13.4课题学习最短路径问题 精品导学案 新人教版3
13.4课题学习 最短路径问题 教案 2022-2023学年人教版八年级上册数学
13.4课题学习最短路径问题教案1. 教学目标•理解最短路径问题的概念,并能够用数学方法解决问题;•学会使用迪杰斯特拉(Dijkstra)算法求解最短路径问题;•能够应用最短路径算法解决实际问题。
2. 教学准备•教材《人教版八年级上册数学》;•课件和平面图纸;•笔、纸、计算器等学习工具。
3. 教学过程3.1 导入新课•引导学生回忆并复习最短路径的概念,提问:什么是最短路径问题?在生活中你遇到过哪些最短路径问题?•提出本节课的学习目标:本节课我们将学习如何使用最短路径算法解决问题。
3.2 讲解最短路径算法•通过课件演示,介绍迪杰斯特拉(Dijkstra)算法的基本思想和步骤。
•让学生观察演示,并与其实际经验联系,让他们理解算法的原理。
3.3 示例演练•给出一个具体的图模型,以实际问题为背景,让学生通过计算找到最短路径。
•引导学生使用迪杰斯特拉算法的步骤,一步一步地解答问题。
•让学生自己尝试计算,并用白板记录解题过程。
3.4 练习训练•给学生分发练习题,让他们在规定时间内解答问题。
•在解答结束后,与学生一起讨论答案和解题思路。
•解答过程中,引导学生关注算法的优化,比较不同方法的时间复杂度和空间复杂度。
3.5 拓展应用•通过课堂讨论和实例分析,引导学生拓展到更多实际应用,如电路设计、物流路径优化等。
•鼓励学生积极思考,并给予一定的发散思维的空间。
4. 总结与反思4.1 知识总结•通过本节课的学习,了解了最短路径问题的概念和解决思路;•学会使用迪杰斯特拉算法求解最短路径问题;•发现了最短路径问题在实际生活中的应用。
4.2 学习反思•学生通过课堂演练和练习题,掌握了最短路径算法的基本步骤;•课堂上学生的参与度和思维能力都较高,但个别学生对于算法的代价和优化还存在理解欠缺的情况。
4.3 教学反馈•在课堂上积极引导学生思考和讨论,帮助学生更好地理解和运用最短路径算法;•对于学生在课堂上的表现和习题的完成情况给予及时的反馈和指导。
部编版人教数学八年级上册《13.4课题学习 最短路径问题 导学案》最新精品优秀导学单
1 前言:该导学案(导学单)由多位一线国家特级教师根据最新课程标准的要求和教学对象的特点结合教材实际精心编辑而成。
实用性强。
高质量的导学案(导学单)是高效课堂的前提和保障。
(最新精品导学案)课题:13.4 课题学习:最短路径问题【学习目标】1、了解解决最短路径问题的基本策略和基本原理。
2、能将实际问题中的“地点”“河”“桥”等抽象为数学中的“点”“线”,使实际问题数学化。
3、能运用轴对称、平移变化解决简单的最短路径问题,体会几何变化在解决最值问题中的重要作用。
4、在探索最短路径的过程中,感悟、运用转化思想。
进一步培养好奇心和探究心理,更进一步体会到数学知识在生活中的应用。
【学习重难点】重点: 利用轴对称将最短路径问题转化为“两点之间,线段最短”问题。
难点: 如何利用轴对称、平移变化将最短路径问题转化为线段和最小问题。
一、知识链接复习旧知:1.两点之间,_______最短。
2.连接直线外一点与直线上各点的所有线段中_______最短。
3. 如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的_________。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的_______ 。
4.平移性质:(1)平移前后图形的形状和大小________。
(2)对应点连线______________。
自主学习(新知): 精读课本第85-87页,用红色的笔对有关概念进行勾画并找出自己的疑惑和要讨论的问题,准备在课堂上讨论质疑。
如图所示,从A 地到B 地有三条路选择,你会选走那条路最近?你的理由是什么?②A B ① ③。
人教版初中八年级数学上册第十三章13. 4 课题学习 最短路径问题 优秀教案
13. 4课题学习最短路径问题通过对最短路径问题的探索,进一步理解和掌握两点之间线段最短和垂线段最短.重点应用所学知识解决最短路径问题.难点选择合理的方法解决问题.一、创设情境多媒体展示:如图,一个圆柱的底面周长为20 cm,高AB为4 cm,BC是底面的直径,一只蚂蚁从点A出发,沿着圆柱的侧面爬行到点C,试求出爬行的最短路径.这是一个立体图形,要求蚂蚁爬行的最短路径,就是要把圆柱的侧面展开,利用“两点之间,线段最短”求出最短路径.那么怎样求平面图形中的最短路径问题呢?二、自主探究探究一:最短路径问题的概念1.多媒体出示图①和图②,提出问题:(1)图①中从点A走到点B哪条路最短?(2)图②中点C与直线AB上所有的连线中哪条线最短?2.教师总结:“两点之间,线段最短”“连接直线外一点与直线上各点的所有线段中,垂线段最短”等问题,我们称之为最短路径问题.探究二:河边饮马问题多媒体出示问题1:牧马人从A地出发,到一条笔直的河边l饮马,然后到B地,牧马人从河边什么地方饮马,可使所走的路径最短?提出问题:如果点A和点B分别位于直线的两侧,如何在直线l上找到一点,使得这个点到点A和点B的距离的和最短?思考:如果点A和点B位于直线的同侧,如何在直线l上找到一点,使得这个点到点A 和点B的距离的和最短?教师引导学生讨论,明确找点的方法.让学生对刚才的方法通过逻辑推理的方法加以证明.教师巡视指导学生的做题情况,有针对性地进行点拨.探究三:造桥选址问题多媒体出示问题2.(教材第86页)提出问题:(1)根据问题1的探讨你对这道题有什么思路和想法?(2)这个问题有什么不同?(3)要保证路径AMNB最短,应该怎样选址?学生对这个三个问题展开讨论,得出结论:要保证AMNB最短,就是要保证AM+MN +NB最小.尝试选址作出图形.多媒体展示教材图13.4-7,13.4-8,13.4-9,引导学生分析、观察,让学生根据刚才的分析,完成证明过程.根据问题1和问题2,你有什么启示?三、知识拓展已知长方体的长为2 cm、宽为1 cm、高为4 cm,一只蚂蚁如果沿长方体的表面从A点爬到B′点,那么沿哪条路最近,最短的路程是多少?[让学生讨论有几种爬行的方法,计算出每种方案中的路程,再进行比较]四、归纳总结1.本节课你学到了哪些知识?2.怎样解决最短路径问题?本节课以数学史中的一个经典问题——“将军饮马问题”为载体开展对“最短路径问题”的课题学习,让学生经历将实际问题抽象为数学问题的线段和最小问题,再利用轴对称将线段和最小的问题转化为“两点之间,线段最短”问题.。
八年级数学上册13.4课题学习最短路径问题教案(新版)新人教版
13.4 课题学习最短路径问题教学目标:1、能利用轴对称解决简单的最短路径问题.2、体会图形的变化在解决最值问题中的作用.3、感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.教学过程一、探索新知问题1 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?精通数学、物理学的海伦稍加思索,利用轴对称的知识回答了这个问题.这个问题后来被称为“将军饮马问题”.你能将这个问题抽象为数学问题吗?追问2你能用自己的语言说明这个问题的意思,并把它抽象为数学问题吗?(1)从A 地出发,到河边l 饮马,然后到B 地;(2)在河边饮马的地点有无穷多处,把这些地点与A, B 连接起来的两条线段的长度之和,就是从A 地到饮马地点,再回到B 地的路程之和;(3)现在的问题是怎样找出使两条线段长度之和为最短的直线l上的点.设C 为直线上的一个动点,上面的问题就转化为:当点C 在l 的什么位置时, AC 与CB 的和最小(如图).问题2如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?追问1 对于问题2,如何将点B“移”到l 的另一侧B′处,满足直线l 上的任意一点C,都保持CB 与CB′的长度相等?追问2 你能利用轴对称的有关知识,找到上问中符合条件的点B′吗?问题2如图,点A,B 在直线l 的同侧,点C 是直线上的一个动点,当点C 在l 的什么位置时,AC 与CB的和最小?作法:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.问题3 你能用所学的知识证明AC +BC最短吗?证明:如图,在直线l 上任取一点C′(与点C 不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.∴AC +BC= AC +B′C = AB′,AC′+BC′= AC′+B′C′.追问1 证明AC +BC 最短时,为什么要在直线l 上任取一点C′(与点C 不重合),证明AC +BC <AC′+BC′?这里的“C′”的作用是什么?C 不重合)与A,B 两点的距离和都大于AC +BC,就说明AC + BC 最小.追问2回顾前面的探究过程,我们是通过怎样的过程、借助什么解决问题的?二、练习如图,一个旅游船从大桥AB 的P 处前往山脚下的Q 处接游客,然后将游客送往河岸BC 上,再返回P 处,请画出旅游船的最短路径.基本思路:由于两点之间线段最短,所以首先可连接PQ,线段PQ 为旅游船最短路径中的必经线路.将河岸抽象为一条直线BC,这样问题就转化为“点P,Q 在直线BC的同侧,如何在BC上找到一点R,使PR与QR 的和最小”.三、归纳小结1、本节课研究问题的基本过程是什么?2、轴对称在所研究问题中起什么作用?四、布置作业教科书P93复习题13第15题中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
课题学习:最短路径问题导学案
13.4课题学习:最短路径问题导学目标:1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定。
2.能利用轴对称平移解决实际问题中路径最短的问题。
3.通过独立思考,合作探究,培养学生运用数学知识解决实际问题的基本能力,感受学习成功的快乐。
导学重点:将实际问题转化成数学问题,运用轴对称平移解决生活中路径最短的问题,确定出最短路径的方法。
导学难点:探索发现“最短路径”的方案,确定最短路径的作图及说理。
导学过程:一、创设情景,引入新知。
(1)我们已经学习过“两点的所有连线中,。
”和“连接直线外一点与直线上各点的所有线段中,”等问题,我们称他们为最短路径问题。
(2)请画出点A关于直线L的对称点。
A._______________________ L二、自主学习,探究新知。
1、探究问题:如图所示,从A地到B地有三条路可供选择,你会选走哪条路最近?你的理由是什么?(I)两点在一条直线异侧:活动1: 已知:如图,A,B在直线L的两侧,在L上求一点P,使得这个点到点AB的距离和最短,即PA+PB最小。
思考:(1)为什么这样做就能得到最短距离呢?(2)你如何验证PA+PB 最短呢?(Ⅱ) 两点在一条直线同侧活动2:如图,牧马人从A 地出发到一条笔直的河边L 饮马,然后到B 地,牧马人到河边的什么地方饮马,可是所走的路径最短?这个问题可以转化为;当点C 在什么位置时。
AC 与BC 的和最小。
BA思考:(1) 如何将点B “移”到l 的另一侧B ′处,满足直线l 上的任意一点C ,都保持CB 与CB ′的长度相等?(2)你能利用轴对称的有关知识,找到上问中符合条件的点B ′吗?(3)试证明你的结论。
作法:1.作点A 关于L 的对称点_____,2.连接_______,交直线L 与_______, 则点_______就是所要求作的点想一想:如果A 、B 处于小河的两侧,在河上建一座与两岸垂直的桥,你能找到所走最短路径吗?2、探究问题:造桥选址问题中的最短路径问题活动3,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思考:①怎样将实际问题转化为数学问题?②若直线重合,最短路径是什么?③若将直线平移开,怎样思考该问题?④怎样解决造桥选址问题?A B l作法:如图(2),将点A沿与和垂直的方向平移MN的距离到C.连接BC交河岸与点N,在此处造桥MN,所得路程AMNB就是最短路程。
人教版初中初二八年级数学上册 13.4 课题学习 最短路径问题 精品导学案
第十三章 三角形.4 课题学习 最短路径问题外一点,点P 与该直线l 上各点连接的所有线段中,哪条最短?__________________________________; ______________________________. l 的对称点?一、要点探究探究点1:牧人饮马问题实际问题:如图,牧马人从点A地出发,到一条笔直的河边l饮马,然后到B地,牧马人到河边的什么地方饮马,可使所走的路径最短?数学问题:在直线l上求作一点C,使AC+BC最短问题.问题1:现在假设点A,B分别是直线l异侧的两个点,如何在l上找到一个点,使得这个点到点A,点B的距离的和最短?问题2:如果点A,B分别是直线l同侧的两个点,又应该如何解决?想一想:对于问题2,如何将点B“移”到l的另一侧B′处,满足直线l上的任意一点C,都保持CB与CB′的长度相等?要点归纳:(1)作点B关于直线l的对称点B′;(2)连接AB′,与直线l相交于点C.则点C即为所求.如图所示.问题3:你能用所学的知识证明AC +BC最短吗?证明:课堂探究教学备注配套PPT讲授2.探究点1新知讲授(见幻灯片5-15)练一练:如图,直线l 是一条河,P 、Q 是两个村庄.欲在l 上的某处修建一个水泵站,向P 、Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需要管道最短的是( )典例精析例1:如图,已知点D 、点E 分别是等边三角形ABC 中BC 、AB 边的中点,AD =5,点F 是AD 边上的动点,则BF +EF 的最小值为( ) A .7.5 B .5C .4D .不能确定方法总结:此类求线段和的最小值问题,找准对称点是关键,而后将求线段长的和转化为求某一线段的长,而再根据已知条件求解.例2:如图,在直角坐标系中,点A ,B 的坐标分别为(1,4)和(3,0),点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时点C 的坐标是( ) A .(0,3) B .(0,2) C .(0,1) D .(0,0)方法总结:求三角形周长的最小值,先确定动点所在的直线和固定点,而后作某一固定点关于动点所在直线的对称点,而后将其与另一固定点连线,连线与动点所在直线的交点即为三角形周长最小时动点的位置.探究点2:造桥选址问题实际问题:如图,A 和B 两地在一条河的两岸,现要在河上造一座桥MN .桥造在何处可使从A 到B 的路径AMNB 最短(假定河的两岸是平行的直线,桥要与河垂直)?教学备注3.探究点2新知讲授 (见幻灯片16-24)2.如图,平移B 到E ,使BE 等于河宽,连接AE 交河岸于M ,作桥MN ,此时路径AM +MN +BN 最短.要点归纳:解决最短路径问题的方法:在解决最短路径问题时,我们通常利用轴对称、平移等变换把未知问题转化为已解决的问题,从而作出最短路径的选择.二、课堂小结1.如图,直线m 同侧有A 、B 两点,A 、A ′关于直线m 对称,A 、B 关于直线n 对称,直线m 与A ′B 和n 分别交于P 、Q ,下面的说法正确的是( )A .P 是m 上到A 、B 距离之和最短的点,Q 是m 上到A 、B 距离相等的点 B .Q 是m 上到A 、B 距离之和最短的点,P 是m 上到A 、B 距离相等的点C .P 、Q 都是m 上到A 、B 距离之和最短的点D .P 、Q 都是m 上到A 、B 距离相等的点第1题图 第2题图 第3题图2.如图,△AOB =30°,△AOB 内有一定点P ,且OP =10.若在OA 、OB 上分别有动点mnA'PQ BA最短路径问题牧人饮马问题造桥选址问题轴对称+线段公理平移当堂检测教学备注配套PPT 讲授5.课堂小结6.当堂检测 (见幻灯片24-28)Q、R,则△PQR周长的最小值是()A.10 B.15 C.20 D.303.如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,所走的最短距离是_____ 米.4.如图,边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2),B(1,3).点P在x轴上,当P A+PB的值最小时,在图中画出点P.5.如图,荆州古城河在CC′处直角转弯,河宽相同,从A处到B处,须经两座桥:DD ′,EE ′(桥宽不计),设护城河以及两座桥都是东西、南北方向的,怎样架桥可使ADD ′E ′EB 的路程最短?拓展提升:6.(1)如图△,在AB直线一侧C、D两点,在AB上找一点P,使C、D、P三点组成的三角形的周长最短,找出此点;(2)如图△,在△AOB内部有一点P,是否在OA、OB上分别存在点E、F,使得E、F、P三点组成的三角形的周长最短,找出E、F两点;(3)如图△,在△AOB内部有两点M、N,是否在OA、OB上分别存在点E、F,使得E、F、M、N,四点组成的四边形的周长最短,找出E、F两点.图△ 图△ 图△参考答案自主学习一、知识链接1.解:△最短,因为两点之间,线段最短.2.解:PC最短,因为垂线段最短.3.两边之和大于第三边斜边大于直角边4.解:如图.课堂探究二、要点探究探究点1:牧人饮马问题问题1 解:连接AB,与直线l相交于一点C.根据是“两点之间,线段最短”,可知这个交点即为所求.问题2 利用轴对称,作出点B关于直线l的对称点B′.问题3 证明:如图,在直线l上任取一点C′(与点C不重合),连接AC′,BC′,B′C′.由轴对称的性质知,BC =B′C,BC′=B′C′.△AC +BC= AC +B′C = AB′,AC′+BC′= AC′+B′C′.在△AB′C′中,AB′<AC′+B′C′,△AC +BC<AC′+BC′.即AC +BC最短.练一练D例1 B 解析:△ABC为等边三角形,点D是BC边的中点,即点B与点C关于直线AD 对称.△点F在AD上,故BF=CF.即BF+EF的最小值可转化为求CF+EF的最小值,故连接CE即可,线段CE的长即为BF+EF的最小值.例2 A 解析:作B点关于y轴对称点B′,连接AB′,交y轴于点C′,此时△ABC的周长最小,然后依据点A与点B′的坐标可得到BE、AE的长,然后证明△B′C′O为等腰直角三角形即可.探究点2:造桥选址问题画一画:(1)(2)如图所示.(3)(4)如图所示.问题解决:1.证明:另任作桥M1N1,连接AM1,BN1,A1N1.由平移的性质知,AM=A1N,AA1=MN=M1N1,AM1=A1N1.AM+MN+BN转化为AA1+A1B,而AM1+M1N1+BN1转化为AA1+A1N1+BN1.在△A1N1B中,因为A1N1+B1>A1B,因此AM1+M1N1+BN1>AM+MN+BN.2.证明:由平移的性质,得BN∥EM且BN=EM,MN=CD,BD∥CE,BD=CE,所以A到B的路径长为AM+MN+BN=AM+MN+EM=AE+MN.若桥的位置建在CD处,连接AC,CD,DB,CE,则A到B的路径长为AC+CD+DB=AC+CD+CE=AC+CE+MN.在△ACE中,∵AC+CE>AE,∴AC+CE+MN>AE+MN,即AC+CD+DB>AM+MN+BN,∴桥的位置建在MN处,A到B的路径最短.当堂检测1.A 2.A 3.10004.解:如图,点P即为所求.5.解:作AF△CD,且AF=河宽,作BG △CE,且BG=河宽,连接GF,与河岸相交于E ′,D′.作DD′,EE′即为桥.理由:由平移的性质可知,AD//FD′,AD=FD′.同理,BE=GE′.由两点之间线段最短可知,GF最小.拓展提升:6.解:如图所示.。
初中数学最新版《课题学习最短路径问题 》精品导学案(2022年版)
13.4 课题学习最短路径问题学习目标1.能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.“两点之间,线段最短〞问题.重点:作轴对称图形难点:用轴对称知识解决相应的数学问题学习过程:一、复习旧知1、动一动:如图,△ABC和直线l,你能作出△ABC关于直线l对称的图形。
二、预习新课2、[探究1]如图〔1〕.要在燃气管道L上修建一个泵站,分别向A、B两镇供气.•泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明.:求作:证明过程:三、随堂练习1、任画一条直线L及直线L同旁两点M、N,画出从点M出发经过直线L上的某一点后,再到达N点的最短路线。
.N .M2、:两点A、B位于直线L的两侧,在直线L上求作一点C,使得AC-BC最大。
A ..B四、课时小结五、稳固提升1、如图,A为马厩,B为帐篷,牧马人某一天要从马厩牵出马,先到草地边某一处牧马,再到河边饮水,然后回到帐篷,请你帮他确定这一天的最短路线。
2、 为保证2021北京奥运会顺利进行,奥组委在公路L 的同侧修建你A ,B 两个日用品供给站,要在过路边建一个转运站C ,使A,B 两站到转运站C 的距离之和最短,问这个转运站应建在公路的哪个位置上比拟合理?A .B . 垂径定理1.进一步认识圆是轴对称图形;2.能利用圆的轴对称性,通过探索、归纳、验证得出垂直于弦的直径的性质和推论,并能应用它解决一些简单的计算、证明和作图问题;(重点)3.认识垂径定理及推论在实际中的应用,会用添加辅助线的方法解决问题.(难点)一、情境导入你知道赵州桥吗?它又名“安济桥〞,位于河北省赵县,是我国现存的著名的古代石拱桥,距今已有1400多年了,是隋代大业年间(公元605~618年)由著名将师李春建造的,是我国古代人民勤劳和智慧的结晶.它的主桥拱是圆弧形,全长50.82米,桥宽约10米,跨度37.4米,拱高7.2米,是当今世界上跨径最大、建造最早的单孔敞肩石拱桥.你知道主桥拱的圆弧所在圆的半径是多少吗?二、合作探究探究点一:垂径定理 【类型一】 利用垂径定理求边如图,点A 、B 是⊙O 上两点,AB =10cm ,点P 是⊙O 上的动点(与A 、B 不重合),连接AP 、BP ,过点O 分别作OE ⊥AP 于E ,OF ⊥PB 于F ,求EF 的长.解析:运用垂径定理先证出EF 是△ABP 的中位线,然后运用三角形中位线性质把要求的EF 与AB 建立关系,从而解决问题.解:在⊙O 中,∵OE ⊥AP ,OF ⊥PB ,∴AE =PE ,BF =PF ,∴EF 是△ABP 的中位线,∴EF =12AB =12×10=5(cm).方法总结:垂径定理虽是圆的知识,但也不是孤立的,它常和三角形等知识综合来解决问题,我们一定要把知识融会贯穿,在解决问题时才能得心应手. 【类型二】 动点问题如图,⊙O 的直径为10cm ,弦AB =8cm ,P 是弦AB 上的一个动点,求OP 的长度范围.解析:当点P 处于弦AB 的端点时,OP 最长,此时OP 为半径的长;当OP ⊥AB 时,OP 最短,利用垂径定理及勾股定理可求得此时OP 的长.解:作直径MN ⊥弦AB ,交AB 于点D ,由垂径定理,得AD =DB =12AB ∵⊙O 的直径为10cm ,连接OA ,∴OA △AOD 中,由勾股定理,得OD =OA 2-AD 2=3cm.∵垂线段最短,半径最长,∴OP 的长度范围是3cm ≤OP ≤5cm.方法总结:解题的关键是明确OP 最长、最短时的情况,灵活利用垂径定理求解.容易出错的地方是不能确定最值时的情况.探究点二:垂径定理的实际应用如图,一条公路的转弯处是一段圆弧(图中的AB ︵),点O 是这段弧的圆心,C 是AB︵上一点,OC ⊥AB ,垂足为D ,AB =300m ,CD =50m ,那么这段弯路的半径是________m.解析:此题考查垂径定理,∵OC ⊥AB ,AB =300m ,∴ADR m ,根据勾股定理可列方程R 2=(R -50)2+1502,解得R =250.故答案为250.方法总结:将实际问题转化为数学问题,再利用我们学过的垂径定理、勾股定理等知识进行解答.三、板书设计教学过程中,强调垂径定理的得出跟圆的轴对称密切相关.在圆中求有关线段长时,可考虑垂径定理的应用.。
13.4 课题学习 最短路径问题 精品导学案 新人教版
13.4 课题学习最短路径问题1.理解并掌握平面内一条直线同侧两个点到直线上的某一点距离之和为最小值时点的位置的确定.2.理解并掌握平面内两平行线异侧有两个点,则在平行线间何处作垂线段使得顺次连接的三条线段之和最小的位置的确定.阅读教材P85~86“问题1”,完成预习内容.知识探究1如图所示,要在街道旁修建一个奶站,向居民区A,B提供牛奶,分别满足以下条件,奶站应建在什么地方?(1)使从A,B到它的距离相等;(2)使从A,B到它的距离之和最短.第(1)小题是到线段两端点距离相等的点在线段的垂直平分线上;第(2)小题根据轴对称转化为两点之间线段最短.阅读教材P86~87“问题2”,回答下列问题:知识探究2如教材P87图13.4-9,路径AMNB最短的依据是什么?解:依据有2点:①是平移前后的线段平行且相等;②是两点之间线段最短.活动1小组讨论如教材P87图13.4-9,求证:AM+MN+NB<AM′+M′N′+N′B′.证明:由题意易得AM=A′N,AM′=A′N′,MN=M′N′.∴AM+NB=A′N+NB=A′B.又∵A′B<A′N′+N′B,∴AM+NB<AM′+N′B.∴AM+NB+MN<AM′+N′B+M′N′,即AM+NM+NB<AM′+M′N+N′B.活动2课堂小结在解决最短路径问题时,我们通常利用轴对称、平移等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择.教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
13.4最短路径问题 学案
13.4 课题学习 最短路径问题(学案)学习目标:能利用轴对称解决简单的最短路径问题,体会图形的变化在解决最值问题中的作用,感悟转化思想.学习重点:利用轴对称将最短路径问题转化为“两点之间,线段最短”问题.一、我尝试如图,一位将军在宽阔的草原上牧马,他准备从A 地出发要到笔直的河边l 饮马再到河对岸的B 地,问在河岸什么地方饮马所走的路程最短? 二、我探究:将军饮马问题 相传,古希腊亚历山大里亚城里有一位久负盛名的学者,名叫海伦.有一天,一位将军专程拜访海伦,求教一个百思不得其解的问题:从图中的A 地出发,到一条笔直的河边l 饮马,然后到B 地.到河边什么地方饮马可使他所走的路线全程最短?(1)这两个问题之间,有什么相同点和不同点?(2)我们能否把A 、B 两点转化到直线l 的异侧呢?(3)利用什么知识可以实现转化目标?思考 你能用所学的知识证明AC +BC 最短吗?l 实际问题数学化 A转化为数学问题 l三、我挑战如图:牧马人某一天要从A 地出发,先到草地边某一处牧马,再到河边饮马,然后回到B 处,请你帮他确定这一天的最短路线。
四、我小结本节课你有哪些收获或体会?你有哪些经验给大家分享?五、我检测如图,小河边有两个村庄A,B,要在河边建一自来水厂向村庄A 与村庄B 供水。
(1)若要使厂部到A,B 村庄的距离相等,则应选择在哪建厂?(2)若要使厂部到A,B 村的水管最省料,应建在什么地方?六、我训练如图,△ABC 中AB=AC ,AD 是BC 边上中线,E 是AC 边是一定点,点F 是AD 上一动点,当点F 在何位置时,△EFC 的周长最小?七、我拓展你也许很喜欢台球,在玩台球过程中也用到数学知识.如图,四边形ABCD 是长方形的球桌台面,有两个球分别位于P 、Q 两点上,先找出P 点关于BC 的对称点P ′,连接P ′Q 交BC 于M 点,则P 处的球经BC 反弹后,会击中Q 处的球. 请回答:如果使P 球先碰撞台边BC 反弹碰撞台边AD 后,再击中Q 球,该如何撞击呢?(画出图形)B。
最新人教版初中八年级上册数学《课题学习最短路径问题》精品教案
13.4 课题学习最短路径问题【知识与技能】1.了解最短路径问题.2.掌握解决最短路径问题的方法.【过程与方法】通过解决最短路径问题的过程培养学生分析问题的能力.【情感态度】通过对最短路径问题的学习,增强应用数学知识解决实际问题的信心.【教学重点】解决最短路径问题.【教学难点】最短路径的选择.一、情景导入,初步认识问题1 如图,牧马人从A地出发,到一条笔直的河边l饮马,然后到B地.牧马人到河边的什么地方饮马,可使所走的路径最短?问题2 如图,A和B两地在一条河的两岸,现要在河上造一座桥MN.桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直.)【教学说明】(1)C为直线l上的一个动点,那么,上面的问题可以转化为:当点C在l的什么位置时,AC与CB的和最小.作出点B关于l的对称点B′,连接AB′,线段AB′与直线l的交点C的位置即为所求.(2)N为直线b上的一个动点,MN垂直于直线b,交直线a于点M,这样,上面的问题可以转化为下面的问题:当点N在直线b的什么位置时,AM+MN+NB最小?将AM沿与河岸垂直方向平移,移动距离为河宽,则A点移到A′点,连接A′B,线段A′B与直线b的交点N的位置即为所求,即在点N处造桥MN.教师讲课前,先让学生完成“自主预习”.二、思考探究,获取新知例要在燃气管道l上修建一个泵站,分别向A、B两镇供气,泵站修在管道的什么地方,可使所用的输气管道最短?【分析】本问题就是要在l上找一点C,使AC与CB的和最小.设B′是B关于直线l的对称点,本问题也就是要使AC与CB′的和最小.在连接AB′的线中,线段AB′最短.因此,线段AB′与直线l的交点C的位置即为所求.【教学说明】解决最短路径问题通常运用的知识有“过直线作已知点的对称点”,“两点的所有连线中,线段最短”等.三、师生互动,课堂小结这节课主要学习了最短路径问题,让学生相互交流体会与收获,并总结本课所学知识.完成练习册中本课时的练习.本课时教学时要尽量创设与学生生活环境、知识背景相关的教学情境,以生动活泼的形式呈现有关内容,教学时,根据本课内容特点,可依据其学科知识间联系调动课堂气氛,培养学生学习兴趣.非常感谢!您浏览到此文档。
课题学习 最短路径问题 导学案(带习题和答案)
13.4课题学习-最短路径问题【学习目标】1.掌握利用轴对称解决简单的最短路径问题。
2.理解图形的变化在解决最值问题中的作用,感悟转化思想。
3.通过对这个实际问题的解决,体会数学的应用价值。
【课前预习】1.平面直角坐标系xOy 中,已知A(-1-0)-B(3-0)-C(0--1)三点,D(1-m)是一个动点,当△ACD 的周长最小时,则△ABD 的面积为( -A .B .23C .43D .832.A-B 是直线l 上的两点,P 是直线l 上的任意一点,要使PA+PB 的值最小,那么点P 的位置应在( ) A .线段AB 上 B .线段AB 的延长线上 C .线段AB 的反向延长线上 D .直线l 上3.x 是数轴上任意一点表示的数,若|x ﹣3|+|x+2|的值最小,则x 的取值范围是( ) A .x≥3B .x≤﹣2C .﹣2≤x≤3D .﹣2<x <34.下列四种说法:①线段AB 是点A 与点B 之间的距离;②射线AB 与射线BA 表示同一条射线;③两点确定一条直线;④两点之间线段最短.其中正确的个数是 ( ) A .1个 B .2个 C .3个 D .4个5.如图,牧童在A 处放牛,其家在B 处,A 、B 到河岸的距离分别为AC 和BD ,且AC=BD ,若点A 到河岸CD 的中点的距离为500米,则牧童从A 处把牛牵到河边饮水再回家,最短距离是( ) A .750米B .1000米C .1500米D .2000米6.在等腰-ABC 中,AB=AC-一腰上的中线BD 将这个三角形的周长分为15和12两部分,则这个等腰三角形的底边长31为--A.7B.7或11C.11D.7或107.如图-点P是直线a外一点-PB⊥a-点A-B-C-D都在直线a上-下列线段中最短的是( )A.PA B.PB C.PC D.PD8.如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是y轴上的一个动点,且A、B、C三点不在同一条直线上,当△ABC的周长最小时,点C的坐标是A.(0,0)B.(0,1)C.(0,2)D.(0,3)9.如图,在-ABC中,-ACB=90°,以AC为底边在-ABC外作等腰-ACD,过点D作-ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,-ABC的周长为30,点P是直线DE上的一个动点,则-PBC周长的最小值为()A.15B.17C.18D.2010.如图,等边△ABC的边长为4-AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为- -A.15°B.22.5°C.30°D.45°【学习探究】自主学习阅读课本,完成下列问题1.举出常见的轴对称图形:_____(至少写三个)。
13.4课题学习-最短路径问题 教案 2022-2023学年度人教版八年级数学上册
13.4课题学习-最短路径问题教案一、教学目标1.了解最短路径问题的基本概念和特点;2.掌握最短路径问题相关的算法和求解方法;3.能够灵活运用最短路径问题的算法解决实际问题。
二、教学重点1.最短路径问题的基本概念和特点;2.最短路径问题的相关算法和求解方法。
三、教学难点能够灵活运用最短路径问题的算法解决实际问题。
四、教学内容1. 最短路径问题的概念和特点最短路径问题是图论中的一个经典问题,主要是求解两点之间经过路径长度最短的问题。
最短路径问题的特点有:•可以用图来表示,顶点表示路径的起点和终点,边表示路径;•可以是有向图或无向图;•边上可以有权值,表示路径长度。
2. 最短路径问题的相关算法和求解方法最短路径问题有多种求解方法和算法,常用的有以下几种:2.1. 迪杰斯特拉算法迪杰斯特拉算法是一种用于求解单源最短路径问题的算法。
它的基本思想是从起点开始,逐步扩展最短路径,直到到达终点。
迪杰斯特拉算法的步骤如下:1.初始化起点到各个顶点的最短距离,起点到起点的最短距离为0,其他顶点的最短距离为无穷大;2.选择一个未访问且距离起点最近的顶点,标记为已访问;3.更新当前顶点的邻居顶点的最短距离,如果经过当前顶点到达邻居顶点的距离小于邻居顶点当前的最短距离,则更新最短距离;4.重复步骤2和步骤3,直到所有顶点都被访问。
2.2. 弗洛伊德算法弗洛伊德算法是一种用于求解多源最短路径问题的算法。
它的基本思想是通过计算任意两个顶点之间的最短路径,来得到整个图的最短路径。
弗洛伊德算法的步骤如下:1.初始化距离矩阵,如果两个顶点之间存在边,则距离为边的权值,否则距离为无穷大;2.对于每个顶点对(i, j),尝试经过某个中间顶点k来更新距离,如果从i到j的距离大于从i到k再到j的距离,则更新距离;3.重复步骤2,直到所有顶点对的最短路径都被计算。
2.3. 贝尔曼-福特算法贝尔曼-福特算法是一种用于求解单源最短路径问题的算法。
人教版-数学-八年级上册-册13.4 课题学习 最短路径问题 精品导学案
备课班级八年级上课时间执教人课题:13.4 课题学习最短路径问题教学设计课标要求教学目标知识与技能利用轴对称解决两点之间最短路径问题过程与方法通过问题解决培养学生转化问题能力情感价值观数学来源实际服务生活,培养数学学习兴趣重点难点重点利用轴对称解决两点之间最短路径问题难点如何把问题转化为“两点之间,线段最短”教法指导创设情境-主体探究-合作交流-应用提高学法指导教具准备多媒体课件教学过程提要环节教师活动学生活动备注引入新课1、在平面内连接两点的所有线中线段最短。
2、什么是两点之间的距离?教学过程直线异侧两点最短路径已知点A、B分别是直线l异侧的两点,如何在l上找到一个点,使得这个点到A、B两点的距离和最短?直线同侧两点最短路径如图,牧童在A处放马,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把马牵到河边饮水再回家,最短距离是多少米教学过程如图,∠XOY内有一点P,在射线OX上找出一点M,在射线OY上找出一点N,使PM+MN+NP 最短.如图,正方形ABCD,AB边上有一点E,AE=3,EB=1,在AC上有一点P,使EP+BP为最短.求:最短距离EP+BP.练习设计如图,村庄A、B位于一条小河的两侧,若河岸a、b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?小结利用轴对称解决两点之间最短路径问题板书设计作业设计P93页:第15题教学反思。
课题学习】 最短路径问题导学案
13.4课题学习 最短路径问题班级_____________ 姓名_____________ 座号_____________【学习目标】1.重点:利用轴对称、两点之间线段最短解决最短路径问题.2.难点:探索发现“最短路径”的方案,确定最短路径的作图并能说明理由.一、基础感知1.如图,连接A 、B 两点的所有连线中,哪条最短?为什么?2.如图,如何作点A 关于直线l 的对称点?3.已知:如图,A ,B 在直线l 的两侧,在l 上求一点P ,使得PA+PB 最小.4.阅读课本第85、86页问题1,回答下列问题。
探究:在一条直线上找一个点到直线外两点的距离之和最小问题1: 点A,B 分别是直线l 异侧的两个点,如何在l 上找到一个点,使得这个点到点A ,点B 的距离的和最短?问题2: 当点A,B 分别是直线l 同侧的两个点,如何在l 上找到一个点,使得这个点到点A ,点B 的距离的和最短?要点归纳:(1)作点B 关于直线l 的对称点B ′;(2)连接AB ′,与直线l 相交于点C . 则点C 即为所求.如图所示 你能用所学的知识证明你所作的点C 使AC+BC 最短吗?证明:5.阅读课本第86、87页问题2,回答下列问题。
画一画:(1)把A 平移到岸边.(2)把B 平移到岸边.(3)把桥平移到和A 相连(4)把桥平移到和B 相连.比一比:(1)(2)(3)(4)中,哪种作法使得AM+MN+BN 最短?要点归纳:如图,平移A 到A 1,使AA 1等于河宽,连接A 1B 交河岸于N 作桥MN ,此时路径AM+MN+BN 最短.证明:另任作桥M 1N 1,连接AM 1,BN 1,A 1N 1.二、探究应用1. 如图,小河边有两个村庄A 、B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂?(2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?(保留作图痕迹,不写作法) l AB2.如图所示,P ,Q 为△ABC 边上的两个定点,在BC 上求作一点R ,使△PQR 的周长最小.三、能力提升 1.(1)如图1,在AB 直线一侧C 、D 两点,在AB 上找一点P ,使C 、D 、P 三点组成的三角形的周长最短,找出此点.(2)如图2,在∠AOB 内部有一点P ,是否在OA 、OB 上分别存在点E 、F ,使得E 、F 、P 三点组成的三角形的周长最短,找出E 、F 两点.(3)如图3,在∠AOB 内部有两点M 、N ,是否在OA 、OB 上分别存在点E 、F ,使得E 、F 、M 、N ,四点组成的四边形的周长最短,找出E 、F 两点.【课堂记录】【知识点记录】【习题记录】E FAB答案一、1.②2.3.略4.问题1:连接AB问题2:(1)作点B 关于直线l 的对称点B′;(2)连接AB′,与直线l 相交于点C.则点C 即为所求.如图所示证明:在直线上另外任取一点C’,连接AC’,BC’,B’C’,证明AC+CB<AC’+C’B.5.略二、1.(1)欲求到A、B两地的距离相等,即作出AB的中垂线与EF的交点M即可,交点即为厂址所在位置.(2)利用轴对称求最短路线的方法得出A点关于直线EF的对称点A′,再连接A′B交EF于点N,即可得出答案.2.做P(或Q)关于BC的对称点P'(或Q'),然后再连接QP'(或PQ'),与BC的焦点即为所求R三、解:(1)如图1,作C关于直线AB的对称点C′,连接C′D交AB于点P.则点P就是所要求作的点.理由:在l上取不同于P的点P′,连接CP′、DP′.∵C和C′关于直线l对称,∴PC=PC′,P′C=P′C′,而C′P+DP<C′P′+DP′,∴PC+DP<CP′+DP′∴CD+CP+DP<CD+CP′+DP′即△CDP周长小于△CDP′周长;(2)如图2,作P关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,∵PE+EF+PF=CE+EF+DF,PE′+PF′+E′F′=CE′+E′F′+DE′,∴CE+EF+DF<CE′+E′F′+DF′,′∴PE+EF+PF<PE′+PF′+E′F′;(3)如图3,作M关于OA的对称点C,关于OB的对称点D,连接CD,交OA于E,OB于F,则点E,F就是所要求作的点.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.。
人教版八年级上册数学13.4课题学习最短路径问题优秀教学案例
(三)情感态度与价值观
1.让学生在解决实际问题的过程中,体验数学的乐趣,提高学生学习数学的兴趣。
2.培养学生面对困难时积极思考、勇于挑战的精神,增强学生的自信心。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识和社会责任感。
三、教学重难点
2.跨学科教学:结合其他学科的知识,如地理、信息技术等,拓宽学生的知识视野,培养学生的综合能力。
六、教学资源
1.教材:人教版八年级上册数学教材。
2.辅助材料:相关的最短路径问题的案例、练习题和拓展问题。
3.现代教育技术:多媒体课件、网络资源等。
七、教学评价
1.学生评价:通过学生的课堂表现、作业完成情况和练习成绩等方面进行评价。
(二)讲授新知
在导入新课后,我会开始讲解最短路径问题的相关知识。首先,我会向学生们介绍最短路径问题的定义,让学生们明白什么是最短路径。接着,我会讲解解决最短路径问题的基本方法,如坐标系法、函数法等。在讲解的过程中,我会结合具体的例子,让学生们更直观地理解这些方法。
(三)学生小组讨论
在讲授完新知识后,我会让学生们进行小组讨论。我会给每个小组提供一个实际问题,让他们运用所学知识,合作解决这个最短路径问题。这样的讨论,可以培养学生的团队合作精神,也可以让学生们在实践中加深对知识的理解和应用。
3.互动评价:小组之间进行互动评价,相互学习和提高。
(四)反思与评价
1.自我反思:引导学生对自己的学习过程进行反思,发现自身的优点和不足,制定改进措施。
2.同伴评价:学生之间相互评价,给予意见和建议,促进共同进步。
3.教师评价:教师对学生的学习情况进行评价,关注学生的个体差异,给予鼓励和指导。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
L
A
B
L
A
B
A
O
B
P
第十三章轴对称
13.4 课题学习最短路径问题
一.学习目的
1.掌握利用轴对称,平移等变化把问题转化为易解决的问题。
2.在解决问题中培养学生转化思想和数形结合思想。
3.数学来源于实际服务于生活,激发数学学习兴趣。
二.学习重难点
用对称作法确定最短距离。
三.学习过程
第一课时最短路程
(一)构建新知
1.阅读教材85~87页
(1)如图,已知直线L的两侧有两村庄A、B,
若要在L上找一点到两村庄的路程最短,应怎样选址?
(2)如图,已知直线L的同侧有两村庄A、B。
①若要在L上找一点到两村庄的路程
相等,应怎样选址?
②若要在L上找一点到两村庄的路程
最短,应怎样选址?
(3)造桥选址问题:如图,A、B两地在綦河的两岸,现要在河上造一座桥MN,桥造在何处可使从A到B的路径AMNB最短?(假定河的两岸是平行的直线,桥要与河垂直。
)
(二)合作学习
1.如图,点P在∠AOB内部,问如何在射线OA、O B上
分别找点C、D,使PC+CD+DP之和最小。
x
y
–1
–2
–3123
–1
–2
1
2
3
4
O
A
B
N
M
A
B
C
D
x
y
–1
–21234
–1
–2
1
2
O
B
E
F
A
C
A
B C
M
N
(三)课堂检查
1如图,在平面直角坐标系中,已知点A(2,3),点
B(-2,1),在x轴上存在点P到A,B两点的距离
之和最小,则P点的坐标是_______。
2.如图,在正方形ABC D中,点E
是BC上的一定点,点P是BD上的
一动点,要使PE+PC的值最小,
P应在BD的什么位置?
3.如图,已知菱形ABCD,M、N分别为AB、BC边
的中点,P为对角线AC上的一动点,要使 PM+PN的值最小,
试确定点P的位置。
4.如图,在△AB C中,M是边AB上的点,N是边BC上的
一点,在边AC上找一点P,使MN+PN的值最小。
5.如图,以矩形OABC的顶点,OA所在的直线
为x轴,OC所在的直线为y轴,建立平面直角坐
标系,已知OA=4,OC=2,点E、F分别是边AB、BC
的中点,在x轴、y轴上存在点N、M,使得四边
形MNEF的周长最小。
这是N,M的坐标是____________和
(四)学习评价
(五)课后练习
1.学习指要42~43页
教学反思
在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
所以在学习上级的精神下,本期个人的研修经历如下:
1.自主学习:我积极参加网课和网上直播课程.认真完成网课要求的各项工作.教师根据自己的专业发展阶段和自身面临的专业发展问题,自主选择和确定学习书目和学习内容,认真阅读,记好读书笔记;学校每学期要向教师推荐学习书目或文章,组织教师在自学的基础上开展交流研讨,分享提高。
2.观摩研讨:以年级组、教研组为单位,围绕一定的主题,定期组织教学观摩,开展以课例为载体的“说、做、评”系列校本研修活动。
3.师徒结对:充分挖掘本校优秀教师的示范和带动作用,发挥学校名师工作室的作用,加快新教师、年轻教师向合格教师和骨干教师转化的步伐。
4.实践反思:倡导反思性教学和教育叙事研究,引导教师定期撰写教学反思、教育叙事研究报告,并通过组织论坛、优秀案例评选等活动,分享教育智慧,提升教育境界。
5.课题研究:立足自身发展实际,学校和骨干教师积极申报和参与各级教育科研课题的研究工作,认真落实研究过程,定期总结和交流阶段性研究成果,及时把研究成果转化为教师的教育教学实践,促进教育质量的提高和教师自身的成长。
6.专题讲座:结合教育教学改革的热点问题,针对学校发展中存在的共性问题和方向性问题,进行专题理论讲座。
7.校干引领:从学校领导开始,带头出示公开课、研讨课,参与本校的教学观摩活动,进行教学指导和引领。
8.网络研修:充分发挥现代信息技术,特别是网络技术的独特优势,借助教师教育博客等平台,促进自我反思、同伴互助和专家引领活动的深入、广泛开展。
我们认识到:一个学校的发展,将取决于教师观念的更新,人才的发挥和校本培训功能的提升。
多年来,我们学校始终坚持以全体师生的共同发展为本,走“科研兴校”的道路,坚持把校本培训作为推动学校建设和发展的重要力量,进而使整个学校的教育教学全面、持续、健康发展。
反思本学期的工作,还存在不少问题。
很多工作在程序上、形式上都做到了,但是如何把工作做细、做好,使之的目的性更加明确,是继续努力的方向。
另外,我校的研修工作压力较大,各学科缺少领头羊、研修氛围有待加强、师资缺乏等各类问题摆在我们面前。
缺乏专业人员的引领,各方面的工作开展得还不够规范。
相信随着课程改革的深入开展,在市教育教学研究院的领导和专家的亲临指导下,我校校本研修工作一定能得以规范而全面地展开。
“校本研修”这种可持续的、开放式的继续教育模式,一定能使我校的教育教学工作又上一个台阶。
为了更好地开展以后的工作,现就以下方面做如下总结:
一、不断提高业务水平
我树立优良学风,刻苦钻研业务,不断学习新知识,探索教育教学新规律。
钻研教材,写好每一个教案,上好每一堂课,多听同组同事的课,多学习别人的优点和长处。
另外,为业余时间多学习信息技术,适应现代教学的要求。
二、不断加强学习
只有学习,才能不断进步和成长,让学习成为提高自己的渠道,让学习成为我一生的精神财富,做一名学习型教师。
所以,我就多读书,多学习,多写读书笔记。
三、学习运用科学的教育教学模式
在课改的课堂教学中,不断探索适合学生愉悦学习的好的教学模式,向同组的老师学习先进教学方法。
尤其在阅读教学中,我注意学习其他老师的先进经验,让学生在朗读中感悟,提高阅读能力。
、培养学生课堂上会静下心来思考的能力。
有些同学的特点是比较浮躁,在问题面前不知从哪儿下手回答,甚至没有读清问题的要求,就开始回答。
这学期我在课堂上引导学生在这方面有所提高。
、善于总结自己在教育教学中的点点滴滴,严以律己,从小事做起,当学生的表率。
从小事中总结大道理,不断改进自己的教育方式。
四、积极参加上级领导组织的各项教育教学学习活动,提高自己的教研能力。
积极订阅教育教学有帮助的刊物,学习其中先进的教育教学经验,不断提高自己的教育教学水平。
、在课改中,多和同组的老师一起备课,一起商量课堂中出现的问题。
尤其在阅读教学中,多向有经验的老师请教,在课堂中怎样激发学生的阅读兴趣,怎样培养学生探究性的阅读能力,最后提高学生的写作水平。
五、勤思考,多动笔
每周坚持写教学心得;可以是备课心得,也可以是教学体会,可以写课堂教学方法实施体会,也可以反思上节课存在的问题,然后找出好的方法解决它。
善于积累总结教育教学中和班级管理中的一些典型的事情。
从这些事情中,不断反思自己的教育教学行为,对于好的做法积累经验,对于不好的做法及时反思及时改正。
以此提高自己的教育教学水平。
在以后的研修中,我会继续努力学习,让我把一生矢志教育的心愿化为热爱学生的一团火,将自己最珍贵的爱奉献给孩子们,相信今日含苞欲放的花蕾,明日一定能盛开绚丽的鲜花。
相信在我的教学生涯中一定能更上一层楼。