初二数学易错题型集锦【学生版】
八上数学易错题
八年级上册数学易错题可能涵盖多个知识点,以下是一些典型的易错题及其详细解析,旨在帮助学生更好地理解和避免这些错误。
1 平面直角坐标系
题目:点 A(2,−3) 关于 x 轴对称的点 B 的坐标是 _______。
易错点:混淆关于 x 轴和 y 轴对称的点的坐标变化规则。
解析:点 A(2,−3) 关于 x 轴对称时,横坐标不变,纵坐标取反。
因此,点 B 的坐标为 (2,3)。
2. 一元一次不等式
题目:解不等式 2x−1>3x+2。
易错点:移项时符号处理不当。
解析:首先将不等式两边合并同类项,得−x>3。
然后,两边同时乘以−1,注意不等号方向要反转,得到 x<−3。
3. 函数的图像与性质
题目:函数 y=2x 的图像经过哪几个象限?
易错点:未正确分析函数图像的性质。
解析:函数 y=2x 是一个正比例函数,其图像是一条经过原点的直线。
由于斜率 k=2>0,图像将从第三象限经过原点进入第一象限。
因此,它经过第一、三象限。
4. 数据的集中趋势与离散程度
题目:一组数据 3,5,5,4,2 的众数是 _______。
易错点:混淆众数与中位数、平均数的概念。
解析:众数是一组数据中出现次数最多的数。
在这组数据中,数字 5 出现了两次,而其他数字只出现了一次。
因此,众数是 5。
初二数学高频错题集(含答案)
数学八年级高频错题集一、选择题(本大题共1小题,共3.0分)1.下列四个不等式:(1)ac>bc;(2)-ma<mb;(3)ac2>bc2;(4)ab>1,一定能推出a>b的有()A. 1个B. 2个C. 3个D. 4个二、填空题(本大题共6小题,共18.0分)2.如果直线y=-2x+b与两坐标轴所围成的三角形面积是9,则b的值为______ .3.已知x+1x =√13,那么x-1x= ______ .4.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处.当△CEB′为直角三角形时,CB′的长为______.5.已知4y2+my+1是完全平方式,则常数m的值是______.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为______.7.如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是______ .三、解答题(本大题共3小题,共24.0分)8.如图,矩形ABCD中AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm╱s的速度移动,点Q沿DA边从点D开始向点A以1cm╱s的速度移动,如果点P,Q同时出发,用t(s)表示移动时间(0≤t≤6).那么:(1)当t为何值时,△QAP为等腰直角三角形?(2)求四边形QAPC的面积,说明是否与t的大小有关.9.如图1,点A是线段BC上一点,△ABD,△AEC都是等边三角形,BE交AD于点M,CD交AE于N.(1)求证:BE=DC;(2)求证:△AMN是等边三角形;(3)将△ACE绕点A按顺时针方向旋转90°,其它条件不变,在图2中补出符合要求的图形,并判断(1)、(2)两小题结论是否仍然成立,并加以证明.10.若多项式x2+ax+8和多项式x2-3x+b相乘的积中不含x3项且含x项的系数是-3,求a和b的值.答案和解析1.【答案】A【解析】解:在(1)中,当c<0时,则有a<b,故不能推出a>b,在(2)中,当m>0时,则有-a<b,即a>-b,故不能推出a>b,在(3)中,由于c2>0,则有a>b,故能推出a>b,在(4)中,当b<0时,则有a<b,故不能推出a>b,综上可知一定能推出a>b的只有(3),故选A.根据不等式的性质逐个判断即可求得答案.本题主要考查不等式的性质,掌握不等式的性质是解题的关键,特别是在不等式的两边同时乘或除以一个不为0的数或因式时,需要确定该数或因式的正负.2.【答案】±6【解析】解:当x=0时,y=b,当y=0时,x=,则根据三角形的面积公式:,解得b=±6.故答案为±6.先求出直线y=-2x+b与两坐标轴的交点,再根据三角形的面积公式列出关于b的方程,求出b的值即可.本题考查了一次函数图象上点的坐标特征,求出函数与x轴、y轴的交点是解题的关键.3.【答案】±3【解析】解:∵x+=,∴(x+)2=13,∴x2++2=13,∴x2+=11,∴x2+-2=(x-)2=9,∴x-=±3.故答案为:±3.直接利用完全平方公式得出x2+=11,进而得出x-的值.此题主要考查了二次根式的化简求值以及完全平方公式的应用,正确应用完全平方公式是解题关键.4.【答案】2或√10【解析】【分析】本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB′E=∠B=90°,而当△CEB′为直角三角形时,只能得到∠EB′C=90°,所以点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,则EB=EB′,AB=AB′=3,可计算出CB′=2,设BE=x,则EB′=x,CE=4-x,然后在Rt△CEB′中运用勾股定理可计算出x.②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形.【解答】解:当△CEB′为直角三角形时,有两种情况:①当点B′落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=5,∵∠B沿AE折叠,使点B落在点B′处,∴∠AB′E=∠B=90°,当△CEB′为直角三角形时,只能得到∠EB′C=90°,∴点A、B′、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B′处,∴EB=EB′,AB=AB′=3,∴CB′=5-3=2;②当点B′落在AD边上时,如答图2所示.此时ABEB′为正方形,∴B'E=AB=3,∴CE=4-3=1,∴Rt△B'CE中,.综上所述,BE的长为2或.故答案为2或.5.【答案】±4【解析】【分析】利用完全平方公式的结构特征确定出m的值即可.此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.【解答】解:∵4y2+my+1是完全平方式,∴m=±4,故答案为±46.【答案】10【解析】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=BC•AD=×4×AD=16,解得AD=8,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+BC=8+×4=8+2=10.故答案为:10.连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.7.【答案】(21008,0)【解析】解:∵正方形OA1B1C1边长为1,∴OB1=,∵正方形OB1B2C2是正方形OA1B1C1的对角线OB1为边,∴OB2=2,∴B2点坐标为(0,2),同理可知OB3=2,∴B3点坐标为(-2,2),同理可知OB 4=4,B 4点坐标为(-4,0),B 5点坐标为(-4,-4),B 6点坐标为(0,-8),B 7(8,-8),B 8(16,0)B 9(16,16),B 10(0,32),由规律可以发现,每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍,∵2016÷8=252 ∴B 2016的纵横坐标符号与点B 8的相同,横坐标为正值,纵坐标是0, ∴B 2016的坐标为(21008,0).故答案为:(21008,0).首先求出B 1、B 2、B 3、B 4、B 5、B 6、B 7、B 8、B 9的坐标,找出这些坐标的之间的规律,然后根据规律计算出点B 2016的坐标.本题主要考查正方形的性质和坐标与图形的性质的知识点,解答本题的关键是由点坐标的规律发现每经过8次作图后,点的坐标符号与第一次坐标符号相同,每次正方形的边长变为原来的倍. 8.【答案】解:(1)∵点P 沿AB 边从点A 开始向点B 以2cm ╱s 的速度移动,点Q 沿DA 边从点D 开始向点A 以1cm ╱s 的速度移动,∴AP =2t ,AQ =AD -DQ =6-t ,∵△QAP 为等腰直角三角形,∴AP =AQ ,∴2t =6-t ,解得t =2,∴t =2s 时,△QAP 为等腰直角三角形;(2)四边形QAPC 的面积=12×6-12×12•t -12×6•(12-2t )=36, 所以,四边形QAPC 的面积与t 无关.【解析】(1)表示出AP 、AQ ,然后根据等腰直角三角形两直角边相等列方程求解即可; (2)根据四边形QAPC 的面积等于矩形的面积减去Rt △CDQ 和Rt △BCP 的面积列式整理即可得解.本题考查了矩形的性质,等腰直角三角形的判定,四边形的面积,熟记性质是解题的关键.9.【答案】证明:(1)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ;(2)由(1)证得:△ABE ≌△ADC ,∴∠ABE =∠ADC .在△ABM 和△ADN 中,{AB =AD∠ABM =∠ADN ∠BAM =∠DAN,∴△ABM ≌△ADN (ASA ),∴AM =AN .∵∠DAE =60°,∴△AMN 是等边三角形;(3)∵△ABD ,△AEC 都是等边三角形,∴AB =AD ,AC =AE ,∠DAB =∠EAC =60°,∴∠DAC =∠BAE ,在△ABE 和△ADC 中,{AB =AD∠BAE =∠DAC AE =AC,∴△ABE ≌△ADC (SAS ),∴BE =DC ,∠ABE =∠ADC ,∵∠BAC =90°∴∠MAN >90°,∵∠MAN ≠60°,∴△AMN 不是等边三角形,∴(1)的结论成立,(2)的结论不成立.【解析】本题考查了全等三角形的判定与性质:有两组边对应相等,且它们所夹的角相等,那么这两个三角形全等;全等三角形的对应边相等.也考查了等腰直角三角形的判定与性质、矩形的性质、等边三角形的判定与性质. (1)根据等边三角形的性质得到AB=AD ,AC=AE ,∠DAB=∠EAC=60°,则∠DAC=∠BAE ,根据“SAS”可判断△ABE ≌△ADC ,则BE=DC ; (2)由△ABE ≌△ADC 得到∠ABE=∠ADC ,根据“AAS”可判断△ABM ≌△ADN (ASA ),则AM=AN ;∠DAE=60°,根据等边三角形的判定方法可得到△AMN 是等边三角形.(3)判定结论1是否正确,也是通过证明△ABE ≌△ADC 求得.这两个三角形中AB=AD ,AE=AC ,∠BAE 和∠CAD 都是60°+∠ACB ,因此两三角形就全等,BE=CD ,结论1正确.将△ACE 绕点A 按顺时针方向旋转90°,则∠DAC >90°,因此三角形AMN 绝对不可能是等边三角形.10.【答案】解:∵(x 2+ax +8)(x 2-3x +b )=x 4+(-3+a )x 3+(b -3a +8)x 2-(-ab +24)x +8b , 又∵不含x 3项且含x 项的系数是-3,∴{a −3=0−ab +24=3, 解得{a =3b =7. 【解析】多项式乘多项式法则,先用一个多项式的每一项乘以另一个多项式的每一项,再把所得的积相加.根据结果中不含x 3项且含x 项的系数是-3,建立关于a ,b 等式,即可求出.本题考查了多项式乘以多项式,根据不含x 3项且含x 项的系数是-3列式求解a 、b 的值是解题的关键.。
八年级数学(初二数学)高频错题集
八年级数学高频错题集1.【题文】把根号外的因式移入根号内的结果是A. B. C. D.2.【题文】如图,的面积是,点、、、分别是、、、的中点,则的面积是A. B. C. D.3.【题文】若,,则的值用,可以表示为.A. B. C. D.4.【题文】下列由三条线段,,构成的三角形:①,,;②,,;③,,;④其中能构成直角三角形的有.A.个B.个C.个D.个5.【题文】若一次函数的图象不经过第三象限,则下列选项正确的是A.,B.,C.,D.,6.【题文】▱中,,是对角线上不同的两点.下列条件中,不能得出四边形一定为平行四边形的是A. B. C. D.7.【题文】在四边形中,,要判定此四边形是平行四边形,还需要满足的条件是A. B. C. D.8.【题文】已知正方形的边长为,如果边长增加,那么面积增加,则关于的函数关系式为A. B. C. D.9.【题文】若函数则当时,自变量的值是A. B. C.或 D.或10.【题文】快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系小欣同学结合图象得出如下结论:快车途中停留了快车速度比慢车速度多图中快车先到达目的地.其中正确的是A. B. C. D.11.【题文】如图所示,在平面直角坐标系中,菱形的顶点坐标是,则顶点、的坐标分别是______.12.【题文】若一个多边形的内角和与外角和之和是,则该多边形的边数是______.13.【题文】在矩形中,,,折叠矩形,使点与点重合,则的长为______.14.【题文】在▱中,平分交边于点,平分交边于点若,,则.15.【题文】一个长方形的长是,宽是,周长是,面积是.写出随变化而变化的关系式;写出随变化而变化的关系式;当时,等于多少?等于多少?16.【题文】小明在解决问题:已知,求的值.他是这样分析与解的:,,,,.请你根据小明的分析过程,解决如下问题:化简若,①求的值;②求代数式的值.17.【题文】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以米分的速度骑行一段时间,休息了分钟,再以米分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为米与时间分钟的关系如图.请结合图象,解答下列问题:填空:______;______;______.若小军的速度是米分,求小军第二次与爸爸相遇时距图书馆的距离.在的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距米,此时小军骑行的时间为______分钟.18.【题文】如图,四边形中,,,,,于点。
数学八下易错题(含答案)
八年级下册易错题第一章 三角形的证明1.已知等腰三角形的两边长分别为5㎝、2㎝,则该等腰三角形的周长是(D )A .7㎝B .9㎝C .12㎝或者9㎝D .12㎝考查知识点:三角形的基本知识及等腰三角形边的关系:任意两边之和大于第三边,等腰三角形两腰相等,因此只能是:5cm ,5cm,2cm.2.一个等腰三角形的一个角是40°,则它的底角是(D )A .40°B .50°C .60°D .40°或70°考查知识点:三角形的内角和及等腰三角形两底角相等:①当40°是顶角时,底角就是70°;②40°就是一个底角.3.已知△ABC 的三边长分别是6cm 、8cm 、10cm ,则最长边上的高是(D )A.2.4cmB.3cmC.4cmD. 4.8cm提示:设最长边上的高为h,由题意可得△ABC 是直角三角形,利用面积相等求,即h .10.218.6.21 解得h=4.84.等腰三角形一腰上的高与另一腰的夹角为300,腰长为6,则其底边上的高是3或33. 解:①三角形是钝角三角形时,如图1,∵∠ABD=30°∴AD=21AB=21×6=3, ∵AB=AC , ∴∠ABC=∠ACB=21∠BAD=21(90°-30°)=30°, ∴∠ABD=∠ABC ,∴底边上的高AE=AD=3;②三角形是锐角三角形时,如图2,∵∠ABD=30°∴∠A=90°-30°=60°,∴△ABC 是等边三角形,∴底边上的高为23×6=33 综上所述,底边上的高是3或335.到三角形三个顶点的距离相等的点是三角形(B )的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高考查的知识点:三角形三边垂直平分线的交点到到三角形三个顶点的距离相等【归纳为:点到点距离相等,为垂直平分线上的点】还有一个:三角形三个内角平分线的交点到三角形三边的距离相等【归纳为:点到线的距离相等,为角平分线的交点,此时的距离有“垂直”】 6.如图,在△ABC 中,AB=5,AC=3,BC 的垂直平分线交AB 于D ,交BC 于E ,则△ADC 的周长等于8考查的知识点:垂直平分线上的点到线段两端点的距离相等7. 用反证法证明:一个三角形中至少有一个内角小于或等于60°.答案:已知:△ABC , 求证:△ABC 中至少有一个内角小于或等于60°证明:假设△ABC 中没有一个内角小于或等于60°,即每一内角都大于60°则∠A>60°,∠B>60°,∠C>60°∴∠A+∠B+∠C>60°+60°+60°=180° 即∠A+∠B+∠C>180°,这与三角形的内角和为180度矛盾.假设不成立. ∴△ABC 中至少有一个内角小于或等于60°考查知识:反证法,用反证法进行证明时先写出已知、求证,再假设求证的反面成立,推出与题设、定理等相矛盾的结论,从而肯定原结论成立【注意:反证法一般很少用到,除非是题目要求用反证法证明,否则一般不考虑该方法】8. 如图所示,∠AOB=30°,OC 平分∠AOB,P 为OC 上任意一点,PD∥OA 交OB 于点D ,PE⊥OA 于点E ,若PE=2cm ,则PD=_________cm .解:过点P 作PF ⊥OB 于F ,∵∠AOB=30°,OC 平分∠AOB ,∴∠AOC=∠BOC=15°,∵PD ∥OA ,∴∠DPO=∠AOP=15°,∴∠DPO=∠AOP=15°,∴∠BOC=∠DPO ,∴PD=OD=4cm ,∵∠AOB=30°,PD ∥OA ,∴∠BDP=30°,∴在Rt △PDF 中,PF=21PD=2cm , ∵OC 为角平分线,PE ⊥OA ,PF ⊥OB,∴PE=PF ,∴PE=PF=2cm9.如图,在△ABC 中,∠ABC 和∠ACB 的平分线交于点E ,过点E 作MN∥BC 交AB 于M ,交AC 于N ,若BM+CN=9,则线段MN 的长为( ) A.6 B.7 C.8 D.9解:∵∠ABC 、∠ACB 的平分线相交于点E ,∴∠MBE=∠EBC ,∠ECN=∠ECB ,∵MN ∥BC ,∴∠EBC=∠EBC ,∠ECN=∠ECB ,∴BM=ME ,EN=CN ,∴MN=BM+CN ,∵BM+CN=9,∴MN=9考查知识点:平行+平分,必有等腰三角形10.如图,AD 是△ABC 的角平分线,DF⊥AB,垂足为F ,DE=DG ,△ADG 和△AED 的面积分别为50和39,则△EDF 的面积为(B ) A.11 B.5.5 C.7 D.3.5解:作DM=DE 交AC 于M ,作DN ⊥AC ,∵在△AED 和△AMD 中∴△AED ≌△AMD∴ADM ADE S S V V∵DE=DG ,DM=DE ,∴DM=DG ,∵AD 是△ABC 的外角平分线,DF ⊥AB ,∴DF=DN ,在Rt △DEF 和Rt △DMN 中,Rt △DEF ≌Rt △DMN (HL ),∵△ADG 和△AED 的面积分别为50和39,∴ADM ADG MDG S S S V V V -==50-39=11MDG DEF DNM S S S V V V 21===21×11=5.5考查知识点:角平分线上的点到角两边的距离相等及三角形的全等11.在Rt△ABC 中,∠C=90°,AC=9,BC=12,则点C 到AB 的距离是(A )A. B. C.D.解:在Rt △ABC 中,AC=9,BC=12,根据勾股定理得:AB=151292222=+=+BC AC过C 作CD ⊥AB ,交AB 于点D ,则由ABC S V =21AC .BC=21AB .CD ,得CD=AB BC AC .=1512x 91=536考查知识:利用面积相等法12.如图,在△ABC 中AD⊥BC,CE⊥AB,垂足分别为D 、E ,AD 、CE 交于点H ,已知EH=EB=3,AE=4,则CH 的长是(A )A.1 B.2 C.3 D.4解:∵AD ⊥BC ,∴∠EAH+∠B=90°,∵CE ⊥AB ,∴∠EAH+∠AHE=90°,∴∠B=∠AHE ,∵EH=EB ,在△AEH 和△CEB 中,∴△AEH ≌△CEB (ASA )∴CE=AE ,∵EH=EB=3,AE=4,∴CH=CE-EH=4-3=1考查知识:利用三角形全等求线段长度.13.如图,在△ABC 中,AD 是中线,AE 是角平分线,CF ⊥AE 于点F ,AB=5,AC=2,则DF 的长为23.解:延长CF 交AB 于点G ,∵AE 平分∠BAC ,∴∠GAF=∠CAF ,∵AF 垂直CG ,∴∠AFG=∠AFC ,在△AFG 和△AFC 中,∴△AFG ≌△AFC (ASA )∴AC=AG ,GF=CF ,又∵点D 是BC 的中点,∴DF 是△CBG 的中位线,∴DF=21BG=21(AB-AG )=21(AB-AC )=23点评:本题考查了三角形的中位线定理,解答本题的关键是作出辅助线,一般出现既是角平分线又是高的情况,我们就需要寻找等腰三角形.14.如图,在△ABC 中,AD 为∠BAC 的平分线,FE 垂直平分AD ,交AD 于E ,交BC 的延长线于F.求证:∠CAF=∠B.解:∠B=∠CAF.∵FE 垂直平分AD ,∴FA=FD ,∴∠FAD=∠ADF ∵AD 为∠BAC 的平分线,∴∠CAD=∠BAD又∵∠CAF=∠FAD=∠CAD ,∠B=∠ADF-∠BAD ,∴∠B=∠CAF点评:此题考查了线段垂直平分线的性质、角平分线的定义及三角形的外角等知识点.15.如图,OA 、OB 表示两条相交的公路,点M 、N 是两个工厂,现在要在∠AOB 内建立一个货物中转站P ,使中转站到公路OA 、OB 的距离相等,并且到工厂M 、N 的距离也相等,用尺规作出货物中转站P 的位置.解:①作∠AOB 的角平分线;②连接MN ,作MN 的垂直平分线,交OM 于一点,交点就是所求货物中转站的位置.16. 如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;(2)若∠B=30°,CD=1,求BD的长.(1)证明:∵AD平分∠CAB∴∠CAD=∠EAD∵DE⊥AB,∠C=90°,∴∠ACD=∠AED=90°又∵AD=AD,∴△ACD≌△AED(2)解:∵△ACD≌△AED∴DE=CD=1∵∠B=30°,∠DEB=90°,∴BD=2DE=217.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=,求AD的长.(1)证明:∵AD⊥BC,∠BAD=45°∴∠ABD=∠45°=∠BAD∴AD=BD∵BE⊥AC∴∠CAD+∠AFE=90°∵AD⊥BC∴∠FBD=∠BFD=90°又∠AFE=∠BFD∴∠CAD=∠FBD又∠ADC=∠BDF=90°∴△ADC≌△BDF∴AC=BF∵AB=BC,BE⊥AC∴AC=2AE∴BF=2AE(2)解:设AD=x,则BD=x∴AB=BC=2+x∵△ABD是等腰直角三角形∴AB=2AD∴2+x=2x解得x=2+2即AD=2+218.如图,已知△ABC是等边三角形,D、E分别在BA、BC的延长线上,且AD=BE.求证:DC=DE证明:延长BE至F,使EF=BC∵△ABC是等边三角形∴∠B=60°,AB=BC∴AB=BC=EF∵AD=BE,BD=AB+AD, BF=BE+EF∴BD=BF∴△BDF是等边三角形∴∠F=60°,BD=FD在△BCD和△FED中,BC=EF∠B=∠F=60°BD=FD∴△BCD≌△FED(SAS)∴DC=DE19.如图,在△ABC 中,AC=BC ,∠ACB=90°,D 是AC 上一点,AE ⊥BD 交BD 的延长线于E ,且AE=21BD ,求证:BD 是∠ABC 的角平分线.证明:延长AE 、BC 交于点F∵AE ⊥BE∴∠BEF=90°,又∠ACF=∠ACB=90°∴∠DBC+∠AFC=∠FAC+∠AFC=90°∴∠DBC=∠FAC在△ACF 和△BCD 中∴△ACF ≌△BCD (ASA )∴AF=BD又AE=21BD ∴AE=EF,即点E 是AF 的中点∴AB=BF∴BD 是∠ABC 的角平分线20.如图,在△ABC 中,分别以AC 、AB 为边,向外作正△ACD ,正△ABE ,BD 与AE 相交于F ,连接AF ,求证:AF 平分∠DME证明:过点A 分别作AM ⊥BD,AN ⊥CE,分别交BD ,CE 于M ,N 两点∵△ABE 和△ACD 均为等边三角形,∴∠EAB=∠CAD=60°,AD=AC ,AB=AE∵∠EAC=∠BAD=60°+∠BAC ,∴△EAC ≌△BAD ,∴ AM BD S AN CE S BAD EAC .21.21===V V CE=BD ∴AN=AM∴AF 平分∠DME (在角的内部到角两边距离相等的点在该角的平分线上)21.如图,已知:AB=AC ,∠A=90°,AF=BE,BD=DC.求证:FD ⊥ED.证明:连接AD.∵∠A=90° AB=AC D 是BC 的中点∴AD ⊥BC ∠ADB=90° ∠B=45°=∠CAD AD=BD (直角三角形中,中线等于斜边的一半)且BE=AF∴易证△BED ≌△AFD (SAS )∴∠BDE=∠ADF ∵∠ADE+∠EDB=∠ADB=90°∴∠ADF+∠ADE=90°∴ED ⊥FD如图,在Rt △ABC 中,D ,E 为斜边AB 上的两点,且BD=BC ,AE=AC ,则∠DCE 的大小为_____°.如图,在等腰△ABC 中,AB=AC ,∠BAC=50°,∠BAC 的平分线与AB 的中垂线交于点O ,点C 沿EF 折叠后与点O 重合,则∠OEC 的度数是_____.第二章 不等式(组) 不等式基本性质例:如果x >y ,那么下列各式中正确的是(C )A .x-2<y-2B . 2x <2y C .-2x <-2y D .-x >-y 1.系数含有字母的不等式(组)解题思路:先把字母系数当做已知数,解出未知数的取值范围,再根据题意及不等式的性质或解不等式组的方法进行计算【特别注意:“=”一定要考虑,如果满足题意则要取,不满足题意就不取】【自己做】(1)已知关于x 的方程3k -5x =-9的解是非负数,求k 的取值范围.(2) 已知关于x 的不等式(1-a )x >2的解集为x <a -12 ,则a 的取值范围是a >1. 提示:利用不等式的基本性质三:a-1<0(3)如果不等式组⎩⎨⎧<+>-00b x a x 的解集是3<x <5,那么a=3,b=-5.提示:解得不等式组的解集为:a<x <-b而不等式组的解集为:3<x <5∴a=3,b=-5(4) 如果不等式 ⎩⎨⎧><m x x 8 无解,那么m 的取值范围是 (B ) A .m >8 B.m ≥8 C.m <8 D.m ≤8提示:不等式组无解的条件是:比大的还大,比小的还小;∴m ≥8【“=”一定要考虑,这个题取“=”就满足题意】(5)如果不等式组⎩⎨⎧>-<+m x x x 148的解集是3>x ,则m 的取值范围是(A ).A .m≤3B . m≥3C .m=3D .m <3提示:不等式组解集:同大取大;解不等式组得而该不等式组的解集是3>x ,∴m≤3【“=”一定要考虑,这个题取“=”就满足题意】(6)关于x 的不等式组()⎪⎩⎪⎨⎧->-+--<-325251263x x a x x 有三个整数解,则a 的取值范围是65-<a ≤32-. 解:解该不等式组得∵有三个整数解∴2<x <6a+10∴三个整数解应该是3,4,5∴5<6a+10≤6解得65-<a ≤32- 【自己解答】(7) 若方程组⎩⎨⎧+=++=+3654,2m y x m y x 的解x ,y 均为正数,求m 的取值范围.提示:先将m 当作已知数,将x 、y 用含m 的式子表示出来,然后利用x ,y 均为正数,列出含m 的不等式组,解出m 的取值范围【自己解】2.解不等式(组)【不等式组的结果不能写成大括号的形式】(1)解不等式1213312+-≥+)(x x ,并将解集在数轴上表示出来; (2)解不等式组⎪⎩⎪⎨⎧≤+--+<-1215312)1(315x x x x ,并把它的解集表示在数轴上. 3.一元一次不等式(组)与一次函数利用一次函数解一元一次不等式(组):实质就是比较两个函数y 值得大小,函数值(y )越大,图像越高,函数值(y )越小,图像越高低,这里一般是让求自变量x 的取值范围,找出与x 轴交点的横坐标(指一元一次不等式),看让求图像在x 轴以上的自变量的取值范围(还是图像在x 轴以下的自变量的取值范围);或找出函数交点的横坐标,然后看在该交点以左满足题意还是交点以右满足题意.(1)函数y =kx +b (k 、b 为常数,k ≠0)的图象如图所示,则关于x 的不等式kx+b>0的解集为(C ).A .x>0B .x<0C .x<2D .x>2(2)直线b x k y l +=11:与直线x k y l 22:=在同一平面直角坐标系中的图象如图所示,则关于x 的不等式x k b x k 21>+的解为x<-14.一元一次不等式(组)应用题◆一件商品的进价是500元,标价为600元,打折销售后要保证获利不低于8%,则此商品最多打9折.商品销售中需注意的地方:①“进价”也叫“成本”;“售价”也叫“标价”;②获利是在进价的基础上获利;打折是在售价基础上打折;③打几折就是给售价×10x 解:设可以打x 折.那么(600×10x -500)÷500≥8% 解得x ≥9.故答案为:9.◆某商贩去菜摊买黄瓜,他上午买了30斤,价格为每斤x 元;下午,他又买了20斤.价格为每斤y 元.后来他以每斤2y x +元的价格卖完后,结果发现自己赔了钱,其原因是(B ) <y B .>y C .≤y D .≥y解:根据题意得,他买黄瓜每斤平均价是502030y x + 以每斤2y x +元的价格卖完后,结果发现自己赔了钱,则 502030y x +>2y x + 解得:x >y∴赔钱的原因是x>y(1)某商场文具部的某种毛笔每支售价25元,书法练习本每本售价5元。
数学八年级下册经典易错题集附答案解析
八年级下易错题集(一)一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.42.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4 3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3 4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠05.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.17.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟8.计算的结果为()A.a2B.C.D.9.计算的结果是()A.1B.﹣1 C.D.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5 11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1 12.如图可作为函数y=f(x)的图象的是()A.B.C.D.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较二.填空题(共9小题)17.约分:=_________;=_________.18.(清远)计算:(π﹣3)0+2﹣1=_________.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式____,自变量x的取值范围是________.20.(贵州模拟)在函数y=中,自变量的取值范围是_________.21.已知函数y=(k﹣1)x+k2﹣1,当k_________时,它是一次函数,当k=_______时,它是正比例函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=_________.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是_________.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线_________.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为_________.三.解答题(共5小题)26.通分:,.27.计算:(1);(2)÷(a2﹣4)•.28.(六合区一模)化简,求值:),其中m=.29.(苏州)解分式方程:+=3.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?参考答案与试题解析一.选择题(共16小题)1.代数式中,分式的个数是()A.1B.2C.3D.4考点:分式的定义.分析:找到分母中含有字母的式子的个数即可.解答:解:分式共有2个,故选B.点评:本题主要考查分式的定义,分母中含有字母的式子就是分式,注意π不是字母,是常数.2.已知对任意实数x,式子都有意义,则实数m的取值范围是()A.m>4 B.m<4 C.m≥4 D.m≤4考点:分式有意义的条件.专题:常规题型.分析:先把分母配方,然后根据分母不等于0结合平方数非负数解答即可.解答:解:∵x2﹣4x+m=(x﹣2)2+m﹣4,∵(x﹣2)2≥0,对任意实数式子都有意义,∴m﹣4>0,解得m>4.故选A.点评:本题考查了分式有意义的条件,熟记分式有意义⇔分母不为零,并利用配方法对分母进行整理是解题的关键.3.(龙岩模拟)当式子的值为零时,x等于()A.4B.﹣3 C.﹣1或3 D.3或﹣3考点:分式的值为零的条件.分析:根据分式为零,分子等于0,分母不等于0列式进行计算即可得解.解答:解:根据题意得,|x|﹣3=0,解得x=3或﹣3,又x2﹣2x﹣3≠0,解得x1≠﹣1,x2≠3,所以,x=﹣3.故选B.点评:本题考查了分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.4.若分式的值为正,则x的取值范围是()A.x>0 B.x>﹣C.x≠﹣D.x>﹣且x≠0考点:分式的值.专题:计算题.分析:根据分式的性质列出不等式组解此不等式组即可.解答:解:由分式的性质可得,解得x>﹣且x≠0,故选D.点评:本题考查不等式的解法和分式的取值,注意分式的分母不能为0,比较简单.5.分式中的x,y同时扩大3倍,则分式的值()A.不变B.是原来的3倍C.是原来的4倍D.是原来的考点:分式的基本性质.分析:x,y都扩大3倍就是分别变成原来的3倍,变成3x和3y,用3x和3y代替式子中的x和y,看得到的式子与原来的式子的关系.解答:解:用3x和3y代替式子中的x和y得:,则分式是原来的3倍.故选B.点评:解题的关键是抓住分子、分母变化的倍数.解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论.6.下面各分式:,其中最简分式有()个.A.4B.3C.2D.1考点:最简分式.分析:最简分式的标准是分子,分母中不含有公因式,不能再约分.判断的方法是把分子、分母分解因式,并且观察有无互为相反数的因式,这样的因式可以通过符号变化化为相同的因式从而进行约分.解答:解:;=;;分子分母没有公因式,是最简分式.故选D.点评:判断一个分式是最简分式,主要看分式的分子分母是不是有公因式.7.(眉山)某种长途电话的收费方式如下:接通电话的第一分钟收费a元,之后的每一分钟收费b元.如果某人打该长途电话被收费8元钱,则此人打长途电话的时间是()A.分钟B.分钟C.分钟D.分钟考点:列代数式(分式).专题:应用题.分析:由题意可知收费为=a+(打长途电话的时间﹣1)b.解答:解:设此人打长途电话的时间是x分钟,则有a+b(x﹣1)=8,解得:x=.故选C.点评:注意此题的分类收费方式.找到相应的量的等量关系是解决问题的关键.8.计算的结果为()A.a2B.C.D.考点:分式的乘除法.专题:计算题.分析:先把除法转化成乘法,再根据分式的乘法法则进行计算即可.解答:解:=a2××=.故选B.点评:本题考查了分式的乘除法的应用,主要考查学生的计算能力,题目比较好,但是一道比较容易出错的题目.9.计算的结果是()A.1B.﹣1 C.D.考点:分式的加减法.专题:计算题.分析:几个分式相加减,根据分式加减法则进行运算,如果分式分母互为相反数,则先将其变为同分母分数,然后再直接相加减即可.解答:解:,故选B.点评:在进行分式的加减运算时,应注意分式符号的改变.10.(鸡西)若关于x的分式方程无解,则m的值为()A.﹣1.5 B.1C.﹣1.5或2 D.﹣0.5或﹣1.5考点:分式方程的解.专题:计算题;压轴题.分析:去分母得出方程①(2m+x)x﹣x(x﹣3)=2(x﹣3),分为两种情况:①根据方程无解得出x=0或x=3,分别把x=0或x=3代入方程①,求出m;②求出当2m+1=0时,方程也无解,即可得出答案.解答:解:方程两边都乘以x(x﹣3)得:(2m+x)x﹣x(x﹣3)=2(x﹣3),即(2m+1)x=﹣6,分两种情况考虑:①∵当2m+1=0时,此方程无解,∴此时m=﹣0.5,②∵关于x 的分式方程无解,∴x=0或x﹣3=0,即x=0,x=3,当x=0时,代入①得:(2m+0)×0﹣0×(0﹣3)=2(0﹣3),解得:此方程无解;当x=3时,代入①得:(2m+3)×3﹣3(3﹣3)=2(3﹣3),解得:m=﹣1.5,∴m的值是﹣0.5或﹣1.5,故选D.点评:本题考查了对分式方程的解的理解和运用,关键是求出分式方程无解时的x的值,题目比较好,难度也适中.11.(扬州)若方程=1有增根,则它的增根是()A.0B.1C.﹣1 D.1和﹣1考点:分式方程的增根.专题:压轴题.分析:增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.有增根,那么最简公分母(x+1)(x﹣1)=0,所以增根可能是x=1或﹣1.解答:解:方程两边都乘(x+1)(x﹣1),得6﹣m(x+1)=(x+1)(x﹣1),由最简公分母(x+1)(x﹣1)=0,可知增根可能是x=1或﹣1.当x=1时,m=3,当x=﹣1时,得到6=0,这是不可能的,所以增根只能是x=1.故选B.点评:求增根只需将最简公分母等于0即可,但有两个或两个以上的增根时需进行检验.12.如图可作为函数y=f(x)的图象的是()A.B.C.D.考点:函数的概念.分析:由函数的概念,对每一个x有唯一的y和x对应.反映在图象上,取平行于y轴的直线x=a与图象始终只有一个交点.解答:解:由函数的定义.A、B、C中都存在x有两个y与x对应,不能构成函数.故选D点评:此题主要考查了对函数的概念、函数图象的理解,属基本概念的考查.13.(金华)小明在一直道上骑自行车,经过起步、加速、匀速、减速之后停车.设小明骑车的时间为t(秒),骑车的路程为s(米),则s关于t的函数图象大致是()A.B.C.D.考点:函数的图象.专题:压轴题.分析:随着时间的增大,路程也越来越远.经过起步,加速,匀速以及减速后停车,结合选项可得出答案.解答:解:随着时间的增多,路程越来越远.过程为起步、加速、匀速、减速之后停车.函数图象的形态为:缓,陡,缓,停.故选D.点评:应看清函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.下列函数:①y=﹣8x、②、③y=8、④y=﹣8x2+6、⑤y=﹣0.5x﹣1中,一次函数有()A.1个B.2个C.3个D.4个考点:一次函数的定义.分析:根据一次函数的定义进行逐一分析即可.解答:解:①是一次函数;②自变量次数不为1,故不是一次函数;③是常数函数;④自变量次数不为1,故不是一次函数;⑤是一次函数.∴一次函数有2个.故选B.点评:解题关键是掌握一次函数的定义条件:一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.15.(辽宁)下列图象中,不可能是关于x的一次函数y=mx﹣(m﹣3)的图象的是()A.B.C.D.考点:一次函数的图象.专题:压轴题.分析:分别根据四个答案中函数的图象求出m的取值范围即可.解答:解:A 、由函数图象可知,,解得,0<m<3;B 、由函数图象可知,,解得,m=3;C 、由函数图象可知,,解得,m<0,m>3,无解;D、由函数图象可知,解得,m<0.故选C.点评:此题比较复杂,解答此题的关键是根据各选项列出方程组,求出无解的一组.16.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较考点:一次函数图象上点的坐标特征.分析:先根据一次函数的解析式判断出函数的增减性,再根据两点横坐标的大小即可得出结论.解答:解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.点评:本题考查的是一次函数图象上点的坐标特点,先根据题意判断出一次函数的增减性是解答此题的关键.二.填空题(共9小题)17.约分:=;=.考点:约分.分析:先把分子和分母因式分解,再约去分母与分子的公因式,即可得出答案.解答:解:=;==;故答案为:,.点评:此题考查了约分,用到的知识点是分式的基本性质、平方差公式和完全平方公式,注意把结果化到最简.18.(清远)计算:(π﹣3)0+2﹣1=.考点:负整数指数幂;零指数幂.专题:计算题.分析:本题涉及零指数幂、负整数指数幂两个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.解答:解:原式=(π﹣3)0+2﹣1=1+=.故答案为1.5.点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、零指数幂等考点的运算.19.等腰三角形的周长是16,写出底边长y与一腰长x的函数关系式y=﹣2x+16,自变量x的取值范围是4<x<8.考点:函数关系式.分析:根据等腰三角形的周长、底边和腰长的关系可得函数关系式,根据三角形的两边之和大于第三边,可得自变量x的取值范围.解答:解:由等腰三角形的周长是16,底边长y与一腰长x,可得函数关系式:y=﹣2x+16,∵2x>﹣2x+16,∴自变量x的取值范围是4<x<8,故答案为:y=﹣2x+16,4<x<8.点评:本题考查了函数关系式,三角形的周长减两腰长等于底边长的解析式,三角形两边之和大于第三边得自变量的取值范围.20.(贵州模拟)在函数y=中,自变量的取值范围是x>1.考点:函数自变量的取值范围.分析:根据被开方数大于等于0,分母不等于0列式计算即可得解.解答:解:根据题意得,x﹣1≥0且x2﹣1≠0,解得x≥1且x≠±1,所以x>1.故答案为:x>1.点评:本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.21.已知函数y=(k﹣1)x+k2﹣1,当k≠1时,它是一次函数,当k=﹣1时,它是正比例函数.考点:一次函数的定义;正比例函数的定义.专题:待定系数法.分析:根据正比例函数的定义可得出k的值及取值范围.解答:解:∵函数y=(k﹣1)x+k2﹣1是一次函数,∴k﹣1≠0,即k≠1;函数y=(k﹣1)x+k2﹣1是正比例函数,则k﹣1≠0,k2﹣1=0,∴k=﹣1.点评:本题考查对正比例函数和一次函数的概念理解.形如y=kx,(k≠0)为正比例函数;y=kx+b,(k≠0)为一次函数.22.(包头)若一次函数y=ax+1﹣a中,y随x的增大而增大,且它的图象与y轴交于正半轴,则|a﹣1|+=1.考点:一次函数的性质.专题:计算题.分析:由一次函数y=ax+1﹣a中y随x的增大而增大,可以推出a>0,又由于它的图象与y轴交于正半轴可以得到a<1,最后即可确定a的取值范围,于是可以求出题目代数式的结果.解答:解:∵一次函数y=ax+1﹣a中,y随x的增大而增大,∴a>0,∵它的图象与y轴交于正半轴,∴1﹣a>0,即a<1,故0<a<1;∴原式=1﹣a+a=1.故填空答案:1.点评:一次函数y=kx+b的图象有四种情况:①当k>0,b>0,函数y=kx+b的图象经过第一、二、三象限,y的值随x的值增大而增大;②当k>0,b<0,函数y=kx+b的图象经过第一、三、四象限,y的值随x的值增大而增大;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限,y的值随x的值增大而减小;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限,y的值随x的值增大而减小.23.(襄阳)若一次函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则k的取值范围是1<k≤2.考点:一次函数图象与系数的关系.专题:计算题.分析:若函数y=2(1﹣k)x+k﹣1的图象不过第一象限,则此函数的x的系数小于0,b≤0.解答:解:∵函数y=2(1﹣k)x+k﹣1的图象不过第一象限,∴2(1﹣k)<0,k﹣1≤0,∴1<k≤2.点评:一次函数的图象经过第几象限,取决于x的系数是大于0或是小于0.24.将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2x﹣2.考点:一次函数图象与几何变换.分析:沿x轴正方向平移即是向右平移,根据解析式“左加右减”的平移规律,即可得到平移后的直线解析式.解答:解:将直线y=2x沿x轴的正方向平移1个长度单位,得到直线y=2(x﹣1),即y=2x﹣2.故答案为y=2x﹣2.点评:本题考查一次函数图象与几何变换,掌握解析式的平移规律:左加右减,上加下减是解题的关键.25.直角坐标系中,直线y=2x+3关于原点对称的解析式为y=2x﹣3.考点:中心对称;一次函数图象与几何变换.分析:若两条直线关于原点对称,则这两条直线平行,即k值不变;与y轴的交点关于原点对称,即b值互为相反数.解答:解:直线y=2x+3关于原点对称的解析式为y=2x﹣3.点评:能够数形结合来分析此类型的题,根据图形,发现k和b值之间的关系.三.解答题(共5小题)26.通分:,.考点:通分.专题:计算题.分析:将两分式的分母中的系数取各系数的最小公倍数,相同因式的次数取最高次幂.解答:解:=,=.点评:本题考查了通分.解答此题的关键是熟知找公分母的方法:(1)系数取各系数的最小公倍数;(2)凡出现的因式都要取;(3)相同因式的次数取最高次幂.27.计算:(1);(2)÷(a2﹣4)•.考点:分式的混合运算.专题:计算题.分析:(1)原式第一项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算即可得到结果;(2)原式利用除法法则变形,约分即可得到结果.解答:解:(1)原式=1﹣•=1﹣==﹣;(2)原式=••=.点评:此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.28.(六合区一模)化简,求值:),其中m=.考点:分式的化简求值.分析:这道求代数式值的题目,不应考虑把x的值直接代入,通常做法是先把代数式化简,然后再代入求值.分式的四则运算是整式四则运算的进一步发展,是有理式恒等变形的重要内容之一.解答:解:原式======.当m=时,原式==.点评:考查了分式的化简求值,本题的关键是化简,然后把给定的m值代入求值.29.(苏州)解分式方程:+=3.考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:x﹣2=3x﹣3,解得:x=,经检验x=是分式方程的解.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.30.(沈阳)甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用的时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件?考点:分式方程的应用.专题:压轴题.分析:根据“甲加工150个零件所用的时间与乙加工120个零件所用时间相等”可得出相等关系,从而只需表示出他们各自的时间就可以了.解答:解:设乙每小时加工机器零件x个,则甲每小时加工机器零件(x+10)个,根据题意得:=,解得x=40,经检验,x=40是原方程的解,x+10=40+10=50.答:甲每小时加工50个零件,乙每小时加工40个零件.点评:本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.。
初中数学易错题集
初中数学易错题集1. 分母为0的数学计算错误- 示例题目:计算 3 ÷ 0 的值。
解析:分母为0的情况下,计算是没有意义的,因为任何数除以0都没有定义。
因此,这道题是没有解的,答案是无解。
2. 乘除法运算次序错误- 示例题目:计算 2 + 3 × 4 的值。
解析:根据数学运算法则,乘法和除法的优先级高于加法和减法。
所以,首先计算3 × 4,得到12,再加上2,最后的答案是14。
3. 幂运算有括号错误- 示例题目:计算 2^3 × 4 的值。
解析:幂运算的优先级高于乘法和除法,但低于括号。
根据数学运算法则,先计算幂运算,再进行乘法运算。
所以,首先计算2的3次方,得到8,再乘以4,最后的答案是32。
4. 直角三角形定理应用错误- 示例题目:已知直角三角形的一条直角边长为3cm,斜边长为5cm,求另一条直角边的长度。
解析:根据直角三角形的定理(勾股定理),直角边的平方加上直角边的平方等于斜边的平方。
所以,设另一条直角边的长度为x,则有x^2 + 3^2 = 5^2。
解这个方程可以得到 x = 4。
5. 百分数转换错误- 示例题目:将0.6转化为百分数。
解析:百分数是以百分号(%)表示的,表示数值的百分之几。
将小数转化为百分数时,将小数乘以100,并在后面加上百分号。
所以,0.6转化为百分数是60%。
6. 未转化单位导致计算错误- 示例题目:汽车以60千米/小时的速度行驶了2小时,求汽车行驶的总距离。
解析:速度乘以时间等于距离。
但是在计算之前,要将速度和时间转化为相同的单位。
由于速度单位是千米/小时,时间单位是小时,所以无需转化单位,直接乘起来就可以,答案为 60 × 2 = 120 千米。
7. 数字精度错误- 示例题目:计算 0.2 × 0.3 的值。
解析:在计算浮点数(小数)时,由于计算机的二进制表示有限,不是所有的小数都能精确表示。
所以,计算结果可能有一定的误差。
初二数学易错题100道
初二数学易错题100道初二数学是初中数学学习的重要阶段,知识难度和深度都有所增加。
为了帮助同学们更好地掌握初二数学知识,提高解题能力,避免在考试中犯错,下面为大家整理了 100 道易错题。
一、三角形1、已知三角形的两边长分别为 3 和 5,第三边长为整数,则第三边的最大值为()A 5B 6C 7D 8答案:C易错点:忽略三角形三边关系的限制,即两边之和大于第三边,两边之差小于第三边。
2、一个三角形的三个内角的度数之比为 1:2:3,则这个三角形是()A 锐角三角形B 直角三角形C 钝角三角形D 等腰三角形答案:B易错点:对三角形内角和定理理解不透彻,不能根据比例求出各角的度数。
3、下列条件中,不能判定两个三角形全等的是()A 三边对应相等B 两角和其中一角的对边对应相等C 两边和夹角对应相等D 两边和其中一边的对角对应相等答案:D易错点:对全等三角形的判定定理掌握不扎实,容易混淆。
二、全等三角形1、如图,已知△ABC≌△DEF,∠A=50°,∠B=60°,则∠F 的度数为()A 50°B 60°C 70°D 80°答案:C易错点:不能正确运用全等三角形的性质,求出对应角的度数。
2、已知△ABC≌△A'B'C',AB=5,BC=7,AC=8,则 A'B'的长度为()A 5B 7C 8D 无法确定答案:A易错点:不清楚全等三角形对应边相等的关系。
3、下列说法正确的是()A 全等三角形的面积相等B 面积相等的三角形全等C 形状相同的三角形全等D 周长相等的三角形全等答案:A易错点:对全等三角形的概念和性质理解不准确。
三、轴对称1、下列图形中,是轴对称图形的是()A 平行四边形B 等边三角形C 梯形D 直角三角形答案:B易错点:对轴对称图形的概念不清,不能准确判断图形是否沿某条直线对称。
2、点 P(-2,3)关于 x 轴对称的点的坐标是()A (-2,-3)B (2,-3)C (2,3)D (-3,-2)答案:A易错点:关于 x 轴对称的点,横坐标相同,纵坐标互为相反数,容易记错。
八年级数学 高频易错题集和详细答案分析 一文掌握数学易错题
八年级数学高频易错题集1.【题文】小强所在学校离家距离为千米,某天他放学后骑自行车回家,先骑了分钟后,因故停留分钟,再继续骑了分钟到家.下面哪一个图象能大致描述他回家过程中离家的距离千米与所用时间分之间的关系A. B.C. D.2.【题文】若,是一等腰三角形的两边长,且满足等式,则此等腰三角形的周长A. B. C.或 D.3.【题文】某学校组织团员举行申奥成功宣传活动,从学校骑车出发,先上坡到达地后,宣传分钟;然后下坡到地宣传分钟返回,行程情况如图.若返回时,上、下坡速度仍保持不变,在地仍要宣传分钟,那么他们从地返回学校用的时间是A.分钟B.分钟C.分钟D.分钟4.【题文】若,则的值为.A. B. C. D.5.【题文】无论取任何实数,代数式都有意义,则的取值范围是A. B. C. D.6.【题文】如图,在▱中,,,点、分别是边、上的动点,连接、,点、分别为、的中点,连接,则的最小值为A. B. C. D.7.【题文】若,化简的结果为.A. B. C. D.8.【题文】如图,已知四边形中,,,平分,下列等式:①;②;③;④其中一定正确的结论是A.①②③B.①③④C.①②③④D.①②④9.【题文】当时,代数式取值最小.A. B. C. D.10.【题文】如图,线段,是上一动点,以、为边在同侧作正、正,连,点为的中点.当点从运动到时,点运动路径长为A. B. C. D.11.【题文】如图,在平行四边形中,、是对角线上的两点且,①;②;③;④四边形为平行四边形;⑤;⑥.这些结论中正确的是A.①⑥B.①②④⑥C.①②③④D.①②④⑤⑥12.【题文】下列变量之间的关系:三角形面积与它的底边高为定值;中的与;圆的面积与圆的半径;中的与其中成函数关系的有A.个B.个C.个D.个13.【题文】已知为平行四边形,和的角平分线分别交于点和点,且它们交于点,若,则的值为A.B.C.D.14.【题文】甲、乙两工程队分别同时开挖两条米长的管道,所挖管道长度米与挖据时间天之间的关系如图所示,则下列说法中:①甲队每天挖米;②乙队开挖两天后,每天挖米;③甲队比乙队提前天完成任务;④当时,甲乙两队所挖管道长度相同.不正确的个数有A.个B.个C.个D.个15.【题文】定义:有一组邻边相等,且它们的夹角为的四边形叫做半等边四边形.已知半等边四边形中,,,且.①如图,若,求证:;②如图,连结,探索线段、、之间的数量关系,并说明理由;如图,已知,,点是射线上的一个动点,记,点在直线的下方,若四边形是半等边四边形,且问:当点在的变化过程中运动时,点也随之运动,请直接写出点所经过的路径长.16.【题文】下列各式中,一定是二次根式的是A. B. C. D.17.【题文】在,,,,,,,中,是代数式的共有A.个B.个C.个D.个18.【题文】如图,已知,点,在上,且,点从点沿线段向点运动运动到点停止,以、为斜边在的同侧画等腰和等腰,连接,取的中点,则移动的路径长为A. B. C. D.19.【题文】下列说法正确的是A.若,则是的函数B.正方形面积是周长的函数C.变量,满足,是的函数D.温度是变量20.【题文】若,,则可以表示为A. B. C. D.1.【参考答案】【试题解析】【分析】本题考查了用函数图象表示实际问题中的函数关系解题关键是理解“”的意义,是离家的距离,应该随时间的增大而减小或不变根据题意分析可得:他回家过程中离家的距离千米与所用时间分之间的关系有个阶段:①行使了分钟,离家的距离减小;②因故停留分钟,离家的距离保持不变;③继续骑了分钟到家,离家的距离继续减小,直到为.【解答】解:因为小强家所在学校离家距离为千米,所以当时,,由图象可知:只有选项符合题意,再看其他条件:在最初的分钟,应该随时间的增大而减小;因故停留分钟时,离家的距离保持不变,图象是平行于轴的;接着继续骑了分钟到家,离家的距离继续随时间的增大而减小,直到;这些条件也都符合,故D 选项符合题意.故选D.2.【参考答案】【试题解析】【分析】本题考查了二次根式有意义的条件、三角形的三边关系以及等腰三角形的性质,熟练掌握性质是解题的关键.根据被开方数大于等于列式求出的值,然后代入求出的值,再根据三角形的周长公式分情况讨论求解.【解答】解:根据题意得,且,解得且,,,解得,①当腰为,底为时不能构成三角形;②当腰为,底为时,周长为.故选A.3.【参考答案】【试题解析】解:由上图可知,上坡的路程为米,速度为米每分钟;下坡时的路程为米,速度为米每分钟;由于返回时上下坡互换,变为上坡路程为米,所以所用时间为分钟;停分钟;下坡路程为米,所用时间是分钟;故总时间为分钟.故选A.由图象可知骑车在上坡时的速度为米每分钟,路程为米;下坡时的速度为米每分钟,路程为米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案.本题考查利用函数的图象解决实际问题,学生对分段问题的处理能力和往返问题的理解是解题的关键.4.【参考答案】【试题解析】【分析】此题主要考查了二次根式和分式有意义,关键是掌握二次根式中的被开方数必须是非负数,分式有意义的条件是分母不等于零.根据二次根式有意义的条件可得,,根据分式有意义的条件,再解不等式即可得到的值,进而可得的值,然后可得答案.【解答】解:由题意得:,解得:,但,则:,,故选D.5.【参考答案】【试题解析】【分析】本题考查了二次根式有意义的条件,二次根式中的被开方数必须是非负数,否则二次根式无意义.将被开方数利用完全平方公式变形,再根据二次根式有意义,被开方数大于等于解答即可.解:,无论取任何实数,代数式都有意义,对任意的的都成立,,.故选C.6.【参考答案】【试题解析】【分析】本题考查平行四边形的性质、三角形的中位线定理、垂线段最短等知识,解题的关键是学会添加常用辅助线,本题的突破点是确定当的取最小值时,也最小连接,利用三角形中位线定理,可知,求出的最小值即可求出的最小值.【解答】解:如图,连接,、分别为、的中点,,当的取最小值时,也最小,当时,最小,在中,,,此时为等腰直角三角形,,,的最小值是.故选B.7.【参考答案】【试题解析】【分析】此题主要考查了二次根式和绝对值的化简,正确掌握相关性质是解题关键.直接利用的取值范围,进而利用绝对值和二次根式的性质化简求出答案.【解答】解:,.故选C.8.【参考答案】【试题解析】【分析】本题考查了平行四边形的性质和判定,平行线性质,等腰三角形的性质,三角形的面积的应用,关键是推出.①根据平行线性质求出,得出平行四边形,即可推出;②根据等腰三角形性质求出,然后根据平行线的性质即可推出;③由,四边形是平行四边形,可得,进而由等边对等角可得:,然后由,可得,然后由角的和差计算及等量代换可得:,然后根据外角的性质可得:,进而可得:;④根据平分,得出,但是,故,④错误.【解答】解:,,,,,,四边形是平行四边形,,①正确;,平分,,,②正确;,四边形是平行四边形,,,,,,,,,,③正确;平分,,,,④错误①②③都正确,故选A9.【参考答案】【试题解析】解:代数式取值最小时,则取到最小,,解得:.故答案为:.根据二次根式的性质代数式取值最小,则取到最小,进而求出即可.此题主要考查了二次根式的定义,关键是掌握二次根式中的被开方数为非负数.10.【参考答案】【试题解析】解:如图,分别延长、交于点.,,,,四边形为平行四边形,与互相平分.为的中点,正好为中点,即在的运动过程中,始终为的中点,所以的运行轨迹为三角形的中位线.,,即的移动路径长为,故答案为:分别延长、交于点,得出为中点,则的运行轨迹为三角形的中位线运用中位线的性质求出的长度即可.本题考查了轨迹问题,关键是根据等边三角形及中位线的性质,以及动点问题解答.11.【参考答案】【试题解析】【分析】本题考查了全等三角形的性质和判定,平行四边形的性质和判定以及三角形面积的综合运用,主要考查学生的推理能力和辨析能力.连接交于,过作于,过作于,推出,得出平行四边形,由三角形全等求出,即可判断各个选项.【解答】解:连接交于,过作于,过作于,四边形是平行四边形,,,,,四边形是平行四边形,,,①正确;②正确;④正确;根据已知不能推出,③错误;,,,在和中,≌,,,,,⑤正确;,,,⑥正确;因此正确的是①②④⑤⑥.故选D.12.【参考答案】【试题解析】【分析】本题考查函数的概念.在一个变化过程中,有两个变量和,对于变量的每一个确定的值,值都有唯一确定的值和它相对应,我们就把叫做的函数.根据以上函数的概念直接判断即可.【解答】解:中两个变量:三角形的面积和底边,底边确定,则面积确定,存在函数关系;中两个变量:和,一个对应一个,存在函数关系;中两个变量:圆的面积和半径,半径确定,则面积确定,存在函数关系;中两个变量:和,一个对应一个,存在函数关系.所以成函数关系的有个.故选D.13.【参考答案】【试题解析】,,,,又,,,同理,在中,.故选C.14.【参考答案】【试题解析】解:由图象,得①米天,故①正确;②米天,故②正确;③由图象得甲队完成米的时间是天,乙队完成米的时间是:天,天,甲队比乙队提前天完成任务,故③不正确;④甲队天完成的工作量是:米,乙队天完成的工作量是:米,,当时,甲、乙两队所挖管道长度相同,故④正确;故选:.从图象可以看出甲队完成工程的时间是天,故工作效率为米;乙队挖天后还剩米,天完成了米,故每天是米;当时,甲队完成米,乙队完成米,甲队完成所用时间是天,乙队是天,通过以上的计算就可以得出结论.本题考查了一次函数的应用,施工距离、速度、时间三者之间的关系的运用,但难度不大,读懂图象信息是解题的关键.15.【参考答案】①证明:连结,,,且,,,且,,,,≌,.②解:延长,使得,,,,,且,,又,≌,,,,是等边三角形,;.【试题解析】【分析】本题考查的知识点等边三角形的判定和性质,全等三角形的判定和性质,直角三角形的判定,勾股定理的应用,作辅助线构造全等三角形是解题的关键.①连接,易证≌,即可得到答案,②延长,使得,构造≌,得到是等边三角形,即可得到答案;作出辅助线,证明≌,得到点的移动路径与点的运动路径相同,即求出分别为和时,点所移动的的就是点的所经过的路径长,结合勾股定理求出,,相减即能得到,即可得到点的所经过的路径长.【解答】解:①,②详见答案;作交于点,作交于点,作交于点,作交于点,,,,,四边形是半等边四边形,且,,,,,,,,,≌,,,即点的移动路径与点的运动路径相同,,,,,当时,,为等腰直角三角形,,当时,设,则,,,,,,,,,点所经过的路径长.故答案为.16.【参考答案】【试题解析】【分析】本题考查的是二次根式的定义,形如的式子叫做二次根式.根据二次根式的定义判断即可.【解答】解:当,即时,是二次根式,本选项错误;B.当,即时,是二次根式,本选项错误;C.当时,是二次根式,本选项错误;D.,一定是二次根式,本选项正确;故选D.17.【参考答案】【试题解析】【分析】本题考查了代数式的概念,代数式是由运算符号加、减、乘、除、乘方、开方把数或表示数的字母连接而成的式子单独的一个数或者一个字母也是代数式.带有“”“”“”“”等符号的不是代数式.依此即可求解.【解答】解:在,,,,,,,中,是代数式的有,,,,,,共有个.故选B.18.【参考答案】【试题解析】解:如图,分别延长、交于点.等腰和等腰,,,,,,四边形为平行四边形,与互相平分.为的中点,也为中点,即在的运动过程中,始终为的中点,的运行轨迹为的中位线.,,即的移动路径长为.故选:.分别延长、交于点,易证四边形为平行四边形,得出为中点,则的运行轨迹为三角形的中位线再求出的长,运用中位线的性质求出的长度即可.本题考查了等腰直角三角形的性质,平行四边形的判定与性质,三角形中位线的性质等知识.此题综合性很强,图形也很复杂,解题时要注意数形结合思想的应用.此题属于动点问题,是中考的热点.19.【参考答案】【试题解析】解:、若,则是的函数,不符合函数的定义,故本选项错误;B、设正方形的周长为,面积为,用表示的函数关系式为:,故本选项正确;C、变量,满足,是的函数,不符合函数的定义,故本选项错误;D、在不同的情况下,温度不一定是变量,故本选项错误;故选B.根据函数的定义可知,满足对于的每一个取值,都有唯一确定的值与之对应关系,据此即可判断各选项.本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量,,对于的每一个取值,都有唯一确定的值与之对应,则是的函数,叫自变量.20.【参考答案】【试题解析】解:,,可以表示为:故选:.首先化简二次根式,进而得出答案.此题主要考查了二次根式的乘除运算,正确化简二次根式是解题关键.八年级数学高频错题集1.【题文】把根号外的因式移入根号内的结果是A. B. C. D.2.【题文】如图,的面积是,点、、、分别是、、、的中点,则的面积是A. B. C. D.3.【题文】若,,则的值用,可以表示为.A. B. C. D.4.【题文】下列由三条线段,,构成的三角形:①,,;②,,;③,,;④其中能构成直角三角形的有.A.个B.个C.个D.个5.【题文】若一次函数的图象不经过第三象限,则下列选项正确的是A.,B.,C.,D.,6.【题文】▱中,,是对角线上不同的两点.下列条件中,不能得出四边形一定为平行四边形的是A. B. C. D.7.【题文】在四边形中,,要判定此四边形是平行四边形,还需要满足的条件是A. B. C. D.8.【题文】已知正方形的边长为,如果边长增加,那么面积增加,则关于的函数关系式为A. B. C. D.9.【题文】若函数则当时,自变量的值是A. B. C.或 D.或10.【题文】快车从甲地驶往乙地,慢车从乙地驶往甲地,两车同时出发并且在同一条公路上匀速行驶图中折线表示快、慢两车之间的路程与它们的行驶时间之间的函数关系小欣同学结合图象得出如下结论:快车途中停留了快车速度比慢车速度多图中快车先到达目的地.其中正确的是A. B. C. D.11.【题文】如图所示,在平面直角坐标系中,菱形的顶点坐标是,则顶点、的坐标分别是______.12.【题文】若一个多边形的内角和与外角和之和是,则该多边形的边数是______.13.【题文】在矩形中,,,折叠矩形,使点与点重合,则的长为______.14.【题文】在▱中,平分交边于点,平分交边于点若,,则.15.【题文】一个长方形的长是,宽是,周长是,面积是.写出随变化而变化的关系式;写出随变化而变化的关系式;当时,等于多少?等于多少?16.【题文】小明在解决问题:已知,求的值.他是这样分析与解的:,,,,.请你根据小明的分析过程,解决如下问题:化简若,①求的值;②求代数式的值.17.【题文】“低碳环保,绿色出行”的概念得到广大群众的接受,越来越多的人喜欢选择骑自行车作为出行工具.小军和爸爸同时骑车去图书馆,爸爸先以米分的速度骑行一段时间,休息了分钟,再以米分的速度到达图书馆.小军始终以同一速度骑行,两人骑行的路程为米与时间分钟的关系如图.请结合图象,解答下列问题:填空:______;______;______.若小军的速度是米分,求小军第二次与爸爸相遇时距图书馆的距离.在的条件下,爸爸自第二次出发后,骑行一段时间后与小军相距米,此时小军骑行的时间为______分钟.18.【题文】如图,四边形中,,,,,于点。
八年级下册数学错题集
八年级下册数学错题集一、二次根式部分(5题)1. 化简:√(18)- 错解:√(18)=√(9 + 9)=3 + 3 = 6- 正解:√(18)=√(9×2)=3√(2)。
解析:二次根式化简时,要将被开方数分解成完全平方数与其他数相乘的形式,而不是简单的数字相加分解。
2. 计算:√(8)+√(18)- 错解:√(8)+√(18)=2√(2)+3√(2)=5√(2)√(2)=5×2 = 10- 正解:√(8)+√(18)=2√(2)+3√(2)=5√(2)。
解析:在计算二次根式加法时,最后结果应保留最简二次根式形式,不能再对√(2)进行错误的乘法运算。
3. 若√(x - 1)+√(1 - x)=y + 4,求x,y的值。
- 错解:由√(x - 1)+√(1 - x)=y + 4,得x-1≥0且1 - x≥0,解得x≥1且x≤1,所以x = 1或x = 0,当x = 0时,y=-4;当x = 1时,y=-4。
- 正解:由√(x - 1)+√(1 - x)=y + 4,因为二次根式有意义的条件是被开方数非负,所以x - 1≥0且1 - x≥0,解得x = 1。
把x = 1代入原式得y+4 = 0,解得y=-4。
解析:在确定x的值时,根据二次根式有意义的条件,x只能取1,不能取0。
4. 比较大小:2√(3)和3√(2)- 错解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)>3√(2)。
- 正解:因为2√(3)=√(12),3√(2)=√(18),所以2√(3)<3√(2)。
解析:比较二次根式大小时,先将它们化为最简二次根式对应的被开方数,再比较被开方数大小。
5. 已知a=√(5)+2,b=√(5)-2,求a^2+b^2的值。
- 错解:- 先求ab=(√(5)+2)(√(5)-2)=5 - 4 = 1。
- 然后a + b=√(5)+2+√(5)-2 = 2√(5)。
八年级上册数学错题
八年级上册数学错题八年级上册数学错题集一、三角形错题 1:一个三角形的两边长分别为 3 和 6,第三边长是方程x^2 10x + 21 = 0的根,则三角形的周长为()A. 12B. 16C. 12 或 16D. 不能确定解析:解方程x^2 10x + 21 = 0,即(x 3)(x 7) = 0,解得x = 3或x = 7。
当第三边长为 3 时,因为 3 + 3 = 6,不满足三角形两边之和大于第三边,所以舍去。
当第三边长为 7 时,三角形的周长为 3 + 6 + 7 = 16。
故选 B。
错题 2:在\triangle ABC中,\angle A = 50^{\circ},\angle B = \angle C,则\angle B的度数为()A. 65°B. 50°C. 80°D. 40°解析:因为\angle A + \angle B + \angle C = 180^{\circ},且\angle B = \angle C,所以\angle B = (180^{\circ}50^{\circ})÷ 2 = 65^{\circ}故选 A。
二、全等三角形错题 3:如图,已知AB = AD,那么添加下列一个条件后,仍无法判定\triangle ABC ≌ \triangle ADC的是()A. CB = CDB. ∠BAC = ∠DACC. ∠B = ∠D = 90°D.∠BCA = ∠DCA解析:A 选项,因为AB = AD,CB = CD,AC = AC,根据 SSS 可判定\triangle ABC ≌ \triangle ADC。
B 选项,因为AB = AD,∠BAC = ∠DAC,AC = AC,根据 SAS 可判定\triangle ABC ≌ \triangle ADC。
C 选项,因为AB = AD,∠B = ∠D = 90°,AC = AC,根据 HL 可判定\triangle ABC ≌ \triangle ADC。
初二数学易错题整理(附答案)
易错题一.选择题(共3小题)1.如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.2.两个圆柱形薄玻璃杯(杯身、杯底厚度不计),大杯直径是小杯直径的2倍,把小杯放入大杯中组合成一个容器,其主视图如图所示,现往小杯口中匀速注水,注水过程中杯子始终竖直放置,则下列能反映该容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.3.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.(,)B.(,)C.(,)D.(,)二.填空题(共2小题)4.如题1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的距离y(千米)与行驶时间x(小时)之间的函数关系图象.A,B两地相距千米,客、货两车小时相遇,相遇时离B地千米.5.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为.三.解答题(共7小题)6.在一条笔直的公路上有A、B、C三地,A地在B、C两地之间.甲、乙两辆汽车分别从B、C两地同时出发,沿这条公路匀速相向行驶,分别到达目的地C、B两地后停止行驶.甲、乙两车离A地的距离y1、y2(千米)与行驶时间x(时)的函数关系如图所示.(1)求线段MN的函数表达式;(2)求点P的坐标,并说明点P的实际意义;(3)在图中补上乙车从A地行驶到B地的函数图象.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),下图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为km,乙、丙两地之间的距离为km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.(4)求线段AB和DE的交点P的坐标,并说明P点坐标的实际意义.8.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.9.如图,在平面直角坐标系中,点A的坐标是(0,2),点B从坐标原点O出发,沿x轴负半轴运动,以AB为边作等边三角形ABC(A,B,C按逆时针顺序排列),当点B在原点O时,记此时的等边三角形为△AOC1.(1)求点C1的坐标;(2)连接CC1,求证:△AOB≌△AC1C;(3)求动点C所在图象的函数表达式.10.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.11.已知函数y1=x,y2=2x+3,y3=﹣x+4,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为多少?12.甲、乙两人先后从公园大门出发,沿绿道向码头步行,乙先到码头并在原地等甲到达.图1是他们行走的路程y(m)与甲出发的时间x(min)之间的函数图象.(1)求线段AC对应的函数表达式;(2)写出点B的坐标和它的实际意义;(3)设d(m)表示甲、乙之间的距离,在图2中画出d与x之间的函数图象(标注必要数据).参考答案与试题解析一.选择题(共3小题)1.如图,在Rt△ABC中,∠C=90°,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x之间函数关系的图象大致是()A.B.C.D.【解答】解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=,即y=,则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+时,y=+3﹣x=﹣x+3+,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.2.两个圆柱形薄玻璃杯(杯身、杯底厚度不计),大杯直径是小杯直径的2倍,把小杯放入大杯中组合成一个容器,其主视图如图所示,现往小杯口中匀速注水,注水过程中杯子始终竖直放置,则下列能反映该容器最高水位h与注水时间t之间关系的大致图象是()A.B.C.D.【解答】解:一注水管向小玻璃杯内注水,水面在逐渐升高,当小杯中水满时,开始向大桶内流,这时水位高度不变,因为杯子和桶底面半径比是1:2,则底面积的比为1:4,在高度相同情况下体积比为1:4,杯子内水的体积与杯子外水的体积比是1:3,所以高度不变时,杯外注水时间是杯内注水时间的3倍,当桶水面高度与小杯一样后,再继续注水,水面高度在升高,升高的比开始慢.故选:C.3.如图,点A的坐标为(3,),点B的坐标为(6,0),将△AOB绕点B按顺时针方向旋转一定的角度后得到△A'O'B,点A的对应点A'在x轴上,则点O'的坐标为()A.(,)B.(,)C.(,)D.(,)【解答】解:如图,过点A作AC⊥OB于C,过点O′作O′D⊥A′B于D,∵A(3,),∴OC=3,AC=,∵OB=6,∴BC=OC=3,则tan∠ABC==,由旋转可知,BO′=BO=6,∠A′BO′=∠ABO,∴==,设O′D=x,BD=3x,由O′D2+BD2=O′B2可得(x)2+(3x)2=62,解得:x=或x=﹣(舍),则BD=3x=,O′D=x=,∴OD=OB+BD=6+=,∴点O'的坐标为(,),故选:B.二.填空题(共2小题)4.如题1所示,在A、B两地之间有汽车站C站,客车由A地驶往C站,货车由B地驶往A地.两车同时出发,匀速行驶.图2是客车、货车离C站的距离y(千米)与行驶时间x(小时)之间的函数关系图象.A,B两地相距440千米,客、货两车 4.4小时相遇,相遇时离B地96千米.【解答】解:x=0时,y的值为80和360,所以,A,B两地相距80+360=440千米,客车的速度为:360÷6=60千米/小时,货车的速度为:80÷2=40千米/小时,客、货两车440÷(60+40)=4.4小时相遇,相遇时离B地:360﹣60×4.4=96千米.故答案为:440;4.4;96.5.如图,一束光线从点O射出,照在经过A(1,0)、B(0,1)的镜面上的点D,经AB反射后,反射光线又照到竖立在y轴位置的镜面,经y轴再反射的光线恰好通过点A,则点D的坐标为(,).【解答】解:如图所示,∵点O关于AB的对称点是O′(1,1),点A关于y轴的对称点是A′(﹣1,0)设AB的解析式为y=kx+b,∵(1,0),(0,1)在直线上,∴,解得k=﹣1,∴AB的表达式是y=1﹣x,同理可得O′A′的表达式是y=+,两个表达式联立,解得x=,y=.故答案为:(,).三.解答题(共7小题)6.在一条笔直的公路上有A、B、C三地,A地在B、C两地之间.甲、乙两辆汽车分别从B、C两地同时出发,沿这条公路匀速相向行驶,分别到达目的地C、B两地后停止行驶.甲、乙两车离A地的距离y1、y2(千米)与行驶时间x(时)的函数关系如图所示.(1)求线段MN的函数表达式;(2)求点P的坐标,并说明点P的实际意义;(3)在图中补上乙车从A地行驶到B地的函数图象.【解答】解:(1)设线段MN的函数表达式为y=kx+b,解得,,即线段MN的函数表达式为y=﹣100x+120;(2)∵v甲=80÷1=80,v乙=120÷1.2=100.∴(120+80)÷(100+80)=把x=代入y=﹣100x+120,得y=∴点P的坐标为(,),点P的实际意义表示行驶了小时后,甲、乙两车相遇,此时离A地的距离为千米;(3)∵80÷100=0.8,∴乙车从A地行驶到B地的函数图象如右图所示.7.在一次远足活动中,某班学生分成两组,第一组由甲地匀速步行到乙地后原路返回,第二组由甲地匀速步行经乙地继续前行到丙地后原路返回,两组同时出发,设步行的时间为t(h),两组离乙地的距离分别为S1(km)和S2(km),下图中的折线分别表示S1、S2与t之间的函数关系.(1)甲、乙两地之间的距离为8km,乙、丙两地之间的距离为2km;(2)求第二组由甲地出发首次到达乙地及由乙地到达丙地所用的时间分别是多少?(3)求图中线段AB所表示的S2与t间的函数关系式,并写出自变量t的取值范围.(4)求线段AB和DE的交点P的坐标,并说明P点坐标的实际意义.【解答】解:(1)根据图象知道:甲、乙两地之间的距离为8km,乙、丙两地之间的距离为2km.故答案为:8,2;(2)第二组由甲地出发首次到达乙地所用的时间为8÷[2×(8+2)÷2]=8÷10=0.8(小时)第二组由乙地到达丙地所用的时间为2÷[2×(8+2)÷2]=2÷10=0.2(小时);(3)根据题意得A、B的坐标分别为(0.8,0)和(1,2)设线段AB的函数关系式为:S2=kt+b根据题意,得,解得.故图中线段AB所表示的S2与t间的函数关系式为S2=10t﹣8,自变量t的取值范围是0.8≤t≤1.(4)根据题意得D、B的坐标分别为(0,8)和(1,0)设线段DE的函数关系式为:S1=kt+b根据题意,得,解得.故图中线段de所表示的S2与t间的函数关系式为S1=﹣8t+8;联立线段AB和线段DE的函数关系式,则交点P的坐标:.当t=小时时,第一组和第二组与乙地的距离都是千米,但并非相遇.8.图①、图②均是8×8的正方形网格,每个小正方形的顶点称为格点,线段OM、ON的端点均在格点上.在图①、图②给定的网格中以OM、ON为邻边各画一个四边形,使第四个顶点在格点上.要求:(1)所画的两个四边形均是轴对称图形.(2)所画的两个四边形不全等.【解答】解:如图所示:9.如图,在平面直角坐标系中,点A的坐标是(0,2),点B从坐标原点O出发,沿x轴负半轴运动,以AB为边作等边三角形ABC(A,B,C按逆时针顺序排列),当点B在原点O时,记此时的等边三角形为△AOC1.(1)求点C1的坐标;(2)连接CC1,求证:△AOB≌△AC1C;(3)求动点C所在图象的函数表达式.【解答】解:(1)过点C1作C1H⊥y轴于H,则OH=AH=1,∴C1H===,∴C1(,1).(2)∵△ABC和△AOC1都是等边三角形,∴BA=CA,OA=C1A,∠BAC=∠OAC1=60°,∴∠BAO=∠CAC1,在△AOB和△AOC1中,,∴△AOB≌△CAC1.(3)∵△AOB≌△AC1C,∴∠BOA=∠CC1A=90°,∴动点C的图象是一条直线,设CC1交y轴于点M,∵∠C1OA=∠AC1O=60°,∴∠OMC1=∠OC1M=30°,∴OM=OC1=2,∴M(0,﹣2),设直线CC1的函数解析式为y=kx+b,代入C(,1),M(0,﹣2),得,解得,∴动点C所在图象的函数解析式为y=x﹣2(x≤)10.【模型建立】(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】(2)①已知直线l1:y=x+4与坐标轴交于点A、B,将直线l1绕点A逆时针旋转45o至直线l2,如图2,求直线l2的函数表达式;②如图3,长方形ABCO,O为坐标原点,点B的坐标为(8,﹣6),点A、C分别在坐标轴上,点P是线段BC上的动点,点D是直线y=﹣2x+6上的动点且在第四象限.若△APD是以点D为直角顶点的等腰直角三角形,请直接写出点D的坐标.【解答】解:(1)证明:如图1,∵△ABC为等腰直角三角形,∴CB=CA,∠ACD+∠BCE=90°,又∵AD⊥ED,BE⊥ED,∴∠D=∠E=90°,∠EBC+∠BCE=90°,∴∠ACD=∠EBC,在△ACD与△CBE中,,∴△ACD≌△CBE(AAS);(2)①如图2,过点B作BC⊥AB,交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°,∴△ABC为等腰直角三角形,由(1)可知:△CBD≌△BAO,∴BD=AO,CD=OB,∵直线l1:y=x+4中,若y=0,则x=﹣3;若x=0,则y=4,∴A(﹣3,0),B(0,4),∴BD=AO=3,CD=OB=4,∴OD=4+3=7,∴C(﹣4,7),设l2的解析式为y=kx+b,则,解得,∴l2的解析式:y=﹣7x﹣21;②D(4,﹣2),().理由:当点D是直线y=﹣2x+6上的动点且在第四象限时,分两种情况:当点D在矩形AOCB的内部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=6﹣(2x﹣6)=12﹣2x,DF=EF﹣DE =8﹣x,由(1)可得,△ADE≌△DPF,则DF=AE,即:12﹣2x=8﹣x,解得x=4,∴﹣2x+6=﹣2,∴D(4,﹣2),此时,PF=ED=4,CP=6=CB,符合题意;当点D在矩形AOCB的外部时,如图,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,﹣2x+6),则OE=2x﹣6,AE=OE﹣OA=2x﹣6﹣6=2x﹣12,DF=EF﹣DE=8﹣x,同理可得:△ADE≌△DPF,则AE=DF,即:2x﹣12=8﹣x,解得x=,∴﹣2x+6=﹣,∴D(,﹣),此时,ED=PF=,AE=BF=,BP=PF﹣BF=<6,符合题意.11.已知函数y1=x,y2=2x+3,y3=﹣x+4,若无论x取何值,y总取y1,y2,y3中的最小值,则y的最大值为多少?【解答】解:分别联立y1、y2,y1、y3,y2、y3,可知y1、y2的交点A(﹣3,﹣3);y1、y3的交点B(2,2);y2、y3的交点C(,),解:如图,y的最小值在三条直线的公共部分所在的区域,∵y1与y3的交点最高,∴y1=x,与y3=﹣x+4的交点的y值最大,∴,解得,∴y的最大值为2.12.甲、乙两人先后从公园大门出发,沿绿道向码头步行,乙先到码头并在原地等甲到达.图1是他们行走的路程y(m)与甲出发的时间x(min)之间的函数图象.(1)求线段AC对应的函数表达式;(2)写出点B的坐标和它的实际意义;(3)设d(m)表示甲、乙之间的距离,在图2中画出d与x之间的函数图象(标注必要数据).【解答】解:(1)设线段AC对应的函数表达式为y=kx+b(k≠0).将A(6,0)、C(21,1500)代入,得,解得,所以线段AC对应的函数表达式为y=100x﹣600;(2)设直线OD的解析式为y=mx,将D(25,1500)代入,得25m=1500,解得m=60,∴直线OD的解析式为y=60x.由,解得,∴点B的坐标为(15,900),它的实际意义是当甲出发15分钟后被乙追上,此时他们距出发点900米;(3)①当0≤x≤6时,d=60x;②当6<x≤15时,d=60x﹣(100x﹣600)=﹣40x+600;③当15<x≤21时,d=100x﹣600﹣60x=40x﹣600;④当21<x≤25时,d=1500﹣60x.d与x之间的函数图象如图所示:第21页(共21页)。
初二数学总复习易错题精选52题
---------------------------------------------------------------最新资料推荐------------------------------------------------------ 初二数学总复习易错题精选52题初二总复习易错题精选 52 题 1、 1、下列各式一定是二次根式的是() A、 A、 3 B、 12+ x C、34 D、 2 x 2、下列命题中,错误的是() A、有一组邻边相等的平行四边形是菱形 B、四条边都相等的四边形是正方形 C、有一个角是直角的平行四边形是矩形 D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形 3、如果正比例函数 y=(k-5)x 的图像在第二、四象限内,则 k 的取值范围是() A、k<0 B、k>0 C、k>5 D、k<5 4、已知甲、乙两组数据的平均数相等,如果甲组数据的方差为 0.055,乙组数据的方差为0.105。
则() A、甲组数据比乙组数据波动大 B、甲组数据比乙组数据波动小 C、甲、乙两组数据的波动一样大 D、甲、乙两组数据的波动不能比较 5、等腰三角形的底边长为 12 cm,一腰的长为 10 cm,则这个等腰三角形底边上的高为 2、下列命题中,错误的是() A、有一组邻边相等的平行四边形是菱形 B、四条边都相等的四边形是正方形 C、有一个角是直角的平行四边形是矩形 D、相邻三个内角中,两个角都与中间的角互补的四边形是平行四边形 3、如果正比例函数 y=(k-5)x 的图像在第二、四象限内,则 k 的取值范围是() A、k<0 B、k>0 C、k>5 D、k<5 4、已知甲、乙两组数据的平均数相等,如果甲组1 / 12数据的方差为 0.055,乙组数据的方差为0.105。
则() A、甲组数据比乙组数据波动大 B、甲组数据比乙组数据波动小 C、甲、乙两组数据的波动一样大 D、甲、乙两组数据的波动不能比较 5、等腰三角形的底边长为 12 cm,一腰的长为10 cm,则这个等腰三角形底边上的高为cm。
初中八年级学生数学错题集
说明:1.题集所收录的是八年级()班学生在日常学习中出现的具有代表性、典型性的题目;2.题集里面的题目无顺序、章节规律;3.对于题集里面出现的题目,拥有人应彻底掌握,再次遇到该题或此类题目不应再犯以前的错误.★1.若aa则,6.122________.错解:1.6 正解:6.1.★2.计算:mm m xx xx223122223.说明:本题并无多大难度,但部分学生在看到题目后会被题目吓倒,不敢下手!出现假不会的现象. 解:原式mm m x x x x 22312222322222222223m m m xxx ★3.若32433212nn ,试求n 的值.说明:本题是资料上所谓的开放探究创新题,说明白些就是资料(ˇ?ˇ)想告诉你本题是具有较大难度的!但真的是这样吗?解:32433212nn 48133322nn(这一步反向利用了同底数幂的乘法公式)4313342n(这一步主要是把公因式n23提出来)2,423343434242nnnn★4.计算3210的结果是【】(A )510(B )610(C )510(D )610说明:有学生选择(C )答案,我想他(她)肯定是将同底数幂的乘法运算和幂的乘方运算弄混淆了,两种运算的公式是不一样的.本题考查的是幂的乘方运算公式.另外,还要用到结论:为奇数)为偶数)n A n A Annn(-(解:63232101010,选择(D ).★5.42m a________.说明:这道题当时居然有人做错,而且不止一人,不过我宽恕了他们!出错的地方是没有利用乘法分配律.解:84424)2(442m m m m aaaa(够详细了).★6.设d c b a dc b a,,,,5,4,3,211223344把按从小到大的顺序排列.说明:本题又是所谓的开放探究创新题,没有一个学生做出来.我们若仔细观察,就会发现d c b a ,,,的指数都是11的倍数,所以我们就往这个方向努力. 解:111141144416222a.516444273331111112112221111311333b ca d d cb 我们在任何时候都不要脱离了课本!★7.201020115775________.分析本题考查公式nm nmaaa 的反向利用,即nmnm a aa.解:2010201157757575175577575577557752010201020102010201012010★8.计算:23104.1.解:原式62321096.1104.1.评注:这道题你们真的没有做错,但你们过程写多了. ★9.若5127,n x xxxnmnm求的值.评注:这道题的正确率并不高,都出现了或多或少的问题.本题只能求出n 的值,m 的值是无法求出的. 解:nmnmxxx x.7127127055n nnm nm x xnm nm (题外话:把本章的公式、结论看看、背背)21第10题DABCE21EDAB C★10.如图所示,点B 、C 、E 在同一条直线上,△ABC 和△DCE 均为等边三角形,连结AE 、BD. (1)求证:AE=BD;(2)若把△DCE 绕点C 顺时针旋转一个角度,(1)中的结论还成立吗?请画出图形进行说明. 解:(1)∵△ABC 和△DCE 都是等边三角形∴∠1=∠2,BC=AC,CD=CE ∴∠1+∠ACD=∠2+∠ACD 即∠BCD=∠ACE 在△BCD 和△ACE 中∵CECDACEBCD ACBC∴△BCD ≌△ACE (SAS )∴BD=AE;(2)如图所示,(1)中的结论还成立. 同理可证:△BCD ≌△ACE (SAS )∴BD=AE.评注:这几个学生的胆子有点小,一看这个题目就不敢做了!如果认真思考、耐心看完题目是完全能够解决这个问题的.★11.已知2322,2y x yx y x 求的值.分析数学这一门学科,公式和定理、公理等都是给定的,我们必须在理解的基础上加以记忆,然后再进行一些适当的练习加以巩固,最终把知识变成我们自己的东西,才能灵活运用.当然,在运用这些定理、公式和公理等解决问题的时候,我们还会得出一些有用的、重要的结论,这些结论的总结其实是我们对知识深刻掌握的产物,是我们学会学习的一种表现.每一个学生都要学会总结结论,虽然每个人总结的结论不尽相同,但对每个人自己确是最适用的.另外,对同一个知识点的考查,有各种各样的题目,这些题目我们是做不完的,我们能做的是进行适当的练习,最终掌握相关的知识点! 解:∵2y x ∴2322yxyx1282444)(2552323yx yxyx y x y x 评注就是这么一个简单的题目,当时却没几个学生能做出来.我想他们还是没有深刻掌握相关的公式和结论等所导致的.他们应该对这个问题引起重视. ★12.已知10210510826的计算结果用科学记数法表示为n a an与求,10的值.分析科学记数法的一般形式为na 10,其中n a ,101为正整数.如8106.3、6108.2等都是合法的表示形式,而71036这样的表示却是不正确的!你们几个犯的就是这样的错误!两个用科学记数法表示的数相乘(除)的方法是:系数与系数相乘(除),同底数幂相乘(除).但要保证结果的系数的绝对值大于或等于1而小于10. 解:10210510826109261081080101010258★13.已知c b a xxx xb c x x a 、、求,34722222的值. 分析这是一个关于多项式相等的问题.我之前给你们总结了一个相关的结论:如果两个多项式相等,则它们对应..的系数相等.如果F Ex DxC Bx Ax22,那么.ECD BC A注意:该结论里面各项之间是相加的.解:34722222xx xx b cx x a 324723472234722347222222222bacb ab a xxbacxb a x b axxb ac x b a x b a x x b bx bx ac ax ax 解之得:115cba.★14.若n mxxxx 284,则n m 、的值分别是【】(A )4 , 32 (B )4 , 32(C )4, 32(D )4,32分析这也是一个考查两个多项式相等的题目,出现的错误比较多!注意结论里面各项之间是相加的.解:nmxxxx 2843243243243243248222222nm n m nmxxx xn mxx x x n mx x x x x 正确答案是【 A 】.★15.若20112,01232xxxx 求的值.分析本题主要考查学生依据题目所给的条件,对要求值的式子进行变形处理的能力. 解:∵012x x ∴12x x ∴2011223x x2012201112011201112011222223x x xx x xxx★16.若n mx xx 21的计算结果中不含2x 项和x 项,则m________,n ________. 分析这是一个关于多项式中不含某项的问题,有这样的结论:若一个多项式中不含某一项,则该项的总系数等于0(总系数是指合并同类项之后的系数). 解:nmx xx 210011223223nmm x x nxn mxmxn mx xnx mx x 项项和其计算结果中不含解之得:11nm .★17.。
初二数学下册易错章节题目精选(含答案)
初二数学下册易错章节题目精选 一.分式化简1.下列计算正确的是( )A.a÷b·b1=a B.a·b÷a·b=1 C.m 1÷m·m÷m 1=1 D.m 3÷m1÷m 3=1 2.化简y x y x +-÷(y-x)·yx -1的结果是( ) A.221y x - B.y x x y +- C.221xy - D.y x y x +- 3.计算24462x x x +--÷(x+3)·xx x --+362的结果为( )A.22--xB.x -21C.2)2(2-x D.24--x4.已知a-b≠0,且2a-3b=0,则代数式ba ba --2的值是( ) A.-12 B.0 C.4 D.4或-125.计算:41441222--÷+--a a a a a .二.分式方程应用题1.甲、乙两班同学参加“绿化祖国”活动,已知乙班每小时比甲班多种2棵树,甲班种60棵所用的时间与乙班种66棵树所用的时间相等,求甲、乙两班每小时各种多少棵树?2. 甲、乙两个工程队共同完成一项工程,乙队先单独做1天后,再由两队合作2天就完成了全部工程。
已知甲队单独完成工程所需的天数是乙队单独完成所需天数的23,求甲、乙两队单独完成各需多少天?3.甲、乙两人加工同一种机器零件,甲比乙每小时多加工10个零件,甲加工150个零件所用时间与乙加工120个零件所用时间相等,求甲、乙两人每小时各加工多少个机器零件? 4.为了保证2010年广州亚运会期间亚运会场馆和亚运村环境卫生的干净,亚运会管理委员会决定开展一次“清理垃圾”演练.演练垃圾重达150吨,由于演练方案准备充分,各方面协调有力,亚运会垃圾清运小组清理垃圾的速度比原来提高了一倍,结果提前3小时完成了任务,问垃圾清运小组原计划每小时清运多少吨的垃圾?三.反比例函数9.某种灯的使用寿命为1000小时,它的可使用天数y 与平均每天使用的小时数x 之间的函数关系式为 . 10、已知反比例函数xky =的图象分布在第二、四象限,则在一次函数b kx y +=中,y 随x 的增大而 (填“增大”或“减小”或“不变”).11、反比例函数y =(m +2)xm 2-10的图象分布在第二、四象限内,则m 的值为 .12、有一面积为S 的梯形,其上底是下底长的31,若下底长为x ,高为y ,则y 与x 的函数关系是 .13、如图,点M 是反比例函数y =xa(a ≠0)的图象上一点, 过M 点作x 轴、y 轴的平行线,若S 阴影=5,则此反比例函数解析 式为 .14、过双曲线y =xk(k ≠0)上任意一点引x 轴和y 轴的垂线,所得长方形的面积为______.15. 如图,直线y =kx(k >0)与双曲线xy 4交于A (x 1,y 1), B (x 2,y 2)两点,则2x 1y 2-7x 2y 1=___________.16、如图,长方形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的坐标为B (-320,5),D 是AB 边上的一点, 将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的 点E 处,若点E 在一反比例函数的图象上,那么该函数的解析 式是 .17、(8分)如图,P 是反比例函数图象上的一点,且点P 到x 轴的距离为3,到y 轴的距离为2,求这个反比例函数的解析式.18、(10分)如图,已知反比例函数y =-x8与一次函数y =kx +b 的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2.求:(1)一次函数的解析式;(2)△AOB 的面积.19、(11分)如图,一次函数y =ax +b 的图象与反比例函数y =xk的图象交于M 、N 两点. (1)求反比例函数与一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.四、四边形练习题11.已知ABCD 的周长是28cm ,CD-AD=2cm ,那么AB=______cm ,BC=______cm .12.若矩形的对角线交点到两邻边的距离差为4cm ,周长56cm ,则这个矩形的两邻边长分别为_______和_______cm .13.矩形的周长是22cm ,相邻两边的差是1cm ,那么这个矩形的面积是_______cm 2. 14.矩形的两条对角线把矩形分成_______个等腰三角形.15.菱形两对角线长分别为24cm 和10cm ,则菱形的高为________cm .16.已知正方形的边长为a ,则正方形内任意一点到四边的距离之和为_____.17.在四边形ABCD中,已知∠A+∠B=180°,要使四边形ABCD是梯形,•还需添加一个条件,如果这个条件是与角有关的,那么这个条件可以是_______(只需填写一种情况).18.梯形ABCD中,AD∥BC,∠B=60°,∠C=75°,那么∠A=_______,∠D=_______.19.等腰梯形ABCD的一个角是55°,则其他三个角的度数分别为________.21.(6分)如图,在面积为4的菱形ABCD中,画一个面积为1的△ABP,使点P•在菱形ABCD的边上(不写画法,但要保留作图痕迹).22.如图,P是正方形ABCD对角线BD上一点,PE⊥DC,PF⊥BC,E,F分别是垂足,求证:AP=EF.23.(6分)如图所示,在正方形ABCD中,AP=AD,∠PAD=40°,求∠PBC与∠BPD•的度数.24.(6分)如图,△ABC,AB=AC,BD,CE分别为∠ABC,∠ACB的平分线,则EBCD是等腰梯形吗?为什么?分式化简:答案:1-4 CCAC5.解析:先将除法转化成乘法,对分子、分母进行分解,再约分.答案:)1)(2(2+-+a a a .分式方程:1.答:甲班每小时种树20棵,乙班每小时种树22棵。
初二数学试卷易错题汇总
一、选择题1. 下列哪个选项不是一元一次方程的解?()A. x + 2 = 5B. 2x - 3 = 1C. x² - 4 = 0D. 3x + 6 = 15答案:C解析:一元一次方程是指只含有一个未知数,并且未知数的最高次数是1的方程。
选项C中未知数的最高次数是2,因此不是一元一次方程的解。
2. 下列哪个选项不是一元二次方程的解?()A. x² + 2x + 1 = 0B. x² - 4x + 4 = 0C. x² + 2x - 1 = 0D. x² - 4x - 5 = 0答案:C解析:一元二次方程是指只含有一个未知数,并且未知数的最高次数是2的方程。
选项C中未知数的最高次数是1,因此不是一元二次方程的解。
3. 下列哪个选项不是等差数列的通项公式?()A. an = 2n + 1B. an = 3n - 2C. an = 4n + 3D. an = 5n - 4答案:D解析:等差数列是指一个数列中,任意相邻两项之差都相等。
选项D中相邻两项之差不相等,因此不是等差数列的通项公式。
二、填空题1. 若一元二次方程ax² + bx + c = 0的判别式Δ = b² - 4ac,则当Δ > 0时,方程有两个不相等的实数根。
2. 等差数列的前n项和公式为Sn = n(a1 + an) / 2,其中a1为首项,an为第n 项。
3. 在平面直角坐标系中,点到直线的距离公式为d = |Ax + By + C| / √(A² +B²),其中点P(x, y),直线L:Ax + By + C = 0。
三、解答题1. 已知一元二次方程x² - 5x + 6 = 0,求该方程的解。
答案:x₁ = 2,x₂ = 3解析:首先,通过因式分解法将方程化简为(x - 2)(x - 3) = 0,然后令每个括号内的因式等于0,得到x₁ = 2,x₂ = 3。
8年级下数学期末复习易错题专题
8年级下数学期末复习易错题专题
一、一次函数
1.1 零点的问题
一次函数y=kx+b 的零点为x=-b/k,需要注意如果k=0 且b≠0,该函数不存在零点。
此时需要画出函数的图像才能看出。
1.2 斜率和图像的关系
一次函数 y=kx+b 的斜率为 k,当 k>0 时,函数图像向右上倾斜;当 k<0 时,函数图像向右下倾斜;当 k=0 时,函数图像为一条
水平的直线。
二、二次函数
2.1 平移变化
二次函数y=ax²+bx+c 的图像的平移变化公式为:y=a(x-α)²+β,其中(α,β) 为顶点坐标。
2.2 相关系数
二次函数 y=ax²+bx+c 的相关系数为:R²=1-[Σ(yi-axi²-bxi-
c)²/Σ(yi-ȳ)²],其中ȳ 为所有纵坐标之和的平均数。
三、圆与圆周率
3.1 弧长和面积
圆的弧长公式为:L=αr,其中α 为圆心角的度数,r 为半径;
圆的面积公式为:S=πr²。
3.2 圆周率的出现
圆周率π 与圆的周长和面积有关,且不是有理数,无法用分数
表示,只能用无限小数表示。
在计算圆的面积和周长时,需要使用
圆周率的值近似计算。
以上为部分易错点的总结,希望同学们在复习时能够注意。
祝大家期末顺利!。
初二上册数学错题集
初二上册数学错题集
一、错题类型
1. 代数运算错误
哎呀,好多时候我在进行代数运算的时候,不是符号搞错,就是乘法分配律用错。
比如计算 (2x + 3)(x 1) ,我居然忘记把每一项都乘一遍,结果算错啦!
2. 几何证明逻辑混乱
几何证明题可把我难住啦!经常出现条件没用全,或者推理过程不严谨的情况。
就像证明三角形全等,我总是漏掉一些关键的相等条件。
3. 函数图像理解偏差
函数的图像对我来说就像个谜,总是不能准确理解横坐标、纵坐标的含义,导致做题出错。
二、错题分析
1. 基础知识不扎实
好多错误其实都是因为我对基本的概念、公式、定理没有掌握好。
比如完全平方公式,我总是记错中间项的系数。
2. 粗心大意
有时候做题太着急,数字看错、符号写错,真是不该啊!
3. 缺乏解题思路
遇到稍微复杂一点的题目,就不知道从哪里下手,没有形成系统的解题思路。
三、改进措施
1. 加强基础知识的学习
多看书、多做基础练习题,把那些容易混淆的概念和公式彻底搞清楚。
2. 养成认真仔细的习惯
做题的时候放慢速度,做完多检查几遍,不能再因为粗心丢分啦。
3. 多做难题,总结解题思路
找一些有难度的题目来做,做完后认真总结解题方法和思路,下次遇到类似的题目就不会再懵啦。
希望通过这本错题集,我的数学成绩能越来越好!加油!。
八年级数学易错题20例(含解析)
八年级数学易错题20例1. 理解错误的题目:一些学生可能会误解题目的意思,从而得出错误的答案。
例如,题目要求求解一个方程,但是学生可能会误解为需要求解一个不同的方程。
2. 忘记变号:在进行等式运算时,有时会忘记在移项或者合并同类项时变号。
3. 计算错误:在进行复杂计算时,可能会出现计算错误,例如算错乘法、加法等。
4. 错误的应用公式:例如在使用勾股定理时,将直角三角形的边长错误地代入公式。
5. 忽视条件:在解决问题时,可能会忽视题目给出的某些条件,导致答案错误。
6. 图形理解错误:在几何问题中,可能会误解或错误地画出图形。
7. 错误的角度计算:在几何问题中,尤其是涉及角度的计算,容易出错。
8. 比例理解错误:在涉及比例的问题中,可能会对比例的概念理解错误。
9. 单位换算错误:在涉及单位换算的问题中,可能会换算错误。
10. 错误的概率计算:在概率问题中,可能会出现计算错误或者理解错误。
11. 忽视坐标系的方向:在平面直角坐标系中,有时会忽视坐标轴的方向,导致点的位置判断错误。
12. 函数理解不足:对于函数的理解不足,可能导致在解决与函数相关的问题时出错。
13. 三角形性质理解错误:例如,误将等边三角形的性质应用于等腰三角形等。
14. 分式运算错误:在进行分式的加减乘除运算时,可能会出现运算错误。
15. 错误的不等式解法:在解不等式时,可能会因为变号、计算等问题导致解答错误。
16. 数列求和公式使用不当:例如,等差数列和等比数列的求和公式混淆使用。
17. 根与系数的关系理解不清:对于二次方程的根与系数的关系理解不足,导致相关题目解答错误。
18. 圆的性质理解不足:例如,对圆心角、圆周角、弧长等性质理解不清,导致解题出错。
19. 忽视特殊情况:在一些数学问题中,可能存在特殊情况需要额外考虑,如果忽视这些特殊情况,可能会导致答案不完整或错误。
20. 不严谨的推理:在数学证明题中,推理过程不严谨,跳跃步骤或者逻辑不清晰,导致证明错误。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A.8 B.10 C.12 D.14 30.已知:如图,在平行四边形 ABCD 中,点 M 在边 AD 上,且 AM=DM.CM、BA 的延长线相交于点 E.求证: (1)AE=AB; (2)如果 BM 平分∠ABC,求证:BM⊥CE.
31.如图,分别以 Rt△ABC 的直角边 AC 及斜边 AB 向外作等边△ACD 及等边△ ABE.已知∠BAC=30°,EF⊥AB,垂足为 F,连接 DF. (1)试说明 AC=EF; (2)求证:四边形 ADFE 是平行四边形.
20.若一个三角形的三边长分别为 3,4,x,则使此三角形是直角三角形的 x 的
值是
.
21.如图,分别以直角三角形三边向外作三个半圆,若 S1=30,S2=40,则 S3
=
.
22.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大
的正方形的边长为 10cm,正方形 A2 的边长为 6cm,正方形 B 的边长为 5cm,正方
a b
=
a,②
b
a×
b
b a
=1,③
ab ÷
a b
=−b,其中正确的是(
)
A.①② B.②③ C.①③ D.①②③
6.把 x − 1根号外的因数移到根号内,结果是( )
x
A. x B. − xC.− − x D.− x 7.把 a − 1根号外的因式移入根号内,运算结果是( )
a
A. a B. − aC.− aD.− − a
11.在△ABC 中,a、b、c 为三角形的三边,化简 (a − b + c)2 −2|c﹣a﹣b|的结
果为( )
A.3a+b﹣c
B.﹣a﹣3b+3c
C.a+3b﹣c
D.2a
12.当 x 取某一范围的实数时,代数式 (16 − x)2 + (x − 13)2的值是一个常数, 该常数是( ) A.29 B.16 C.13 D.3
18.已知 x,y 都是有理数,并且满足x2 + 2y + 2y = 17 − 4 2,求 x − y的值.
【题型四】勾股定理 19.下列说法中正确的是( ) A.已知 a,b,c 是三角形的三边,则 a2+b2=c2 B.在直角三角形中两边和的平方等于第三边的平方 C.在 Rt△ABC 中,∠C=90°,所以 a2+b2=c2 D.在 Rt△ABC 中,∠B=90°,所以 a2+b2=c2
13.若 x<0,y>0,化简 x2y3 =
.
14.已知 ab=2,则 a
b a
+
b
a的值是
b
.
15.化简:1
2
32x3 +2x
x −x2
2
50 x
=
.
16.已知|a﹣2007|+ a − 2008 =a,则 a﹣20072 的值是
.
17.已知 y = 2x − 1 − 1 − 2x + 8x,则 4x + 5y − 6的算术平方根为 .
8.如果实数 a、b 满足 a2b3 =− ab b,那么点(a,b)在( )
A.第一象限 B.第二象限
C.第二象限或坐标轴上 D.第四象限或坐标轴上
9.化简二次根式 a
−
Hale Waihona Puke a+2的结果是(a2
)
A. − a − 2 B.− − a − 2 C. a − 2 D.− a − 2
10.已知|x﹣3|+|5﹣x|=2,则化简 (1 − x)2 + (5 − x)2的结果是( ) A.4 B.6﹣2x C.﹣4 D.2x﹣6
形 C 的边长为 5cm,则正方形 D 的面积是
cm2.
23.如图,已知在 Rt△ABC 中,∠BAC=90°,BC=4,分别以 AB,AC,BC 为边向
外作等边三角形,面积分别记为 S1,S2,S3,则 S1+S2+S3 的值等于
.
【题型五】勾股数
24.下列几组数中,是勾股数的有( )
①5、12、13;②13、14、15;③3k、4k、5k(k 为正整数);④2、2、7
【题型七】平行四边形的判定与性质
28.如图,▱ ABCD 的对角线 AC、BD 交于点 O,AE 平分∠BAD 交 BC 于点 E,且
∠ADC=60°,AB=
1BC,连接
2
OE.下列结论:①∠CAD=30°;②S▱
ABCD=AB•
AC;③OB=AB;④OE= 1BC,成立的个数有( )
4
A.1 个 B.2 个 C.3 个 D.4 个 29.如图,在▱ ABCD 中,BF 平分∠ABC,交 AD 于点 F,CE 平分∠BCD,交 AD 于 点 E,AB=6,EF=2,则 BC 长为( )
32.如图,四边形 ABCD 中,BD 垂直平分 AC,垂足为点 F,E 为四边形 ABCD 外一 点,且∠ADE=∠BAD,AE⊥AC (1)求证:四边形 ABDE 是平行四边形; (2)如果 DA 平分∠BDE,AB=5,AD=6,求 AC 的长.
初中数学易错题型集锦
【题型一】二次根式的定义
1. 下列式子:①
1;②
3
− 3;③−
x2 + 1;④3 27;⑤
( − 2)2,是二次根式的
有( )
A.①③ B.①③⑤ C.①②③ D.①②③⑤
【题型二】二次根式有意义的条件
2.若代数式 x+3在实数范围内有意义,则实数 x 的取值范围是( )
x−1
A.x≠1 B.x>﹣3 且 x≠1 C.x≥﹣3 D.x≥﹣3 且 x≠1
3
3
A.1 组 B.2 组 C.3 组 D.4 组
25.下列四组数:①3、4、5;②1、1、1;③0.3、0.4、0.5;④3、4、5,其中
345
777
是勾股数的有( )
A.4 组 B.3 组 C.2 组 D.1 组
【题型六】勾股定理的逆定理 26.已知 a,b,c 为△ABC 的三边长,且满足 a2c2﹣b2c2=a4﹣b4,则△ABC 的形 状是( ) A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰三角形或直角三角形 27.已知等腰三角形 ABC 的底边 BC=20cm,D 是腰 AB 上一点,且 CD=16cm,BD =12cm. (1)求证:CD⊥AB; (2)求该三角形的腰的长度.
3.若 2x是二次根式,则下列说法正确的是( )
y
A.x≥0,y≥0 B.x≥0 且 y>0 C.x,y 同号 D.x ≥0
y
4.如果
x−1 x−2
=
x−1,那么 x 的取值范围是(
x−2
)
A.1≤x≤2 B.1<x≤2 C.x≥2 D.x>2
【题型三】二次根式的性质与化简
5.如果 ab>0,a+b<0,那么下面各式:①