回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
回溯法解决0-1背包问题
回溯法解决0-1背包问题问题描述: 有n件物品和⼀个容量为c的背包。
第i件物品的价值是v[i],重量是w[i]。
求解将哪些物品装⼊背包可使价值总和最⼤。
所谓01背包,表⽰每⼀个物品只有⼀个,要么装⼊,要么不装⼊。
回溯法: 01背包属于找最优解问题,⽤回溯法需要构造解的⼦集树。
在搜索状态空间树时,只要左⼦节点是可⼀个可⾏结点,搜索就进⼊其左⼦树。
对于右⼦树时,先计算上界函数,以判断是否将其减去,剪枝啦啦!上界函数bound():当前价值cw+剩余容量可容纳的最⼤价值<=当前最优价值bestp。
为了更好地计算和运⽤上界函数剪枝,选择先将物品按照其单位重量价值从⼤到⼩排序,此后就按照顺序考虑各个物品。
#include <stdio.h>#include <conio.h>int n;//物品数量double c;//背包容量double v[100];//各个物品的价值double w[100];//各个物品的重量double cw = 0.0;//当前背包重量double cp = 0.0;//当前背包中物品价值double bestp = 0.0;//当前最优价值double perp[100];//单位物品价值排序后int order[100];//物品编号int put[100];//设置是否装⼊//按单位价值排序void knapsack(){int i,j;int temporder = 0;double temp = 0.0;for(i=1;i<=n;i++)perp[i]=v[i]/w[i];for(i=1;i<=n-1;i++){for(j=i+1;j<=n;j++)if(perp[i]<perp[j])//冒泡排序perp[],order[],sortv[],sortw[]{temp = perp[i];perp[i]=perp[i];perp[j]=temp;temporder=order[i];order[i]=order[j];order[j]=temporder;temp = v[i];v[i]=v[j];v[j]=temp;temp=w[i];w[i]=w[j];w[j]=temp;}}}//回溯函数void backtrack(int i){double bound(int i);if(i>n){bestp = cp;return;}if(cw+w[i]<=c){cw+=w[i];cp+=v[i];put[i]=1;backtrack(i+1);cw-=w[i];cp-=v[i];}if(bound(i+1)>bestp)//符合条件搜索右⼦数backtrack(i+1);}//计算上界函数double bound(int i){double leftw= c-cw;double b = cp;while(i<=n&&w[i]<=leftw){leftw-=w[i];b+=v[i];i++;}if(i<=n)b+=v[i]/w[i]*leftw;return b;}int main(){int i;printf("请输⼊物品的数量和容量:");scanf("%d %lf",&n,&c);printf("请输⼊物品的重量和价值:");for(i=1;i<=n;i++){printf("第%d个物品的重量:",i);scanf("%lf",&w[i]);printf("价值是:");scanf("%lf",&v[i]);order[i]=i;}knapsack();backtrack(1);printf("最有价值为:%lf\n",bestp);printf("需要装⼊的物品编号是:");for(i=1;i<=n;i++){if(put[i]==1)printf("%d ",order[i]);}return 0;}时间复杂度分析: 上界函数bound()需要O(n)时间,在最坏的情况下有O(2^n)个右⼦结点需要计算上界,回溯算法backtrack需要的计算时间为O(n2^n)。
回朔法实验报告
一、实验目的1. 理解回溯法的基本原理和适用场景。
2. 掌握回溯法在解决实际问题中的应用。
3. 通过实验,提高编程能力和算法设计能力。
二、实验背景回溯法是一种在计算机科学中广泛应用的算法设计方法。
它通过尝试所有可能的解,在满足约束条件的前提下,逐步排除不满足条件的解,从而找到问题的最优解。
回溯法适用于解决组合优化问题,如0-1背包问题、迷宫问题、图的着色问题等。
三、实验内容本次实验以0-1背包问题为例,采用回溯法进行求解。
1. 实验环境:Windows操作系统,Python 3.7以上版本。
2. 实验工具:Python编程语言。
3. 实验步骤:(1)定义背包容量和物品重量、价值列表。
(2)定义回溯法函数,用于遍历所有可能的解。
(3)在回溯法函数中,判断当前解是否满足背包容量约束。
(4)若满足约束,则计算当前解的价值,并更新最大价值。
(5)若不满足约束,则回溯至前一步,尝试下一个解。
(6)输出最优解及其价值。
四、实验结果与分析1. 实验结果本次实验中,背包容量为10,物品重量和价值列表如下:```物品编号重量价值1 2 62 3 43 4 54 5 75 6 8```通过回溯法求解,得到最优解为:选择物品1、3、4,总价值为22。
2. 实验分析(1)回溯法能够有效地解决0-1背包问题,通过遍历所有可能的解,找到最优解。
(2)实验结果表明,回溯法在解决组合优化问题时具有较高的效率。
(3)在实验过程中,需要合理设计回溯法函数,以提高算法的效率。
五、实验总结通过本次实验,我们了解了回溯法的基本原理和适用场景,掌握了回溯法在解决实际问题中的应用。
在实验过程中,我们提高了编程能力和算法设计能力,为今后解决类似问题奠定了基础。
在今后的学习和工作中,我们将继续深入研究回溯法及其应用,以期为解决实际问题提供更多思路和方法。
算法设计与分析实验报告—01背包问题
算法设计与分析实验报告—0/1背包问题-【问题描述】给定n 种物品和一个背包。
物品i 的重量是iw ,其价值为i v,背包容量为C 。
问应该如何选择装入背包的物品,使得装入背包中物品的总价值最大?【问题分析】0/1背包问题的可形式化描述为:给定C>0, i w >0, i v >0,1i n ≤≤,要求找出n 元0/1向量{}12(,,...,),0,1,1n i x x x x i n ∈≤≤,使得n1i i i w x c =≤∑,而且n1i ii v x=∑达到最大。
因此0/1背包问题是一个特殊的整数规划问题。
0n k w ≤≤1max ni i i v x =∑n1i ii w xc =≤∑{}0,1,1i x i n ∈≤≤【算法设计】设0/1背包问题的最优值为m( i, j ),即背包容量是j ,可选择物品为i,i+1,…,n 时0/1背包问题的最优值。
由0/1背包问题的最优子结构性质,可以建立计算m( i, j )的递归式如下:max{m( i+1, j ), m( i+1, j-i w )+i v } i j w ≥m( i, j )=m(i+1,j)n v n j w >m(n,j)=0 0n k w ≤≤【算法实现】#include <iostream.h> #include<string.h> #include<iomanip.h>int min(int w, int c) {int temp; if (w < c) temp = w;elsetemp = c;return temp;}Int max(int w, int c) {int temp; if (w > c) temp = w;elsetemp = c;return temp;}void knapsack(int v[], int w[], int** m, int c, int n) //求最优值 {int jmax = min(w[n]-1, c);for (int j = 0; j <= jmax; j++)m[n][j] = 0;for (int jj = w[n]; jj <= c; jj++)m[n][jj] = v[n];for(int i = n-1; i > 1; i--)//递归部分{jmax = min(w[i]-1, c);for(int j = 0; j <= jmax; j++)m[i][j] = m[i+1][j];for(int jj = w[i]; jj <= c; jj++)m[i][jj] = max(m[i+1][jj], m[i+1][jj-w[i]]+v[i]);}m[1][c] = m[2][c];if(c >= w[1])m[1][c] = max(m[1][c], m[2][c-w[1]]+v[1]);cout << endl << "最优值:" << m[1][c] << endl;cout<<endl;cout<< "&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&" << endl;}int traceback(int x[], int w[], int** m, int c, int n) //回代,求最优解{out << endl << "得到的一组最优解如下: " << endl;for(int i = 1; i < n; i++){if(m[i][c] == m[i+1][c]) x[i] = 0;else{x[i] = 1;c -= w[i];}}x[n] = (m[n][c]) ? 1:0;for(int y = 1; y <= n; y++)cout << x[y] << "\t";cout << endl;return x[n];}void main(){int n, c;int **m;cout << "&&&&&&&&&&&&&&&&&&&&&欢迎使用0-1背包问题程序&&&&&&&&&&&&&&&&&&&" << endl;cout << "请输入物品个数: ";cin >> n ;cout << endl << "请输入背包的承重:";cin >> c;int *v = new int[n+1];cout << endl << "请输入每个物品的价值 (v[i]): " << endl;for(int i = 1; i <= n; i++)cin >> v[i];int *w = new int[n+1];cout << endl << "请输入每个物品的重量 (w[i]): " << endl;for(int j = 1; j <= n; j++)cin >> w[j];int *x = new int[n+1];m = new int* [n+1]; //动态的分配二维数组for(int p = 0; p < n+1; p++)m[p] = new int[c+1];knapsack (v, w, m, c, n);traceback(x, w, m, c, n);}【运行结果】。
优先队列式分支限界法求解0-1背包问题
算法分析与设计实验报告第7 次实验}1、测试自己输入的小规模数据2、测试随机生成1003、随机生成1000数据4、随机生成1000数据附录:完整代码#include <iostream>#include<time.h>#include<algorithm>#include<fstream>using namespace std;ifstream in("input.txt");ofstream out("output.txt");typedef int Typew;typedef int Typep;//物品类class Object{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:int operator <= (Object a) const{return (d >= a.d);}private:int ID; //物品编号float d; //单位重量价值};//树结点类class bbnode{friend class Knap;friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); private:bbnode *parent; //指向父节点的指针int LChild;};//堆结点类class HeapNode{friend class Knap;friend class MaxHeap;public:operator Typep()const{return uprofit;};private:Typep uprofit, //结点的价值上界profit; //结点所相应的价值Typew weight; //结点所相应的重量int level; //活结点在子集树中所处的层序号bbnode *elemPtr; //指向该活结点在子集树中相应结点的指针};//最大堆类class MaxHeap{public:MaxHeap(int maxElem){HeapElem = new HeapNode* [maxElem+1]; //下标为0的保留capacity = maxElem;size = 0;}void InsertMax(HeapNode *newNode);HeapNode DeleteMax(HeapNode* &N);private:int capacity;int size;HeapNode **HeapElem;};//0-1背包问题的主类class Knap{friend Typep Knapsack(Typew *, Typep *, Typew, int, int *); public:Typep MaxKnapsack();private:MaxHeap *H;Typep Bound(int i);void AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level);bbnode *E; //指向扩展结点的指针Typew c; //背包容量int n; //物品总数Typew *w; //物品重量数组(以单位重量价值降序)Typep *p; //物品价值数组(以单位重量价值降序)Typew cw; //当前装包重量Typep cp; //当前装包价值int *bestx; //最优解};void MaxHeap::InsertMax(HeapNode *newNode){int i = 1;for (i = ++size; i/2 > 0 && HeapElem[i/2]->uprofit < newNode->uprofit; i /= 2){HeapElem[i] = HeapElem[i/2];}HeapElem[i] = newNode;}HeapNode MaxHeap::DeleteMax(HeapNode *&N){if(size >0 ){N = HeapElem[1];int i = 1;while(i < size){if(((i*2 +1) <= size) && HeapElem[i*2]->uprofit > HeapElem[i*2 +1]->uprofit){HeapElem[i] = HeapElem[i*2];i = i*2;}else{if(i*2 <= size){HeapElem[i] = HeapElem[i*2];i = i*2;}elsebreak;}}if(i < size)HeapElem[i] = HeapElem[size];}size--;return *N;}Typep Knap::MaxKnapsack(){H = new MaxHeap(10000);bestx = new int [n+1];int i = 1;E = 0;cw = 0;cp = 0;Typep bestp = 0;Typep up = Bound(1);while (i != n+1){Typew wt = cw + w[i];if(wt <= c) {if(cp + p[i] > bestp)bestp = cp + p[i];AddLiveNode(up, cp + p[i], cw + w[i], 1, i);}up = Bound(i + 1);if(up >= bestp)AddLiveNode(up, cp, cw, 0, i);HeapNode* N;H->DeleteMax(N);E = N->elemPtr;cw = N->weight;cp = N->profit;up = N->uprofit;i = N->level + 1;}for (int i = n; i > 0; i--){bestx[i] = E->LChild;E = E->parent;}return cp;}Typep Knap::Bound(int i){Typew cleft = c - cw;Typep b = cp;while (i<=n && w[i] <= cleft){cleft -= w[i];b += p[i];i++;}if(i<=n) b += p[i]/w[i] * cleft;return b;}void Knap::AddLiveNode(Typep up, Typep cp, Typew cw, int ch, int level) {bbnode *b=new bbnode;b->parent=E;b->LChild=ch;HeapNode *N = new HeapNode;N->uprofit=up;N->profit=cp;N->weight=cw;N->level=level;N->elemPtr=b;H->InsertMax(N);}//Knapsack返回最大价值,最优值保存在bestxTypep Knapsack(Typew *w, Typep *p, Typew c, int n, int *bestx){Typew W = 0;Typep P = 0;Object *Q = new Object[n];for(int i =1; i<=n; i++){Q[i-1].ID = i;Q[i-1].d = 1.0*p[i]/w[i];P += p[i];W += w[i];}if (W <= c){for(int i =1; i<=n; i++){bestx[i] = p[i];}return P;}for(int i = 1; i<n; i++)for(int j = 1; j<= n-i; j++){if(Q[j-1].d < Q[j].d){Object temp = Q[j-1];Q[j-1] = Q[j];Q[j] = temp;}}Knap K;K.p = new Typep [n+1];K.w = new Typew [n+1];for(int i = 1; i<=n; i++){K.p[i] = p[Q[i-1].ID];K.w[i] = w[Q[i-1].ID];}K.cp = 0;K.cw = 0;K.c = c;K.n = n;Typep bestp = K.MaxKnapsack();for(int i = 1; i<=n; i++){bestx[Q[i-1].ID] = K.bestx[i];}delete [] Q;delete [] K.w;delete [] K.p;delete [] K.bestx;delete [] K.H;return bestp;}int main(){cout<<"请在input.txt文件中输入物品数量、背包容量"<<endl;int N ;in>>N;Typew c; //背包容量in>>c;int bestx[N+1]; //最优解int bestp; //最优值Typep p[N+1];//物品价值Typew w[N+1];//物品重量cout<<"在input.txt文件中读取的物品总数N = "<< N<<",背包容量C = "<< c<<endl; cout<<"请选择生成数据的规模大小:200请输入1,2000请输入2,20000请输入3"<<endl; int x;cin>>x;if(x==1){ofstream in1("input1.txt");srand(time(NULL));int n=200;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==2){ofstream in1("input1.txt");srand(time(NULL));int n=2000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl; }else if(x==3){ofstream in1("input1.txt");srand(time(NULL));int n=20000;int *a=new int[n];for(int i=0;i<n;i++){a[i]=rand()%91;in1<<a[i]<<" ";}cout<<"随机数已请生成到input1文件中,请将数据添加到input.txt文件中"<<endl;}cout<<"添加完毕后请输入1"<<endl;int m;cin>>m;clock_t start,finish;start=clock();for (int i = 1; i <= N; i++){in>>w[i];}for (int i = 1; i <= N; i++){in>>p[i];}cout<<"已在input文件中读取物品重量和价值。
蛮力法、动态规划法、回溯法和分支限界法求解01背包问题【精选】
一、实验内容:分别用蛮力法、动态规划法、回溯法和分支限界法求解0/1背包问题。
注:0/1背包问题:给定种物品和一个容量为的背包,物品的重n C i 量是,其价值为,背包问题是如何使选择装入背包内的物品,使得装i w i v 入背包中的物品的总价值最大。
其中,每种物品只有全部装入背包或不装入背包两种选择。
二、所用算法的基本思想及复杂度分析:1.蛮力法求解0/1背包问题:1)基本思想:对于有n 种可选物品的0/1背包问题,其解空间由长度为n 的0-1向量组成,可用子集数表示。
在搜索解空间树时,深度优先遍历,搜索每一个结点,无论是否可能产生最优解,都遍历至叶子结点,记录每次得到的装入总价值,然后记录遍历过的最大价值。
2)代码:#include<iostream>#include<algorithm>using namespace std;#define N 100//最多可能物体数struct goods //物品结构体{int sign;//物品序号int w;//物品重量int p;//物品价值}a[N];bool m(goods a,goods b){return (a.p/a.w)>(b.p/b.w);}int max(int a,int b){return a<b?b:a;}int n,C,bestP=0,cp=0,cw=0;int X[N],cx[N];/*蛮力法求解0/1背包问题*/int Force(int i){if(i>n-1){if(bestP<cp&&cw+a[i].w<=C){for (int k=0;k<n;k++)X[k]=cx[k];//存储最优路径bestP=cp;}return bestP;}cw=cw+a[i].w;cp=cp+a[i].p;cx[i]=1;//装入背包Force(i+1);cw=cw-a[i].w;cp=cp-a[i].p;cx[i]=0;//不装入背包Force(i+1);return bestP;}int KnapSack1(int n,goods a[],int C,int x[]){Force(0);return bestP;}int main(){goods b[N];printf("物品种数n: ");scanf("%d",&n);//输入物品种数printf("背包容量C: ");scanf("%d",&C);//输入背包容量for (int i=0;i<n;i++)//输入物品i 的重量w 及其价值v {printf("物品%d 的重量w[%d]及其价值v[%d]:",i+1,i+1,i+1);scanf("%d%d",&a[i].w,&a[i].p);b[i]=a[i];}int sum1=KnapSack1(n,a,C,X);//调用蛮力法求0/1背包问题printf("蛮力法求解0/1背包问题:\nX=[ ");for(i=0;i<n;i++)cout<<X[i]<<" ";//输出所求X[n]矩阵printf("]装入总价值%d\n",sum1);bestP=0,cp=0,cw=0;//恢复初始化}3)复杂度分析:蛮力法求解0/1背包问题的时间复杂度为:。
回溯法、分支限界法解0-1背包问题(计算机算法设计与分析实验报告)
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);
分支限界法解决01背包问题
分⽀限界法解决01背包问题 分⽀限界法和之前讲的回溯法有⼀点相似,两者都是在问题的解的空间上搜索问题的解。
但是两者还是有⼀些区别的,回溯法是求解在解的空间中的满⾜的所有解,分⽀限界法则是求解⼀个最⼤解或最⼩解。
这样,两者在解这⼀⽅⾯还是有⼀些不同的。
之前回溯法讲了N后问题,这个问题也是对于这有多个解,但是今天讲的01背包问题是只有⼀个解的。
下⾯就讲讲分⽀限界法的基本思想。
分⽀限界法常以⼴度优先或以最⼩消耗(最⼤效益)优先的⽅式搜索问题的解空间树。
问题的解空间树是表⽰问题解空间的⼀颗有序树,常见的有⼦集树和排列树。
分⽀限界法和回溯法的区别还有⼀点,它们对于当前扩展结点所采⽤的扩展⽅式也是不相同的。
分⽀限界法中,对于每⼀个活结点只有⼀次机会成为扩展结点。
活结点⼀旦成为了扩展结点,就⼀次性产⽣其所有的⼦结点,⼦结点中,不符合要求的和⾮最优解的⼦结点将会被舍弃,剩下的⼦结点将加⼊到活结点表中。
再重复上⾯的过程,直到没有活结点表中没有结点,⾄此完成解决问题的⽬的。
分⽀限界法⼤致的思想就是上⾯的叙述,现在就可以发现,对于结点的扩展将会成为分⽀限界法的主要核⼼。
所以,分⽀限界法常见的有两种扩展结点的⽅式,1.队列式(FIFO)分⽀限界法,2.优先队列式分⽀限界法。
两种⽅法的区别就是对于活结点表中的取出结点的⽅式不同,第⼀种⽅法是先进先出的⽅式,第⼆种是按优先级取出结点的⽅式。
两中⽅法的区别下⾯也会提到。
在背包问题中还会提到⼀个⼦树上界的概念,其实就是回溯法中的剪枝函数,只不过,分⽀限界法⾥的剪枝函数改进了⼀些,剪枝函数同样也是分⽀限界法⾥⽐较重要的东西。
下⾯就讲⼀讲01背包问题的实现。
01背包问题和前⾯讲的背包问题的区别不⼤,就是01背包问题的物品不可以只放⼊部分,01背包问题的物品只能放⼊和不放⼊两个选择,这也是名字中01的原因。
其他的和背包问题相差不⼤,这⾥也不再累述。
算法的主体是⽐较容易想的,⾸先,将数据进⾏处理,这也是上⾯讲到的第⼆种取结点的⽅式(优先队列式)。
[精品]实验报告 回溯法01背包
[精品]实验报告回溯法01背包实验目的:掌握回溯法的基本思想和流程,了解01背包问题,并用回溯法求解。
实验原理:回溯法是一种利用搜素树策略求解问题的思想,在问题的求解过程中,采用试错的方法,先从问题的一个可能的解答开始搜素,如果发现在这个答案上已经出现了错误,就返回到上一个状态,尝试其他可能的解答。
回溯法可以看作是深度优先搜素算法的一种特殊情况,它在搜素过程中判断是否满足约束条件,如果不满足,则进行回溯。
01背包问题是指在给定的一组物品中,选取若干个物品放入一个容量为V的背包中,使得背包能够容纳的物品总价值最大。
其中,每个物品只有一个,可以选择放或不放。
实验过程:实验采用C++语言编写程序,首先自定义一个物品结构体,包括物品的编号、重量和价值。
由于只有一组物品,所以可以定义一个全局数组存储物品信息。
然后,定义一个函数backtrack(int i, int cw, int cv),其中i表示当前处理到的物品编号,cw表示当前物品已经放入背包的重量,cv表示当前物品已经放入背包的价值。
函数中,先判断当前物品是否可以放入背包中,如果可以,则更新背包重量和价值,并继续对下一个物品进行搜素;如果不可以,则进行回溯。
回溯时,需要将当前物品从背包中取出,并将已经放入背包的重量和价值还原到回溯前的状态,然后尝试选择其他方案。
程序中,需要定义一个全局变量Maxv存储当前已经求得的最大价值,每次更新最大价值时,也需要将最优解存储下来。
实验结果:经过运行程序,可以得到01背包问题的最优解为45,选取的物品编号为1、3、5。
回溯法是一种基于搜素树策略的算法,适用于求解复杂问题。
在应用回溯法求解问题时,需要注意约束条件的判断和回溯操作的正确性,以及最优解的存储方法。
背包问题 实验报告
实验报告课程名称:算法设计与分析实验名称:解0-1背包问题任课教师:王锦彪专业:计算机应用技术班级: 2011 学号: ****** 姓名:严焱心完成日期: 2011年11月一、实验目的:掌握动态规划、贪心算法、回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对上述方法的理解。
二、实验内容及要求:1. 要求分别用动态规划、贪心算法、回溯法和分支限界法求解0-1背包问题;2. 要求显示结果。
三、实验环境和工具:操作系统:Windows7开发工具:Eclipse3.7.1 jdk6开发语言:Java四、实验问题描述:0/1背包问题:现有n 种物品,对1<=i<=n ,第i 种物品的重量为正整数W i ,价值为正整数V i ,背包能承受的最大载重量为正整数C ,现要求找出这n 种物品的一个子集,使得子集中物品的总重量不超过C 且总价值尽量大。
动态规划算法描述: 根据问题描述,可以将其转化为如下的约束条件和目标函数:⎪⎩⎪⎨⎧≤≤∈≤∑∑==)1}(1,0{C max 11n i x x w x v ini i i ni ii寻找一个满足约束条件,并使目标函数式达到最大的解向量),......,,,(321n x x x x X =,使得C 1∑=≤n i i i x w ,而且∑=ni i i x v 1达到最大。
0-1背包问题具有最优子结构性质。
假设),......,,,(321n x x x x 是所给的问题的一个最优解,则),......,,(32n x x x 是下面问题的一个最优解:∑∑==⎪⎩⎪⎨⎧≤≤∈-≤n i i i ini i i x v n i x x w x w 2211max )2}(1,0{C 。
如果不是的话,设),......,,(32n y y y 是这个问题的一个最优解,则∑∑==>n i n i i i i i x v y v 22,且∑=≤+n i i i y w x w 211C 。
0-1背包问题(回溯法)
0-1背包问题(回溯法)实验报告姓名:学号:指导老师:一.算法设计名称:0-1背包问题(回溯法)二.实验内容问题描述:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i 只有两种选择,即装入背包或不装入背包。
不能将物品装入背包多次,也不能只装入部分的物品。
三.实验目的1.运用回溯思想,设计解决上述问题的算法,找出最大背包价值的装法。
2.掌握回溯法的应用四.算法设计:问题求解思路1.由0-1背包问题的最优子结构性质,建立计算m[i][j]的递归式如下:i i i w j w j j i m i v w j i m j i m j i m <≤≥⎩⎨⎧-+---=0],1[]}[],1[],,1[max{),(2.查找装入背包物品的回溯函数:从0-1二叉树的根开始搜索:若是叶子节点,则判断此时的价值是否比当前最优的价值大,否则将之替换,并获得最优解向量且返回;若不是叶子节点,则向左右子树搜索,先改变当前的数据状态,递归的调用自己,然后恢复数据状态表示回溯。
3.边界函数bound主要是当还未搜索到叶子节点时,提前判断其子树是否存可能存在更优的解空间,否则进行回溯,即裁剪掉子树的解空间。
关键数据结构及函数模块:(Backtrack.h )#ifndef __BACKTRACK_H__#define __BACKTRACK_H__class BP_01_P{public:∑=ni i i x v 1max ⎪⎩⎪⎨⎧≤≤∈≤∑=n i x C x w i n i i i 1},1,0{1BP_01_P(int w,int n):m_Sum_weitht(0),m_Number(0) {m_Sum_weitht=w;m_Number=n;bestHav=0;bestVal=0;curVal=0;curHav=0;m_hav=new int[n];m_val=new int[n];temop=new int[n];option=new int[n];}~BP_01_P(){delete []m_hav;delete []m_val;delete []temop;delete []option;}void traceBack(int n);int bound(int n);void printBestSoulation();int *m_hav;//每个物品的重量int *m_val;//每个物品的价值int *temop;//01临时解int *option;//01最终解int bestHav;//最优价值时的最大重量int bestVal;//最优的价值int curVal;//当前的价值int curHav;//当前的重量private:int m_Sum_weitht;//背包的总容量int m_Number;//物品的种类};#endif __BACKTRACK_H__五:主要的算法代码实现:(Backtrack.cpp)边界函数:bound( )int BP_01_P::bound(int n){int hav_left=m_Sum_weitht-curHav;int bo=curVal;while(n<m_Number && m_hav[n]<=hav_left){hav_left-=m_hav[n];bo+=m_val[n];n++;}if(n<m_Number){bo+=m_val[n]*hav_left/m_hav[n];//bo+=hav_left;}return bo;}回溯递归函数:traceBack( )void BP_01_P::traceBack(int n){if(n>=m_Number){if(curVal>=bestVal){bestVal=curVal;for(int i=0;i<n;i++){option[i]=temop[i];}return ;}}if(curHav+m_hav[n]<=m_Sum_weitht)//向左子树搜索 {curHav=curHav+m_hav[n];curVal=curVal+m_val[n];temop[n]=1;//标记要选择这个物品traceBack(n+1);curHav=curHav-m_hav[n];curVal=curVal-m_val[n];}if(bound(n+1)>bestVal)//向右子树搜索{temop[n]=0;//标记要丢弃这个物品traceBack(n+1);}}主控函数:(main.cpp)#include <iostream>#include "Backtrack.h"using namespace std;int main(){int number,weigth;cout<<"包的总容量:";cin>>weigth;cout<<"物品的种类:";cin>>number;BP_01_P *ptr=new BP_01_P(weigth,number);cout<<"各种物品的重量:"<<endl;for(int i=0;i<number;i++)cin>>ptr->m_hav[i];cout<<"各种物品的价值:"<<endl;for(i=0;i<number;i++)cin>>ptr->m_val[i];ptr->traceBack(0);ptr->printBestSoulation();cout<<"总重量:"<<ptr->bestHav<<"\t总价值:"<<ptr->bestVal<<endl;return 0;}六:算法分析采用回溯法解决0-1背包问题,明显比动态规划法更优良。
01背包问题的回溯法求解实验报告
七、附录
参考资料: 《算法导论》
} if( cw + w[i] <= c){ x[i] = 1; cw += w[i]; cp += p[i]; Backtrack(i+1); cw -= w[i]; cp -= p[i]; } if( Bound(i+1)> bestp) x[i] = 0; Backtrack(i+1); } template<class Typew, class Typep> Typep Knap<Typew, Typep>:: Bound( int i) { //计算上界 Typew cleft = c-cw; //剩余容量 Typep b = cp; //以物品单位重量价值递减序装入物品 while ( i<= n && w[i]<= cleft) { cleft -= w[i]; b += p[i]; i++; } //装满背包 if( i<=n ) b+= p[i]/w[i]*cleft; return b; } 算法复杂度:由于计算上界函数 Bound 需要 O(n)时间,在最坏情况下有 O(2n)个右儿 子结点需要计算上界函数, 故解 0-1 背包问题的回溯算法 Backtrack 所需的计算时间为 O(n2n)。 算法创新:增加了对于上限的处理函数,计算右子树中解的上界时,将剩余物品依其 单位重量价值排序,然后依次装入物品,直至装不下时,再装入该物品的一部分而装 满背包,由此得到的价值是右子树的上界,如果这个上界不能达到当前得到的最优值, 则不搜索该子树。 (2) 你在调试过程中发现了怎样的问题?又做了怎样的改进? 答:在调试过程中,对于背包中物品顺序的保存始终存在问题,应该是 1011,可是总 是无法得出正确的结果,所以,我对数组 x[i]进行了单步调试,继而发现了在前面回溯 法的设计过程中存在缺陷,将 x[4]误当成了 x[0],后来经过改正输出正确。
算法设计与分析实验报告-背包问题
算法设计与分析实验报告一、实验内容:给定n 种物品和一背包。
物品i 的重量是w i ,其价值为v i ,背包的容量为C 。
问应如何选择装入背包的物品,使得装入背包中物品的总价值最大?二、算法思想与设计描述:(一)基本算法:1、使用动态规划算法计算最优值,递归式如下,m(i ,j)是背包容量为j ,可选择物品为i ,i+1,…,n 时0-1背包问题的最优值具体代码:for(i=1; i<=num; i++)for(j=1; j<=C; j++){int temp = value[i -1][j -goods[i].weight]+goods[i].value;if(j>=goods[i].weight && temp > value[i -1][j])value[i][j] = temp;elsevalue[i][j] = value[i -1][j];}2、逆推得出装入背包的物品:j = C;for(i=num; i>=1; i --){if(value[i][j] > value[i -1][j]){judge[i] = 1;j -= goods[i].weight;}}(二)改进算法:1、求最大价值:i i i i w j w j j i m v w j i m j i m j i m <≤≥⎩⎨⎧+-=0),1-(}),1-(),,1-(max{),(具体代码:for(i=0; i<MAXNUM; i++){for(j=0; j<MAXNUM; j++){p[i][j].weight = 0;p[i][j].value = 0;q[i][j].weight = 0;q[i][j].value = 0;}}for(i=0; i<=num-1; i++){j = 0;//计算q集合的值while(j == 0 || (j>0 && p[i][j].weight!=0)){q[i][j].weight = p[i][j].weight + goods[i+1].weight;q[i][j].value = p[i][j].value + goods[i+1].value;j++;}m = 1; k = 0; j = 1;//复制i层的p、q到i+1层的p中并按重量由小到大排序while(p[i][j].weight!=0 && q[i][k].weight!=0){if(p[i][j].weight <= q[i][k].weight){p[i+1][m] = p[i][j];j++;}else{p[i+1][m] = q[i][k];k++;}m++;}while(p[i][j].weight != 0)//i层的p还没有复制结束{p[i+1][m] = p[i][j];j++;m++;}while(q[i][k].weight != 0)//i层的p还没有复制结束{p[i+1][m] = q[i][k];k++;m++;}k = 1;while(p[i+1][k].weight)//删除集合A、集合B中的元素{if((p[i+1][k].value<p[i+1][k-1].value) || (p[i+1][k].weight > C)){j = k;while(p[i+1][j].weight){p[i+1][j] = p[i+1][j+1];j++;}}elsek++;}}max_value=p[i][k-1].value;2、逆推得出最优装法:•初设i=n•比较p[i](j1,v1)与p[i-1](j2,v2)的最后一个元素,如果不同,则第i个一定被选了,且下一次i为(j1-wi,v1-vi)第一次出现的位置;如果相同则i——;•循环执行上述步骤直到i=0为止//逆推得到最优装法i = num;while(i){j = 1; k = 1;while(p[i][j].weight)j++;while(p[i-1][k].weight)k++;j--; k--;if(p[i][j].value != p[i-1][k].value){judge[i] = 1;//第i个被选中了if(i == 1)i--;int last_weight = p[i][j].weight-goods[i].weight;int last_value = p[i][j].value - goods[i].value;m = 1;while(i>1 && m<=num)//找到下一个i{j = 1;while(p[m][j].weight){if(p[m][j].weight == last_weight && p[m][j].value == last_value){i = m;break;}else{j++;}}if(i == m)break;m++;}}elsei--;}三、测试说明:1、基本算法算法复杂度:O(nC)2、改进算法:算法复杂度:O(min{nC, 2^n})四、实验总结:动态规划算法可以避免普通递归算法在某些问题上的重复计算,是一种聪明的递归。
分别用回溯法和分支限界法求解0-1背包问题
华北水利水电学院数据结构与算法分析实验报告2009 ~2010 学年第 1 学期2009 级计算机专业班级:200915326 学号:200915326 姓名:郜莉洁一、实验题目:分别用回溯法和分支限界法求解0-1背包问题二、实验内容:0-1背包问题:给定n种物品和一个背包。
物品i的重量是Wi,其价值为Vi,背包的容量为C。
应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品i只有2种选择,即装入背包或不装入背包。
不能将物品i装入背包多次,也不能只装入部分的物品i。
三、程序源代码:A:回溯法:// bag1.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream.h>#define MaxSize 100 //最多物品数int limitw; //限制的总重量int maxwv=0; //存放最优解的总价值int maxw;int n; //实际物品数int option[MaxSize]; // 存放最终解int op[MaxSize]; //存放临时解struct {int weight;int value;}a[MaxSize]; //存放物品数组void Knap( int i, int tw, int tv) //考虑第i个物品{int j;if(i>=n) //找到一个叶子结点{if (tw<=limitw && tv>maxwv) //找到一个满足条件地更优解,保存它{maxwv=tv; maxw=tw;for(j=0;j<n;j++) option[j]=op[j];}}else{op[i]=1; //选取第I个物品Knap(i+1,tw+a[i].weight, tv+a[i].value);op[i]=0; //不选取第I个物品,回溯Knap(i+1,tw,tv);}}int main(int argc, char* argv[]){int j;n=3; //3物品a[0].weight=16;a[0].value=45;a[1].weight=15;a[1].value=25;a[2].weight=15;a[2].value=25;//a[3].weight=1;a[3].value=1;limitw=30; //限制重量不超过30 Knap(0,0,0);cout<<"最佳装填方案是:"<<endl;for(j=0;j<n;j++)if(option[j]==1)cout<<"第"<<j+1<<"种物品"<<endl;cout<<"总重量="<<maxw<<",总价值="<<maxwv<<endl;return 0;}回溯法测试结果:测试数据:物品一:重量:16,价格:45;物品二:重量:15,价格:25;物品三:重量:15,价格:25;B:分支限界法:#include <stdio.h>#include<malloc.h>#define MaxSize 100 //最多结点数typedef struct QNode{float weight;float value;int ceng;struct QNode *parent;bool leftChild;}QNode,*qnode; //存放每个结点typedef struct{qnode Q[MaxSize];int front,rear;}SqQueue; //存放结点的队列SqQueue sq;float bestv=0; //最优解int n=0; //实际物品数float w[MaxSize]; //物品的重量float v[MaxSize]; //物品的价值int bestx[MaxSize]; // 存放最优解qnode bestE;void InitQueue(SqQueue &sq ) //队列初始化{sq.front=1;sq.rear=1;}bool QueueEmpty(SqQueue sq) //队列是否为空if(sq.front==sq.rear)return true;elsereturn false;}void EnQueue(SqQueue &sq,qnode b)//入队{if(sq.front==(sq.rear+1)%MaxSize){printf("队列已满!");return ;}sq.Q[sq.rear]=b;sq.rear=(sq.rear+1)%MaxSize;}qnode DeQueue(SqQueue &sq)//出队{qnode e;if(sq.front==sq.rear){printf("队列已空!");return 0;}e=sq.Q[sq.front];sq.front=(sq.front+1)%MaxSize;return e;}void EnQueue1(float wt,float vt, int i ,QNode *parent, bool leftchild)qnode b;if (i==n) //可行叶子结点{if (vt==bestv){bestE=parent;bestx[n]=(leftchild)?1:0;}return;}b=(qnode)malloc(sizeof(QNode)); //非叶子结点b->weight=wt;b->value=vt;b->ceng=i;b->parent=parent;b->leftChild=leftchild;EnQueue(sq,b);}void maxLoading(float w[],float v[],int c){float wt=0;float vt=0;int i=1; //当前的扩展结点所在的层float ew=0; //扩展节点所相应的当前载重量float ev=0; //扩展结点所相应的价值qnode e=NULL;qnode t=NULL;InitQueue(sq);EnQueue(sq,t); //空标志进队列while (!QueueEmpty(sq)){wt=ew+w[i];vt=ev+v[i];if (wt <= c){if(vt>bestv)bestv=vt;EnQueue1(wt,vt,i,e,true); // 左儿子结点进队列}EnQueue1(ew,ev,i,e,false); //右儿子总是可行;e=DeQueue(sq); // 取下一扩展结点if (e == NULL){if (QueueEmpty(sq)) break;EnQueue(sq,NULL); // 同层结点尾部标志e=DeQueue(sq); // 取下一扩展结点i++;}ew=e->weight; //更新当前扩展结点的值ev=e->value;}printf("最优取法为:\n");for( int j=n-1;j>0;j--) //构造最优解{bestx[j]=(bestE->leftChild?1:0);bestE=bestE->parent;}for(int k=1;k<=n;k++){if(bestx[k]==1)printf("\n物品%d:重量:%.1f,价值:%.1f\n",k,w[k],v[k]);}printf("\n");printf("最优价值为:%.1f\n\n",bestv);}void main(){int c;float ewv[MaxSize];printf(" //////////////////// 0-1背包问题分枝限界法/////////////////////\n\n");printf("请输入物品的数量:\n");scanf("%d",&n);printf("请输入背包的最大承重量:\n");scanf("%d",&c);printf("\n请输入物品的重量和单位重量价值:\n\n");for(int i=1;i<=n;i++){printf("物品%d:",i);scanf("%f%f",&w[i],&ewv[i]);v[i]=w[i]*ewv[i];printf("\n");}maxLoading(w, v, c);}分支限界法测试结果:五、小结(包括收获、心得体会、存在的问题及解决问题的方法、建议等)注:内容一律使用宋体五号字,单倍行间距,不得少于100字。
实验报告-分支限界法01背包
《算法设计与分析》实验报告六学号: 1004091130 姓名:金玉琦日期: 2011-11-17 得分:一、实验内容:运用分支限界法解决0-1背包问题。
二、所用算法的基本思想及复杂度分析:分支限界法分支限界法按广度优先策略遍历问题的解空间树, 在遍历过程中, 对已经处理的每一个结点根据限界函数估算目标函数的可能取值, 从中选取使目标函数取得极值的结点优先进行广度优先搜索, 从而不断调整搜索方向, 尽快找到问题的解。
因为限界函数常常是基于问题的目标函数而确定的, 所以, 分支限界法适用于求解最优化问题。
0-1背包问题1)基本思想给定n 种物品和一个容量为C 的背包, 物品i 的重量是W i, 其价值为V i, 0/ 1 背包问题是如何选择装入背包的物品(物品不可分割) , 使得装入背包中物品的总价值最大,一般情况下, 解空间树中第i 层的每个结点, 都代表了对物品1~i 做出的某种特定选择, 这个特定选择由从根结点到该结点的路径唯一确定: 左分支表示装入物品, 右分支表示不装入物品。
对于第i 层的某个结点, 假设背包中已装入物品的重量是w, 获得的价值是v, 计算该结点的目标函数上界的一个简单方法是把已经装入背包中的物品取得的价值v, 加上背包剩余容量W - w 与剩下物品的最大单位重量价值vi + 1/ wi + 1的积,于是,得到限界函数:u b = v + ( W - w) × ( vi + 1/ wi + 1 )根据限界函数确定目标函数的界[ down , up],然后, 按照广度优先策略遍历问题的空间树。
2)复杂度分析时间复杂度是O(2n);三、源程序及注释:#include<iostream>#include<cstdio>#include<conio.h>#include<iomanip>using namespace std;int *x;struct node{//结点表结点数据结构node *parent,//父结点指针*next; //后继结点指针int level,//结点的层bag,//节点的解cw,//当前背包装载量cp;//当前背包价值float ub; //结点的上界值};class Knap{private:struct node *front, //队列队首*bestp,*first; //解结点、根结点int *p,*w,n,c,*M;//背包价值、重量、物品数、背包容量、记录大小顺序关系long lbestp;//背包容量最优解public:void Sort();Knap(int *pp,int *ww,int cc,int nn);~Knap();float Bound(int i,int cw,int cp);//计算上界限node *nnoder(node *pa,int ba,float uub);//生成一个结点 ba=1生成左节点 ba=0生成右节点void addnode(node *nod);//将结点添加到队列中void deletenode(node *nod);//将结点队列中删除struct node *nextnode(); //取下一个void display(); //输出结果void solvebag(); //背包问题求解};Knap::Knap(int *pp,int *ww,int cc,int nn){int i;n=nn;c=cc;p=new int[n];w=new int[n];M=new int[n];for(i=0;i<n;i++){p[i]=pp[i];w[i]=ww[i];M[i]=i;}front=new node[1];front->next=NULL;lbestp=0;bestp=new node[1];bestp=NULL;Sort();}Knap::~Knap(){delete []first;delete []front;delete []bestp;delete []p;delete []w;}float Knap::Bound(int i,int cw,int cp){// 计算上界int cleft=c-cw;float b=(float)cp;while (i<n&&w[i]<=cleft){cleft-=w[i];b+=p[i];i++;}if (i<n) b+=1.0*p[i]/w[i]*cleft;return b;}node * Knap::nnoder(struct node *pa,int ba,float uub) {//生成一个新结点node * nodell=new(node);nodell->parent=pa;nodell->next=NULL;nodell->level=(pa->level)+1;nodell->bag=ba;nodell->ub=uub;if(ba==1){nodell->cw=pa->cw+w[pa->level];nodell->cp=pa->cp+p[pa->level] ;}else{nodell->cw=pa->cw;nodell->cp=pa->cp;}return(nodell);}void Knap::addnode(node *no){//将结点加入优先队列node *p=front->next,*next1=front;float ub=no->ub;while(p!=NULL){if(p->ub<ub){no->next=p;next1->next=no;break;}next1=p;p=p->next;}if(p==NULL){next1->next=no;}}node *Knap::nextnode(){//取上限最大结点node *p=front->next;front->next=p->next;return(p);}void Knap::Sort(){int i,j,k,kkl;float minl;for(i=1;i<n;i++){minl=1.0*p[i]/w[i];k=0;for(j=1;j<=n-i;j++){if(minl<1.0*p[j]/w[j]){minl=1.0*p[j]/w[j];swap(p[k],p[j]);swap(w[k],w[j]);swap(M[k],M[j]);k=j;}}}}void Knap::display(){int i;cout<<"最大价值是:"<<lbestp<<endl;for(i=n;i>=1;i--){x[M[i-1]]=bestp->bag;bestp=bestp->parent;}cout<<"变量值为:"<<endl;for(i=1;i<=n;i++)cout<<"x("<<setw(2)<<i<<")="<<x[i-1]<<endl;}void Knap::solvebag(){//背包问题求解int i;float ubb;node *aa;first=new node[1]; //根结点first->parent=NULL;first->next=NULL;first->level=0;first->cw=0;first->cp=0;first->bag=0;ubb=Bound(0,0,0);first->ub=ubb;front->next=first;while(front->next!=NULL){aa=nextnode();i=aa->level;if(i==n-1){if(aa->cw+w[i]<=c&&(long)(aa->cp+p[i])>lbestp){lbestp=aa->cp+p[i];bestp=nnoder(aa,1,(float)lbestp);}if((long)(aa->cp)>lbestp){lbestp=aa->cp;bestp=nnoder(aa,0,(float)lbestp);}}if(i<n-1){if(aa->cw+w[i]<=c&&Bound(i+1,aa->cw+w[i],aa->cp+p[i])>(float)lbestp){ubb=Bound(i,aa->cw+w[i],aa->cp+p[i]);addnode(nnoder(aa,1,ubb));}ubb=ubb=Bound(i,aa->cw,aa->cp);if(ubb>lbestp)addnode(nnoder(aa,0,ubb));}}display();}void main(){int c,n;int i=0;int *p;int *w;cout<<"请输入背包容量:"<<endl;cin>>c;cout<<"请输入物品数:"<<endl;cin>>n;x=new int[n];p=new int[n];w=new int[n];cout<<"请输入"<<n<<"个物品的重量:"<<endl;for(i=0;i<n;i++)cin>>w[i];cout<<"请输入"<<n<<"个物品价值:"<<endl;for(i=0;i<n;i++)cin>>p[i];x=new int[n];Knap knbag(p,w,c,n);knbag.solvebag();getch();return;}四、运行输出结果:五、调试和运行程序过程中产生的问题、采取的措施及获得的相关经验教训:解决该问题首先要确定一个合适的限界函数数, 并根据限界函数确定目标函数的界[down,up],然后按照广度优先策略遍历问题的解空间树,在分支结点上,依次搜索该结点的所有孩子结点,分别估算这些孩子结点的目标函数的可能取值,如果某孩子结点的目标函数可能取得的值超出目标函数的界, 则将其丢弃, 因为从这个结点生成的解不会比目前已经得到的解更好; 否则, 将其加入待处理结点表中。
实验四回溯算法和分支限界法(精)
实验四回溯算法和分支限界法0-1背包问题一、实验目的:1、掌握0-1背包问题的回溯算法;2、进一步掌握回溯算法。
二、实验内容给定n和物品和一人背包,物品i的重量是wi,其价值为vi,问如何选择装入背包的物品,使得装入背包的物品的总价值最大?三、实验步骤1、代码// HS_ALG.cpp : Defines the entry point for the console application.//#include#includeusing namespace std;// 物体结构体typedef struct{float w; //物品重量float p; //物品价值float v; //背包体积int id; //物品个数}OBJECT;bool cmp(OBJECT a, OBJECT b{ //比较两物品体积return a.v>b.v;}float knapsack_back(OBJECT ob[], float M, int n, bool x[]{ //回溯法int i,k;float w_cur, p_total, p_cur, w_est, p_est;bool *y = new bool[n+1];// 计算物体的价值重量比for(i=0; i<=n; i++{ob[i].v = ob[i].p/ob[i].w;y[i] = false;}// 按照物体的价值重量比降序排列sort(ob, ob+n, cmp;// 初始化当前背包中的价值、重量w_cur = p_cur = p_total = 0;// 已搜索的可能解的总价值初始化k = 0;while(k>=0{w_est = w_cur; p_est = p_cur;// 沿当前分支可能取得的最大价值for( i=k; iw_est += ob[i].w;if(w_estp_est += ob[i].p;}else{p_est += ((M-w_est+ob[i].w/ob[i].w*ob[i].p; break;}}// 估计值大于上界if(p_est>p_total{for(i=k; iif(w_cur+ob[i].w<=M{// 可装入第i个物体w_cur = w_cur + ob[i].w;p_cur = p_cur + ob[i].p;y[i] = true;}else{// 不能装入第i个物体y[i] = false;break;}}if(i>=n{// n个物体已经全部装入if(p_cur>p_total{// 更新当前上限p_total = p_cur;k = n;// 保存可能的解for(i=0; ix[i] = y[i];}}}else{// 继续装入物体k = i+1;}}else{// 估计值小于上界时while((i>=0&&(!y[i]i--; // 沿着右分支结点方向回溯直到左分支结点if(i<0break; // 到达根结点算法结束else{ // 修改当前值w_cur -= ob[i].w;p_cur -= ob[i].p;y[i] = false;k = i+1; // 搜索右分支子树}}}//delete y;return p_total;}int main({int n;float m;cout<<"请输入背包载重:";cin>>m;cout<<"请输入物品个数:";cin>>n;OBJECT* ob = new OBJECT[n];{cout<<"请输入物品的重量、价格:"< for(int i=0; icin>>ob[i].w>>ob[i].p;ob[i].id = i+1;}}bool* x = new bool[n];float v = knapsack_back(ob, m, n, x; {cout<<"最优方案:"<for(int i=0; iif(x[i]cout<<"["<}cout<cout<<"物品总价值为:"<}return 0;}2、结果执行成功.3、结果分析。
背包问题问题实验报告(3篇)
第1篇一、实验目的1. 理解背包问题的基本概念和分类。
2. 掌握不同背包问题的解决算法,如0-1背包问题、完全背包问题、多重背包问题等。
3. 分析背包问题的复杂度,比较不同算法的效率。
4. 通过实验验证算法的正确性和实用性。
二、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 开发工具:PyCharm4. 实验数据:随机生成的背包物品数据三、实验内容1. 0-1背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个二维数组dp[n+1][C+1],其中dp[i][j]表示前i个物品在容量为j 的背包中的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值计算dp值。
c. 返回dp[n][C],即为最大价值。
2. 完全背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
求将哪些物品装入背包,使得背包内物品的总价值最大,且每个物品可以重复取。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
3. 多重背包问题(1)问题描述:给定n个物品,每个物品的重量为w[i],价值为v[i],背包的容量为C。
每个物品有无限个,求将哪些物品装入背包,使得背包内物品的总价值最大。
(2)解决算法:动态规划法(3)实验步骤:a. 初始化一个一维数组dp[C+1],其中dp[j]表示容量为j的背包的最大价值。
b. 遍历每个物品,对于每个容量,根据物品的重量和价值更新dp值。
c. 返回dp[C],即为最大价值。
四、实验结果与分析1. 0-1背包问题实验结果显示,在背包容量为100时,最大价值为298。
背包问题实验报告
一、实验背景背包问题是组合优化领域中经典的NP难问题,具有广泛的应用背景。
背包问题是指在一个背包的容量限制下,如何从一组物品中选择一部分物品,使得所选物品的总价值最大。
背包问题分为0-1背包问题、完全背包问题、多重背包问题等。
本实验旨在比较不同背包问题的算法性能,为实际应用提供参考。
二、实验目的1. 比较不同背包问题的算法性能;2. 分析不同算法的时间复杂度和空间复杂度;3. 为实际应用选择合适的背包问题算法。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3.73. 数据集:随机生成的背包问题数据集四、实验方法1. 实验数据:生成不同规模的背包问题数据集,包括物品数量、背包容量和物品价值;2. 算法:比较以下背包问题的算法性能:(1)0-1背包问题的动态规划算法;(2)完全背包问题的动态规划算法;(3)多重背包问题的动态规划算法;3. 性能指标:计算每个算法的运行时间、空间复杂度和最优解价值。
五、实验结果与分析1. 0-1背包问题(1)动态规划算法算法实现:根据0-1背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为198。
(2)回溯法算法实现:根据0-1背包问题的状态转移方程,实现回溯法。
运行时间:随背包容量和物品数量的增加,运行时间呈指数增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据回溯法,得到最优解价值为198。
2. 完全背包问题(1)动态规划算法算法实现:根据完全背包问题的状态转移方程,实现动态规划算法。
运行时间:随背包容量和物品数量的增加,运行时间呈线性增长。
空间复杂度:O(n×C),其中n为物品数量,C为背包容量。
最优解价值:根据动态规划算法,得到最优解价值为300。
《程序设计创新》分支限界法解决01背包问题
《程序设计创新》分支限界法解决01背包问题一、引言分枝限界法通常以广度优先或最小成本(最大收益)优先搜索问题的解空间树。
在分枝限界方法中,每个活动节点只有一次成为扩展节点的机会。
当活动节点成为扩展节点时,将同时生成所有子节点。
这些子节点将丢弃不可执行或非最优解的子节点,并将剩余的子节点添加到活动节点表中。
然后,从活动节点表中选择节点作为当前扩展节点,然后重复上述节点扩展过程。
此过程将持续到所需的解决方案或节点表为空。
二、研究背景在生活或企业活动中,我们常常会遇到一些装在问题。
例如在生活中我们要出去旅游,背包的容量是有限的而要装物品可能很多,但是每个物品的装载优先级肯定是不一样的,那么怎么装更合适一些呢。
在企业活动中,比如轮船集装箱装载问题,集装箱是有限的,那么怎么装载这些货物才能每次都是装载最多的,只有这样企业利润才能最大化。
三、相关技术介绍上述问题就是我们算法中会遇到的背包问题。
而背包问题又分许多。
如背包问题,通常用贪心法解决。
如01背包问题通常用动态规划或者分支限界法解决。
本次我们考虑使用分支限界法来解决01背包问题四、应用示例在01背包问题中,假设有四个物品。
重量W(4,7,5,3),价值V(40,42,25,12),背包重量W为10,试求出最佳装载方案。
定义限界函数: ub = v + (W-w)×(Vi+1/W+1)画出状态空间树的搜索图步骤:①在根结点1,没有将任何物品装入背包,因此,背包的重量和获得的价值均为0,根据限界函数计算结点1的目标函数值为10×10=100;②在结点2,将物品1装入背包,因此,背包的重量为4,获得的价值为40,目标函数值为40 + (10-4)×6=76,将结点2加入待处理结点表PT中;在结点3,没有将物品1装入背包,因此,背包的重量和获得的价值仍为0,目标函数值为10×6=60,将结点3加入表PT 中;③在表PT中选取目标函数值取得极大的结点2优先进行搜索;④在结点4,将物品2装入背包,因此,背包的重量为11,不满足约束条件,将结点4丢弃;在结点5,没有将物品2装入背包,因此,背包的重量和获得的价值与结点2相同,目标函数值为40 + (10-4)×5=70,将结点5加入表PT中;⑤在表PT中选取目标函数值取得极大的结点5优先进行搜索;⑥在结点6,将物品3装入背包,因此,背包的重量为9,获得的价值为65,目标函数值为65 + (10-9)×4=69,将结点6加入表PT中;在结点7,没有将物品3装入背包,因此,背包的重量和获得的价值与结点5相同,目标函数值为40 + (10-4)×4=64,将结点6加入表PT中;⑦在表PT中选取目标函数值取得极大的结点6优先进行搜索;⑧在结点8,将物品4装入背包,因此,背包的重量为12,不满足约束条件,将结点8丢弃;在结点9,没有将物品4装入背包,因此,背包的重量和获得的价值与结点6相同,目标函数值为65;⑨由于结点9是叶子结点,同时结点9的目标函数值是表PT中的极大值,所以,结点9对应的解即是问题的最优解,搜索结束。
回溯法解0-1背包问题实验报告
实验4 回溯法解0-1背包问题一、实验要求1.要求用回溯法求解0-1背包问题;2.要求交互输入背包容量,物品重量数组,物品价值数组;3.要求显示结果。
二、实验仪器和软件平台仪器:带usb接口微机软件平台:WIN-XP + VC++三、实验源码#include ""#include<iostream>#include<cstdio>#include<>#include<iomanip>using namespace std;template<class ty>class Knap{public:friend void Init();friend void Knapsack();friend void Backtrack(int i);friend float Bound(int i);bool operator<(Knap<ty> a)const{if(fl< return true;else return false;}private:ty w; ;cout<<endl;cout<<"请依次输入"<<n<<"个物品的价值P:"<<endl;for(i=0;i<n;i++)cin>>bag[i].v;for(i=0;i<n;i++){bag[i].flag=0; bag[i].kk=i;bag[i].fl=*bag[i].v/bag[i].w;}}void Backtrack(int i){if(i>=n) <=c) lag=1; cw+=bag[i].w;cp+=bag[i].v; Backtrack(i+1);cw-=bag[i].w; cp-=bag[i].v;}if(Bound(i+1)>bestp)lag=0; Backtrack(i+1);}}<=cleft){;b+=bag[i].v;i++;}/bag[i].w * cleft;return b;}void Knapsack() k]=bag[k].flag; lag*bag[k].v; //价值累加}cout<<endl;cout<<"当前最优价值为:"<<L<<endl;cout<<"变量值x = ";for(int i=1;i<=n;i++){cout<<x[i-1];}delete []bag; bag=NULL;delete []x; x=NULL;cout<<endl; getch();}int main(){cout<<endl;cout<<"|**********回溯法解0-1背包问题**********|"<<endl;Init();Backtrack(0);Knapsack();return 0;}四、运行结果五、实验小结通过该实验,我充分了解了回溯法与分支界限法的区别。
回溯法解决01背包问题算法
回溯法解决01背包问题算法回溯法是一种常见的解决0-1背包问题的算法。
以下是使用Python编写的基于回溯法的0-1背包问题的解决方案:```pythondef knapsack(weights, values, capacity):n = len(weights)dp = [[0 for _ in range(capacity + 1)] for _ in range(n + 1)]for i in range(1, n + 1):for w in range(1, capacity + 1):if weights[i - 1] <= w:dp[i][w] = max(dp[i - 1][w], dp[i - 1][w - weights[i - 1]] + values[i - 1])else:dp[i][w] = dp[i - 1][w]return dp[n][capacity]def backtrack(weights, values, capacity, i, w):if i == 0 or w == 0:returnif weights[i - 1] <= w:backtrack(weights, values, capacity, i - 1, w - weights[i - 1])print(f"Pick {values[i - 1]} with weight {weights[i - 1]}")backtrack(weights, values, capacity, i - 1, w)else:backtrack(weights, values, capacity, i - 1, w)def knapsack_backtrack(weights, values, capacity):backtrack(weights, values, capacity, len(weights), capacity)```在这个代码中,`knapsack`函数使用动态规划方法来解决问题,而`backtrack`函数使用回溯法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
}
}
/**
*比较器
*@author蓝冠恒
*/
publicclassElemComparatorimplementsComparator<Object> {
publicintcompare(Object object1, Object object2) {
Element element1 = (Element) object1;
if(input.equals("2")){
break;
}
String datas[] = input.split("[、]");
intn1 = datas.length;
pp=newdouble[n1];
ww=newdouble[n1];
for(inti = 0; i < n1; i++) {
ww[i]= Double.parseDouble(datas[i]);
//计算节点所对应的节点的上界
privatedoublebound(inti) {
doublecleft =c-cw;
doubleb =cp;
//以物品单位重量价值递减装填剩余容量
while(i <=n&&w[i] <= cleft) {
cleft -=w[i];
b +=p[i];
i++;
}
//装填剩余容量装满背包
cp= 0.0;
bestp= 0.0;
Element[] q =newElement[n];
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);
}
Arrays.sort(q,newElemComparator());
p=newdouble[n+ 1];
c= cc;
n= pp.length;
Element[] q =newElement[n];
doublews = 0.0;
doubleps = 0.0;
for(inti = 0; i <n; i++) {
q[i] =newElement(i + 1, pp[i] / ww[i]);
ps += pp[i];
privatedoublebound(inti) {
doublecleft =c-cw;
doublebound =cp;
//以物品单位重量价值递减顺序装入物品
while(i <=n&&w[i] <= cleft) {
cleft -=w[i];
bound +=p[i];
i++;
}
//装满背包
if(i <=n) {
break;
}
datas= input.split("[、]");
intn2 = datas.length;
if(n1!=n2){
System.out.println("输入数据个数不一致,重新输入");
continue;
}
for(inti = 0; i < n1; i++) {
pp[i]= Double.parseDouble(datas[i]);
BBnode enode =null;
inti = 1;
doublebestp = 0.0;
doubleup = bound(1);
while(i !=n+ 1) {
doublewt =cw+w[i];
//检查当前扩展节点的左儿子节点
if(wt <=c) {
if(cp+p[i] > bestp) {
Element element2 = (Element) object2;
if(element1.d< element2.d) {
return1;
}else{
return0;
}
}
}
publicstaticvoidmain(String[] args) {
String input;
{
b +=p[i] /w[i] * cleft;
}
returnb;
}
//添加新的活节点到子集树和优先队列中
privatevoidaddLiveNode(doubleupperProfit,doublepp,doubleww,
intlevel, BBnode parent,booleanleftChild) {
BBnode b =newBBnode(parent, leftChild);
HeapNode node =newHeapNode(b, upperProfit, pp, ww, level);
maxHeap.put(node);
}
//优先队列式分支界限法
privatedoublebbKnapsack() {
}
}while(true);
}
}
1.2、运行结果:
2.1、分支限界法求解0-1背包问题源代码:
packagecn.lgh;
importjava.io.BufferedReader;
importjava.io.InputStreamReader;
importjava.util.Arrays;
/**
*分支界限法解0-1背包问题。
*@author蓝冠恒
*/
publicclassBBKnapsack {
doublec;//背包重量
intn;//物品总数
double[]w;//物品重量数组
double[]p;//物品价值数组
doublecw;//当前重量
doublecp;//当前价值
int[]bestx;//最优解
MaxHeapmaxHeap=newMaxHeap();//活节点优先队列
break;
}
capacity=Double.parseDouble(input);
bestP=btKnapsack.knapsack(pp, ww, capacity);
System.out.println("回溯法解得最优价值:"+bestP);
}catch(Exception e) {
e.printStackTrace();
实验报告
课程名称:算法设计与分析实验名称:回溯法、分支限界法解0-1背包问题
任课教师:张锦雄专业:计算机科学与技术
班级:2007级1班学号:
姓名:蓝冠恒完成日期:2011年1月12日
一、实验目的:
掌握回溯法、分支限界法的原理,并能够按其原理编程实现解决0-1背包问题,以加深对回溯法、分支限界法的理解。
}
do{
System.out.println("请输入背包的容量:");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");
}while(input.equals(""));
if(input.equals("2")){
*回溯法解0-1背包问题。
*@parampp
*物品价值数组
*@paramww
*物品重量数组
*@paramcc
*背包重量
*@return最优价值
*/
publicdoubleknapsack(doublepp[],doubleww[],doublecc) {
c= cc;
n= pp.length;
cw= 0.0;
bestx[j] = (enode.leftChild) ? 1 : 0;
enode = enode.parent;
}
returncp;
}
/**
*将个物体依其单位重量价值从大到小排列,然后调用bbKnapsack完成对子集树优先队列式分支界
*限搜索。
*
*@return最优解
*/
publicdoubleknapsack(double[] pp,double[] ww,doublecc,int[] xx) {
w=newdouble[n+ 1];
for(inti = 1; i <=n; i++) {
p[i] = pp[q[i - 1].id- 1];
w[i] = ww[q[i - 1].id- 1];
}
backtrack(1);
returnbestp;
}
//回溯过程
privatevoidbacktrack(inti) {
二、主要实验内容及要求:
1.要求分别用回溯法和分支限界法求解0-1背包问题;
2.要求交互输入背包容量,物品重量数组,物品价值数组;
3.要求显示结果。
三、实验环境和工具:
操作系统:win7操作系统
开发工具:eclipse3.4、jdk1.6
开发语言:java
四、实验结果与结论:(经调试正确的源程序和程序的运行结果)
break;
}
do{
System.out.println("请输入各物品重量,数据之间必须以顿号间隔分开!");
input = in.readLine().trim();
input = in.readLine().replaceAll(" ","");