土壤中重金属全量测定方法

合集下载

土壤中重金属检测方法-王水消化法-详

土壤中重金属检测方法-王水消化法-详

土壤中重金屬檢測方法-王水消化法一、方法概要將已預處理的土壤樣品以鹽酸和硝酸混合,在室溫下靜置萃取16 小時,再加熱至沸騰並迴流2 小時。

萃出消化液經定量,再以適宜的原子光譜分析儀分析其濃度。

二、適用範圍本方法適用土壤或其他類似基質中鎘、鉻、鈷、銅、鉛、錳、鎳及鋅等重金屬含量之檢測。

三、干擾(一)本方法對於以王水無法消化完全之金屬氧化物,僅能得到部分消化萃取溶出的重金屬。

(二)樣品中所含之有機碳需少於20 (即200 g / kg,註1),否則應添加額外硝酸處理之。

(三)若在樣品乾燥的過程中會導致金屬的逸失,則改未乾燥的樣品進行消化。

(四)萃出消化液中含有高濃度的基質,會造成測定時光譜干擾或背景濃度的干擾。

四、設備及材料若實驗發現空白試驗值大於兩倍MDL 或同批次樣品中最低測定值之 5 時,則需將所使用之玻璃器皿小心浸入熱稀硝酸中至少 6 小時,然後以水清洗乾淨。

(一)前處理1.研磨器:以瑪瑙、氧化鋯或其他不干擾分析的材質製成。

可將乾燥土壤、底泥等樣品研磨至粒徑小於0.150 mm 且容易清理者。

2.標準篩網:孔目為0.150 mm(100 mesh),以不銹鋼或尼龍材質製成。

3.分析天平:可精秤至0.1 mg。

(二)消化處理1.反應瓶:容積250 mL。

2.冷凝管:長度約為340 mm,可於冷凝管底部三分之一處達迴流效果之冷凝設備,或如圖一所示。

3.玻璃珠:直徑2 至3 mm 的圓珠,或其他型式的沸石。

4.溫度控制加熱器:可加熱反應瓶至所需的迴流溫度。

5.濾紙:定性中等細孔規格,如Whatman No. 40 或同級品。

6.量瓶:100 mL。

7.移液管。

(三)測試儀器1.火燄式原子吸收光譜儀:參考「火燄式原子吸收光譜法」。

2.電熱式原子吸收光譜儀:參考「原子吸收光譜法」。

3.感應耦合電漿原子發射光譜儀(ICP)或感應耦合電漿質譜儀(ICP - MS)。

五、試劑檢測時使用的試劑除非另有說明外,必須是分析試藥級。

【精品推荐】土壤重金属的测定方法

【精品推荐】土壤重金属的测定方法

土壤重金属的测定方法
小编希望土壤重金属的测定方法这篇文章对您有所帮助,如有必要请您下载收藏以便备查,接下来我们继续阅读。

本文概述:土壤重金属检测是土壤的常规监测项目之一,采用合理的土壤重金属检测方法,能快速有效地对土壤重金属检测和污染评价,下面带您了解一下土壤重金属的测定方法。

常用的土壤重金属检测方法有原子荧光光谱法、原子吸收光谱法、电感耦合等离子体发射光谱、激光诱导击穿光谱法和X射线荧光光谱等。

1.原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。

利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律,通过测定荧光的强度即可求出待测样品中该元素的含量。

2.原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。

3.电感耦合等离子体发射光谱是根据被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射的存在及其强度的大小,对各元素进行定性和定量分析。

土壤中重金属监测分析方法-原子吸收光谱法(AAS)

土壤中重金属监测分析方法-原子吸收光谱法(AAS)
固体土壤(约 占土壤总容积 的50%)
土 壤
粒间孔隙(约 占土壤总容积 的50%)
矿物质—来自岩石的风化,包括原生矿物和次 生矿物,约占固体重量的95%以上。土壤矿物质 的化学组成几乎包括地壳中所有的元素。其中 氧、硅、铝、铁、钙、镁、钠、钾、钛、碳等 10种元素占土壤矿物质总量的99%以上。而SiO2 、Al2O3、Fe2O3 占土壤矿物质总质量75% 。
(3.5)
GBW07427 华北平原 (GSS-13)
10.6±0.8 0.13±0.01 11.3±0.5
65±2 21.6±0.8 0.052±0.006 28.5±1.2 21.6±1.2
(0.99) 0.16±0.02
74±2 65±3
64.88±0.29 11.76±0.10 4.11±0.04 1.25±0.11 2.05±0.04
GBW07408 洛川黄土 (GSS-8)
12.7±1.1 0.13±0.02 12.7±1.1
68±6 24.3±1.2 0.017±0.003 31.5±1.8
21±2 1.0±0.2 0.10±0.01
81±5 68±4
58.61±0.13 11.92±0.15 4.48±0.05 1.22±0.05 2.38±0.07 8.27±0.12 1.72±0.04 2.42±0.04
▪精密度:是对同一试样进行多次测量所得结果的重复程度。精密度分 仪器精密度和方法精密度,后者由测定过程中的随机误差决定。
精密度RSD用下式表示:RSD=σ/A (σ对某试液多次测定的标准偏差,
A为多次测定的平均值)
▪ 特征浓度:为被分析元素产生 0.0044 (1 % )吸光度所需浓度。不同的仪 器,特征浓度不一 样。 可按下列公式计算: Char. Conc. = (标样浓度 * 0.0044) / 平均吸光度

测土壤重金属的方法

测土壤重金属的方法

测土壤重金属的方法测定土壤中重金属含量的方法有多种,根据实际需求和具体情况选择合适的方法进行分析。

下面将介绍几种常用的测定土壤重金属的方法。

1. 原子吸收光谱法(AAS)原子吸收光谱法是一种常用的测定土壤重金属含量的方法。

该方法基于原子在特定波长下对特定元素的吸收特性,利用光吸收的量与物质浓度成正比的原理,通过测量样品光吸收的强度来计算物质的浓度。

该方法精度高、准确性好,但是需要昂贵的设备和专业技术。

2. 原子荧光光谱法(AFS)原子荧光光谱法是一种高灵敏度的测定土壤重金属含量的方法。

该方法利用物质在光激发下发出的荧光光谱,通过测量荧光光谱强度来计算元素的浓度。

原子荧光光谱法准确性高,方法快速,适用于多种元素的测定。

3. 水浸提取法水浸提取法是一种常用的测定土壤重金属含量的方法。

该方法通过用水溶液将土壤中的重金属释放出来,再用合适的分析方法测定水中重金属的浓度,从而计算土壤中重金属元素的含量。

水浸提取法操作简单,成本较低,适用于大量样品的快速分析。

4. 酸溶提取法酸溶提取法是一种常用的测定土壤重金属含量的方法。

该方法通过用酸溶液将土壤中的重金属元素溶解出来,再用合适的分析方法测定酸溶液中重金属的浓度,从而计算土壤中重金属元素的含量。

酸溶提取法适用于多种重金属元素的测定,但是需要注意酸溶过程中可能会带来样品破坏和丢失。

5. 土壤重金属整体提取法土壤重金属整体提取法是一种全面测定土壤中重金属含量的方法。

该方法将土壤样品与一种强酸或混合酸进行提取,将土壤中的重金属元素完全溶解,再用适当的分析方法测定溶液中的重金属含量。

该方法适用于测定土壤中的各种重金属元素含量,但是操作较为复杂,需要一定的实验技术。

总结而言,测定土壤重金属含量的方法多种多样,根据具体需求选择合适的方法进行分析。

前述方法中,原子吸收光谱法和原子荧光光谱法精确性高,适用于单一元素的快速测定;水浸提取法和酸溶提取法操作相对简单,适用于多种元素的测定;土壤重金属整体提取法可用于全面测定土壤中重金属元素含量。

土壤重金属分析方法

土壤重金属分析方法

土壤重金属分析方法
土壤重金属分析方法可分为两种:化学分析和光谱分析。

化学分析方法:
1. 湿法消解法:将土壤样品与酸或碱等化学试剂混合,加热处理,待样品中的有机物和无机物溶解后,采用各种分析方法进行测定。

2. 烧结分析法:将土壤样品经高温烧结,将烧结物与稀酸或氯化物混合后进行测定。

3. 气象化学分析法:采用X射线荧光分析、原子吸收光谱分析等化学分析方法进行测定。

光谱分析方法:
1. 偏振荧光光谱法:用激光或者白光照射土壤样品,测量样品的荧光光谱,通过分析荧光光谱图来确定土壤中重金属的含量。

2. 近红外光谱法:利用近红外光谱的特征波峰和波谷来测定土壤中重金属的含量。

3. 原子发射光谱法:通过利用电极火花发射或离子源等方法将土壤样品中的重金属元素原子化,再将原子发射光谱图进行分析,可以精确测定土壤中重金属元素的含量。

土壤中重金属检测方法

土壤中重金属检测方法

土壤中重金属检测方法土壤中重金属是指地壳中含有一定量的稀有金属元素,具有较高的密度和相对较高的毒性。

由于人类活动的不当和工业排放等原因,土壤中重金属污染已成为全球环境问题之一。

为了保护土壤质量和人类健康,需要进行重金属的检测。

下面将介绍几种常见的土壤中重金属检测方法。

1. 原子吸收光谱法(AAS)原子吸收光谱法是一种常用的重金属检测方法。

该方法通过测量样品中重金属元素的吸光度,来分析重金属元素的含量。

首先,将土壤样品化学分解,提取重金属元素,然后将提取液用比色皿放入原子吸收光谱仪中进行测量。

该方法对于多种重金属元素的检测都具有较高的灵敏度和准确性。

2. X射线荧光光谱法(XRF)X射线荧光光谱法是一种无损检测方法,不需要样品的前处理,可以直接对土壤样品进行分析。

该方法通过射线照射样品,激发样品中的原子,使其发射特定的荧光光谱。

通过测量荧光光谱的强度和能量,可以确定样品中的重金属元素含量。

X射线荧光光谱法具有快速、准确和非破坏性等优点。

3. 电感耦合等离子体质谱法(ICP-MS)电感耦合等离子体质谱法是一种高灵敏度、高分辨率的分析方法。

它通过将土壤样品中的重金属元素离子化,然后通过质谱仪进行离子计数,从而确定重金属元素的含量。

ICP-MS可以同时测定多种元素,具有较高的灵敏度和准确性。

该方法适用于多元素分析,对于研究土壤中不同重金属元素的迁移和积累具有重要意义。

4. 石墨炉原子吸收光谱法(GFAAS)石墨炉原子吸收光谱法是一种分析重金属元素含量的常见方法。

该方法通过将土壤样品化学分解后进样到石墨炉中,然后加热石墨炉,使样品中的重金属元素蒸发和原子化,进而进行光谱测量。

石墨炉原子吸收光谱法具有较高的灵敏度和准确性,特别适用于低浓度、微量重金属元素的测定。

以上是几种常见的土壤中重金属检测方法,它们在实际应用中可以互相结合,以提高分析结果的准确性和可靠性。

在进行土壤重金属检测时,应根据具体情况选择适当的方法,并在实验过程中注意标准操作规程和安全措施,以保障检测结果的准确性和人员安全。

土壤中重金属检测方法—王水消化法

土壤中重金属检测方法—王水消化法

土壤中重金属检测方法—王水消化法实验目的:掌握王水消化法检测土壤中重金属的方法;练习使用原子吸收分光光度计;实验原理:使用王水消化法萃取土壤中的重金属,利用原子吸收分光光度计测定萃取液中各重金属的濃度,最後算出土壤中金屬元素含量。

实验步骤:1.取土壤樣品約 3 g(精秤至 1 mg),置於 250 mL 反應瓶中。

2.先以 0.5 至 1 mL 水潤濕樣品。

3.緩慢加入 21 mL 濃鹽酸,再慢慢加入 7 mL 濃硝酸,搖盪充分混合均勻。

若樣品加酸會產生強烈氣泡,則需小心逐滴加入。

4.將迴流冷凝管及反應瓶順序裝置如圖一。

在室溫下靜置此裝置 16 小時,可適時將反應瓶搖晃使充分反應之。

5.緩慢加熱溶液至迴流溫度,使溶液在沸騰狀態下維持約 2 小時。

加熱程度保持迴流區域在冷凝管高度三分之一以下。

6.冷卻樣品至室溫後,以約 10 mL 0.5 M 稀硝酸沖洗冷凝管,並收集於反應瓶中。

7.將反應瓶中溶液倒入 100 mL 量瓶中,以 0.5 M 稀硝酸沖洗反應瓶,並收集於此量瓶中,再加水至標線,加蓋並搖勻。

8.待不溶物沈降後,取上澄液分析。

若不溶物不易沈降,需藉過濾、離心等方法移除,以免在霧化時堵塞原子吸收光譜儀之噴霧裝置或其他分析儀器之樣品進入裝置。

实验数据:A:檢量線求得之濃度(mg/L)V:樣品經過濾或離心後定量之最終體積(L),即 0.1 L f :上機測試時之稀釋倍數W:風乾土壤取樣量(g):土壤之水分含量HM 檢量線(y=a+bx)R^2 Abs C mg/l 土壤中元素含量mg/kgCu y=0.00187+0.12875x 0.9998Cr y=0.01346+0.0567x 0.993112 0.1536 2.4716 82.4947Cd y = 0.2812x + 0.0144 0.9957 N.D N.D N.DPb y=0.0352x+0.0038 0.997 0.0023 N.D N.DNi y = 0.0282x + 0.0217 0.9963 0.0083 N.D N.DZn y=0.2947x-0.000517 0.995572 0.0881 0.3007 10.0365Fe y=0.01709+0.07266X 0.992155 1.2826 17.4169 581.3245Mn y=0.008335+0.172997x 0.99753 1.1062 6.3462 211.8173结果与讨论:本实验中对实验结果可能造成干擾的因素:(一)本方法對於以王水無法消化完全之金屬氧化物,僅能得到部分消化萃取溶出的重金屬。

土壤中重金属元素含量的检测方法

土壤中重金属元素含量的检测方法

土壤中重金属元素含量的检测方法一、原子吸收光谱法原子吸收光谱法是目前应用最广泛的土壤重金属元素分析方法之一、该方法主要包括火焰原子吸收光谱法(FAAS)和石墨炉原子吸收光谱法(GFAAS)。

FAAS方法采用火焰原子吸收光谱仪,通过样品在火焰中产生金属蒸气,进而吸收特定波长的光线来测定金属元素的浓度。

GFAAS方法则利用石墨炉对样品进行加热,将金属转化为原子状态,然后通过测量吸收特定波长的光线来定量分析。

二、电感耦合等离子体发射光谱法电感耦合等离子体发射光谱法(ICP-OES)是一种高灵敏度、高选择性和多元素分析的方法。

该方法通过将样品转化为高温等离子体,利用原子、离子和分子之间的相互作用,通过测量元素发射的特定光谱线来分析元素浓度。

三、X射线荧光光谱法X射线荧光光谱法(XRF)是一种无损的、快速、多元素分析的方法。

该方法通过样品受到X射线照射后,样品中的元素会发射特定能量的荧光X射线,通过测量荧光X射线的能谱来定量分析元素的含量。

四、原子荧光光谱法原子荧光光谱法(AFS)是一种高灵敏度和高选择性的方法。

该方法通过激发样品中的金属元素,使其转化为原子状态,然后测量元素发射的荧光光强度来分析元素浓度。

五、电感耦合等离子体质谱法电感耦合等离子体质谱法(ICP-MS)是一种高精密度和高灵敏度的分析方法。

该方法通过样品在高温等离子体中产生离子状态的金属,然后通过质谱仪对离子进行分析,从而得出元素的含量。

这些方法各有优劣,可以根据具体需求和实验条件选择适合的方法进行土壤中重金属元素含量的检测。

相对而言,原子吸收光谱法简单易行、成本低,适合于常规的土壤样品分析。

而ICP-OES、XRF、AFS和ICP-MS 等方法则具有更高的精密度和灵敏度,适合于研究和高精密度分析。

总体而言,选用合适且准确的检测方法是确保土壤中重金属元素含量的准确性和可靠性的关键。

土壤中重金属全量测定方法

土壤中重金属全量测定方法

土壤中重金属全量测定方法重金属是指相对密度大于5的金属元素,在自然界中广泛存在,包括铜、铅、锌、镉、铬、镍、汞等元素。

这些重金属对人类和环境都有较高的毒性,因此土壤中重金属含量的准确测定对环境保护和农产品安全至关重要。

以下将介绍几种常见的土壤中重金属全量测定方法。

1.原子吸收光谱法(AAS):AAS是一种常用的重金属分析方法,其原理是利用重金属原子对特定光波的吸收来测定样品中的重金属含量。

它具有检测限低、准确性高的优点,可以同时测定多个重金属元素。

2.电感耦合等离子体发射光谱法(ICP-AES):ICP-AES是一种高灵敏度和高准确性的重金属分析方法,可测定多种重金属元素。

该方法通过将样品溶解在酸中,利用高温等离子体激发样品中的重金属元素产生特征光谱,然后通过光谱仪测定其相对强度来计算重金属含量。

3.电感耦合等离子体质谱法(ICP-MS):ICP-MS是一种高灵敏度和高选择性的重金属分析方法,具有非常低的检测限。

它通过将样品溶解成离子态,并利用质谱仪测定不同原子质量的离子信号来测定重金属元素的含量。

4.X射线荧光光谱法(XRF):XRF是一种非破坏性的重金属分析方法,可同时测定多个元素。

该方法通过将高能量X射线照射样品,样品中的重金属元素吸收部分射线并重新发出特定能量的荧光X射线,然后通过测定荧光X射线的能量和强度来计算重金属的含量。

5.火焰原子吸收光谱法(FAAS):FAAS是一种常用的重金属分析方法,适用于铜、铅、锌等元素的测定。

该方法通过将样品喷入火焰中,利用重金属原子对特定光波的吸收来测定重金属的含量。

6.石墨炉原子吸收光谱法(GFAAS):GFAAS是一种常用的重金属分析方法,适用于镉、铅等微量元素的测定。

该方法通过将样品溶解在酸中,然后在石墨炉中蒸发溶液,最后利用重金属原子对特定光波的吸收来测定重金属的含量。

总而言之,土壤中重金属全量测定方法多种多样,每种方法都有其特点和适用范围。

在实际应用中,可以根据实际需要选择合适的方法进行测定,并结合不同方法的优点进行分析,以获得准确的重金属含量数据。

矿区土壤重金属含量测定

矿区土壤重金属含量测定

一实验目的1.掌握土壤样品中重金属的消解方法2.掌握原子吸收法测定重金属离子含量的方法3.了解矿区土壤中重金属种类及含量二实验原理以酸的氢离子效应来分解土壤样品,同时不至引入氢以外的阳离子,易于提纯。

结合不同酸的氧化、还原、络合等作用,辅以电热板加热,最大限度将土壤样品中的重金属消解并转移到液相。

在贫燃性的空气-乙炔火焰中,铜的化合物易于原子化,可将试液直接或经过适当稀释后喷入火焰,用校准法定量。

三实验设备及药品1仪器容器类:原子吸收分光光度计、电加热板、聚四氟乙烯坩锅、容量瓶2土壤样品:取自北京门头沟矿区煤矸石山附近表层土、洁净土壤加入硫酸铜配制土壤3药品类:氢氟酸、浓硝酸、高氯酸、纯铜丝、去离子水四实验步骤1土壤消解:称取约0.5g土壤样品,置于聚四氟乙烯坩锅中,加浓硝酸10mL,待剧烈反应后停止后,移至低温电热板上,加热分解。

若反应产生棕黄色烟,说明有机质含量高,要反复补加适量硝酸,至液面平静,不产生棕黄色烟为止。

取下坩锅,稍冷,加入氢氟酸5mL,加热煮沸10min。

取下,冷却。

加入高氯酸5mL,蒸发至近干。

然后再加入高氯酸2mL,再次蒸发至近干,残渣为灰白色。

冷却,加入1%硝酸25mL,煮沸溶解残渣,移至50mL容量瓶中,加水至标线,摇匀备测。

2 铜含量测定:(1)铜标准贮备液制备:称取纯铜丝0.1g溶解于少量(1+1)硝酸中,溶解完全后,加水定容至100mL,此液1mL含1.0mg铜;(2)按仪器说明书预热仪器,设定仪器工作参数,并喷雾中间标准溶液,调仪器至最佳工作状态;(3)测量:若试液中待测金属深度在线性范围内,可直接喷雾测量吸光度;若超过其线性范围,可分取适量试液于25mL容量瓶中,用1%硝酸稀释至刻度,再喷入火焰进行测量;(4)校准曲线绘制:于7只容量瓶中,分别加入混合标准溶液0、0.5、1.0、2.0、3.0、4.0、5.0mL,用1%硝酸稀释至刻度,摇匀。

按试液的测量条件测量各份溶液的吸光度。

土壤中重金属全量测定方法

土壤中重金属全量测定方法

土壤中重金属全量测定方法The document was finally revised on 2021版本1:土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品(过筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉.版本2:1)称量样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标样),用少量去离子水润湿;2)缓缓加入和(如果在开始加热蒸发前先把样品在混合酸中静置几个小时,酸溶效果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时);3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO4,每次加入都需要蒸发至尽干;若消化完全则直接进行下一步;4)加入,蒸发至近干,以除尽残留的HF;5) 加入的5mol/L HNO 3,微热至溶液清亮为止。

检查溶液中有无被分解的物料。

如有,蒸发至近干,执行步骤4(此时可以酌情减半加酸);6) 待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL (此时所得溶液中硝酸含量为1mol/L ),然后立即转移到新聚丙烯瓶中储存。

附:现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l 重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞. 1 土壤消化(王水+HClO 4法)称取风干土壤(过100目筛)0.1 g (精确到0.0001 g )于消化管中,加数滴水湿润,再加入3 ml HCl 和1 ml HNO 3(或加入配好的王水4~5mL ),盖上小漏斗置于通风橱中浸泡过夜。

土壤中重金属全量测定方法

土壤中重金属全量测定方法

土壤中重金属全量测定方法土壤中的重金属含量是评估土壤质量和环境污染程度的重要参数,因此需要准确测定土壤中各种重金属的全量。

下面介绍几种常用的土壤中重金属全量测定方法。

1.原子吸收光谱法(AAS)原子吸收光谱法是一种基于原子的分析方法,可用于测定土壤中重金属元素的含量。

该方法利用了金属原子对特定波长的电磁辐射的吸收特性。

首先,通过化学分析将土壤中的重金属元素提取出来,然后使用火焰或电感耦合等方式将提取样品中的重金属元素转化为气态原子,最后使用AAS仪器测定吸收的光量。

这种方法具有灵敏度高、测量误差小等特点。

2.电感耦合等离子体发射光谱法(ICP-OES)电感耦合等离子体发射光谱法也是一种常用的土壤中重金属全量测定方法。

该方法通过离子化、激发和发射等过程,利用等离子体的辐射特性来确定样品中重金属元素的含量。

首先,将土壤样品溶解成溶液,然后利用ICP-OES仪器将样品喷入等离子体,激发重金属元素,最后通过分析仪器测定发射的光谱。

该方法具有分析速度快、准确度高的优点。

3.原子荧光光谱法(AFS)原子荧光光谱法是一种利用金属原子荧光来测定元素含量的方法,可以用于土壤中重金属元素的全量测定。

该方法首先将土壤样品溶解成溶液,然后利用原子荧光光谱仪器测定金属元素的特征荧光强度,从而确定其含量。

与AAS和ICP-OES相比,原子荧光光谱法具有更高的灵敏度和准确度。

4.石墨炉原子吸收光谱法(GFAAS)石墨炉原子吸收光谱法是一种比较敏感的土壤中重金属全量测定方法。

该方法将土壤样品溶解成溶液,然后将溶液中的重金属元素转化为气态原子,并利用石墨炉将气态原子浓缩到石墨管中,最后使用原子吸收光谱仪测定吸收的光量。

该方法具有灵敏度高、选择性好等特点。

5.感应耦合等离子体质谱法(ICP-MS)感应耦合等离子体质谱法是一种高灵敏度的土壤中重金属全量测定方法。

该方法首先将土壤样品溶解成溶液,然后利用感应耦合等离子体质谱仪器将溶液中的重金属元素离子化并定性测定。

如何检测土壤重金属含量

如何检测土壤重金属含量

如何检测土壤重金属含量
土壤中的重金属污染物主要是指含汞(Hg)、镉(Cd)、铅(Pb)、铬(Cr)、铜(Cu),镍(Ni)、钴(Co)、锡(Sn)以及类金属砷(As) 等的污染物。

具体的检测方法如下:
1.镉:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)消解后,采用萃取-火焰原子吸收法测定或者石墨记原子吸收分光光度法测定;
2.汞:土样经硝酸-硫酸-五氧化二钒或硫、硝酸锰酸钾消解后,冷原子吸收法测定;
3.砷:方法一土样经硫酸-硝酸-高氯酸消解后,二乙基二硫代氨基甲酸银分光光度法测定
,方法二土样经硝酸-盐酸-高氯酸消解后,硼氢化钾-硝酸银分光光度法测定;
4.铜:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)
消解后,火焰原子吸收分光光度法测定;
5.铅:土样经盐酸-硝酸-氢氟酸-高氯酸消解后,采用萃取-火焰原子吸收法测定或者石墨炉原子吸收分光光度法测定;
6. 铬:土样经硫酸-硝酸-氢氟酸消解后,采用高锰酸钾氧,二苯碳酰二肼光度法测定,或者加氯化铵液,火焰原子吸收分光光度法测定;
7.锌:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)消解后,火焰原子吸收分光光度法测定;
8.镍:土样经盐酸-硝酸-高氯酸(或盐酸-硝酸-氢氟酸-高氯酸)肖解后,火焰原子吸收分光光度法测定。

今天。

土壤重金属全量测定方法

土壤重金属全量测定方法

土壤重金属全量测定(王水-高氯酸消煮)试剂:王水。

浓硝酸(密度约1.42g/cm3,优级纯)与浓盐酸(密度约为1.19 g/cm3,质量37%,优级纯)以1:3体积比混合,现用现配。

高氯酸(密度约1.60g/cm3质量70%,优级纯)。

实验步骤:称取通过0.149mm的风干土2.000g,置于50mL三角瓶中,用少量水湿润样品,加王水20mL,轻轻摇匀,盖上小漏斗,置于电热板或电砂浴上,在通风橱中低温加热至微沸(分步升温至140-160ºC),待棕色氮氧化物基本赶完后,取下冷却。

沿壁加入高氯酸10-20mL,继续加热消化产生浓白烟挥发大部分高氯酸,三角瓶中样品呈灰白色糊状,取下冷却。

热蒸馏水洗涤三角瓶内壁,至100mL容量瓶中定容。

用中速定量滤纸过滤至塑料瓶中。

上机测定。

同时作空白试验。

土壤重金属含量(mg/kg)=()mVcc⨯-c----标准曲线查得待测液中重金属的质量浓度(μg/mL)c0----标准曲线查得空白消化液中重金属的质量浓度(μg/mL)V----消化后定容体积(mL),此处为100mLm----烘干土样的质量(g)注意事项:1.含有机物过多的土壤,应增加王水量,使大部分有机物消化完全。

再加高氯酸,否则加高氯酸时会发生强烈反应,致使瓶中内容物溅出,甚至发生爆炸,分析时务必小心。

2.样品消煮时温度不能太高,温度超过250ºC时,高氯酸会大量冒烟,使样品中铅、镉损失。

3.样品经高氯酸消化并蒸至近干后,土粒若为深灰色,说明有机物质尚未消化完全,应再加高氯酸重新消解至土样呈灰白色。

4.平行测定结果允许相对相差≤10%参考《土壤农化分析》,第三版。

鲍士旦主编。

土壤中重金属的测定方法

土壤中重金属的测定方法

摘要:随着工业的快速发展,重金属带来的土壤污染问题日益严重。

基于此,针对土壤重金属的来源与危害,对近年来广泛使用的土壤样品前处理和重金属含量测定方法进行了综述。

常见的样品处理方法有湿式消解法、干灰化法和微波消解法3种消解方法;常用的重金属含量测定方法主要有:分光光度法、原子吸收光谱法、原子荧光光谱法、电感耦合等离子体质谱法和电感耦合等离子体原子发射光谱法。

关键词:重金属;土壤;危害;测定方法近年来,冶金、建筑、化工等诸多行业的快速发展,导致对资源的需求量日益加大,但随之而来的是污染问题的日益严重。

重金属的污染给生产和生活带来的危害已经向人们敲响了警钟。

首先,要正确面对重金属污染情况,并积极采取相应的措施加以改善;其次,要建立高效、快速、简单、便于操作的重金属样品前处理方法和分析检测方法,对土壤进行合理和及时地监控,防止污染问题的发生和发展;最后,环境的保护和改善人人有责,从生活中不乱扔废旧电池等一些小事做起,时刻践行保护环境。

1土壤中重金属的主要危害随着开采矿产、冶炼加工活动的增加,废水、废气和废渣的大肆排放,导致土壤中铅、铬、镉等一些重金属严重超标,而通过食物链的传递,人类的健康受到了严峻的挑战。

研究表明,食用含镉的大米之后,人体会产生多重影响。

例如,尿液中镉元素含量的增高;贫血、骨痛病、癌症等疾病的发病率也会升高,对健康造成严重而长久的危害。

2土壤中重金属的样品前处理方法目前,常见的样品处理方法主要有干灰化法、湿法消解法和微波消解法3种。

下面将详细介绍该3种方法.2.1 湿法消解法湿法消解采用具有强氧化性的有机酸,加热破坏样品中有机物,将目标产物无机成分充分释放出来,进而形成较为稳定的无机化合物,以便于下一步进行分析测定。

由于湿法消解所需条件简单,便于操作。

因此,是制备重金属样品时经常采用的前处理方法[1]。

2.2 干灰化法与湿法消解法相比,干灰化法是通过高温加热的方式除去样品中的有机物,然后采用酸对其剩余的灰分进行溶解。

重金属全量分析方法

重金属全量分析方法

重金属全量分析方法比较重金属全量分析方法比较(普通酸分解法、王水-高氯酸法消解的方法与酸溶-ICP发射光谱分析法)重金属全量分析方法比较 (中国环境监测总站,土壤元素的近代分析方法 1992年11月第1版pp64-65) 土壤试样的全分解就是把土壤的矿物晶格彻底破坏,使土壤中的待测元素全部进入试样溶液中。

全分解方法可分为酸分解法和碱熔法。

酸分解法必须使用氢氟酸,因为氢氟酸是唯一能分解二氧化硅和硅酸盐的酸类。

一般多采用HNO3-HClO4-HF, HCl-HClO4-HF, 王水-HClO4-HF或逆王水-HClO4-HF等全消解体系。

碱熔法能彻底破坏土壤晶格,操作简便、快速,且不产生大量酸蒸气。

但由于使用的试剂量较大,在测定微量元素时往往空白较高。

常用的碱熔体系有Na2O2-NaOH、Na2O2-Na2CO3、KHSO4-K2S2O7等普通酸分解法根据中国环境监测总站在土壤背景测定中土样酸分解方法比较研究的结果.针对铅、镉总量分析采用以下全分解的方法:准确称取0.5g(准确到0.1mg)风干土样于聚四氟乙烯坩埚中,用几滴水润湿后加入10ml浓HCl,于电热板上低温加热,蒸发至约剩5ml时加入15ml浓HNO3,继续加热蒸至近粘稠状,加入10mlHF并继续加热,为了达到良好的飞硅效果,应经常摇动坩埚。

最后加入5mlHClO4并加热至白烟冒尽。

对于含有机质较多的土样应在加入HClO4后加盖消解,土壤分解物应呈白色或淡黄色(含铁较高的土壤),倾斜坩埚时呈不流动粘稠状。

用水冲洗内壁及坩埚盖,温热溶解残渣,冷却后,定容至100 ml或50 ml,最终体积依待测成分的含量而定。

在使用上述的酸全分解方法时应注意以下几点: (1) 温度要严格控制,温度过高,分解试样时间短,常常会导致测定结果偏低。

(2) 在蒸至近干的过程中,冒烟时间要足够长,溶解物应呈粘稠状,即将坩埚倾斜后溶解物不能流动。

有时看起来已蒸干,但浓白烟不止,这时应移到低温处,继续冒烟至稀少。

土壤重金属测定方法

土壤重金属测定方法

土壤重金属测定方法咱来说说土壤重金属测定方法哈。

你知道不,这土壤里的重金属就像隐藏的小怪兽,要是不把它们找出来,那可会惹出大麻烦呢!常见的一种方法就是原子吸收光谱法啦。

就好像我们有一双超级厉害的眼睛,能精准地看到这些重金属的存在。

通过特定的光线照射,这些重金属就会“现形”,然后我们就能知道它们的含量啦。

这是不是很神奇呀!还有原子荧光光谱法呢。

它就像是一个聪明的小侦探,能把那些藏起来的重金属一个一个地揪出来。

利用特殊的反应,让重金属发出独特的光芒,从而被我们发现和测量。

另外呢,电感耦合等离子体质谱法也很不错哟。

它就如同一个强大的武器,不管那些重金属藏得多深,都能把它们给探测出来。

这种方法特别灵敏,一点点的重金属都逃不过它的“法眼”。

那这些方法是怎么操作的呢?就拿原子吸收光谱法来说吧,得先采集土壤样本,这就好比是去抓小怪兽得先找到它们的老窝。

然后把样本处理好,让它适合进行检测。

接着,让光线照过去,就等着看那些重金属的反应啦。

这过程可不简单哦,得小心翼翼的,就像我们做菜要掌握好火候一样。

这些测定方法就像是我们的秘密武器,能帮助我们了解土壤的健康状况。

要是发现重金属超标了,那可得赶紧想办法解决呀,不然种出来的庄稼能好吗?我们吃的食物能安全吗?你想想看,如果没有这些方法,我们怎么知道土壤有没有被污染呢?怎么能保证我们生活的环境是安全的呢?所以说呀,这些土壤重金属测定方法可太重要啦!它们就像是守护我们土地的卫士,默默地为我们的生活保驾护航呢!咱可不能小瞧了这些方法,它们背后可是有很多科学家们努力研究的成果呢。

他们花费了大量的时间和精力,才让我们有了这么好的工具来检测土壤。

我们得好好珍惜和利用这些方法呀,让我们的土地更加健康,让我们的生活更加美好。

总之,土壤重金属测定方法是我们保护土地、保护环境的重要手段,我们一定要重视起来呀!难道不是吗?。

土壤重金属常见的几种检测原理及方法 重金属常见问题解决方法

土壤重金属常见的几种检测原理及方法 重金属常见问题解决方法

土壤重金属常见的几种检测原理及方法重金属常见问题解决方法土壤重金属污染目前是我国面临特别严峻的问题,所以市场上检测土壤重金属仪器层出不穷。

测量土壤重金属目前紧要是有下面几种方法:1、原子吸取光谱法这种方法是相对比较传统的测量重金属的方法,先将土壤风干,再经过消解处理、定容,之后制备标准溶液,之后上机操作测量。

测量原理是利用待测元素的共振辐射,通过其原子蒸汽,测定其吸光度;它有单光束,双光束,双波道,多波道等结构形式。

其基本结构包括光源,原子化器,光学系统和检测系统。

这种原理测出来相对精度较高,只是测量的时间上相对过长,通常整个过程需要24小时出结果。

2、伏安极谱法这种方法也是先将土壤风干,再经过消解处理,然后将浸提液放入极谱仪中,直接测量。

其原理是通过将一个变化的电压信号施加到电极上,而后测量电极的响应电流来测量重金属的含量,这种方法与原子吸取光谱法相比,测量精度更高,运行成本低,可以做形态分析等。

3、X射线荧光光谱法X射线荧光光谱分析法利用初级X射线光子或其他微观离子激发待测物质中的原子,使之产生荧光(次级X射线)而进行物质成分分析和化学态讨论的方法。

这种方式测量土壤重金属无需将土壤进行前处理,测量速度快,精度也能达到ppm级。

可以进行GPS定位,记录地方土壤测量的结果。

并且测量时不存在任何耗材,无需任何使用成本。

以上介绍的这些测量土壤重金属的方法都是目前市场上相对成熟的测量土壤重金属的方法,也是比较常规的方法。

可以依据本身的需要选择合适的土壤重金属检测仪。

重金属水污染是指相对密度在 4.5以上的金属元素及其化合物在水中的浓度异常使水质下降或恶化。

相对密度在 4.5以上的重金属,有铜、铅、锌、镍、铬、镉、汞和非金属砷等。

那么关于污染物的特性是什么呢?水中重金属在线监测阳极溶出伏安法是什么?说明如下:污染物特性:1.重金属在水中,紧要以颗粒态存在、迁移与转化,其过程多而杂多样,几乎包括水体中各种物理、化学和生物学过程;2.多数重金属元素有多种价态,有较高活性,能参加各种化学反应,有不同的化学稳定性和毒性,环境条件的更改,其形态和毒性也发生变化;3.重金属易被生物摄食吸取、浓缩和富集,还可通过食物链逐级放大,达到危害生物的水平;4.重金属在迁移转化过程中,在某些条件下,形态转化或物相转移具有确定的可逆性,但重金属是非降解有毒物质,不会因化合物结构破坏而失去毒性;5.重金属元素之间存在拮抗作用与协同作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

版本1:
土壤中铜锌镉铬镍铅六中重金属全量一次消解.用氢氟酸-高氯酸-硝酸消解法,物质检测值和标准值吻合性很好,方便可行.具体方法: 准确称取克土壤样品(过筛)于四氟坩埚中,加7毫升硝酸+3毫升高氯酸+10毫升氢氟酸加盖,放置过夜(不过夜效果同),上高温档加热(数显的控制温度300~350度)1小时,去盖,加热到近干,冷却到常温,然后再加3毫升硝酸+2毫升高氯酸+5毫升氢氟酸,高温档继续加热到完全排除各种酸,既高氯酸白烟冒尽,加1毫升(1+1)盐酸溶解残渣,完全转移到25毫升容量瓶中,加毫升的100g/L的氯化铵溶液,定容,然后检测,含量低用石墨炉,注意定容完尽快检测锌,且锌估计需要适当的稀释.其实放置几天没有问题,相对比较稳定拉.
版本2:
1)称量样品放入PTFE(聚四氟乙烯)烧杯中(先称量样品,后称量标样),用少量
去离子水润湿;
2)缓缓加入和(如果在开始加热蒸发前先把样品在混合酸中静置几个小时,酸溶效
果会更好一些),加盖后在电热板上200℃下蒸发(蒸发至样品近消化完后打开坩埚盖)至形成粘稠状结晶为止(2~3小时);
3)视情况而定,若有未消化完的样品则需要重新加入HF和HClO
,每次加入都需要
4
蒸发至尽干;若消化完全则直接进行下一步;
4)加入,蒸发至近干,以除尽残留的HF;
5)加入的5mol/L HNO
,微热至溶液清亮为止。

检查溶液中有无被分解的物料。


3
有,蒸发至近干,执行步骤4(此时可以酌情减半加酸);
6)待清亮的溶液冷却后,转入容量瓶,用去离子水定容至50mL(此时所得溶液中
硝酸含量为1mol/L),然后立即转移到新聚丙烯瓶中储存。

附:
现在一般做法是,砷汞用1+1的王水在沸水煮2小时,加固定剂(含5g/l重铬酸钾的5%硝酸溶液),在50毫升比色管中,固定,然后用原子荧光光谱仪测定砷汞.
1 土壤消化(王水+HClO4法)
称取风干土壤(过100目筛)0.1 g(精确到0.0001 g)于消化管中,加数滴水
(或加入配好的王水4~5mL),盖上小漏斗置于湿润,再加入3 ml HCl和1 ml HNO
3
通风橱中浸泡过夜。

第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。

加入1 ml HClO
于100~110℃条件
4
下继续消解30 min,120~130℃消解1 h。

冷却,转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。

注:最高温度不可超过130℃。

消化管底部只残留少许浅黄色或白色固体残渣时,说明消化已完全。

如果还有较多土壤色固体存在,说明消化未完全,应继续120~130℃消化直至完全。

2植物消化(HNO3+H2O2法)
称取待测植物1~2g(具体根据该植物对重金属吸收能力的强弱而定)于消化管中,加入5ml HNO
3
,盖上小漏斗置于通风橱中浸泡过夜。

第二天放入消化炉中,80~90℃消解30 min、100~110℃消解30 min、120~130℃消解1 h,取下置于通风处冷却。

加入1 ml H
2O
2
,于100~110℃条件下继续消解30 min,120~130℃消解1 h。

冷却,
转移至20mL容量瓶中,定容,过滤至样品存储瓶中待测。

注:植物消化完全为透明液体,无残留。

植物消化前是否需要干燥根据实验要求而定。

相关文档
最新文档