxe x(2)f (x)1 ax 2( 3) f (x) x1 ax2 ln(1 x)2 ( 4) y xcos xsin x∵ y =xcos x - sin x ,∴ y ′= cos x - xsin x - cos x =- xsin x.( 5) yxe 1 cos x∵ y =xe 1-cos x ,∴ y ′= e 1-cos x +xe 1 -cos x ( sin x )=( 1+ xsin x ) e 1 -cos x .x1( 6) yee x 1e x + 12 ∴ y ′=- 2x- 2e xy = x= 1+ xx e= x .e - 1e -1 (e - 1)2(e - 1)210.已知函数 f ( x) ln( x 1) x .(Ⅰ)求 f (x) 的单调区间;(Ⅱ)求证:当 x1 时, 11 ln( x 1) x .x1解:( 1)函数 f ( x )的定义域为(- 1,+ ∞).1-x f ′( x )= x +1- 1= x + 1f ′( x )与 f ( x )随 x 变化情况如下:x (- 1,0) 0( 0,+ ∞)f ′( x ) + 0 -f (x )因此 f ( x )的递增区间为(-1,0),递减区间为( 0,+ ∞).(2)证明由( 1) 知 f ( x ) ≤f ( 0).即 ln (x + 1) ≤x设 h ( x )= ln (x + 1)+1- 1x + 1h ′( x )= 1-1 2=x 2x + 1x + 1x +1可判断出 h ( x )在(- 1,0)上递减,在( 0,+ ∞)上递增.因此 h ( x )≥h ( 0)即 ln ( x + 1)≥1-1x + 1.1所以当 x>- 1 时 1-x + 1≤ ln ( x + 1)≤x.11.设函数 f (x)axb,曲线 y f (x) 在点 (2, f (2)) 处的切线方程为 7 x 4 y12 0 .x(Ⅰ)求 f ( x) 的解析式;(Ⅱ)证明:曲线y f (x) 上任一点处的切线与直线x0 和直线 yx 所围成的三角形面积为定值,并求此定值.(1)解方程 7x - 4y - 12= 0 可化为 y =7x - 3,42a - b = 1,当 x = 2 时, y = 1 .又 f ′( x )= a + b2 ,于是222x b = 7,a +44a =1, 3解得故 f ( x )= x - .b = 3.x(2)证明 设 P (x 0 ,y 0)为曲线上任一点,由 f ′( x )= 1+ 32知,曲线在点 P ( x 0, y 0 )处的切线方程为 y - y 0= 1+ 32 ( x -x 0),x x 0即 y - x 0- 3 = 1+ 32 ( x - x 0).xx令 x = 0 得, y =- 6,从而得切线与直线 x = 0 交点坐标为6.x 00,- x 0令 y = x ,得 y =x = 2x 0,从而得切线与直线y = x 的交点坐标为( 2x 0,2x 0).所以点 P ( x 0, y 0)处的切线与直线 x = 0, y = x 所围成的三角形面积为162- x 0 |2x 0|= 6.故曲线 y= f( x)上任一点处的切线与直线x=0 和直线 y= x 所围成的三角形面积为定值,此定值为 6.12.设函数 f (x) x2e x xe x.(Ⅰ)求 f (x) 的单调区间;(Ⅱ)若当 x[ 2,2]时,不等式 f (x) m 恒成立,求实数 m 的取值范围.解( 1)函数 f( x)的定义域为(-∞,+∞),f′( x)= 2x+e x-( e x+ xe x)= x( 2-e x),x(,0)0(0,ln 2)ln2(ln 2, )f '(x)-0+0-f (x)递减极小递增极大递减所以,递增区间为(0,ln2) ,递减区间为 (,0) 和 (ln 2,) .(2)由( 1)可知x2(2,0)0(0,ln 2)ln2(ln 2,2)2f '( x)-0+0-f ( x)递减极小递增极大递减因为, f (0) 1, f (2)4e22e2 4 e21所以, f (x)min f (2)4e2故 m 4 e2.。
高三数学之导数的概念与切线问题,含参考答案
导数的概念与切线问题一.导数的定义与几何意义导数的定义函数)(x f y =在0x x =处的导数:称函数)(x f y =在0x x =处的瞬时变化率xx f x x f xy x x ∆-∆+=∆∆→∆→∆)()(lim lim 000为函数)(x f y =在0x x =处的导数,记作)(0'x f 或,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(lim lim )('00000函数)(x f 的导函数:称函数xx f x x f x f x ∆-∆+=→∆)()(lim )('0000为)(x f 的导函数.导数的几何意义函数)(x f 在0x x =处的导数)(0'x f 是曲线)(x f y =在点P()(,00x f x )处的切线的斜率k ,即k=)(0'x f 注:曲线)(x f y =在点处的切线是指P()(,00x f x )为切点斜率为k =)(0'x f 的切线,是唯一的一条切线;曲线)(x f y =过点P()(,00x f x )的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.二.导数的运算基本初等函数的导数公式①_____)(',)(==x f C x f ;②_____)(',)(==x f x x f α③_____)(',sin )(==x f x x f ;④_____)(',cos )(==x f x x f ⑤_____)(',)(==x f a x f x;⑥_____)(',)(==x f e x f x⑦_____)(',log )(==x f x f x a ;⑧_____)(',ln )(==x f x x f 导数的运算法则①_________)]'()([=±x g x f ;②_________)]'()([=⋅x g x f ③_________]')()([=x g x f ;④_________)]'([=x Cf ⑤复合函数的导数,复合函数))((x g f y =,设)(x g u =,则)'()'('x u u f y ⋅=导数的概念与公式应用例1已知4)2(',3)2(==f f ,则_______6)42()22(lim=-++-→xx f x f x 解:注意到0→x ,根据导数的定义,需构造8)2('2)('4)2('24)2()42(lim 42)2()22(lim 2)2()42(lim)2()22(lim )2()42()2()22(lim 6)42()22(lim000000==+-=-++----=-++--=-++--=-++-→→→→→→f x f f xf x f x f x f xf x f x f x f x f x f f x f x x f x f x x x x x x 练习11.已知函数f (x )=2ln(3x )+8x ,则xf x f x ∆-∆-→∆)1()21(lim的值为()A .10B .-10C .-20D .202.若c bx ax x f ++=24)(满足2)1('=f ,则=-)1('f ()A.-4B.-2C.2D.43.已知对任意实数x ,有)()(),()(x g x g x f x f =--=-,且x >0时,0)(',0)('>>x g x f ,则x<0时,()A.0)(',0)('>>x g x fB.0)(',0)('<>x g x fC.0)(',0)('><x g x f D.0)(',0)('<<x g x f 导数的基本运算例2已知x x x f x f 4)1(')(23-+=,则_______)(=x f 解:直接求导得42)1('3)('2-+=x x f x f ,令x =1,得2)1('3)1('-=f f 即有1)1('=f ,故xx x x f 43)(23-+=练习21.函数x x f 2sin )(=的导数_______)('=x f 2.函数)1cos()(2x x f +=的导数_______)('=x f 3.等比数列}{n a 中,8,281==a a 函数)).....()(()(821a x a x a x x x f ---=,则_______)0('=f4.函数)(x f 的导数为)('x f ,满足x x xf x f ln )('2)(+=,则_______)1('=f5.函数x x x f cos sin )(-=,且)(21)('x f x f =,则tan2x 的值是________6.函数142cos 3sin 3)(23-++=x x x x f θθ,]65,0[πθ∈,导数)1('-f 的取值范围是()A.]34,3[+ B.]6,3[ C.]634[,- D.3434[+- 导数的几何意义例3曲线12-=x xy 在点(1,1)处的切线方程为_________解:求导22)12(1)12(2)12('--=---=x x x x y ,当x =1时,1'-=y ,故切线方程为y=-x +2练习31.曲线xy 1=和y=x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________2.设函数2)()(x x g x f +=,曲线)(x g y =在点))1(,1(g 处的切线方程为12+=x y ,则曲线)(x f y =在))1(,1(f 处的切线的方程为________3.已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程是()A.y =2x -1B.y=xC.y =3x -2D.y =-2x +34.若存在过点(1,0)的直线与曲线3x y =和94152-+=x ax y 都相切,则a 等于()A.-1或6425-B.-1或421 C.642547--或 D.747或-5.若曲线x ax x f ln )(3+=存在垂直于y 轴的切线,则实数a 的取值范围是_______6.曲线x y ln =上的点到直线y=x +3的最短距离为_________7.已知直线y =2x -2为曲线ax x x f -=3)(的一条切线,则a =__________切线问题的综合应用例4已知函数*)()(1N n xx x f n n∈-=+,曲线)(x f y =在点))2(,2(f 处的切线与y 轴的交点的纵坐标为n b ,则数列}{n b 的前n 项和为____解:求导得n n x n nxx f )1()('1+-=-,x =2时,112)2(2)1(2)2('--+-=⋅+-⋅=n n n n n n f ,n n n f 222)2(1-=-=+,切线方程为n n x n y 2)2(2)2(1--+-=-,令x =0得y=nnnn n y 2)1(22)2(+=-+=,nn n b 2)1(+=,前n 项和n n n n n 2)1(2....242322S 132⋅++⋅+⋅+⋅+⋅=-;14322)1(2....2423222S +⋅++⋅+⋅+⋅+⋅=n n n n n ,两式相减得12S +⋅=n n n 练习41.若曲线)0(ln ≠=a x a y 与曲线221x e y =在它们的公共点P(s ,t)处具有公共切线,则=ts_______2.已知曲线ax ey +=与2x y =恰好存在两条公切线,则实数a 的取值范围是_________3.已知函数2)(x x f =的图像在点),(200x x 处的切线为l ,若l 也与函数的图像)1,0(ln ∈=x x y ,相切,则0x 必满足()A.2100<<x B.1210<<x C.2220<<x D.320<<x4.点P 是曲线x x y ln 2-=上的任意一点,则点P 到直线2-=x y 的最小距离是__________5.若曲线)ln(a x y +=的一条切线为b ex y +=,其中a,b 为正实数,则2++b ea 的取值范围是()A.),22(+∞+ee B.),[+∞e C.),2[+∞ D.)2[e , 课后检测1.已知函数1)(3++=x ax x f 的图像在点))1(,1(f 处的切线过点(2,7),则实数a =_________2.若点P 在曲线32)(3+-=x x x f 上移动,设点P 处切线的倾斜角为α,则α的取值范围是__________3.若曲线1)(2++=x ax x f 在点))1(,1(f 处的切线的倾斜角为43π,则实数a =_________4.若满足c bx ax x f ++=24)(满足2)1('=f ,则)1('-f =()A.-4B.-2C.2D.45.设函数)(x f 在R 上可导,x f x x f 3)2(')(2-=,则)1(-f 与)1(f 的大小关系是_________6.已知函数)(x f y =的图像在点))1(,1(M f 处的切线方程是221+=x y ,则)1(')1(f f +=_______7.已知函数xxy ln =在点))(,(m f m 处的切互平行于x 轴,则实数m =_________8.函数x e x f xsin 12)(++=,其导函数记为)('x f ,则)2018(')2018(')2018()2018(--+-+f f f f 的值为_________参考答案练习11.C 2.B 3.B 练习21.sin2x 2.2x sin(1+x 2)3.284.15.43 6.227.1练习31.e 2 2.)22ln 2,(--∞ 3.D4.25.C课后检测1.12.),43[)2,0[πππ⋃ 3.-1 4.B5.)1()1(f f >- 6.37.e 8.2。
导数的练习题及答案
导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
掌握导数的概念对于解决各种数学和物理问题至关重要。
在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。
练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。
解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。
在这个例子中,我们可以使用直接求导的方法来计算导数。
首先,我们对每一项使用求导法则。
对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。
然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。
所以,$f'(x) = 6x^2 - 10x + 3$。
接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。
将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。
所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。
练习题二:求函数 $y = e^x \sin(x)$ 的导数。
解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。
首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。
然后,我们求出每个函数的导数。
对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。
根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导数概念与计算42若函数f(x) ax bx c ,满足f '⑴ 2,贝y f'( 1)(已知点P 在曲线f(x) x 4 x 上,曲线在点P 处的切线平行于直线 3x y 0,则点P 的 坐标为( )A . (0,0)B . (1,1)C . (0,1)D . (1,0)已知f(x)xln x ,若 f '(X 。
) 2,则 X 。
()2In 2 D . In2A . eB . eC .2曲线y e r 在点 A(0,1)处的切线斜率为()A . 1B . 2C . e1 D .-e设 f °(x) sin x , f'x)f o '(x) , f 2(x) f 1 '(x),…,f n 1(x) f n '(x) , n N ,则 f 2013(X )等于( )A . si n xB . si nxC . cosxD . cosx 已知函数f (x)的勺导函数为f '(x),且满足 f(x :)2xf '(1) Inx ,则 f'(1)()A . eB . 1C . 1D . e曲线y Inx 在与x 轴交点的切线方程为 _____________________过原点作曲线y e x 的切线,则切点的坐标为 _____________ ,切线的斜率为 求下列函数的导数,并尽量把导数变形为因式的积或商的形式:(3) f (x) x ^ax 2 ln(1 x)2(5)yxe 1 cosx1. 2. 3. 4. 5.6. 7. &9.B . 2C . 2D . 0(1) f (x) ax 1 2ln xx(2) f(x)xe 21 ax(4) y xcosx sin x(6) y10. 已知函数 f(x) In(x 1) x .(I)求f (x)的单调区间;11.设函数f(x) ax —,曲线y f(x)在点(2, f(2))处的切线方程为 7x 4y 120 .x(I)求f (x)的解析式;(n)证明:曲线 y f (x)上任一点处的切线与直线x 0和直线y x 所围成的三角形面积为定值,并求此定值.12. 设函数 f(x) x 2 e x xe x .(I)求f (x)的单调区间;(n)若当x [ 2,2]时,不等式f (x) m 恒成立,求实数 m 的取值范围.(n)求证:当 x1时,1In(x 1) x .x 1B . 2 解:T y '= e x ,故所求切线斜率 k = e x |x = 0= e 0= 1. 选A .等于( )1. 2. 导数作业1答案一一导数概念与计算42若函数 f (x) ax bx c ,满足 f '(1) 2,贝y f'( 1)() B . 2D . 0已知点P 在曲线f(x) X 4 x 上,曲线在点P 处的切线平行于直线 3x y 0,则点P 的坐标为( )A . (0,0)B . (1,1)C . (0,1)D . (1,0)解:由题意知,函数 f (x )= x 4— x 在点P 处的切线的斜率等于 3,即 f (X 0)= 4x 3 — 1 = 3,• •• X0= 1,将其代入f (x )中可得 P (1,0).3.已知 f (x) xlnx , 若 f '(x 。
) 2,则 X 。
A . e 2B . ln 2 2D . ln2解:f (x )的定义域为(0,+ m ),f ( x ) = ln x + 1,由 f ' ( X 0) 即 =2, 4. ln X 0+ 1= 2,解得 X 0 = e.曲线y e x 在点A(0,1)处的切线斜率为(D .5.设 f °(x) sinx , fdx)f °'(x) , f 2(x) b'(x)…,f n 1(x)f n '(x), n N ,则 f 2013(x)A. sin xB. si nx cosx D. cosx解:T f0 (x)= sin x, f1 (x)= cos x,f2 (x)=—sin x, f3 (x)=—cos x, f4 (x) =sin x,-二f n ( x)= f n+4 ( X),故f2 012 ( x)= f0 ( X) =sin x,• f2 013 ( X)= f 2 012 ( X)= cos X.6.已知函数f (x)的导函数为f'(x),且满足f(x) 2xf '(1) lnx,贝U f'(1)( )B. 1D. e1解:由f(x)= 2xf' (1)+ ln x,得f' (x)= 2f' (1)+••• f' (1 )= 2f' (1)+ 1,则 f' (1 )=- 1. 选B .7.曲线y Inx 在与x 轴交点的切线方程为 _______________________ .1解:由y = In x 得,y '=y 'xt = 1,•曲线y = In x 在与x 轴交点(1,0)处的切线方程为xy = x - 1,即卩 x -y - 1 = 0.&过原点作曲线 y e x 的切线,则切点的坐标为 ______________ ,切线的斜率为 _____________ . 解: y = e x ,设切点的坐标为(x o , y o )则y0= ex 。
,即ex0= ex o , • x o = 1.因此切点的坐标为(1,x o x o e ),切线的斜率为e.9•求下列函数的导数,并尽量把导数变形为因式的积或商的形式:•' y = xcos x — sin x ,• y = cos x — xsin x — cos x =— xsin x. 1 cosx(5) y xe • y = xe 1—cos x,y = e 1 cos x + xe 1 cos x (sin x ) = ( 1 + xsin x )xe 1(6) y T —e 1 e x + 1 =2.=—y= e x — 1= 1 + e x — 1 …y = — 2(e x — 1)2_ (e x — 1)2. 10•已知函数 f(x) ln(x 1) x .(I)求f (x)的单调区间;1(n)求证:当 x 1 时,1ln (x 1)x 1解:(1 )函数f (X )的定义域为(一1,+ 7 .f ( x )与f ( x )随x 变化情况如下:(1)f(x)ax 1 2ln xx (2)f(x)xe 2 1 ax(3)f(x)x2ax2 ln(1 x)(4) y xcosx sinxe 1—cos x—2e x 1x + 1—x x + 1因此f (x )的递增区间为(一1,0),递减区间为(0,+〜.(2)证明由(1)知f (x )詣(0). 即 In (x + 1)氧设 h (x )= In (x + 1)——1 ------------ 1x + 1(2)证明 设P (X 0 , y 0)为曲线上任一点,即 y - X 0- — = 1 + 马(x -X 0).X 0 X 0令x = 0得,y =- 6,从而得切线与直线 x = 0交点坐标为0,- 6 .令y = X ,得y = x = 2X 0,从而得切线与直线 y = x 的交点坐标为(2x 0,2x 0).1所以点P (X 0, y 。
)处的切线与直线 x = 0, y = x 所围成的三角形面积为 o 故曲线y = f (x )上任一点处的切线与直线x = 0和直线y = x 所围成的三角形面积为定值,h' (x )1 x + 1可判断出h (x )在(—1,0)上递减,在(0,+ X)上递增. 因此 h (x )纬(0)即 In (x + 1) >1- 1 x + 1.1所以当 x >- 1 时 1-X +1 < ln ( X + 1)效11.设函数f(x) ax -,曲线y f(x)在点(2, f(2))处的切线方程为 7x 4y 120 .x(I)求f (x)的解析式;(n)证明:曲线 y f (x)上任一点处的切线与直线x 0和直线y x 所围成的三角形面积为定值,并求此定值.(1 )解 方程 7x -4y - 12 = 0 可化为 y = [x — 3,41 b当 x = 2 时,y = 2.又 f ' (x )= a + ,于是2a -2=*,b 7 a+4=4,解得a = 1,b = 3.故 f (x )x -x.由f (x )= 1 + $知,曲线在点 P (X 0, y 0)处的切线方程为y -y 0= 1 +1(X —X 0),|2X 0|= 6.此定值为6.12.设函数f(x) x2 e x xe x.(I)求f (x)的单调区间;(H)若当x [ 2,2]时,不等式f (x) m恒成立,求实数m的取值范围. 解(1)函数f (x)的定义域为(一g,+ x),x x x xf (x)= 2x(2 )所以,f(x)min f(2) 4 e2故m 4 e2.。