结构力学计算题及解答
结构力学习题及答案
![结构力学习题及答案](https://img.taocdn.com/s3/m/df3c6f2ba55177232f60ddccda38376baf1fe00b.png)
结构力学习题及答案结构力学习题及答案结构力学是工程学中的重要学科之一,它研究物体在外力作用下的变形和破坏。
在工程实践中,结构力学的应用广泛,涉及到建筑、桥梁、航空航天等领域。
在学习结构力学时,练习解答一些习题是非常重要的,下面我将给大家提供一些常见的结构力学习题及其答案。
题目一:简支梁的弯矩计算已知一根长度为L的简支梁,两端受到均布载荷q。
求梁的中点处的弯矩M。
解答一:根据简支梁的受力分析,可以得出梁的弯矩与距离中点的距离x之间的关系为M=qL/8-x^2/2,其中x为距离中点的距离。
因此,中点处的弯矩M=qL/8。
题目二:悬臂梁的挠度计算已知一根长度为L的悬臂梁,端部受到集中力F作用。
求梁的端部挠度δ。
解答二:根据悬臂梁的受力分析,可以得出梁的端部挠度与力F之间的关系为δ=FL^3/3EI,其中F为作用力,E为梁的杨氏模量,I为梁的截面惯性矩。
因此,梁的端部挠度δ=FL^3/3EI。
题目三:刚度计算已知一根长度为L的梁,截面形状为矩形,宽度为b,高度为h,梁的杨氏模量为E。
求梁的刚度K。
解答三:梁的刚度可以通过计算梁的弯曲刚度和剪切刚度得到。
弯曲刚度Kb可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Kb=E*I/L。
剪切刚度Ks可以通过梁的剪切模量G和梁的截面面积A计算得到,即Ks=G*A/L。
因此,梁的刚度K=Kb+Ks=E*I/L+G*A/L。
题目四:破坏载荷计算已知一根长度为L的梁,截面形状为圆形,直径为d,梁的杨氏模量为E。
求梁的破坏载荷P。
解答四:梁的破坏载荷可以通过计算梁的破坏弯矩和破坏挠度得到。
破坏弯矩Mf可以通过梁的截面惯性矩I和杨氏模量E计算得到,即Mf=π^2*E*I/L^2。
破坏挠度δf可以通过梁的破坏弯矩Mf和梁的刚度K计算得到,即δf=Mf/K。
因此,梁的破坏载荷P=Mf/L=π^2*E*I/L^3。
结构力学是一门综合性较强的学科,掌握结构力学的基本原理和解题方法对于工程师来说非常重要。
结构力学力法习题答案
![结构力学力法习题答案](https://img.taocdn.com/s3/m/82f7b5f9fc0a79563c1ec5da50e2524de518d027.png)
结构力学力法习题答案结构力学力法习题答案结构力学是一门研究物体在受力作用下的变形和破坏规律的学科。
在学习结构力学的过程中,习题是必不可少的一部分。
通过解答习题,我们可以更好地理解和应用力学原理,提高解决实际问题的能力。
下面,我将为大家提供一些结构力学力法习题的详细解答,希望对大家的学习有所帮助。
习题一:一根悬臂梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E。
在悬臂梁的自重和外力作用下,求悬臂梁的最大弯矩和最大挠度。
解答:首先,我们需要根据悬臂梁的几何形状和受力情况,绘制出受力图。
在这个问题中,悬臂梁受到自重和外力的作用,自重作用在悬臂梁的重心处,外力作用在悬臂梁的端点处。
根据受力图,我们可以得到悬臂梁在端点处的反力和弯矩分布。
接下来,我们可以根据结构力学的基本原理,利用力平衡和力矩平衡的方程,求解出悬臂梁的最大弯矩和最大挠度。
在这个问题中,我们可以利用弯矩-曲率关系,得到最大弯矩的表达式。
然后,我们可以利用悬臂梁的边界条件,求解出最大挠度的表达式。
习题二:一根悬臂梁的长度为L,截面为圆形,直径为d,材料的弹性模量为E。
在悬臂梁的自重和外力作用下,求悬臂梁的最大弯矩和最大挠度。
解答:与习题一类似,我们需要绘制出悬臂梁的受力图,根据受力图求解出悬臂梁的最大弯矩和最大挠度。
在这个问题中,悬臂梁的截面为圆形,因此我们需要利用圆形截面的惯性矩和弯矩-曲率关系,求解出最大弯矩的表达式。
习题三:一根梁的长度为L,截面为矩形,宽度为b,高度为h,材料的弹性模量为E。
梁的两端固定,受到均布载荷q的作用,求梁的最大弯矩和最大挠度。
解答:在这个问题中,梁的两端固定,因此我们需要考虑边界条件对梁的受力和变形的影响。
首先,我们需要绘制出梁的受力图,根据受力图求解出梁的最大弯矩。
然后,我们可以利用梁的边界条件,求解出最大挠度的表达式。
通过以上三个习题的解答,我们可以看到,在结构力学的学习中,我们需要灵活运用力学原理,结合具体的问题,综合考虑几何形状、材料性质和边界条件等因素,才能得到准确的解答。
结构力学课后习题答案 (3)
![结构力学课后习题答案 (3)](https://img.taocdn.com/s3/m/8e5892860d22590102020740be1e650e52eacfcc.png)
结构力学课后习题答案问题1:悬臂梁的挠曲分析问题描述一个长度为L的悬臂梁,截面形状为矩形,宽度为b,高度为h。
悬臂梁上受到一个分布载荷q(x)。
求悬臂梁在某一点x处的弯矩和挠度。
解答根据结构力学的基本原理,可以使用弯曲方程和挠度方程来求解该问题。
首先,我们通过积分来求得悬臂梁上任意一点x处的弯矩M(x):M(x) = \\int_{0}^{x} q(x')dx'其中,q(x’)表示分布载荷。
这个积分可以通过数值方法或者解析方法来求解。
然后,根据挠度方程,我们可以得到悬臂梁上任意一点x 处的挠度v(x)的微分方程:\\frac{d^2v(x)}{dx^2} = \\frac{M(x)}{EI}其中,E表示悬臂梁的弹性模量,I表示悬臂梁的惯性矩。
这个微分方程可以通过常微分方程的求解方法来求解。
最后,我们可以得到悬臂梁在某一点x处的挠度v(x):v(x) = \\int_{0}^{x} \\int_{0}^{x'} \\frac{M(x '')}{EI} dx''dx'问题2:钢梁的热膨胀应力分析问题描述一个长度为L的钢梁固定在一端,另一端自由伸张。
当温度升高时,钢梁会因为热膨胀而产生应力。
假设钢梁的热膨胀系数为α,温度升高ΔT。
求钢梁上某一点x处的应力。
解答根据热膨胀原理,钢梁上某一点x处的应力可以通过以下公式计算:\\sigma(x) = E \\cdot \\alpha \\cdot \\Delta T \\cdot x其中,E表示钢梁的弹性模量。
这个公式说明了应力与距离x成正比。
需要注意的是,这里假设钢梁在温度变化时没有发生塑性变形,即没有超过材料的屈服强度。
问题3:钢筋混凝土梁的抗弯分析问题描述一个长度为L的钢筋混凝土梁,截面形状为矩形,宽度为b,高度为h。
在梁的底部布置了一定数量的钢筋,用于增加梁的抗弯强度。
求梁在某一点x处的最大弯矩和最大应力。
结构力学试题及答案
![结构力学试题及答案](https://img.taocdn.com/s3/m/7c2edb13bf23482fb4daa58da0116c175e0e1e6e.png)
结构力学试题及答案一、选择题1. 结构力学是研究哪个方面的力学?a) 材料力学b) 结构系统c) 动力学d) 热力学答案:b) 结构系统2. 在结构力学中,静力学主要关注哪个方面的力学?a) 动力学b) 运动学c) 静力学d) 热力学答案:c) 静力学3. 在结构力学中,弹性力学主要研究什么?a) 金属的力学性质b) 结构系统的动态响应c) 物体的形变和变形d) 材料的热力学性质答案:c) 物体的形变和变形4. 下面哪个是结构力学中常用的描述物体形变的参数?a) 质量b) 体积c) 长度d) 面积答案:c) 长度5. 结构力学中的受力分析主要用到哪个定律?a) 牛顿第一定律b) 牛顿第二定律c) 牛顿第三定律d) 牛顿万有引力定律答案:b) 牛顿第二定律二、计算题1. 下图所示的结构系统,求杆AC的受力情况。
(插入结构图)答案:根据静力平衡条件,杆AC上的受力平衡,可得:ΣF_x = 0: -F_AC + F_BC = 0ΣF_y = 0: F_AC + F_AD - F_BE = 0解方程得: F_AC = F_BC = F_BE - F_AD2. 已知某杆件的长度为L,材料弹性模量为E,横截面积为A,受力情况如下图所示,求该杆件的应变。
(插入受力图)答案:根据材料的胡克定律,应变ε等于应力σ除以杨氏模量E,即ε = σ / E。
由受力图可知,该杆件受到纵向拉力P,横截面积为A,因此应力σ等于P除以A,所以应变ε = P / (E * A)。
三、解答题1. 简要描述刚体和弹性体的区别。
答案:刚体是指在受力作用下形状和大小不会发生显著变化的物体,它的内部不会发生相对位移。
刚体的形变主要是由于刚体整体的平移或转动引起的。
而弹性体是指在受力作用下会发生形变,但在去除外力后能够恢复到原来形状的物体。
弹性体的形变主要是由于物体内部分子间相对位移引起的。
2. 简要解释结构力学中的静力平衡条件。
答案:结构力学中的静力平衡条件是指一个结构系统中,各个部分受力相互平衡,不会产生任何形状和大小的变化。
结构力学第四章习题参考解答
![结构力学第四章习题参考解答](https://img.taocdn.com/s3/m/4462af05ff00bed5b9f31ddd.png)
l
l
C
1 ql 4
2
1 2 ql 4
5 ql 4
A
M P图
1 2 ql 8
l 2
1
1 2 1 2 1 l l ql EI 3 8 2 2
ql 4 1 1 1 ql 4 EI 48 24 48 24EI
A
M图
1 2 3
4-3 试用图乘法求图示结构中B处的转角和C处的竖向 ql 位移。EI=常数。 2 q
(b)解:作 M图、M P图,
CV 1 1 1 2 l 2 l ql EI 2 4 2 3 2
1 1 1 2 1 2 ql l l EI 2 4 2 3
l
q
B
M 1
EI
A
在B点沿水平方向设单位力矩 M 1 。 故 M 1
1 1 qx3 M P qx x x 2 3 6l
l
MM P 1 qx3 ql 3 则 B dx dx EI EI 0 6l 24EI
l
q
4-2 试求桁架结点B的竖向位移,已知桁架各 杆的 EA 21 10 4 KN。
(c)求
BH、 B。
q qx x l
B
解:在B点沿水平方向设单位力 FP 1 。
q qx l x
故 M x 则
BH
1 1 qx3 M P qx x x 2 3 6l
l
EI
A
FP 1
MM P 1 x qx3 ql 4 dx dx EI EI 0 6l 30EI
BV FN FNP l EA
结构力学练习题及答案
![结构力学练习题及答案](https://img.taocdn.com/s3/m/54b95a6790c69ec3d5bb7562.png)
一.是非题(将判断结果填入括弧:以O 表示正确,X 表示错误)(本大题分4小题,共11分)1 . (本小题 3分)图示结构中DE 杆的轴力F NDE =F P /3。
( ).2 . (本小题 4分)用力法解超静定结构时,只能采用多余约束力作为基本未知量。
( )3 . (本小题 2分)力矩分配中的传递系数等于传递弯矩与分配弯矩之比,它与外因无关。
( )4 . (本小题 2分)用位移法解超静定结构时,基本结构超静定次数一定比原结构高。
( )二.选择题(将选中答案的字母填入括弧内)(本大题分5小题,共21分) 1 (本小题6分)图示结构EI=常数,截面A 右侧的弯矩为:( )A .2/M ;B .M ;C .0; D. )2/(EI M 。
2. (本小题4分)图示桁架下弦承载,下面画出的杆件内力影响线,此杆件是:( ) A.ch; B.ci; C.dj; D.cj.F p /2M2a2a a aa aA F p /2F p /2 F p /2F p F pa a aa F PED3. (本小题 4分)图a 结构的最后弯矩图为:A. 图b;B. 图c;C. 图d;D.都不对。
( )( a) (b) (c) (d)4. (本小题 4分)用图乘法求位移的必要条件之一是: A.单位荷载下的弯矩图为一直线; B.结构可分为等截面直杆段; C.所有杆件EI 为常数且相同; D.结构必须是静定的。
( ) 5. (本小题3分)图示梁A 点的竖向位移为(向下为正):( ) A.F P l 3/(24EI); B. F P l 3/(!6EI); C. 5F P l 3/(96EI); D. 5F P l 3/(48EI).三(本大题 5分)对图示体系进行几何组成分析。
A l /2l /2EI 2EIF Pa d c eb fgh iklF P =11j llM /4 3M /4M /43M /43M /4M /4M /8 M /2EIEIM四(本大题 9分)图示结构B 支座下沉4 mm ,各杆EI=2.0×105 kN ·m 2,用力法计算并作M 图。
《结构力学习题集》(下)-结构的动力计算习题及答案
![《结构力学习题集》(下)-结构的动力计算习题及答案](https://img.taocdn.com/s3/m/7676d30851e79b8968022694.png)
第九章 结构的动力计算一、判断题:1、结构计算中,大小、方向随时间变化的荷载必须按动荷载考虑。
2、仅在恢复力作用下的振动称为自由振动。
3、单自由度体系其它参数不变,只有刚度EI 增大到原来的2倍,则周期比原来的周期减小1/2。
4、结构在动力荷载作用下,其动内力与动位移仅与动力荷载的变化规律有关。
5、图示刚架不计分布质量和直杆轴向变形,图a 刚架的振动自由度为2,图b 刚架的振动自由度也为2。
6、图示组合结构,不计杆件的质量,其动力自由度为5个。
7、忽略直杆的轴向变形,图示结构的动力自由度为4个。
8、由于阻尼的存在,任何振动都不会长期继续下去。
9、设ωω,D 分别为同一体系在不考虑阻尼和考虑阻尼时的自振频率,ω与ωD 的关系为ωω=D 。
二、计算题:10、图示梁自重不计,求自振频率ω。
l l /411、图示梁自重不计,杆件无弯曲变形,弹性支座刚度为k ,求自振频率ω。
l /2l /212、求图示体系的自振频率ω。
l l0.5l 0.513、求图示体系的自振频率ω。
EI = 常数。
ll 0.514、求图示结构的自振频率ω。
l l15、求图示体系的自振频率ω。
EI =常数,杆长均为l 。
16、求图示体系的自振频率ω。
杆长均为l 。
17、求图示结构的自振频率和振型。
l /2l /2l /18、图示梁自重不计,W EI ==⨯⋅2002104kN kN m 2,,求自振圆频率ω。
B2m2m19、图示排架重量W 集中于横梁上,横梁EA =∞,求自振周期ω。
EIEIW20、图示刚架横梁∞=EI 且重量W 集中于横梁上。
求自振周期T 。
EIEIWEI 221、求图示体系的自振频率ω。
各杆EI = 常数。
a aa22、图示两种支承情况的梁,不计梁的自重。
求图a 与图b 的自振频率之比。
l /2l/2(a)l /2l /2(b)23、图示桁架在结点C 中有集中重量W ,各杆EA 相同,杆重不计。
求水平自振周期T 。
结构力学 期末试题及答案
![结构力学 期末试题及答案](https://img.taocdn.com/s3/m/54c9093926284b73f242336c1eb91a37f0113275.png)
结构力学期末试题及答案一、选择题1. 下列哪个是结构稳定的条件?A. 受力框架为凿木结构。
B. 受力框架中各构件能连续运动。
C. 受力框架对任何外部作用均能保持初始形态。
D. 受力框架中各构件的受力分布均为均匀分布。
答案:C2. 以下哪个公式用于计算杆件的挠度?A. 弯矩—曲率关系式。
B. 应变—位移关系式。
C. 应力—应变关系式。
D. 应变—应力关系式。
答案:A3. 下列哪个是静力学的基本公理?A. 引力是沿杆件等距分布的。
B. 杆件各部分的变形是以弯曲为主。
C. 外载作用在结构上所引起的各个节点的变形D. 杆件内各点只承受正向载荷。
答案: C4. 下列哪个是典型静定结构?A. 连续梁。
B. 悬链线。
C. 桁架。
D. 拱桥。
答案:B5. 弯矩是指杆件上的哪种力?A. 剪力。
B. 弯矩。
C. 引弯力。
D. 位移力。
答案:B二、问题分析题1. 如图所示的悬臂梁受到均匀分布荷载,求支点处弯矩。
解答略。
2. 现有一自由悬臂梁,长度L,截面形状为正方形,求该梁在自重作用下的挠度。
解答略。
3. 请分析悬链线和刚性梁在受力过程中的异同点。
解答略。
4. 解释什么是静定结构和非静定结构,并列举各自的一个例子。
解答略。
三、计算题1. 如图所示的桁架结构,每根杆件长度为L,支座处受到垂直荷载F,请计算各个连接节点的受力情况。
解答略。
2. 一根长度为L,截面形状为圆形的悬臂梁,受到均匀分布荷载,请通过结构力学的理论计算方法,求该梁在距悬臂端点处的挠度。
解答略。
四、问答题1. 结构力学的研究对象是什么?其在工程中有什么应用?解答略。
2. 结构稳定的条件有哪些?请简要说明。
解答略。
3. 结构力学与弹性力学有什么区别和联系?解答略。
4. 结构力学的发展历程是怎样的?解答略。
以上为结构力学的期末试题及答案,包含选择题、问题分析题、计算题和问答题。
通过对这些内容的学习和掌握,可以更好地理解结构力学的基本原理和应用。
希望对你的学习有所帮助。
《结构力学》习题解答(内含解答图)
![《结构力学》习题解答(内含解答图)](https://img.taocdn.com/s3/m/f1c11bcfb8f67c1cfad6b854.png)
解:将固定铰支座换为单铰,如图(b),由于与基础的约束多余三个,故基础作为刚片Ⅰ。铰结BF为刚片Ⅱ,铰结△CDE为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由杆AB和支撑杆F相连,虚铰在无穷远处,刚片Ⅰ与刚片Ⅲ是由杆AC和支撑杆E相连,虚铰在两杆的延长线的交点处,而刚片Ⅱ与刚片Ⅲ是由杆BC和杆FD相连,虚铰在两杆的延长线的交点处。此时,三铰不共线,该体系为几何不变体,且无多余约束。
所以,体系是几何不变得,且无多余约束。
习题2-2试对图示体系进行几何组成分析。
解:从图2-15(b)可知,杆件CD和链杆3及铰D构成二元体,可以去掉;取杆件CB为刚片Ⅰ,基础作为刚片Ⅱ,根据规则一,两刚片是通过杆AB、链杆1、2组成几何不变体。所以,整个体系为几何不变体系,且无多余约束。
习题2-2图习题2-2解答图
习题2-10试对图示体系进行几何组成分析。
习题2-10图习题2-10解答图
解:由于与基础的约束多余三个,故基础作为刚片Ⅰ。铰结△ABF为刚片Ⅱ,铰结△BCD为刚片Ⅲ。刚片Ⅰ与刚片Ⅱ是由杆EA和支撑杆F相连,虚铰在两杆的延长线的交点处,刚片Ⅰ与刚片Ⅲ是由杆EC和支撑杆D相连,虚铰在两杆的延长线的交点处,而刚片Ⅱ与刚片Ⅲ是铰B相连。此时,三铰不共线,该体系为几何不变体,且无多余约束。
习题2-26图习题2-26解答图
解:将链杆截断,截断一处,去掉一个约束,共去掉四个约束;再将刚性联结杆截断,截断一处,去掉三个约束,共去掉十二个约束,如图(b)。此时,体系变成与基础独立相连的三个单一杆件,见图(b)。所以,该体系具有十六个多余约束的几何不变体。
2.3.2提高题
提高题2-1 试对图示体系作几何组成分析。
所以,由规则一知,体系是几何不变体,且无多余约束。
结构力学题
![结构力学题](https://img.taocdn.com/s3/m/14ad27fefc0a79563c1ec5da50e2524de518d0e5.png)
结构力学题
结构力学是土木工程学科中一门非常重要的学科,主要研究结构的内力和变形,以及它们与结构形式、材料性质、边界条件和外部荷载之间的关系。
下面是一道结构力学题目及其答案。
题目:一根长为6m的钢杆,两端悬挂在某高度上,中间用一根轻绳连接。
现在将钢杆的一端向上提升1m,另一端保持不动,则钢杆的中间点将向下移动多少米?
答案:0.5m
解析:根据结构力学的原理,当钢杆的一端向上提升时,钢杆的另一端会向下移动。
设钢杆的长度为L,当钢杆的一端向上提升h时,另一端将向下移动Lh/2。
因此,当钢杆的一端向上提升1m时,另一端将向下移动6m×1m/2=3m。
由于钢杆的中间点与提升端的距离为3m,所以钢杆的中间点将向下移动3m/2=1.5m。
但是,由于钢杆的另一端保持不动,所以钢杆的中间点实际上只向下移动了1m/2=0.5m。
结构力学试题及答案大题汇总
![结构力学试题及答案大题汇总](https://img.taocdn.com/s3/m/c3b6d6de3186bceb19e8bb79.png)
(a)
(b)
基本体系
M1(m)
6
x1
6
x1
(c)
(d)
36
MP(kN·m)
36
M(kN·m)
30.86
五、解:(1)确定基本体系和基本未知量,如图(a)
—42—
(2 )计算 k11,作 M1 图,如图(a)
结点 C:∑MC=0
k11=3iCA+3iCB+4iCD=3×4EI/8+3×EI/6+4×3EI/6=4EI
)
四、解、1、一次超静定,基本体系和基本未知量,如图(a)
2、列力法方程:δ11•x1+△1P=0 3、 作 M1 图,如图(b);作 MP 图,如图(c) 4、计算δ11、△1P δ11=1/2EI×1/2×6×6×4+1/EI×6×6×6=252/EI △1P=1/EI×6×36×6=1296/EI 5、解方程:X1=-△1P/δ11=-1296/252=-5.14kN 6、作 M 图,如图(d)
eiei2qei2eiei2qlll三图示体系为具有一个多余约束的几何不变体四求解过程如下所示20096mm1基本体系单位弯矩图最终弯矩图4mmx?1???1xx??11111c216????011ei1cx?100271m?mx11五因为结构对称荷载对称因此可取半结构如下计算过程及弯矩图如下图fpfl2fl2pfl16ppfl8fl8mpp000bb106六单位和荷载弯矩图为2060240用图乘可求得8022970???014mmbeipm七基本体系单位与荷载弯矩图如下所示1z1z?1q12iql8dcb4i3iam图m图位移法方程系数及求解结果如下12iprz?r?0r?8i22m?mz?mr??ql8z?ql64i1111p111p111p2ql6425ql6424ql64m图八
结构力学考试题及答案
![结构力学考试题及答案](https://img.taocdn.com/s3/m/967d079b77a20029bd64783e0912a21615797f14.png)
结构力学考试题及答案一、选择题1. 结构力学研究的是什么?A. 横截面形状B. 结构设计C. 结构变形和受力关系D. 断裂力学2. 在静力平衡条件下,一个受力结构的总力和总力矩是否为零?A. 是B. 否3. 弹性力学的基本假设是什么?A. 结构材料是均匀、各向同性的B. 结构受力状态是非线性的C. 结构的变形是正比于外力作用下的D. 结构的变形只能是线弹性的4. 一根悬臂梁在悬臂端受到的弯矩最大是在哪个位置?A. 梁的中点B. 梁的一端C. 梁的两端之间的某个位置D. 梁的支点处5. 刚度是衡量什么物理量的指标?A. 应变B. 位移C. 力D. 弯矩二、填空题1. 弹性模量是材料的________力学性质。
2. 杆件在轴向受力作用下长度发生变化的现象称为________。
3. 当材料达到屈服强度时,它会发生________变形。
4. 对于相同截面积的杆件,材料弹性模量越大,其刚度________。
5. 纤维增强复合材料的强度主要取决于________的方向。
三、计算题1. 一个长度为3m、截面积为0.1m²的悬臂梁,承受均匀分布在梁上的荷载为1000N/m。
求最大弯矩和最大挠度。
2. 一根长度为4m的梁,在其一端受到1000N的力作用。
已知该梁的截面积为0.2m²,弹性模量为200GPa。
求梁在作用力作用下的最大挠度和梁的变形方程。
四、解答题1. 简述静力平衡条件的基本原理。
2. 概述结构力学的基本理论。
五、答案选择题:1. C2. A3. A4. D5. B填空题:1. 力学2. 轴向变形3. 塑性4. 越大5. 纤维计算题:1. 最大弯矩:900 N·m,最大挠度:0.05 m2. 最大挠度:0.02 m,梁的变形方程:y = 0.0005x³ + 0.0025x² + 0.002x解答题:1. 静力平衡条件要求一个结构在受力时总力和总力矩为零。
结构力学第五版课后习题答案
![结构力学第五版课后习题答案](https://img.taocdn.com/s3/m/7767f542b42acfc789eb172ded630b1c59ee9bb2.png)
结构力学第五版课后习题答案结构力学第五版课后习题答案结构力学是工程学中的一门重要学科,它研究物体在受力作用下的变形和破坏行为。
对于学习结构力学的学生来说,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供结构力学第五版课后习题的答案,希望能对大家的学习有所帮助。
第一章:引言第一章主要介绍了结构力学的基本概念和基本原理。
习题一般涉及力的分解、合成、平衡条件等内容。
以下是一道典型的习题及其答案:习题1.1:一个物体受到一个力F,该力可分解为两个力F1和F2,方向如图所示。
已知F1=3N,F2=4N,求F的大小和方向。
解答:根据力的平衡条件,可以得到F1+F2=F。
代入已知数据,得到3N+4N=F,即F=7N。
根据力的合成,可以得到F的方向与F1和F2的方向相反,即向左。
第二章:静力学基本原理第二章主要介绍了静力学的基本原理,包括力的作用点、力的大小、力的方向等。
习题一般涉及受力分析、力矩计算等内容。
以下是一道典型的习题及其答案:习题2.1:一个杆AB长2m,质量为10kg。
在杆的中点C处施加一个力P=20N,方向向上。
求杆的重力作用点与杆的中点C之间的距离。
解答:首先计算杆的重力,即重力=质量×重力加速度=10kg×9.8m/s²=98N。
由于杆是均匀杆,所以重力作用点在杆的中点C处。
因此,重力作用点与杆的中点C之间的距离为0。
第三章:平面结构的受力分析第三章主要介绍了平面结构的受力分析方法,包括平衡方程、约束条件等。
习题一般涉及平面结构的受力分析和计算等内容。
以下是一道典型的习题及其答案:习题3.1:一个桥梁由两个杆组成,杆AB和杆BC的长度分别为3m和4m。
桥梁的两端A和C分别受到一个力Fa和Fc,方向如图所示。
已知Fa=10N,Fc=15N,求桥梁的重力。
解答:根据平衡方程,可以得到力的合成关系:Fa+Fc=重力。
代入已知数据,得到10N+15N=重力,即重力=25N。
结构力学-习题集(含答案)
![结构力学-习题集(含答案)](https://img.taocdn.com/s3/m/9a51313eec630b1c59eef8c75fbfc77da269979c.png)
结构⼒学-习题集(含答案)《结构⼒学》课程习题集⼀、单选题1.弯矩图肯定发⽣突变的截⾯是(D )。
A.有集中⼒作⽤的截⾯;B.剪⼒为零的截⾯;C.荷载为零的截⾯;D.有集中⼒偶作⽤的截⾯。
2.图⽰梁中C截⾯的弯矩是( D )。
4m2m4mA.12kN.m(下拉);B.3kN.m(上拉);C.8kN.m(下拉);D.11kN.m(下拉)。
3.静定结构有变温时,(C)。
A.⽆变形,⽆位移,⽆内⼒;B.有变形,有位移,有内⼒;C.有变形,有位移,⽆内⼒;D.⽆变形,有位移,⽆内⼒。
4.图⽰桁架a杆的内⼒是(D)。
A.2P;B.-2P;C.3P;D.-3P。
5.图⽰桁架,各杆EA为常数,除⽀座链杆外,零杆数为(A)。
A.四根;l= a66.图⽰梁A点的竖向位移为(向下为正)(C)。
A.)24/(3EIPl; B.)16/(3EIPl; C.)96/(53EIPl; D.)48/(53EIPl。
PEIEI A l/l/2227. 静定结构的内⼒计算与( A )。
A.EI ⽆关;B.EI 相对值有关;C.EI 绝对值有关;D.E ⽆关,I 有关。
8. 图⽰桁架,零杆的数⽬为:( C )。
A.5;9. 图⽰结构的零杆数⽬为( C )。
A.5;B.6;C.7;D.8。
10. 图⽰两结构及其受⼒状态,它们的内⼒符合( B )。
A.弯矩相同,剪⼒不同;B.弯矩相同,轴⼒不同;C.弯矩不同,剪⼒相同;D.弯矩不同,轴⼒不同。
PP2EI EI EIEI 2EI EIllhl l11. 刚结点在结构发⽣变形时的主要特征是( D )。
A.各杆可以绕结点结⼼⾃由转动; B.不变形; C.各杆之间的夹⾓可任意改变; D.各杆之间的夹⾓保持不变。
12. 若荷载作⽤在静定多跨梁的基本部分上,附属部分上⽆荷载作⽤,则( B )。
A.基本部分和附属部分均有内⼒;B.基本部分有内⼒,附属部分没有内⼒;C.基本部分⽆内⼒,附属部分有内⼒;D.不经过计算,⽆法判断。
结构力学试题与答案汇总(完整版)
![结构力学试题与答案汇总(完整版)](https://img.taocdn.com/s3/m/fe2dc13a6c85ec3a87c2c551.png)
院(系) 学号 姓名 .密封线内不要答题 密封……………………………………………………………………………………………………………………………………………………结构力学试题答案汇总结构力学课程试题 ( B )卷考 试 成 绩题号 一二三四成绩得分一、选择题(每小题3分,共18分)1. 图 示 体 系 的 几 何 组 成 为 : ( ) A. 几 何 不 变 , 无 多 余 联 系 ; B. 几 何 不 变 , 有 多 余 联 系 ; C. 瞬变 ; D. 常 变 。
2. 静 定 结 构 在 支 座 移 动 时 , 会 产 生 : ( )A. 内 力 ;B. 应 力 ;C. 刚 体 位 移 ;D. 变 形 。
3. 在 径 向 均 布 荷 载 作 用 下 , 三 铰 拱 的 合 理 轴 线 为: ( )A .圆 弧 线 ;B .抛 物 线 ;C .悬 链 线 ;D .正 弦 曲 线 。
4. 图 示 桁 架 的 零 杆 数 目 为 : ( )A. 6;B. 7;C. 8;D. 9。
5. 图 a 结构的最后弯矩图为:()A.图 b; B.图 c ; C.图 d ; D.都不对。
6. 力法方程是沿基本未知量方向的:()A.力的平衡方程;B.位移为零方程;C.位移协调方程; D.力的平衡及位移为零方程。
二、填空题(每题3分,共9分)1.从几何组成上讲,静定和超静定结构都是_________体系,前者_________多余约束而后者_____________多余约束。
2. 图 b 是图 a 结构 ________ 截面的 _______ 影响线。
3. 图示结构 AB 杆 B 端的转动刚度为 ________, 分配系数为________, 传递系数为 _____。
三、简答题(每题5分,共10分)1.静定结构内力分析情况与杆件截面的几何性质、材料物理性质是否相关?为什么?2.影响线横坐标和纵坐标的物理意义是什么?四、计算分析题,写出主要解题步骤(4小题,共63分)1.作图示体系的几何组成分析(说明理由),并求指定杆1和2的轴力。
《结构力学习题集》(含答案).docx
![《结构力学习题集》(含答案).docx](https://img.taocdn.com/s3/m/819e06b4bb68a98270fefa24.png)
第三章静定结构的位移计算一、判断题:1、虚位移原理等价于变形谐调条件,可用于求体系的位移。
2、按虚力原理所建立的虚功方程等价于几何方程。
3、在非荷载因素(支座移动、温度变化、材料收缩等)作用下,静定结构不产生内力,但会有位移且位移只与杆件相对刚度有关。
4、求图示梁铰 C 左侧截面的转角时,其虚拟状态应取:M =1A. B.C;CM =1M =1C. D.C;C5、功的互等、位移互等、反力互等和位移反力互等的四个定理仅适用于线性变形体系。
6、已知M p、 M k图,用图乘法求位移的结果为:( 1 y1 2 y2 ) / (EI )。
1M p*2*P = 1M =1A BA Cy2BM k y1( a )(b)7、图 a、 b 两种状态中,粱的转角与竖向位移间的关系为:= 。
8、图示桁架各杆 E A 相同,结点 A 和结点 B 的竖向位移均为零。
PAP aBBaa9、图示桁架各杆EA =常数,由于荷载P 是反对称性质的,故结点B 的竖向位移等于零。
二、计算题:10、求图示结构铰 A 两侧截面的相对转角 A ,EI =常数。
qAl l l /211、求图示静定梁 D 端的竖向位移DV。
EI = 常数,a = 2m 。
10kN/mDa a a12、求图示结构 E 点的竖向位移。
EI=常数。
qEl l /3 2 l /3l /313、图示结构,EI= 常数, M 90kN m, P = 30kN 。
求 D 点的竖向位移。
MPA CBD3m 3m 3m14、求图示刚架 B 端的竖向位移。
q2EI BEI l/2Al15、求图示刚架结点 C 的转角和水平位移,EI = 常数。
qBCl/2Al16、求图示刚架中D点的竖向位移。
EI =常数。
Pl/2Dl l17、求图示刚架横梁中D点的竖向位移。
EI =常数。
qDaa a18、求图示刚架中 D 点的竖向位移。
E I = 常数。
qDll l/ 2 l/ 219、求图示结构A、B两截面的相对转角,EI =常数。
《结构力学》典型习题与解答-知识归纳整理
![《结构力学》典型习题与解答-知识归纳整理](https://img.taocdn.com/s3/m/6fb5a0458f9951e79b89680203d8ce2f006665a8.png)
《结构力学》经典习题及详解一、判断题(将判断结果填入括弧内,以 √表示正确 ,以 × 表示错误。
)1.图示桁架结构中有3个杆件轴力为0 。
(×)2.图示悬臂梁截面A 的弯矩值是ql 2。
(×)l lqA3.静定多跨梁中基本部分、附属部分的划分与所承受的荷载无关。
(√ ) 4.普通来说静定多跨梁的计算是先计算基本部分后计算附属部分。
(× ) 5.用平衡条件能求出全部内力的结构是静定结构。
( √ )6.求桁架内力时截面法所截取的隔离体包含两个或两个以上的结点。
(√ ) 7.超静定结构的力法基本结构不是唯一的。
(√)8.在桁架结构中,杆件内力不是惟独轴力。
(×) 9.超静定结构由于支座位移可以产生内力。
(√ ) 10.超静定结构的内力与材料的性质无关。
(× ) 11.力法典型方程的等号右端项不一定为0。
(√ )12.计算超静定结构的位移时,虚设力状态可以在力法的基本结构上设。
(√)13.用力矩分配法计算结构时,汇交于每一结点各杆端分配系数总和为1,则表明分配系数的计算无错误。
(× )14.力矩分配法适用于所有超静定结构的计算。
(×) 15.当AB 杆件刚度系数i S AB3 时,杆件的B 端为定向支座。
(×)F P知识归纳整理二、单项挑选题(在每小题的四个备选答案中选出一具正确答案,并将其代号填在题干后面的括号内。
不选、错选或多选者,该题无分。
) 1.图示简支梁中间截面的弯矩为( A )qlA . 82qlB . 42ql C . 22ql D . 2ql2.超静定结构在荷载作用下产生的内力与刚度(B )A . 无关B . 相对值有关C . 绝对值有关D . 相对值绝对值都有关 3.超静定结构的超静定次数等于结构中(B )A .约束的数目B .多余约束的数目C .结点数D .杆件数4.力法典型方程是根据以下哪个条件得到的(C )。
结构力学位移法题目及详细解答
![结构力学位移法题目及详细解答](https://img.taocdn.com/s3/m/077ffd713d1ec5da50e2524de518964bcf84d2cc.png)
结构力学位移法题目及详细解答位移法中含无穷刚度杆的结构是考研结构力学的一大难点,很多热门院校都喜欢出这类型的题目,下面以两道有复杂牵连位移的含无穷刚度杆位移法题目为例,对三种解法进行讲解,题目取自东南大学真题和烟台大学真题。
1.用位移法绘制图示结构的弯矩图,BC杆 EI=∞,其余各杆 EI 为常数(东南大学2017年真题)。
解:根据局部变形图找出位移牵连关系,B点角位移,B点竖向线位移,C点角位移三者牵连,只有1个独立,有三种方法。
法一:基本体系一:以 B点竖向线位移为基本未知量,难点是无穷刚结点处会引起线位移和角位移,过程如图:M2¯图绘制是一个难点,需要通过无穷刚度杆的局部变形图判断弹性杆的变形,从而指导画出形常数图。
计算过程略,最后弯矩图如图:法二:基本体系二:以 C 点角位移为基本未知量,难点是剪力平衡,过程如下:M2¯图绘制是一个难点,需要通过无穷刚度杆的局部变形图判断弹性杆的变形,从而指导画出形常数图。
法二的典型错误:无穷刚度杆弯矩图不会画。
正确思路:从弹性杆画到无穷刚度杆,通过刚结点平衡条件确定杆端弯矩,杆上没有集中力作用,剪力不变,弯矩图斜率相同。
这里注意,超静定结构在荷载作用下内力值只与刚度相对值有关,与绝对值无关,所以从弹性杆到无穷刚度杆弯矩是不会倍增的。
另外,若有集中力作用于无穷刚度杆上,则按照简支梁叠加即可。
法三:基本体系三:以B点角位移为基本为质量,难点是剪力平衡,过程如下:点评:法三位移一定可以发生,因为线位移和两个角位移有两个独立,一个牵连,刚结点任取一个角位移都可以是独立的,无穷刚度杆上增加刚臂后相当于大地固定端,不能动,刚臂发生相当于固定端发生单位角位移的支座移动。
结构力学试题及答案
![结构力学试题及答案](https://img.taocdn.com/s3/m/ab7b36a2b9f67c1cfad6195f312b3169a451ea8b.png)
结构力学试题及答案第一题:一个竖立的、长度为L的悬臂梁上承受均布载荷w,各截面的弯曲半径r随其距左端的水平距离x的变化规律为r=2x,试求该梁各截面的弯矩M和剪力V的分布情况。
解答:对于悬臂梁来说,在截面x处的剪力V和弯矩M可以通过以下公式计算得出:剪力V = -wx弯矩M = -wx^2/2由于此题中弯曲半径和$x$之间的关系为$r=2x$,我们可以得到:$wR = EIκIz$即$-wx = E\frac{2x}{R}Iz$解方程可得$V = -\frac{6}{5} \frac{wL}{R}$$M = \frac{3}{10} \frac{wL^2}{R}$第二题:一根横截面为矩形的固定梁,长度为L,底部宽度为b,高度为h,悬臂长度为a,已知梁的材料力学特性,试求梁在距离左端x的位置的截面上的弯矩M和剪力V的分布情况。
解答:由于梁是固定梁,可以得知横截面上的弯矩M和剪力V的计算公式如下:剪力V = -qh弯矩M = -\frac{qh}{2}(x-a)^2其中,q为单位长度上的载荷。
由于题目中给出了梁的材料力学特性,可以知道梁的弹性模量为E,截面惯性矩为I,可以得到剪应力τ和最大剪应力τmax的计算公式:剪应力τ = \frac{V}{I} \cdot \frac{h}{2}最大剪应力τmax = \frac{Vmax}{I} \cdot \frac{h}{2}通过以上公式,可以计算出横截面上的剪力V、弯矩M、剪应力τ和最大剪应力τmax的具体数值。
第三题:一个跨度为L的简支梁上均匀分布有较长的集中荷载,如何确定梁上各部位的最大弯矩位置和最大弯矩值?解答:对于简支梁,可以通过以下步骤来确定各部位的最大弯矩位置和最大弯矩值:1. 计算梁的支点反力。
根据梁的简支边界条件,可以求得支点的反力,反力的大小等于荷载的大小。
根据反力的大小和荷载的位置,可以推算出反力的具体数值。
2. 根据荷载分布确定载荷大小。
结构力学力法习题及答案
![结构力学力法习题及答案](https://img.taocdn.com/s3/m/e7515396b04e852458fb770bf78a6529647d3594.png)
结构力学力法习题及答案结构力学力法习题及答案结构力学是一门研究物体在外力作用下产生的应力和变形的学科。
在工程学中,结构力学是非常重要的一门学科,它为我们设计和分析各种建筑和机械结构提供了基础。
在学习结构力学的过程中,习题是必不可少的一部分。
下面将给出一些结构力学的力法习题及其答案,希望对读者有所帮助。
1. 一个悬臂梁上有一个集中力作用在梁的自由端,求该梁的弯矩分布图。
解答:根据悬臂梁的特点,自由端处的弯矩最大。
假设集中力为F,梁的长度为L,弹性模量为E,梁的截面惯性矩为I。
根据悬臂梁的弯矩公式M = F * L,可以得到弯矩分布图为一个从自由端开始逐渐减小的直线。
2. 一个等截面的梁上有一个均布载荷作用,求该梁的剪力分布图。
解答:假设均布载荷为q,梁的长度为L,根据梁的受力平衡条件,可以得到梁上任意一点的剪力大小为V = q * x,其中x为距离梁的一端的距离。
因此,该梁的剪力分布图为一个线性增长的直线。
3. 一个梁上有多个集中力作用,求该梁的弯矩和剪力分布图。
解答:对于每个集中力,可以分别求出其在梁上的弯矩和剪力分布图。
然后将所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪力分布图。
4. 一个悬臂梁上有一个集中力和一个均布载荷同时作用,求该梁的弯矩和剪力分布图。
解答:首先,根据集中力的大小和悬臂梁的长度,可以求出集中力在悬臂梁上的弯矩分布图。
然后,根据均布载荷的大小和悬臂梁的长度,可以求出均布载荷在悬臂梁上的剪力分布图。
最后,将两者叠加在一起,即可得到梁的总弯矩和总剪力分布图。
5. 一个梁上有多个集中力和多个均布载荷同时作用,求该梁的弯矩和剪力分布图。
解答:对于每个集中力和均布载荷,可以分别求出其在梁上的弯矩和剪力分布图。
然后将所有的弯矩和剪力分布图叠加在一起,即可得到梁的总弯矩和总剪力分布图。
通过以上习题的解答,我们可以看到结构力学中力法的应用。
在实际工程中,我们需要根据具体的结构形式和受力情况,运用结构力学的理论知识,求解结构的受力分布,从而保证结构的安全可靠。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《结构力学》计算题61.求下图所示刚架的弯矩图。
a a a aqAB CD62.用结点法或截面法求图示桁架各杆的轴力。
63.请用叠加法作下图所示静定梁的M图。
64.作图示三铰刚架的弯矩图。
65.作图示刚架的弯矩图。
66. 用机动法作下图中E M 、L QB F 、RQB F 的影响线。
1m 2m2mFp 1=1mEBA 2mCD67. 作图示结构F M 、QF F 的影响线。
68. 用机动法作图示结构影响线L QB F F M ,。
69. 用机动法作图示结构R QB C F M ,的影响线。
70. 作图示结构QB F 、E M 、QE F 的影响线。
71. 用力法作下图所示刚架的弯矩图。
l B DPACllEI =常数72. 用力法求作下图所示刚架的M 图。
73. 利用力法计算图示结构,作弯矩图。
74. 用力法求作下图所示结构的M 图,EI=常数。
75. 用力法计算下图所示刚架,作M 图。
76.77.78.79.80.81.82.83.84.85.答案61. 解:qA B CDF xBF yBF yAF xA2qa 32/2qa 32/q 2a ()2/82qa 32/=/qa 22取整体为研究对象,由0AM=∑,得2220yB xB aF aF qa +-= (1)(2分)取BC 部分为研究对象,由0CM=∑,得yB xB aF aF =,即yB xB F F =(2)(2分)由(1)、(2)联立解得23xB yB F F qa ==(2分) 由0x F =∑有 20xA xB F qa F +-= 解得 43xAF qa =-(1分) 由0y F =∑有 0yA yB F F += 解得 23yA yB F F qa =-=-(1分)则2224222333D yB xB M aF aF qa qa qa =-=-=()(2分)弯矩图(3分)62. 解:(1)判断零杆(12根)。
(4分)(2)节点法进行内力计算,结果如图。
每个内力3分(3×3=9分)63. 解:(7分) (6分)64. 解:由0B M =∑,626P RA F F =⨯,即2PRA F F =(↓)(2分) 由0y F =∑,2PRB RA F F F ==(↑)(1分) 取BE 部分为隔离体0EM=∑,66yB RB F F =即2PyB F F =(←)(2分) 由0x F =∑得2PyA F F =(←)(1分) 故63DE DA yA P M M F F ===(内侧受拉)(2分)63CB CE yB P M M F F ===(外侧受拉)(2分)(3分)65. 解:(1)求支座反力。
对整体,由0x F =∑,xA F qa =(←)(2分)0AM=∑,22308RC F a qa qa ⨯--=,178RC F qa =(↑)(2分)(2)求杆端弯矩。
0AB DC M M ==(2分)2BA BC xA M M F a qa ==⨯=(内侧受拉)(2分) 2248CB CDa a qa M M q ==⨯⨯=(外侧受拉)(2分)(3分)66. 解:(1)C M 的影响线(4分)EB ADC23/23/23/2(2)LQBF的影响线(4分)E BADC 123/1/3(2)RQB F 的影响线(4分)E BA D C 1167. 解:(1)F M 的影响线(6分)(2)QF F 的影响线(6分)68. 解:F M 影响线(6分)LQBF 影响线(6分) 69. 解:QBc F M ,影响线(6分)RQB c F M ,影响线(6分)70. 解:(1)QB F 的影响线。
(4分)E M 的影响线。
(4分)QE F 的影响线。
(4分)71. 解:(1)本结构为一次超静定结构,取基本体系如图(a )所示。
(2分) (2)典型方程11110P X δ+∆=(2分)(3)绘制P M 、1M 分别如图(b )、(c )所示。
(3分)基本体系PX 1M PP2Pl(a ) (b )X 1=1l l1MMPl 8/PPlPl 8/(c ) (d )(4)用图乘法求系数和自由项。
333111433l l l EI EIδ=+=(2分)232112217()22336P l Pl Pl Pl l Pl EI EI-⨯∆=++⨯=-(2分)(5)解方程得1178P X =(1分) (6)利用11P M M X M =+绘制弯矩图如图(d )所示。
(2分)72. 解:1)选择基本体系(2分)这是一次超静定刚架,可去掉B 端水平约束,得到如下图所示的基本体系。
ql 22)列力法方程(2分)11110P X δ+∆=3)绘制基本体系的Mp 图和单位弯矩图,计算系数、自由项(6分,Mp 图和单位弯矩图各2分,系数每个1分,结果错误得一半分)ql 231121711()2()2326l l l l l l l EI EI EI δ=⨯⨯⨯+⨯⨯=421211()38224l ql p ql l EI EI =-⨯⨯⨯=-∆解方程得: 1128ql X =(1分)作M 图:11P X M M M =+(3分)73.解:(2分)(3分)(1分)(2*4=8分)74.解:取基本体系如图(2分)列力法基本方程:11110p X δ+∆=(2分) A B l1M 图(1.5分) p M 图(1.5分)3113l EI δ= (2分) 418p ql EI ∆=-(2分)代入力法方程得 138qlX =(1分)A B28ql 216qlM 图(2分)75. 解:(1)选取基本体系如图(a )所示(2分)(a )(2)列力法方程。
11112210P X X δδ++∆=(1分)21122220P X X δδ++∆=(1分)(3)分别作P M 、1M 和2M 图(1*3=3分)(4)求系数和自由项。
2241111315()32428P qa a qa a a a qa EI EI ∆=-⋅⋅⋅+⋅⋅=-⋅(1分) 422111()224P qa qa a a EI EI∆=-⋅⋅⋅=-(1分) 3111124()233a a a a a a a EI EIδ=⋅⋅⋅+⋅⋅=(1分) 322112()233a a a a EI EIδ=⋅⋅⋅=(0.5分) 3122111()22a a a a EI EIδδ==⋅⋅⋅=(0.5分) 将上述数据代入基本方程得137X qa =,2328X qa =(1分) (5)利用叠加法作弯矩图如图。
(2分)76. 图中,刚片AB 、BE 、DC 由不共线的三个铰B 、D 、E 连接,组成一个大刚片,再和地基基础用不相交也不全平行的三链杆相连,组成没有多余约束的几何不变体系(5分)。
77. 如图所示的三个刚片通过不在同一直线上的A 、B 、C 三个铰两两相连构成无多余约束的扩大刚片,在此基础上依次增加二元体(1,2)、(3,4)、(5,6)、(7,8)组成无多余约束的几何不变体系。
(5分)ⅠⅡⅢ43125687ABC78. 如图所示的三个刚片通过同一直线上的A 、B 、C 三个铰两两相连构成了瞬变体系。
(5分)79.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)80.如图依次拆除二元体(1,2)、(3,4)、剩下刚片Ⅰ和大地刚片Ⅱ通过一铰和不过该铰的链杆组成了几何不变体系,故原体系是无多余约束的几何不变体系。
(5分)81.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)82.如图刚片Ⅰ、Ⅱ、Ⅲ通过不共线的三铰两两相连组成了无多余约束的几何不变体系。
(5分)83.如图以铰接三角形ABC为基本刚片,并依次增加二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)形成扩大刚片,其和大地刚片通过铰A和节点B处链杆组成了几何不变体系,11杆为多余约束,故原体系为含有1个多余约束的几何不变体系。
(5分)84.如图依次拆除二元体(1,2)、(3,4)、(5,6),刚片Ⅱ和大地刚片Ⅰ通过相交于同一点的三根链杆组成了瞬变体系。
(5分)85.如图依次拆除二元体(1,2)、(3,4)、(5,6)、(7,8)、(9,10)、(11,12)后只剩下大地刚片,故原体系是无多余约束的几何不变体系。
(5分)。