北京西城区学探诊__人教版八年级数学上册__第11章全等三角形
人教版八年级数学上册《十一章 全等三角形. 11.2 三角形全等的判定. 全等与全等三角形.》公开课课件_0
②只给一个角:
60°
60°
可以发现按这 些条件画的三 角形都不能保 证一定全等。
60°
2.给出两个条件:
①一边一内角:
30° ②两内角:
30°50° ③两边:
2cm 4cm
30°
30°
可以发现按这 些条件画的三 30° 50° 角形都不能保 证一定全等。
2cm 4cm
探究2
想想该如何画?
已知三角形三条边分别是 4cm,5cm,7cm, 画出这个三角形,把所画的三角形分别剪下来, 并与同伴比一比,发现什么?
3、证明是由题设(已知)出发,经过一步步 的推理,最后推出结论正确的过程。
独立 作业
A 教材P15 -1.2.9 B 教材P15 -1.2
径画弧,交O′A′于点C′;
3、以点C′为圆心,CD长为半径画弧,与第2步中
所画的弧交于点D′;
4、过点D′画射线O′B′,则∠A′O′B′=∠AOB
解惑
全等三角形证明的基本步骤:
①分析已有条件,准备所缺条件: 证全等时要用的间接条件要先证好; ②三角形全等书写三步骤:
• 写出在哪两个三角形中
• 摆出三个条件用大括号括起来
证明:∵点E,F分别是AB,CD的中点
1
1
∴AE= AB, CF = CD
2
2
∵AB=CD ∴AE=CF
DF C A EB
在△ADE与△CBF中 AE=CF AD=CB
∴△ADE≌△CBF ∴∠A=∠C
DE=BF
小结归纳
1. 三边对应相等的两个三角形全等 (边边边或SSS);
2.证明全等三角形书写格式:①准备条件; ②三角形全等书写的三步骤。
• 写出全等结论
人教版八年级上册数学 第11章 三角形 全章重点习题练习课件
7.【2019•金华】若长度分别为a,3,5的三条线段能组 成一个三角形,则a的值可以是( C ) A.1 B.2 C.3 D.8
8.【2019•自贡】已知三角形的两边长分别为1和4,第三 边长为整数,则该三角形的周长为( C ) A.7 B.8 C.9 D.10
【解析】设第三边长为x,根据三角形的三边关系,得 4-1<x<4+1,即3<x<5.因为x为整数,所以x的值 为4.所以三角形的周长为1+4+4=9.
(3)你能说明上述结论为什么成立吗? 解:延长BP交AC于点D. 在△ABD中,AB+AD>BP+PD①, 在△PDC中,PD+DC>PC②. ①+②,得AB+AD+PD+DC>BP+PD+PC, 即AB+AC>PB+PC.
15.小明和小红在一本数学资料书上看到这样一道竞 赛题:“已知△ABC的三边长分别为a,b,c,且 |b+c-2a|+(b+c-5)2=0,求b的取值范围.”
②若 n+2<3n<n+8,则
n+2<3n, 3n<n+8, n+2+3n>n+8,
n>1, 解得n<4,即 2<n<4,
n>2,
∴正整数 n 有 1 个,即 3;
③若
3n
≤
n
+
2
<
n
+
8
,
则
3n≤n+2, 3n+n+2>n+8,
解
得
nn≤ >12, ,不等式组无解;
综上所述,满足条件的 n 的值有 7 个.故选 D.
(2)在能做成三角形支架的情况下,选择哪一种规格的木 棒最省钱? 选择规格为3 m的木棒最省钱.
14.如图,P是△ABC内部的一点. (1)度量AB,AC,PB,PC的长,根据度量结果比较 AB+AC与PB+PC的大小. 解:度量结果略.AB+AC>PB+PC. (2)改变点P的位置,上述结论还成立吗? 成立.
八年级上册数学第11章全等三角形教案(人教课标版)
八年级上册数学第11章全等三角形教案(人教课标版)第11章《全等三角形》复习课一.教学目标:(1)了解全等三角形的相关概念、性质,能够准确地辨认全等三角形中的对应元素,提高学生的识图能力。
(2)掌握三角形全等的判定方法,会证明两个三角形全等。
(3)理解角平分线的性质定理。
二.教学重点与难点重点:全等三角形的性质及三角形全等的判定方法。
难点:三角形全等的判定。
教学过程:1、全等三角形的概念及其性质1)全等三角形的定义:能够完全重合的两个三角形叫做全等三角形。
2)全等三角形性质:(1)对应边相等(2)对应角相等(3)周长相等(4)面积相等例 1.已知如图(1),≌,其中的对应边:____与____,____与____,____与____,对应角:______与_______,______与_______,______与_______.例2.如图(2),若≌.指出这两个全等三角形的对应边;若≌,指出这两个三角形的对应角。
(图1)(图2)(图3)例3.如图(3),≌,BC的延长线交DA于F,交DE于G,,,求、的度数.2.全等三角形的判定方法1)、两个三角形全等(SSS)2)的两个三角形全等(SAS)3)、的两个三角形全等(ASA)4)、的两个三角形全等(AAS)5)、的两个直角三角形全等(HL)例1.如图,在中,,D、E分别为AC、AB上的点,且AD=BD,AE=BC,DE=DC.求证:DE⊥AB。
例2.如图,AB=AC,BE和CD相交于P,PB=PC,求证:PD=PE.例3.如图,在中,M在BC上,D在AM上,AB=AC,DB=DC。
求证:MB=MC例4.如图,AD与BC相交于O,OC=OD,OA=OB,求证:例5.如图,梯形ABCD中,AB//CD,E是BC的中点,直线AE交DC的延长线于F求证:≌3.角平分线1)。
角平分线性质定理:角平分线上的点到这个角两边的距离相等。
逆定理:到一个叫两边的距离相等的点在这个角的平分线上。
新人教版八年级上册数学第十一章知识点
第十一章 三角形一、知识框架:二、知识概念:1.三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形.2.三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边.3.高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高.4。
中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。
5。
角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.6.三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。
7.多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形.8。
多边形的内角:多边形相邻两边组成的角叫做它的内角.9。
多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角.10。
多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.11。
正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形.12。
平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用 多边形覆盖平面,13.公式与性质:⑴三角形的内角和:三角形的内角和为180°⑵三角形外角的性质:性质1:三角形的一个外角等于和它不相邻的两个内角的和.性质2:三角形的一个外角大于任何一个和它不相邻的内角.⑶多边形内角和公式:n 边形的内角和等于(2)n -·180°⑷多边形的外角和:多边形的外角和为360°。
⑸多边形对角线的条数:①从n 边形的一个顶点出发可以引(3)n -条对角线,把多边形分成(2)n -个三角形.②n 边形共有(3)2n n -条对角线.知识点1 过两点有且只有一条直线2 两点之间线段最短3 同角或等角的补角相等4 同角或等角的余角相等5 过一点有且只有一条直线和已知直线垂直6 直线外一点与直线上各点连接的所有线段中,垂线段最短7 平行公理经过直线外一点,有且只有一条直线与这条直线平行8 如果两条直线都和第三条直线平行,这两条直线也互相平行9 同位角相等,两直线平行10 内错角相等,两直线平行11 同旁内角互补,两直线平行12两直线平行,同位角相等13 两直线平行,内错角相等14 两直线平行,同旁内角互补15 定理三角形两边的和大于第三边16 推论三角形两边的差小于第三边17 三角形内角和定理三角形三个内角的和等于180°18 推论1 直角三角形的两个锐角互余19 推论2 三角形的一个外角等于和它不相邻的两个内角的和20 推论3 三角形的一个外角大于任何一个和它不相邻的内角21 全等三角形的对应边、对应角相等22边角边公理(SAS)有两边和它们的夹角对应相等的两个三角形全等23 角边角公理(ASA)有两角和它们的夹边对应相等的两个三角形全等24 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等25 边边边公理(SSS)有三边对应相等的两个三角形全等26 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等27 定理1 在角的平分线上的点到这个角的两边的距离相等28 定理2 到一个角的两边的距离相同的点,在这个角的平分线上29 角的平分线是到角的两边距离相等的所有点的集合30 等腰三角形的性质定理等腰三角形的两个底角相等(即等边对等角)31 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合33 推论3 等边三角形的各角都相等,并且每一个角都等于60°34 等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35 推论1 三个角都相等的三角形是等边三角形36 推论2 有一个角等于60°的等腰三角形是等边三角形37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半38 直角三角形斜边上的中线等于斜边上的一半39 定理线段垂直平分线上的点和这条线段两个端点的距离相等40 逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42 定理1 关于某条直线对称的两个图形是全等形43 定理2 如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44 定理3 两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么这两个图形关于这条直线对称45 逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46 勾股定理直角三角形两直角边a、b的平方和等于斜边c的平方,即a2+b2=c247 勾股定理的逆定理如果三角形的三边长a、b、c有关系a2+b2=c2,那么这个三角形是直角三角形48 定理四边形的内角和等于360049 定理四边形的外角和等于360050 多边形内角和定理n边形的内角和等于(n—2)*180051 推论任意多边的外角和等于360052 平行四边形性质定理1 平行四边形的对角相等53 平行四边形性质定理2 平行四边形的对边相等54 平行四边形性质定理3 平行四边形的对角线互相平分55平行四边形判定定理1 两组对角分别相等的四边形是平行四边形56 平行四边形判定定理2 两组对边分别相等的四边形是平行四边形57 平行四边形判定定理3 对角线互相平分的四边形是平行四边形58 平行四边形判定定理4 一组对边平行且相等的四边形是平行四边形59 矩形性质定理1 矩形的四个角都是直角。
北京市西城区八年级数学上册 第11章 三角形全章测试题 (新版)新人教版-(新版)新人教版初中八年级
三角形一.填空题1.三角形的三边之间的关系:. 2.顶点是A 、B 、C 的三角形,记作:. 3.图(1)中有三角形,用符号表示为, 以CD 为边的三角形是,△ABC 的三个内角分别 是,△ADC 的三条边分别是.4.三角形的两条边的长分别为4和5,第三边为x ,则x 的取值 X 围.5.三角形有条高线,条中线,条角平分线.6.如图(2)①AD 是△ABC 的角平分线,则∠=∠=21∠,②AE 是△ABC 的中线,则==21,③AF 是△ABC 的高线,则∠=∠=900.7.如图(3)小亮的爸爸在院子的门板上钉了一个加固板,从 数学的角度看,这样做的道理是. 8.三角形的内角和为0,外角和为0 . 9.三角形的一个外角等于, 三角形的一个外角大于.10.王老师拿出一个三角形的纸片,用剪刀依次剪去一个角,则每一次剪掉的图形是. 11.①从七边形的一个顶点出发,可以引条对角线,它们将七边形分为个三角形,七边形的内角和等于1800×.②从八边形的一个顶点出发,可以引条对角线,它们将八边形分为个三角形,八边形的内角和等于1800×.CE DF (2)BC(1)(3)③从n 边形的一个顶点出发,可以引条对角线,它们将n 边形分为个三角形,n 边形的内角和等于1800×.12.n 边形内角和等于0,外角和等于0. 二、选择题13.要组成一个三角形,三条线段的长度可取 ( ) A .1,2,3 B .2,3,5 C .3,4,5 D .3,5,1014.如图(4),共有多少个三角形? ( )A .3个B .4个C .5个D .6个15.下列说法错误的是A .任意三角形都有三条高线、中线、角平分线。
B .钝角三角形有两条高线在三角形的外部。
C .直角三角形只有一条高线。
D .锐角三角形的三条高线、三条中线、三条角平分线分别交于一点。
16.下列正多边形材料中,不能单独用来铺满地面的是 ( ) A .正三角形 B .正四边形 C .正五边形 D .正六边形17.一定在三角形内部的线段是 ( ) A .三角形的角平分线、中线、高线 B .三角形的角平分线 C .三角形的三条高线 D .以上都不对 18.适合条件∠A=∠B=21∠C 的是△ABC 是 ( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .不能确定19.在长方形、正方形、菱形、等腰梯形中,是正多边形的有 ( ) A . 1个 B .2个 C .3个 D .4个20.多边形的内角和不可能的是 ( ) A . 8100B .3600C .7200D .21600C (4)21.从n边形的一个顶点引对角线,将这个n边形分成的三角形的个数为()A.n B.n-1 C.n-2 D.n-322.六边形的对角线的条数是()A. 7 B.8 C.9 D.10三、解答题23.(1)若多边形的内角和为23400,求此多边形的边数.(2)一个多边形的每个外角都相等,如果它的内角与外角的度数之比为13:2,求这个多边形的边数.24.如图(5):△ABC中,BO、CO平分∠ABC和∠ACB,若∠A=500,求∠BOC的度数.答案C (5)一、1.两边之和大于第三边,两边之差小于第三边。
初二数学上册(人教版)第十一章三角形11.2知识点总结含同步练习及答案
描述:初二数学上册(人教版)知识点总结含同步练习题及答案第十一章 三角形 11.2 与三角形有关的角一、学习任务1. 掌握三角形的内角和和外角和定理,并会熟练运用内外角和定理解决相关的角的问题.2. 会证明三角形内角和和外角和定理.3. 掌握直角三角形中角的性质和判定.二、知识清单三角形的内外角和三、知识讲解1.三角形的内外角和三角形内角与外角在三角形中,相邻两边组成的角,叫做三角形的内角,简称三角形的角.三角形的一边与其邻边的延长线组成的角,叫做三角形的外角.三角形内角和定理三角形三个内角的和等于 .三角形外角和定理三角形的外角等于与它不相邻的两个内角的和.三角形内角和定理的推论直角三角形两个锐角互余.两锐角互余的三角形是直角三角形.飞镖模型及“8”字模型三角形角平分线与内角和180∘例题:在 ,,则 ______.解:.△ABC ∠A :∠B :∠C =2:1:3∠A =60∘一个三角形三个外角之比为 ,三个内角的度数分别是______.解:,,.三角形外角和是,再根据比例分别求出三个外角,即可求出对应的内角.2:3:4100∘60∘20∘360∘如图,三角板的直角顶点在直线 上,若 ,则 的度数是______.解:.l ∠1=40∘∠250∘如图所示,已知 ,,,求 的度数.解:方法一:延长 交 于 ,所以 .∠A =70∘∠B =40∘∠C =20∘∠BOC BO AC D ∠BOC =∠1+∠C =∠A +∠B +∠C=130∘方法二:连接 ,因为 ,所以 .因为 ,所以 .方法三:连接 并延长到点 ,因为 ,,所以.BC ∠1+∠2+∠A +∠B +∠C =180∘∠1+∠2=50∘∠1+∠2+∠BOC =180∘∠BOC =130∘AO D ∠3+∠B =∠1∠4+∠C =∠2∠3+∠B +∠4+∠C =∠1+∠2=130∘已知如图1,线段 、 相交于点 ,连接 、,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下, 和 的平分线 和 相交于点 ,并且与 、 分别相交于 、.试解答下列问题:(1)在图1中,请直接写出 ,,, 之间的数量关系:__________________;(2)仔细观察,在图2中“8字形”的个数:_____个;(3)在图2中,若 ,,试求 的度数.分析:(1)根据三角形内角和定理即可得出 ;(2)根据“8字形”的定义,仔细观察图形即可得出“8字形”共有 个;(3)现根据“8字形”中的角的规律,可得 ,,再根据角平分线的定义,得出 ,,可得 ,进而求出 的度数.解:(1);(2)① 线段 , 相交于点 ,形成“8字形”;② 线段 , 相交于点 ,形成“8字形”;③ 线段 , 相交于点 ,形成“8字形”;④ 线段 , 相交于点 ,形成“8字形”;⑤ 线段 , 相交于点 ,形成“8字形”;AB CD O AD CB ∠DAB ∠BCD AP CP P CD AB M N ∠A ∠B ∠C ∠D ∠D =40∘∠B =36∘∠P ∠A +∠D =∠C +∠B 6∠DAP +∠D =∠P +∠DCP ∠P CB +∠B =∠P AB +∠P ∠DAP =∠P AB ∠DCP =∠P CB 2∠P =∠D +∠B ∠P ∠A +∠D =∠C +∠B AB CD O AN CM O AB CP N AB CM O APCD M AN∠E=30高考不提分,赔付1万元,关注快乐学了解详情。
北京西城区学探诊 人教版八年级数学上册 第11章全等三角形
第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD =4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知 ∴______≌______( ). ∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3 三角形全等的条件 (二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边” (即______)指的是_________________________________________________________________________________. 2.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO ∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).3.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4 三角形全等的条件 (三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题 1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________; (2)全等三角形判定方法4——“角角边” (即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2二、选择题4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ()图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB . 求证:AD =AC.图4-59.已知:如图4-6,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ . 求证:HN =PM .图4-610.已知:AM 是ΔABC 的一条中线,BE ⊥AM 的延长线于E ,CF ⊥AM 于F ,BC =10,BE=4.求BM 、CF 的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .欲证明BD =CE ,需证明Δ______≌△______,理由为______. (2)已知:如图4-8,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5 直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.图5-14.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.图5-8(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.测试6 三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1B.2C.3D.46.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2B.3C.4D.5图6-37.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( ) A .80° B .60° C .40° D .20°8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( ) A .90°-∠A B .A ∠-2190oC .180°-2∠AD .A ∠-2145o图6-4 图6-5 图6-69.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( ) A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C ' D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-712.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;图6-8(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.13.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个?请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=1.5cm.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-4测试8 角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内....,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图8-9测试9 角的平分线的性质 (二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( ) A .PC =PD B .OC =OD C .∠CPO =∠DPO D .OC =PC图9-12.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn图9-2二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.图9-34.已知:如图9-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM ⊥AD于M,CN⊥BD于N.求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10。
新人教版八年级上数学第十一章-三角形-知识点+考点+典型例题(含答案)
第十一章三角形【知识要点】一.认识三角形1.关于三角形的概念及其按角的分类定义:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
2.三角形的分类:①三角形按内角的大小分为三类:锐角三角形、直角三角形、钝角三角形。
②三角形按边分为两类:等腰三角形和不等边三角形。
2.关于三角形三条边的关系(判断三条线段能否构成三角形的方法、比较线段的长短)根据公理“两点之间,线段最短”可得:三角形任意两边之和大于第三边。
三角形任意两边之差小于第三边。
3.与三角形有关的线段..:三角形的角平分线、中线和高三角形的角平分线:三角形的一个角的平分线与对边相交形成的线段;三角形的中线:连接三角形的一个顶点与对边中点的线段,三角形任意一条中线将三角形分成面积相等的两个部分;三角形的高:过三角形的一个顶点做对边的垂线,这条垂线段叫做三角形的高。
注意:①三角形的角平分线、中线和高都是线段,不是直线,也不是射线;②任意一个三角形都有三条角平分线,三条中线和三条高;③任意一个三角形的三条角平分线、三条中线都在三角形的内部。
但三角形的高却有不同的位置:锐角三角形的三条高都在三角形的内部;直角三角形有一条高在三角形的内部,另两条高恰好是它两条直角边;钝角三角形一条高在三角形的内部,另两条高在三角形的外部。
④一个三角形中,三条中线交于一点,三条角平分线交于一点,三条高所在的直线交于一点。
(三角形的三条高(或三条高所在的直线)交与一点,锐角三角形高的交点在三角形的内部,直角三角形高的交点是直角顶点,钝角三角形高(所在的直线)的交点在三角形的外部。
)4.三角形的内角与外角(1)三角形的内角和:180°引申:①直角三角形的两个锐角互余;②一个三角形中至多有一个直角或一个钝角;③一个三角中至少有两个内角是锐角。
(2)三角形的外角和:360°(3)三角形外角的性质:①三角形的一个外角等于与它不相邻的两个内角的和;——常用来求角度②三角形的一个外角大于任何一个与它不相邻的内角。
人教版八年级数学上册11.1全等三角形的判定
知识梳理: 三角形全等判定方法1
三边对应相等的两个三角形全等(可以简写
为“边边边”或“SSS”)。
A
用符号语言表达为:
在△ABC和△ DEF中
B
C
AB=DE
D
BC=EF
CA=FD
∴ △ABC ≌△ DEF(SSS) E
F
知识梳理: 三角形全等判定方法2
两边和它们的夹角对应相等的两个三角形全
等。(可以简写成“边角边”或“SAS”)
例7 (2006湖北黄冈):如图, 已知) ∴DDBB=E=ECC 又∵ AC∥ DB(已知)
AC∥ DB, AC=2DB,E是AC∠∠DDBBEE=∠=∠CCEEBB(两直线平
的中点,求证:BC=DE
行,内错角相等)
A
∵BBEE==EEBB(公共边)
∴ ΔDBE≌ΔCEB(SAS) ∴
D
E
BC=DE (全等三角形的对
C
典型例题:
E
1
例3 (2006湖北十堰):如图, 已知∠1=∠2,AC=AD,增加 B
A 2
下列条件:①AB=AE,②
D
BC=ED,③③∠∠CC=∠=∠DD,④,
在ΔABC和ΔAED中
∠B=∠E,其中能使
AC=AD
ΔABC≌ΔAED的条件有 ( )个. A.4 B.3 C.2 D.1
∠BAC=∠EAD
C
典型例题:
E
1
例3 (2006湖北十堰):如图, 已知∠1=∠2,AC=AD,增加 B
A 2
下列条件:①AB=AE,②
D
BC=ED,③∠C=∠D,④
∵∠1=∠2 (已知)
初二数学上册(人教版)第十一章三角形11.3知识点总结含同步练习及答案
四、课后作业 (查看更多本章节同步练习题,请到快乐学)
高考不提分,赔付1万元,关注快乐学了解详情。
解:设这个多边形是 边形,则它的内角和是 ,所以 ,
解得 .
所以这个多边形是十二边形.
n (n −2)×180∘(n −2)×=×5180∘360∘n =12答案:1. 下列说法不正确的是 A .各边都相等的多边形是正多边形
B .正多边形的各边都相等
C .正三角形就是等边三角形
D .各内角相等的多边形不一定是正多边形
A
()
答案:2. 若一个多边形的内角和为 ,则这个多边形的边数为 A .B .C .D .C
1080∘()
678
9答案:3. 六边形的内角和为 A .B .C .D .C
()
360∘540∘720∘1080∘答案:4. 若一个多边形的每一个外角都等于 ,则这个多边形的边数是 A .B .C .D .D
30 ∘(
)6810
12。
人教版八年级上册第十一章三角形知识点总结归纳
三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)几何B级概念:(要求理解、会讲、会用,主要用于填空和选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数.二常识:1.三角形中,第三边长的判断:另两边之差<第三边<另两边之和.2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而第三个交点可在三角形内,三角形上,三角形外.注意:三角形的角平分线、中线、高线都是线段.3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA.4.三角形能否成立的条件是:最长边<另两边之和.5.直角三角形能否成立的条件是:最长边的平方等于另两边的平方和. 6.分别含30°、45°、60°的直角三角形是特殊的直角三角形.AB CED7.如图,双垂图形中,有两个重要的性质,即: (1) AC ·CB=CD ·AB ; (2)∠1=∠B ,∠2=∠A .8.三角形中,最多有一个内角是钝角,但最少有两个外角是钝角.9.全等三角形中,重合的点是对应顶点,对应顶点所对的角是对应角,对应角所对的边是对应边.10.等边三角形是特殊的等腰三角形.11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明. 12.符合“AAA ”“SSA ”条件的三角形不能判定全等.13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法.14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线.15.会用尺规完成“SAS ”、“ASA ”、“AAS ”、“SSS ”、“HL ”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图.16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该是几何基本作图.17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图. ※18.几何重要图形和辅助线: (1)选取和作辅助线的原则:① 构造特殊图形,使可用的定理增加; ② 一举多得;③ 聚合题目中的分散条件,转移线段,转移角; ④ 作辅助线必须符合几何基本作图.A BCD 12(2)已知角平分线.(若BD是角平分线)BC的中线)(3)已知三角形中线(若AD是(5)其它。
八年级上册数学第十一章知识点
八年级上册数学第十一章知识点无志者常立志,有志者立常志,咬定学习八年级数学知识目标的人最容易成功。
学会改变生活,学会品味沧桑,方可无悔青春,无憾岁月的消逝。
以下是店铺为大家整理的八年级上册数学知识点,希望你们喜欢。
八年级上册数学知识点:第十一章全等三角形1.全等三角形的性质:全等三角形对应边相等、对应角相等.2.全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL).3.角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等4.角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上.5.证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题).八年级上册数学知识点(一)轴对称1.如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴.2.轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.3.角平分线上的点到角两边距离相等.4.线段垂直平分线上的任意一点到线段两个端点的距离相等.5.与一条线段两个端点距离相等的点,在这条线段的垂直平分线上.6.轴对称图形上对应线段相等、对应角相等.7.画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点.8.点(x,y)关于x轴对称的点的坐标为(x,-y)点(x,y)关于y轴对称的点的坐标为(-x,y)点(x,y)关于原点轴对称的点的坐标为(-x,-y)9.等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”.10.等腰三角形的判定:等角对等边.11.等边三角形的三个内角相等,等于60°,12.等边三角形的判定:三个角都相等的三角形是等腰三角形.有一个角是60°的等腰三角形是等边三角形有两个角是60°的三角形是等边三角形.13.直角三角形中,30°角所对的直角边等于斜边的一半.14.直角三角形斜边上的中线等于斜边的一半八年级上册数学知识点(二)一次函数1.画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点).2.根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式.3.若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量).特别地,当b=0时,称y是x的正比例函数.4.正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线.5.正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中: 当k>0时,y随x的增大而增大; 当k<0时,y随x的增大而减小.6.已知两点坐标求函数解析式(待定系数法求函数解析式):把两点带入函数一般式列出方程组求出待定系数把待定系数值再带入函数一般式,得到函数解析式7.会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十一章全等三角形测试1全等三角形的概念和性质学习要求1.理解全等三角形及其对应边、对应角的概念;能准确辨认全等三角形的对应元素.2.掌握全等三角形的性质;会利用全等三角形的性质进行简单的推理和计算,解决某些实际问题.课堂学习检测一、填空题1._____的两个图形叫做全等形.2.把两个全等的三角形重合到一起,_____叫做对应顶点;叫做对应边;_____叫做对应角.记两个三角形全等时,通常把表示_____的字母写在_____上.3.全等三角形的对应边_____,对应角_____,这是全等三角形的重要性质.4.如果ΔABC≌ΔDEF,则AB的对应边是_____,AC的对应边是_____,∠C的对应角是_____,∠DEF的对应角是_____.图1-15.如图1-1所示,ΔABC≌ΔDCB.(1)若∠D=74°∠DBC=38°,则∠A=_____,∠ABC=_____(2)如果AC=DB,请指出其他的对应边_____;(3)如果ΔAOB≌ΔDOC,请指出所有的对应边_____,对应角_____.图1-2图1-36.如图1-2,已知△ABE≌△DCE,AE=2 cm,BE=1.5 cm,∠A=25°,∠B=48°;那么DE=_____cm,EC=_____cm,∠C=_____°;∠D=_____°.7.一个图形经过平移、翻折、旋转后,_____变化了,但__________都没有改变,即平移、翻折、旋转前后的图形二、选择题8.已知:如图1-3,ΔABD≌CDB,若AB∥CD,则AB的对应边是()A.DB B.BC C.CD D.AD9.下列命题中,真命题的个数是()①全等三角形的周长相等②全等三角形的对应角相等③全等三角形的面积相等④面积相等的两个三角形全等A.4B.3C.2D.110.如图1-4,△ABC≌△BAD,A和B、C和D是对应顶点,如果AB=5,BD=6,AD =4,那么BC等于()A.6 B.5C.4D.无法确定图1-4 图1-5 图1-611.如图1-5,△ABC≌△AEF,若∠ABC和∠AEF是对应角,则∠EAC等于()A.∠ACB B.∠CAF C.∠BAF D.∠BAC12.如图1-6,△ABC≌ΔADE,若∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.35°C.30°D.25°三、解答题13.已知:如图1-7所示,以B为中心,将Rt△EBC绕B点逆时针旋转90°得到△ABD,若∠E=35°,求∠ADB的度数.图1-7图1-8图1-9综合、运用、诊断一、填空题14.如图1-8,△ABE和△ADC是△ABC分别沿着AB,AC翻折180°形成的若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为______.15.已知:如图1-9,△ABC≌△DEF,∠A=85°,∠B=60°,AB=8,EH=2.(1)求∠F的度数与DH的长;(2)求证:AB∥DE.拓展、探究、思考16.如图1-10,AB⊥BC,ΔABE≌ΔECD.判断AE与DE的关系,并证明你的结论.图1-10测试2 三角形全等的条件(一)学习要求1.理解和掌握全等三角形判定方法1——“边边边”,2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题1.判断_____的_____ 叫做证明三角形全等.2.全等三角形判定方法1——“边边边”(即______)指的是________________________________________________________________________________.3.由全等三角形判定方法1——“边边边”可以得出:当三角形的三边长度一定时,这个三角形的_____也就确定了.图2-1图2-2图2-34.已知:如图2-1,△RPQ 中,RP =RQ ,M 为PQ 的中点. 求证:RM 平分∠PRQ .分析:要证RM 平分∠PRQ ,即∠PRM =______, 只要证______≌______证明:∵ M 为PQ 的中点(已知), ∴______=______在△______和△______中,⎪⎩⎪⎨⎧===),______(____________,),(PM RQ RP 已知∴______≌______( ). ∴ ∠PRM =______(______). 即RM .5.已知:如图2-2,AB =DE ,AC =DF ,BE =CF . 求证:∠A =∠D .分析:要证∠A =∠D ,只要证______≌______. 证明:∵BE =CF ( ), ∴BC =______.在△ABC 和△DEF 中,⎪⎩⎪⎨⎧===______,______,______,AC BC AB ∴______≌______( ). ∴ ∠A =∠D (______).6.如图2-3,CE =DE ,EA =EB ,CA =DB , 求证:△ABC ≌△BAD .证明:∵CE =DE ,EA =EB ,∴______+______=______+______, 即______=______. 在△ABC 和△BAD 中, =______(已知),⎪⎩⎪⎨⎧===),______(______),______(______),______(______已证已知 ∴△ABC ≌△BAD ( ).综合、运用、诊断一、解答题7.已知:如图2-4,AD=BC.AC=BD.试证明:∠CAD=∠DBC.图2-48.画一画.已知:如图2-5,线段a、b、c.求作:ΔABC,使得BC=a,AC=b,AB=c.图2-59.“三月三,放风筝”.图2-6是小明制作的风筝,他根据DE=DF,EH=FH,不用度量,就知道∠DEH=∠DFH.请你用所学的知识证明.图2-6拓展、探究、思考10.画一画,想一想:利用圆规和直尺可以作一个角等于已知角,你能说明其作法的理论依据吗?测试3 三角形全等的条件 (二)学习要求1.理解和掌握全等三角形判定方法2——“边角边”.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等图3-1图3-2课堂学习检测一、填空题1.全等三角形判定方法2——“边角边” (即______)指的是_________________________________________________________________________________. 2.已知:如图3-1,AB 、CD 相交于O 点,AO =CO ,OD =OB . 求证:∠D =∠B .分析:要证∠D =∠B ,只要证______≌______ 证明:在△AOD 与△COB 中,⎪⎩⎪⎨⎧=∠=∠=),______(),______(______),(OD CO AO∴ △AOD ≌△______ ( ). ∴ ∠D =∠B (______).3.已知:如图3-2,AB ∥CD ,AB =CD .求证:AD ∥BC . 分析:要证AD ∥BC ,只要证∠______=∠______, 又需证______≌______. 证明:∵ AB ∥CD ( ), ∴ ∠______=∠______ ( ), 在△______和△______中,⎪⎩⎪⎨⎧===),______(______),______(______),______(______ ∴ Δ______≌Δ______ ( ). ∴ ∠______=∠______ ( ). ∴ ______∥______( ).综合、运用、诊断一、解答题4.已知:如图3-3,AB=AC,∠BAD=∠CAD.求证:∠B=∠C.图3-35.已知:如图3-4,AB=AC,BE=CD.求证:∠B=∠C.图3-46.已知:如图3-5,AB=AD,AC=AE,∠1=∠2.求证:BC=DE.图3-5拓展、探究、思考7.如图3-6,将两个一大、一小的等腰直角三角尺拼接(A、B、D三点共线,AB=CB,EB=DB,∠ABC=∠EBD=90°),连接AE、CD,试确定AE与CD的位置与数量关系,并证明你的结论.图3-6测试4 三角形全等的条件 (三)学习要求1.理解和掌握全等三角形判定方法3——“角边角”,判定方法4——“角角边”;能运用它们判定两个三角形全等.2.能把证明一对角或线段相等的问题,转化为证明它们所在的两个三角形全等.课堂学习检测一、填空题 1.(1)全等三角形判定方法3——“角边角”(即______)指的是_________________________________________________________________________________; (2)全等三角形判定方法4——“角角边” (即______)指的是_________________________________________________________________________________.图4-12.已知:如图4-1,PM =PN ,∠M =∠N .求证:AM =BN . 分析:∵PM =PN ,∴ 要证AM =BN ,只要证P A =______, 只要证______≌______.证明:在△______与△______中,⎪⎩⎪⎨⎧∠=∠=∠=∠),______(______),______(______),______(______∴ △______≌△______ ( ). ∴P A =______ ( ). ∵PM =PN ( ),∴PM -______=PN -______,即AM =______.3.已知:如图4-2,AC BD .求证:OA =OB ,OC =OD . 分析:要证OA =OB ,OC =OD ,只要证______≌______. 证明:∵ AC ∥BD ,∴ ∠C =______. 在△______与△______中,⎪⎩⎪⎨⎧==∠∠=∠),______(______),______(),______(C AOC∴______≌______ ( ). ∴ OA =OB ,OC =OD ( ).图4-2二、选择题4.能确定△ABC ≌△DEF 的条件是 ( ) A .AB =DE ,BC =EF ,∠A =∠E B .AB =DE ,BC =EF ,∠C =∠E C .∠A =∠E ,AB =EF ,∠B =∠D D .∠A =∠D ,AB =DE ,∠B =∠E5.如图4-3,已知△ABC 的六个元素,则下面甲、乙、丙三个三角形中,和△ABC 全等的图形是 ( )图4-3A .甲和乙B .乙和丙C .只有乙D .只有丙6.AD 是△ABC 的角平分线,作DE ⊥AB 于E ,DF ⊥AC 于F ,下列结论错误的是( ) A .DE =DF B .AE =AF C .BD =CD D .∠ADE =∠ADF 三、解答题7.阅读下题及一位同学的解答过程:如图4-4,AB 和CD 相交于点O ,且OA =OB ,∠A =∠C .那么△AOD 与△COB 全等吗?若全等,试写出证明过程;若不全等,请说明理由.答:△AOD ≌△COB .证明:在△AOD 和△COB 中,图4-4⎪⎩⎪⎨⎧∠=∠=∠=∠),(),(),(对顶角相等已知已知COB AOD OB OA C A∴ △AOD ≌△COB (ASA ).问:这位同学的回答及证明过程正确吗?为什么?综合、应用、诊断8.已知:如图4-5,AB ⊥AE ,AD ⊥AC ,∠E =∠B ,DE =CB . 求证:AD =AC .图4-59.已知:如图4-6,在△MPN 中,H 是高MQ 和NR 的交点,且MQ =NQ . 求证:HN =PM .图4-610.已知:AM 是ΔABC 的一条中线,BE ⊥AM 的延长线于E ,CF ⊥AM 于F ,BC =10,BE=4.求BM 、CF 的长.拓展、探究、思考11.填空题(1)已知:如图4-7,AB =AC ,BD ⊥AC 于D ,CE ⊥AB 于E .欲证明BD =CE ,需证明Δ______≌△______,理由为______. (2)已知:如图4-8,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件______,证明全等的理由是______;或添加条件______,证明全等的理由是______;也可以添加条件______,证明全等的理由是______.图4-7 图4-812.如图4-9,已知ΔABC≌ΔA'B'C',AD、A'D'分别是ΔABC和ΔA'B'C'的角平分线.(1)请证明AD=A'D';(2)把上述结论用文字叙述出来;(3)你还能得出其他类似的结论吗?图4-913.如图4-10,在△ABC中,∠ACB=90°,AC=BC,直线l经过顶点C,过A、B两点分别作l的垂线AE、BF,E、F为垂足.(1)当直线l不与底边AB相交时,求证:EF=AE+BF.图4-10(2)如图4-11,将直线l绕点C顺时针旋转,使l与底边AB交于点D,请你探究直线l在如下位置时,EF、AE、BF之间的关系.①AD>BD;②AD=BD;③AD<BD.图4-11测试5 直角三角形全等的条件学习要求掌握判定直角三角形全等的一种特殊方法一“斜边、直角边”(即“HL”),能熟练地用判定一般三角形全等的方法及判定直角三角形全等的特殊方法判定两个直角三角形全等.课堂学习检测一、填空题1.判定两直角三角形全等的“HL”这种特殊方法指的是_____.2.直角三角形全等的判定方法有_____ (用简写).3.如图5-1,E、B、F、C在同一条直线上,若∠D=∠A=90°,EB=FC,AB=DF.则ΔABC≌_____,全等的根据是_____.图5-14.判断满足下列条件的两个直角三角形是否全等,不全等的画“×”,全等的注明理由:(1)一个锐角和这个角的对边对应相等;()(2)一个锐角和这个角的邻边对应相等;()(3)一个锐角和斜边对应相等;()(4)两直角边对应相等;()(5)一条直角边和斜边对应相等.()二、选择题5.下列说法正确的是()A.一直角边对应相等的两个直角三角形全等B.斜边相等的两个直角三角形全等C.斜边相等的两个等腰直角三角形全等D.一边长相等的两等腰直角三角形全等6.如图5-2,AB=AC,AD⊥BC于D,E、F为AD上的点,则图中共有()对全等三角形.A.3B.4C.5D.6图5-2三、解答题7.已知:如图5-3,AB⊥BD,CD⊥BD,AD=BC.求证:(1)AB=DC:(2)AD∥BC.图5-38.已知:如图5-4,AC=BD,AD⊥AC,BC⊥BD.求证:AD=BC;图5-4综合、运用、诊断9.已知:如图5-5,AE⊥AB,BC⊥AB,AE=AB,ED=AC.求证:ED⊥AC.图5-510.已知:如图5-6,DE⊥AC,BF⊥AC,AD=BC,DE=BF.求证:AB∥DC.图5-611.用三角板可按下面方法画角平分线:在已知∠AOB的两边上,分别取OM=ON(如图5-7),再分别过点M、N作OA、OB的垂线,交点为P,画射线OP,则OP平分∠AOB,请你说出其中的道理.图5-7拓展、探究、思考12.下列说法中,正确的画“√”;错误的画“×”,并作图举出反例.(1)一条直角边和斜边上的高对应相等的两个直角三角形全等.()(2)有两边和其中一边上的高对应相等的两个三角形全等.()(3)有两边和第三边上的高对应相等的两个三角形全等.()13.(1)已知:如图5-8,线段AC、BD交于O,∠AOB为钝角,AB=CD,BF⊥AC于F,DE⊥AC于E,AE=CF.求证:BO=DO.图5-8(2)若∠AOB为锐角,其他条件不变,请画出图形并判断(1)中的结论是否仍然成立?若成立,请加以证明;若不成立,请说明理由.测试6 三角形全等的条件(四)学习要求能熟练运用三角形全等的判定方法进行推理并解决某些问题.课堂学习检测一、填空题1.两个三角形全等的判定依据除定义外,还有①_____;②_____;③_____;④_____;⑤_____.2.如图6-1,要判定ΔABC≌ΔADE,除去公共角∠A外,在下列横线上写出还需要的两个条件,并在括号内写出由这些条件直接判定两个三角形全等的依据.(1)∠B=∠D,AB=AD();(2)_____,_____();(3)_____,_____();(4)_____,_____();(5)_____,_____();(6)_____,_____();(7)_____,_____().图6-13.如图6-2,已知AB⊥CF,DE⊥CF,垂足分别为B,E,AB=DE.请添加一个适当条件,使ΔABC≌ΔDEF,并说明理由添加条件:_________________________________________________________________,理由是:___________________________________________________________________.图6-24.在ΔABC和ΔDEF中,若∠B=∠E=90°,∠A=34°,∠D=56°,AC=DF,贝ΔABC和ΔDEF是否全等?答:______,理由是______.二、选择题5.下列命题中正确的有()个①三个内角对应相等的两个三角形全等;②三条边对应相等的两个三角形全等;③有两角和一边分别相等的两个三角形全等;④等底等高的两个三角形全等.A.1B.2C.3D.46.如图6-3,AB=CD,AD=CB,AC、BD交于O,图中有()对全等三角形.A.2B.3C.4D.5图6-37.如图6-4,若AB =CD ,DE =AF ,CF =BE ,∠AFB =80°,∠D =60°,则∠B 的度数是 ( ) A .80° B .60° C .40° D .20°8.如图6-5,△ABC 中,若∠B =∠C ,BD =CE ,CD =BF ,则∠EDF = ( ) A .90°-∠A B .A ∠-2190oC .180°-2∠AD .A ∠-2145o图6-4 图6-5 图6-69.下列各组条件中,可保证△ABC 与△A 'B 'C '全等的是 ( ) A .∠A =∠A ',∠B =∠B ',∠C =∠C ' B .AB =A 'B ',AC =A 'C ',∠B =∠B ' C .AB =C 'B ',∠A =∠B ',∠C =∠C ' D .CB =A 'B ',AC =A 'C ',BA =B 'C '10.如图6-6,已知MB =ND ,∠MBA =∠NDC ,下列条件不能判定△ABM ≌△CDN 的是( )A .∠M =∠NB .AB =CDC .AM =CND .AM ∥CN综合、运用、诊断一、解答题11.已知:如图6-7,AD =AE ,AB =AC ,∠DAE =∠BAC .求证:BD =CE .图6-712.已知:如图6-8,AC 与BD 交于O 点,AB ∥DC ,AB =DC .(1)求证:AC 与BD 互相平分;图6-8(2)若过O点作直线l,分别交AB、DC于E、F两点,求证:OE=OF.13.如图6-9,E在AB上,∠1=∠2,∠3=∠4,那么AC等于AD吗?为什么?图6-9拓展、探究、思考14.如图6-10,△ABC的三个顶点分别在2×3方格的3个格点上,请你试着再在格点上找出三个点D、E、F,使得△DEF≌△ABC,这样的三角形你能找到几个?请一一画出来.图6-1015.请分别按给出的条件画△ABC(标上小题号,不写作法),并说明所作的三角形是否唯一;如果有不唯一的,想一想,为什么?①∠B=120°,AB=2cm,AC=4cm;②∠B=90°,AB=2cm,AC=3cm;③∠B=30°,AB=2cm,AC=3cm;④∠B=30°,AB=2cm,AC=2cm;⑤∠B=30°,AB=2cm,AC=1cm;⑥∠B=30°,AB=2cm,AC=1.5cm.测试7三角形全等的条件(五)学习要求能熟练运用三角形全等的知识综合解决问题.课堂学习检测解答题1.如图7-1,小明与小敏玩跷跷板游戏.如果跷跷板的支点O(即跷跷板的中点)到地面的距离是50 cm,当小敏从水平位置CD下降40 cm时,小明这时离地面的高度是多少?请用所学的全等三角形的知识说明其中的道理.图7-12.如图7-2,工人师傅要在墙壁的O处用钻打孔,要使孔口从墙壁对面的B点处打开,墙壁厚是35 cm,B点与O点的铅直距离AB长是20 cm,工人师傅在旁边墙上与AO水平的线上截取OC=35 cm,画CD⊥OC,使CD=20 cm,连接OD,然后沿着DO的方向打孔,结果钻头正好从B点处打出,这是什么道理呢?请你说出理由.图7-23.如图7-3,公园里有一条“Z”字形道路ABCD,其中AB∥CD,在AB、BC、CD三段路旁各有一只小石凳E,F,M,且BE=CF,M在BC的中点,试判断三只石凳E,M,F恰好在一直线上吗?为什么?图7-34.在一池塘边有A、B两棵树,如图7-4.试设计两种方案,测量A、B两棵树之间的距离.方案一:方案二:图7-4测试8 角的平分线的性质(一)学习要求1.掌握角平分线的性质,理解三角形的三条角平分线的性质.2.掌握角平分线的判定及角平分线的画法.课堂学习检测一、填空题1._____叫做角的平分线.2.角的平分线的性质是___________________________.它的题设是_________,结论是_____.3.到角的两边距离相等的点,在_____.所以,如果点P到∠AOB两边的距离相等,那么射线OP是_____.4.完成下列各命题,注意它们之间的区别与联系.(1)如果一个点在角的平分线上,那么_____;(2)如果一个点到角的两边的距离相等,那么_____;(3)综上所述,角的平分线是_____的集合.5.(1)三角形的三条角平分线_____它到___________________________.(2)三角形内....,到三边距离相等的点是_____.6.如图8-1,已知∠C=90°,AD平分∠BAC,BD=2CD,若点D到AB的距离等于5cm,则BC的长为_____cm.图8-1二、作图题7.已知:如图8-2,∠AOB.求作:∠AOB的平分线OC.作法:图8-28.已知:如图8-3,直线AB及其上一点P.求作:直线MN,使得MN⊥AB于P.作法:图8-39.已知:如图8-4,△AB C.求作:点P,使得点P在△ABC内,且到三边AB、BC、CA的距离相等.作法:图8-4综合、运用、诊断一、解答题10.已知:如图8-5,△ABC中,AB=AC,D是BC的中点,DE⊥AB于E,DF⊥AC于F.求证:DE=DF.图8-511.已知:如图8-6,CD⊥AB于D,BE⊥AC于E,CD、BE交于O,∠1=∠2.求证:OB=OC.图8-612.已知:如图8-7,△ABC中,∠C=90°,试在AC上找一点P,使P到斜边的距离等于PC.(画出图形,并写出画法)图8-7拓展、探究、思考13.已知:如图8-8,直线l1,l2,l3表示三条相互交叉的公路,现要建一个塔台,若要求它到三条公路的距离都相等,试问:(1)可选择的地点有几处?(2)你能画出塔台的位置吗?图8-814.已知:如图8-9,四条直线两两相交,相交部分的线段构成正方形ABCD.试问:是否存在到至少三边所在的直线的距离都相等的点?若存在,请找出此点,这样的点有几个?若不存在,请说明理由.图8-9测试9 角的平分线的性质 (二)学习要求熟练运用角的平分线的性质解决问题.课堂学习检测一、选择题1.如图9-1,若OP 平分∠AOB ,PC ⊥OA ,PD ⊥OB ,垂足分别是C 、D ,则下列结论中错误的是 ( ) A .PC =PD B .OC =OD C .∠CPO =∠DPO D .OC =PC图9-12.如图9-2,在Rt ΔABC 中,∠C =90°,BD 是∠ABC 的平分线,交AC 于D ,若CD =n ,AB =m ,则ΔABD 的面积是( )A .mn 31B .mn 21C .mnD .2mn图9-2二、填空题3.已知:如图9-3,在Rt ΔABC 中,∠C =90°,沿着过点B 的一条直线BE 折叠ΔABC ,使C 点恰好落在AB 边的中点D 处,则∠A 的度数等于_____.图9-34.已知:如图9-4,在ΔABC中,BD、CE分别平分∠ABC、∠ACB,且BD、CE交于点O,过O作OP⊥BC于P,OM⊥AB于M,ON⊥AC于N,则OP、OM、ON的大小关系为_____.图9-4三、解答题5.已知:如图9-5,OD平分∠POQ,在OP、OQ边上取OA=OB,点C在OD上,CM ⊥AD于M,CN⊥BD于N.求证:CM=CN.图9-56.已知:如图9-6,ΔABC的外角∠CBD和∠BCE的平分线BF、CF交于点F.求证:一点F必在∠DAE的平分线上.图9-67.已知:如图9-7,A、B、C、D四点在∠MON的边上,AB=CD,P为∠MON内一点,并且△P AB的面积与△PCD的面积相等.求证:射线OP是∠MON的平分线.图9-78.如图9-8,在ΔABC中,∠C=90°,BD平分∠ABC,DE⊥AB于E,若△BCD与△BCA的面积比为3∶8,求△ADE与△BCA的面积之比.图9-89.已知:如图9-9,∠B=∠C=90°,M是BC的中点,DM平分∠ADC.(1)求证:AM平分∠DAB;(2)猜想AM与DM的位置关系如何?并证明你的结论.图9-9拓展、探究、思考10.已知:如图9-10,在ΔABC中,AD是△ABC的角平分线,E、F分别是AB、AC上一点,并且有∠EDF+∠EAF=180°.试判断DE和DF的大小关系并说明理由.图9-10。