通信原理第二章课后答案
通信原理(陈启兴版) 第2章作业和思考题参考答案
D[Y ] E[Y 2 ] E 2 [Y ] E[36 X 2 60 X 25] 25 36 E[ X 2 ] 36 D[ X ] E 2 [ X ] 36(1 0) 36
随机变量 Y 的概率密度为
( y 5)2 ( y 5) 2 1 1 f ( y) exp exp 72 2 36 2 36 6 2
2-7 随机过程 X(t) = X 1 sin(ωt) – X2 cos(ωt),其中,X 1 和 X 2 都是均值为 0,方差为 σ2 的彼此独立 的高斯随机变量,试求:随机过程 X(t)的均值、方差、一维概率密度函数和自相关函数。 解 随机过程 X(t)的均值为
E[ X (t )] E[ X1 sin(ωt ) X 2 cos(ωt )] sin(ωt )E[ X1 ] cos(ωt )E[ X 2 ] 0
jY () Y ( ) X ()
两边取付立叶变换,得到
此系统的传输函数为
H ( )
此系统的脉冲响应函数为
j
t 0 t0
e t h(t ) F 1 H ( ) 0
输出过程的均值为
mY mX h(t )dt 0
随机过程 X(t)的自相关函数为
R(t1 , t2 ) E[ X (t1 ) X (t2 )]
E X 1 sin(ωt1 ) X 2 cos(ωt1 ) X 1 sin(ωt2 ) X 2 cos(ωt2 )
2 2 E X 1 sin(ωt1 ) sin(ωt2 ) X 2 cos(ωt1 ) cos(ωt2 ) X 1 X 2 sin(ωt1 ωt2 )
通信原理(第六版)习题答案
通信原理(第六版)课后答案通信原理第六版(樊昌信曹丽娜著)国防工业出版社课后答案 第一章绪论1-1设英文字母盘出現的概卒药0.105, I 出璇的槪率为0.a02t 试求迓和JT 的信息昼°解:厶=log 2 — = log1-2皐信息源的符号集由Z2D 和E 组咸,设每一符号■独立出现,其出现槪率分别为1炸 1朋・1.岛3/lGi 5/15.徐亲该信息源符号的平均信息壘。
解=平均信息量 疋=Pgbj 恥Ji-LI . 1 V 1 k 1 3 , 3 5 . 5一才叫厂冠吨迈飞呃乔护喝忆 二2.2咖/棉门设駆个消息乩氐C. D 分别以概率lf4、1他1区 ⑴传送 斑一消息的出现是相 互独立的,试计算其平均信息量.M —个由字母直pep 组咸的字,对于告输的每一字囹用二进制眛冲编码,00代替每01 代清即U 代替匚11代替D ,每个脉冲宽度丸%弘⑴不同的宇毎等可能蜩时.试计算传輸的平均信息速率; ⑵ 若霉个字囹出现的等可能性另别光甩=1/5耳=1曲用尸1地山3/10,试计聲传需的平均信 息Jt 率-解;平均信息量用二—£ FUJI 躍」P 〔Gj-10.002解;(1)因一b字母衬翻个二ffi制圖中「属于四进41符号,故一b字母的持剜间为25, 传達宇母的符吕頑率为=1005&4 = ------------ 7聃2x5xl0-3等概时,平均信息速率尽=弘logs 4 = 200^/B ⑵每个符号平均信息量为H= 一工目leg 2 =-丄bg Q 丄1。
呂 2 丄一丄1笔」 --- l og 了——h 5 5 4 2 4 4 S 10 a10-1985边库f号平均信息速率R t=理斗月=100x1.985 = 198.5&/ff1-5国磅尔斯电码用点和划的序列发遊英文字母,划用持续3单位的电臟沖表示,虽用持续1个劉i的电瞒冲表示且到出现的概率是点t±®的概率的1心⑴求点和划的信息墨(刀求点和划的平均信息量-解:⑴由已知条件划出现的概率是点出现的概率的1/3,即PT3巳且P卄Pi所以卩产14 PTA '划的信息量几=-1唱卜加点的信息量厶二-1隅肓=0⑷気左N 1⑵平均信息量/f = -x0.415 + -x2 = 0.81加/符号皿某离散信I.W出忌尬…唧个不同的符号符号遠率为24D逻其中4个符号出现概率为尸财"⑹"MP 兔)=1他利无)="4具余符号等概出BL⑴求该信息源的平均信息率i⑵求传逆“的信息量◎ 解(1由已知条件得巩心)■户(忑訂■用(衍)■刀(花)■—僖耳源航:用(兀)一迟戸(吗)呱尸3” -“丄叱拮!□1D-2.87了加“符号则信忌源的平均信M連率为尺# = x H =2400 x 2. £75 = d?0O bit / $ ⑵舱1血的传亘量酋:f =『X/?』■ 3(500 y tS90D = 2.434 xlO7^1-7设某信息-源以每秒2000个符号的速率发送消息信息源由ARGDE五个信息符号组成发送盘的慨率为12发送其余符号的概率相同,且设每一符号出现是相互独立的。
通信原理第二版课后答案
通信原理第二版课后答案通信原理是现代通信工程中的基础课程,对于学习者来说,深入理解课程内容并能够熟练掌握相关知识点至关重要。
因此,课后答案的准确性和全面性对于学生来说显得尤为重要。
下面将针对通信原理第二版课后答案进行详细解析,希望能够帮助学习者更好地掌握相关知识。
第一章信号与系统。
1. 什么是信号的能量和功率?能量信号和功率信号有什么区别?答,信号的能量和功率是描述信号特性的重要参数。
信号的能量可以通过对信号的幅度平方进行积分求得,而功率则是信号的能量在单位时间内的平均值。
能量信号是指信号的能量有限,而功率信号是指信号的功率有限。
在时域上,能量信号的幅度随时间趋于零,而功率信号的幅度在某一范围内变化。
2. 什么是线性时不变系统?线性时不变系统的特点是什么?答,线性时不变系统是指系统具有线性和时不变两个特性。
线性性质体现在系统的输入与输出之间满足叠加和缩放的关系,即输入信号的线性组合对应于输出信号的线性组合;时不变性质则表示系统的性质不随时间的变化而变化。
线性时不变系统具有稳定性、可预测性和易分析性等特点。
第二章传输系统。
1. 请简要介绍数字传输系统的基本原理。
答,数字传输系统是指利用数字信号进行信息传输的系统。
其基本原理是将模拟信号经过采样、量化和编码等过程转换为数字信号,然后通过传输介质进行传输,最后再经过解码、重构等步骤将数字信号恢复为模拟信号。
数字传输系统具有抗干扰能力强、传输质量稳定等优点。
2. 什么是调制?调制的作用是什么?答,调制是指将要传输的数字信号通过改变载波的某些参数来实现信号的传输过程。
调制的作用是将低频信号调制到高频载波上,以便在传输过程中能够更好地适应传输介质的特性。
调制技术有助于提高信号的传输距离和传输速率,同时也能够提高信号的抗干扰能力。
第三章数字通信系统。
1. 请简要介绍数字通信系统的工作原理。
答,数字通信系统是指利用数字信号进行信息传输的系统。
其工作原理是将要传输的信息经过采样、量化、编码等步骤转换为数字信号,然后通过调制技术将数字信号调制到载波上进行传输,最后再经过解调、解码等步骤将数字信号恢复为原始信息。
现代通信原理课后习题答案
现代通信原理课后习题答案第⼆章2.40 ⼆进制对称信道中的误⽐特率P e为0.2,若输⼊信道的符号速率为2000符号/s,求该信道的信道容量。
解:2000×(1-0.2)=1600 (b/s)2.41 已知某语⾳信道带宽为4kHz,若接收端的信噪⽐S/N =60dB,求信道容量。
若要求该信道传输56000b/s的数据,则接收端的信噪⽐最⼩应为多少?解:dB=10 lgN 60 = 10 lg S/N →S/N = 106C = wlog2 (1+S/N)=4×103log2(1+106) = 8 × 104 (bps)5.6 × 104 = 4 × 103log2(1+S/N)log2(1+S/N) = 14 → 1+S/N = 214→S/N = 214-12.42 若⿊⽩电视机的每幅图像含有3×105个像素,每个像素都有16个等概率出现的亮度等级,如果信道的输出信噪⽐为S/N = 40dB、信道带宽为1.4MHz,则该信道每秒可传送多少幅图像?解:每幅图的信息量:3×105×log216 = 1.2×106(b)40dB = 10log2 S/N →S/N = 104C = wlog2(1 + S/N)= 1.4×106log2(1+104)≈1.862×107(bps)1.862×107/1.2×106 = 15.5 (幅/s)第三章3.50 ⽤10KHz的单频正弦信号对1MHz的载波进⾏调制,峰值频偏为2KHz。
试求:(1)该调频信号的带宽。
(2)若调制信号的幅度加倍,再求该调频信号的带宽。
解:(1)B FM = 2 × ( 2+10 ) = 24 ( KHz)(2)B FM = 2 ×(2 + 2×10)= 44 (KHz)3.51 幅度1V的10MHz载波受到幅度1V、频率为100Hz的正弦信号调制,最⼤频偏为500Hz。
《通信原理》樊昌信课后习题答案及解析
习题解答《通信原理教程》樊昌信第一章 概论某个信息源由A 、B 、C 、D 等4个符号组成。
这些符号分别用二进制码组00、01、10、11表示。
若每个二进制码元用宽度为5ms 的脉冲传输,试分别求出在下列条件下的平均信息速率。
(1) 这4个符号等概率出现;(2) 这4个符号出现的概率分别为1/4、1/4、3/16、5/16。
解: 每秒可传输的二进制位为:()20010513=⨯÷-每个符号需要2位二进制,故每秒可传输的符号数为:1002200=÷·(1) 4个符号等概率出现时每个符号包含的平均信息量为:bit 24log 2=故平均信息速率为:s b R b /2002100=⨯=(2)每个符号包含的平均信息量为:bit 977.11651log 1651631log 163411log 41411log 412222=+++故平均信息速率为: s b R b /7.197977.1100=⨯=设一个信号源输出四进制等概率信号,其码元宽度为125s μ。
试求码元速率和信息速率。
】解:码元速率为:()baud R B 80001012516=⨯÷=- 信息速率为:s kb R R B b /16280004log 2=⨯==第二章 信号设一个随机过程X (t )可以表示成:()()∞<<∞-+=t t t X θπ2cos 2其中θ在(0,2π)之间服从均匀分布,判断它是功率信号还是能量信号并求出其功率谱密度或能量谱密度。
·解:它的能量无限,功率有界,所以是一个功率信号。
`()[]()[]()()()πτθπτθππτπθπθπτπθπππ2cos 4224cos 2cos 22122cos 22cos 22020=+++=•+++=⎰⎰d t d t t由维纳-辛钦关系有:()()ττωωτd e R P j X -+∞∞-⎰=()()[]πωδπωδπ222++-=设有一信号可表示为:()()⎩⎨⎧>≥-=000exp 4t t t t x~试问它是功率信号还是能量信号并求出其功率谱密度或能量谱密度。
通信原理课后答案第二章
−∞ < t < ∞ ,判断它是
功率信号还是能量信号?并求出功率谱密度或能量谱密度。 ( θ 是一个随机变量,且在 0 ∼ 2π 内均匀分布) 解:这是一个周期信号,时间取值无限,所以是一个功率信号,有功率谱密度。 要求随机过程的功率谱密度, 可以由自相关函数的傅立叶变换而求得, 但首先得证明这 是一个广义平稳的随机过程。
图略 (2) X (t ) 的功率谱密度 PX ( f ) 为自相关函数 RX (τ ) 的傅立叶变换:
+∞
PX ( w) =
−∞
∫R
X
(τ )e − jwτ dτ
w + w0 w − w0 1 = [ Sa 2 ( ) + Sa 2 ( )] 4 2 2
功率为自相关函数的零点值: P = RX (0) = 2.10 已知一噪声 n(t ) 的自相关函数为: Rn (τ ) = (1)试求其功率谱密度 Pn ( f ) 和功率 P; (2)试画出 Rn (τ ) 和 Pn ( f ) 的曲线。 解: (1)功率谱密度 Pn ( f ) 为自相关函数的傅立叶变换:
2
E[ x(t )] = E[ x1 cos 2π t − x2 sin 2π t ] = cos 2π t ⋅ E[ x1 ] − sin 2π t ⋅ E[ x2 ] =0
E[ x 2 (t )] = E[ x12 cos 2 2π t + x2 2 sin 2 2π t − 2 x1 x2 sin 2π t cos 2π t ] = cos 2 2π t ⋅ E[ x12 ] + sin 2 2π t ⋅ E[ x2 2 ] =σ2
通信原理第二章(信道)习题及其答案
第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。
试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。
【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。
根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。
【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。
试确定信号()s t 通过该信道后的输出表达式并讨论之。
【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。
其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。
现代通信原理答案WORD版( 罗新民)指导书 第二章 确定信号分析 习题详解
第二章 确定信号分析2-1图E2.1中给出了三种函数。
图 E2.1①证明这些函数在区间(-4,4)内是相互正交的。
②求相应的标准正交函数集。
③用(2)中的标准正交函数集将下面的波形展开为标准正交级数:⎩⎨⎧≤≤=为其它值t t t s ,040,1)(④利用下式计算(3)中展开的标准正交级数的均方误差: ⎰∑-=-=44231])()([dt t u a t s k k k ε⑤对下面的波形重复(3)和(4):⎪⎩⎪⎨⎧≤≤-=为其它值t t t t s ,044),41cos()(π ⑥图E2.1中所示的三种标准正交函数是否组成了完备正交集?解:①证明:由正交的定义分别计算,得到12()()0u t u t dt +∞-∞⋅=⎰,23()()0u t u t dt +∞-∞⋅=⎰,31()()0u t u t dt +∞-∞⋅=⎰,得证。
②解:424()8,k C u t dt k -== =1,2,3⎰,对应标准正交函数应为()(),1,2,3k k q t t k ==因此标准正交函数集为123123{(),(),()}(),()()}q t q t q t t t t =③解:用标准正交函数集展开的系数为4()(),1,2,3k k a s t q t dt k =⋅ =⎰,由此可以得到4110()()a s t t dt ===⎰4220()()a s t t dt ===⎰4330()()0a s t t dt ==⎰。
所以,121211()()()()()22s t t t u t u t ==-④解:先计算得到312111()()()()()()022k k k t s t a u t s t u t u t ε==-=-+=∑ ⑤解:用标准正交集展开的系数分别为441141()())04a s t t dt t dt π--===⎰⎰,44224011()()cos()cos()044a s t t dt t dt t dt ππ--==-=⎰⎰⎰,433422442()()111cos()))444a s t t dtt dt t dt t dt ππππ----= =-+- =⎰⎰⎰⎰。
通信原理第二章(信道)习题及其答案
第二章(信道)习题及其答案【题2-1】设一恒参信道的幅频特性和相频特性分别为0()()d H K t ωϕωω⎧=⎨=-⎩其中,0,d K t 都是常数。
试确定信号()s t 通过该信道后的输出信号的时域表达式,并讨论之。
【答案2-1】 恒参信道的传输函数为:()0()()d j t j H H e K e ωϕωωω-==,根据傅立叶变换可得冲激响应为:0()()d h t K t t σ=-。
根据0()()()i V t V t h t =*可得出输出信号的时域表达式:000()()()()()()d d s t s t h t s t K t t K s t t δ=*=*-=-讨论:题中条件满足理想信道(信号通过无畸变)的条件:()d d H ωωφωωτττ⎧=⎨⎩常数()=-或= 所以信号在传输过程中不会失真。
【题2-2】设某恒参信道的幅频特性为[]0()1cos d j t H T e ωω-=+,其中d t 为常数。
试确定信号()s t 通过该信道后的输出表达式并讨论之。
【答案2-2】 该恒参信道的传输函数为()0()()(1cos )d j t j H H e T e ωϕωωωω-==+,根据傅立叶变换可得冲激响应为:0011()()()()22d d d h t t t t t T t t T δδδ=-+--+-+根据0()()()i V t V t h t =⊗可得出输出信号的时域表达式:0000011()()()()()()()2211 ()()()22d d d d d d s t s t h t s t t t t t T t t T s t t s t t T s t t T δδδ⎡⎤=⊗=⊗-+--+-+⎢⎥⎣⎦=-+--+-+讨论:和理想信道的传输特性相比较可知,该恒参信道的幅频特性0()(1cos )H T ωω=+不为常数,所以输出信号存在幅频畸变。
其相频特性()d t ϕωω=-是频率ω的线性函数,所以输出信号不存在相频畸变。
通信原理教程第三版课后答案
通信原理教程第三版课后答案通信原理是电子信息类专业的重要基础课程,它主要介绍了通信系统的基本原理和技术。
通过学习通信原理,可以帮助学生掌握数字通信系统的基本原理、基本技术和基本方法,为进一步学习和研究通信系统的高级课程奠定基础。
《通信原理教程第三版》是一本权威的教材,它系统地介绍了通信原理的基本概念、基本原理和基本技术,是学习通信原理的重要参考书。
本文将针对《通信原理教程第三版》中的课后习题进行详细解答,希望可以帮助学生更好地理解和掌握通信原理的相关知识。
1. 第一章信号与系统基础。
1.1 信号的分类。
答,根据信号的时域特性,可以将信号分为连续时间信号和离散时间信号两类。
其中,连续时间信号是定义在连续时间上的信号,而离散时间信号是定义在离散时间上的信号。
根据信号的周期性,可以将信号分为周期信号和非周期信号两类。
周期信号在一定时间间隔内具有重复的特性,而非周期信号则没有这样的特性。
1.2 系统的概念。
答,系统是指对一组输入信号进行某种变换,得到一组输出信号的过程。
系统可以分为线性系统和非线性系统、时不变系统和时变系统、因果系统和非因果系统等不同类型。
其中,线性系统具有叠加性和齐次性两个基本特性,时不变系统的输出不随时间的变化而变化,因果系统的输出只依赖于当前和过去的输入。
2. 第二章模拟调制技术。
2.1 振幅调制。
答,振幅调制是一种将模拟信号转换为模拟调制信号的技术。
在振幅调制中,载波的振幅随着模拟信号的变化而变化,从而实现了对模拟信号的调制。
振幅调制的优点是实现简单,但其缺点是抗干扰能力较差。
2.2 频率调制。
答,频率调制是一种将模拟信号转换为模拟调制信号的技术。
在频率调制中,载波的频率随着模拟信号的变化而变化,从而实现了对模拟信号的调制。
频率调制的优点是抗干扰能力较强,但其缺点是实现复杂。
3. 第三章数字调制技术。
3.1 脉冲编码调制。
答,脉冲编码调制是一种将数字信号转换为数字调制信号的技术。
通信原理(张会生)课后习题答案
思考题1-1 什么是通信?常见的通信方式有哪些?1-2 通信系统是如何分类的?1-3 何谓数字通信?数字通信的优缺点是什么?1-4 试画出模拟通信系统的模型,并简要说明各部分的作用。
1-5 试画出数字通信系统的一般模型,并简要说明各部分的作用。
1-6 衡量通信系统的主要性能指标是什么?对于数字通信具体用什么来表述?1-7 何谓码元速率?何谓信息速率?它们之间的关系如何?习题1-1 设英文字母E出现的概率=0.105,X出现的概率为=0.002,试求E和X的信息量各为多少?1-2 某信源的符号集由A、B、C、D、E、F组成,设每个符号独立出现,其概率分别为1/4、1/4、1/16、1/8、1/16、1/4,试求该信息源输出符号的平均信息量。
1-3 设一数字传输系统传送二进制信号,码元速率RB2=2400B,试求该系统的信息速率Rb2=?若该系统改为传送16进制信号,码元速率不变,则此时的系统信息速率为多少?1-4 已知某数字传输系统传送八进制信号,信息速率为3600b/s,试问码元速率应为多少?1-5 已知二进制信号的传输速率为4800b/s,试问变换成四进制和八进制数字信号时的传输速率各为多少(码元速率不变)?1-6 已知某系统的码元速率为3600kB,接收端在l小时内共收到1296个错误码元,试求系统的误码率=?1-7 已知某四进制数字信号传输系统的信息速率为2400b/s,接收端在0.5小时内共收到216个错误码元,试计算该系统=?l-8 在强干扰环境下,某电台在5分钟内共接收到正确信息量为355Mb,假定系统信息速率为1200kb/s。
(l)试问系统误信率=?(2)若具体指出系统所传数字信号为四进制信号,值是否改变?为什么?(3)若假定信号为四进制信号,系统传输速率为1200kB,则=?习题答案第一章习题答案1-1 解:1-2 解:1-3 解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:思考题2-1 什么是狭义信道?什么是广义信道?(答案)2-2 在广义信道中,什么是调制信道?什么是编码信道?2-3 试画出调制信道模型和二进制无记忆编码信道模型。
通信原理 第二章习题解答
PZ ( f + 2
f0 ) [1− sgn( f
+
f0 )]
=
⎧ ⎪ ⎨
PZ PZ
( (
f f
− +
f0 ) f0 )
⎪⎩ 0
f0 ≤ f ≤ f + B − B − f0 ≤ f ≤ − f0
− f0 ≤ f ≤ f0
PX( f ) A
-B
0
Bf
PY( f )
A
-f0-B -f0
0
f0
f0+B
2-37 定义随机过程 X(t)=A+Bt,其中 A、B 是互相独立的随机变量,并且在[-1, 1]上均匀分布。 求 mX (t) 与 RX (t1, t2 ) 。
[解]
E[ξ (t)] = P(θ = 0) ⋅ 2 cos(2π t) + P(θ = π ) ⋅ 2 cos(2π t + π )
2
2
= cos(2π t) − sin(2π t)
2
Rξ (0,1) = E[2 cosθ ⋅ 2 cos(2π +θ )]
= P(θ = 0) ⋅ 4 + P(θ = π ) ⋅ 4 cos π cos 5π
2
exp ⎧⎨− ⎩
n2 2σ 2
⎫ ⎬ ⎭
2-30 若 ξ (t) 是平稳随机过程,自相关函数为 Rξ (τ ) ,试求它通过图 P2-30 系统后的自相关函
数及功率谱密度。 [解] 有图知,输出为
Y (t) = ξ (t) + ξ (t − T ) ,
所以,输出的自相关函数为
3
E[Y (t1)Y (t2 )] = E[(ξ (t1) + ξ (t1 − T ))(ξ (t2 ) + ξ (t2 − T ))] = E[ξ (t1)ξ (t2 )] + E[ξ (t1 − T )ξ (t2 )] +E[ξ (t1)ξ (t2 − T )] + E[ξ (t1 − T )ξ (t2 − T )] = 2Rξ (τ ) + Rξ (τ − T ) + Rξ (τ + T )
通信原理 第二版 (蒋青 于秀兰 著)课后答案解析
x−0 x 解:由题意随机变量 x 服从均值为 0,方差为 4,所以 2 ,即 2 服从标准正态
1 Φ ( x) = 2π 分布,可通过查标准正态分布函数
数值表来求解。 x−0 2−0 p ( x > 2) = 1 − p ( x ≤ 2) = 1 − p ( ≤ ) = 1 − Φ (1) 2 2 (1) = 1 − 0.8413 = 0.1587 x−0 4−0 p ( x > 4) = 1 − p ( x ≤ 4) = 1 − p ( ≤ ) = 1 − Φ (2) 2 2 (2) = 1 − 0.9772 = 0.0228 x − 1.5 (3)当均值变为 1.5 时,则 2 服从标准正态分布,所以 x − 1.5 2 − 1.5 p ( x > 2) = 1 − p ( x ≤ 2) = 1 − p ( ≤ ) = 1 − Φ (0.25) 2 2 = 1 − 0.5987 = 0.4013 x − 1.5 4 − 1.5 p ( x > 4) = 1 − p ( x ≤ 4) = 1 − p( ≤ ) = 1 − Φ (1.25) 2 2
S ) N
4800 C S = 2 B − 1 = 2 3400 − 1 ≈ 2.66 − 1 = 1.66 得: N 。 则所需最小信噪比为 1.66。
第 2 章 信号与噪声分析 习题解答 2-1 解: p ( x > 2) = 1 − p ( x ≤ 2) 数学期望:
E ( x) = ∫
+∞
−∞
第 1 章 绪论 习题解答 1-1 解:每个消息的平均信息量为 1 1 1 1 1 1 H ( x) = − log 2 − 2 × log 2 − log 2 4 4 8 8 2 2 =1.75bit/符号 1-2 解: (1)两粒骰子向上面的小圆点数之和为 3 时有(1,2)和( 2,1)两种可能 , 1 1 总的组合数为 C6 × C6 = 36 ,则圆点数之和为 3 出现的概率为
通信原理[张会生]课后习题答案解析
通信原理[张会⽣]课后习题答案解析思考题1-1 什么是通信?常见的通信⽅式有哪些?1-2 通信系统是如何分类的?1-3 何谓数字通信?数字通信的优缺点是什么?1-4 试画出模拟通信系统的模型,并简要说明各部分的作⽤。
1-5 试画出数字通信系统的⼀般模型,并简要说明各部分的作⽤。
1-6 衡量通信系统的主要性能指标是什么?对于数字通信具体⽤什么来表述?1-7 何谓码元速率?何谓信息速率?它们之间的关系如何?习题1-1 设英⽂字母E出现的概率=0.105,X出现的概率为=0.002,试求E和X的信息量各为多少?1-2 某信源的符号集由A、B、C、D、E、F组成,设每个符号独⽴出现,其概率分别为1/4、1/4、1/16、1/8、1/16、1/4,试求该信息源输出符号的平均信息量。
1-3 设⼀数字传输系统传送⼆进制信号,码元速率RB2=2400B,试求该系统的信息速率Rb2=?若该系统改为传送16进制信号,码元速率不变,则此时的系统信息速率为多少?1-4 已知某数字传输系统传送⼋进制信号,信息速率为3600b/s,试问码元速率应为多少?1-5 已知⼆进制信号的传输速率为4800b/s,试问变换成四进制和⼋进制数字信号时的传输速率各为多少(码元速率不变)?1-6 已知某系统的码元速率为3600kB,接收端在l⼩时内共收到1296个错误码元,试求系统的误码率=?1-7 已知某四进制数字信号传输系统的信息速率为2400b/s,接收端在0.5⼩时内共收到216个错误码元,试计算该系统=?l-8 在强⼲扰环境下,某电台在5分钟内共接收到正确信息量为355Mb,假定系统信息速率为1200kb/s。
(l)试问系统误信率=?(2)若具体指出系统所传数字信号为四进制信号,值是否改变?为什么?(3)若假定信号为四进制信号,系统传输速率为1200kB,则=?习题答案第⼀章习题答案1-1 解:1-2 解:1-3 解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:思考题2-1 什么是狭义信道?什么是⼴义信道?(答案)2-2 在⼴义信道中,什么是调制信道?什么是编码信道?2-3 试画出调制信道模型和⼆进制⽆记忆编码信道模型。
通信原理课后习题参考答案
++++++++++++++++++++++++++第一章习题答案1-1解:1-2解:1-3解:1-4 解:1-5 解:1-6 解:1-7 解:1-8 解:第二章习题答案2-1 解:群延迟特性曲线略2-2 解:2-3 解:2-4 解:二径传播时选择性衰落特性图略。
2-5 解:2-6 解:2-7 解:2-8 解:第三章习题答案3-4 解:3-5 解:3-6 解:3-7 解:3-8 解:3-9 解:3-10 解:3-11 解:第四章习题答案4-2 解:4-3 解:4-4 解:4-6 解:4-8 解:4-9 解:4-10 解:4-11 解:4-12 解:4-13 解:4-15 解:4-16 解:4-17 解:第五章习题答案5-1 解:,,,(1)波形(2)5-2 解:,,(1)(2)相干接收时5-3 解:,,(1)相干解调时(2)非相干解调时5-4 解:,,,(1)最佳门限:而:所以:(2)包检:5-5 解:系统,,5-6 解:(1)信号与信号的区别与联系:一路可视为两路(2)解调系统与解调系统的区别与联系:一路信号的解调,可利用分路为两路信号,而后可采用解调信号的相干或包检法解调,再进行比较判决。
前提:信号可分路为两路信号谱不重叠。
5-7 解:系统,,,(1)(2)5-8 解:系统,,,,(1)(2)所以,相干解调时:非相干解调时:5-9 解:5-10 解:(1)信号时1 0 0 1 0(2)1 0 1 0 0,5-12 解:时:相干解调码变换:差分相干解调:,,(1):a:相干解调时解得:b:非相干解调时解得:(2):(同上)a:相干解调时,b:非相干解调时,(3)相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即(4)a:差分相干解调时即在保证同等误码率条件下,所需输入信号功率为时得1/4,即b:相干解调的码变换后解得:5-16 解:(A方式)0 1 1 0 0 1 1 1 0 1 0 0 ,5-17 解:(1)时所以(2)时所以5-18 解:5-19 解:,::一个码元持续时间,含:个周波个周波。
通信原理通信课后答案02
《通信原理》习题第二章3第二章习题习题2.1 设随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞式中,θ是一个离散随机变量,它具有如下概率分布:P (θ=0)=0.5,P (θ=π/2)=0.5试求E [X (t )]和X R (0,1)。
解:E [X (t )]=P (θ=0)2cos(2)t π+P (θ=/2)2cos(2)=cos(2)sin 22t t t ππππ+-cos t ω习题2.2 设一个随机过程X (t )可以表示成:()2cos(2), X t t t πθ=+-∞<<∞判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:为功率信号。
[]/2/2/2/21()lim ()()1lim 2cos(2)*2cos 2()T X T T T T T R X t X t dtTt t dtTττπθπτθ→∞-→∞-=+=+++⎰⎰222cos(2)j t j t e e πππτ-==+2222()()()(1)(1)j f j t j t j f X P f R e d e e e d f f πτπππττττδδ∞-∞---∞-∞==+=-++⎰⎰习题2.3 设有一信号可表示为:4exp() ,t 0(){0, t<0t X t -≥=试问它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。
解:它是能量信号。
X (t )的傅立叶变换为:(1)004()()441j t t j t j tX x t edt e e dt e dt j ωωωωω+∞-+∞--+∞-+-∞====+⎰⎰⎰则能量谱密度 G(f)=2()X f =222416114j f ωπ=++习题2.4 X (t )=12cos 2sin 2x t x t ππ-,它是一个随机过程,其中1x 和2x 是相互统计独立的高斯随机变量,数学期望均为0,方差均为2σ。
数字通信原理第二版课后习题答案 第2章
π
2
)=cos(2π t ) − sin 2π t
习题 2.2 设一个随机过程 X(t)可以表示成: X (t ) = 2 cos(2π t + θ ), − ∞ < t < ∞ 判断它是功率信号还是能量信号?并求出其功率谱密度或能量谱密度。 解:为功率信号。
RX (τ ) = limT →∞ = limT →∞ 1 T /2 −T / 2 X (t ) X (t + τ ) dt T∫
解:
(t,t+ )=E[X(t)X(t+ )]=E[ X 1 (t ) X 2 (t ) X 1 (t + τ ) X 2 (t + τ ) ] = E [ X 1 (t ) X 1 (t + τ )] E [ X 2 (t ) X 2 (t + τ )] = RX1 (τ ) RX 2 (τ )
习题 2.8 相关函数为
7
《通信原理》习题第二章
解: E[ξ (1)] = 1/ 2* 2 cos(2π + 0) + 1/ 2* 2 cos(2π + π / 2) = 1; Rξ (0,1) = E[ξ (0)ξ (1)] = 1/ 2* 2 cos(0)2 cos(2π + 0) + 1/ 2*cos(π / 2)2 cos(2π + π / 2) = 2 习题 2.19 设
[ ]
[ ] [ ]
故
E X 2 (t ) = cos 2 2πt + sin 2 2πt σ 2 = σ 2
[
] (
)
(2)因为 x1和x 2 服从高斯分布, X (t )是x1和x 2 的线性组合,所以 X (t ) 也服从高斯分
通信原理答案第二章
文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持.《通信原理》习题参考答案第二章2-1.设随机过程ξ (t)可表示成ξ(t) =2cos(2πt+θ)式中θ是一个离散随机变量,且 P(θ=0)=1/2、P(θ=π/2)=1/2,试求E[ξ(1)]及 Rξ(0,1)。
解:求 E[ξ(1)] 就是计算 t=1 时ξ (1)的平均值:∵ξ (0)=2cos(0+θ)=2cosθξ(1)=2cos(2π+θ)=2cosθ∴E[ ξ(1)] =P(θ=0)×2cos0+P(θ=π/2)×2cos(π/2)=(1/2)×2+0=1Rξ (0,1)=E[ξ(0)ξ(1)]=E[2cosθ×2cosθ]=E[4cos2θ ]=P(θ=0)×4cos20+P(θ=π/2)×4cos2(π/2)=(1/2)×4=2题解:从题目可知,θ是一个离散的随机变量,因此采用数理统计的方法求出ξ (t) 在不同时刻上的均值和相关函数就显得比较容易。
文档来源为 :从网络收集整理.word 版本可编辑 .欢迎下载支持 .2-2. 设 Z(t) =X 1cos ω0t -X 2sin ω0t 是一个随机过程, 若 X 1 和 X 2 是彼此独立且具有均值为 0,方差为σ 2的正态随机变量,试求(1) E[Z(t)] 、E[Z 2(t)](2) Z(t)的一维分布密度函数 f(z); (3) B(t 1,t 2)与 R(t 1,t 2)。
解: (1)∵ E[X 1]=E[X 2]=0,且 X 1 和 X 2 彼此独立∴ E[Z(t)] = E[X 1cos ω0t -X 2sin ω0t]= E [X 1cos ω0t]-E[X 2sin ω0t]= E [X 1]×cos ω0t - E[X 2]×sin ω0t= 0E[Z 2(t)] =E[(X 1cos ω0t -X 2sin ω0t)2]= E [X 12cos 2ω0t -2 X 1 X 2 cos ω0t sin ω0t +X 22sin 2ω0t]= E[X 12cos 2ω0t] -E[2 X 1 X 2 cos ω0t sin ω0t] +E[X 22sin 2ω0t]= cos 2ω0t E[X 12]-2 cos ω0t sin ω0tE[X 1]E[X 2]+sin 2ω0t E[X 22]= c os 2ω0t E[X 12] +sin 2ω0t E[X 22]又∵ E[X 12]=D[X 1] +E 2[X 1] =D[X 1]=σ2E[X 22] =D[X 2]+E 2 [X 2] =D[X 2]=σ2∴E[Z 2(t)] =σ 2cos 2ω0t +σ 2sin 2ω0t=σ 2(cos 2ω0t +sin 2ω0t)=σ22和 X 2(2)由于 Z(t) =X 1cos ω0t - X 2sin ω0t 是由两个正态随机变量 X 11( xa )叠加而成,因此它仍然服从正态分布,即它的2]f ( Z )exp[2 2其中: E[Z(t)] =0文档来源为 :从网络收集整理 .word 版本可编辑 .欢迎下载支持 .D[Z(t)] =E[Z 2(t)] -E 2 [Z(t)] =E[Z 2(t)] =σ 212f ( Z )ex p[x ]f(Z) 为: 所以得一维分布密度函数222(3) B(t 1,t 2)=R(t 1,t 2)-E [Z(t 1)] E [Z(t 2)]= R (t 1,t 2)=E [Z(t 1) Z(t 2)]=E [(X 1cos ω0t 1-X 2sin ω 0t 1)( X 1cos ω0t 2-X2sin ω0t 2)] =E [X 12cos ω0t 1 cos ω0t 2-X 1 X 2cos ω0t 1 sin ω0t 2-X 1X 2sin ω0t 1cos ω 0t 2+X 22sin ω0t 1 sin ω0t 2]=cos ω0t 1 cos ω0t 2E [X 12] -cos ω0t 1 sin ω0t 2 E [X 1 X 2]- s in ω0t 1cos ω0t 2 E [X 1 X 2]+sin ω0t 1 sin ω0t 2 E [X 22]=cos ω0t 1 cos ω0t 2E [X 1 2] +sin ω0t 1 sin ω 0t 2 E [X 2 2] =σ 2 ω ω +sin ω ω(cos0t 1 cos 0t 20t 1 sin 0t 2)=σ 2 ω 0(t 1-t 2) =σ 2cosω0τ其中τ=∣ t 1-t 2∣cos1 , 1 02-4. 若随机过程 z(t)=m(t)cos(ω0t +θ ),其中 m(t)是宽平稳随机过 R m ( )1 ,0 1程,且自相关函数R mτ 为, 其它( ) 0θ是服从均匀分布的随机变量,它与 m(t)彼此统计独立。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
2-1 试证明图P2-1中周期性信号可以展开为 (图略)
04(1)()cos(21)21n
n s t n t n ππ∞
=-=++∑ 证明:因为
()()s t s t -=
所以
000022()cos cos cos 2k k k k k k kt kt s t c c c kt T πππ∞
∞∞
======∑∑∑
101()00s t dt c -=⇒=⎰ 1
1112
21111224()cos ()cos cos sin 2
k k c s t k tdt k tdt k tdt k πππππ----==-++=⎰⎰⎰⎰ 0,24(1)21(21)n k n k n n π=⎧⎪=⎨-=+⎪+⎩
所以 04(1)()cos(21)21n
n s t n t n ππ∞
=-=++∑
2-2设一个信号()s t 可以表示成
()2cos(2)s t t t πθ=+-∞<<∞
试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
解:功率信号。
2
22
()cos(2)sin (1)sin (1)[]2(1)(1)j ft j j s f t e dt f f e e f f τπττθθπθτπτπτπτπτ
---=+-+=+-+⎰ 21()lim P f s τττ
→∞= 2222222222sin (1)sin (1)sin (1)sin (1)lim 2cos 24(1)(1)(1)(1)f f f f f f f f ττπτπτπτπτθπτπτπτ
→∞-+-+=++-+-+ 由公式
22sin lim ()t xt x tx δπ→∞= 和 sin lim ()t xt x x
δπ→∞= 有
()[(1)][(1)]44
1[(1)(1)]4P f f f f f π
πδπδπδδ=-++=++-
或者
001()[()()]4
P f f f f f δδ=-++
2-3 设有一信号如下:
2exp()
0()00t t x t t -≥⎧=⎨<⎩
试问它是功率信号还是能量信号,并求出其功率谱密度或能量谱密度。
解:
220()42t x t dx e dt ∞
∞
--∞==⎰⎰ 是能量信号。
2(12)0()()22
12j ft j f t S f x t e dt e dt j f
πππ∞
-∞∞
--===-⎰⎰ 222
24()1214G f j f f ππ==-+
2-4 试问下列函数中哪一些满足功率谱密度的性质:
(1)2()cos 2f f δπ+
(2)()a f a δ+-
(3)exp()a f -
解:
功率谱密度()P f 满足条件:()P f df ∞
-∞⎰为有限值
(3)满足功率谱密度条件,(1)和(2)不满足。
2-5 试求出()cos s t A t ω=的自相关函数,并从其自相关函数求出其功率。
解:该信号是功率信号,自相关函数为
2221()lim cos cos ()cos 2
T T T R A t t T A τωωτωτ-→∞=⋅+=⎰
21(0)2
P R A ==
2-6 设信号()s t 的傅里叶变换为()sin S f f f π=,试求此信号的自相关函数()s R τ。
解: 22222()()sin 1,11
j f s j f R P f e df f e df f πτπττππττ∞
-∞∞
-∞===--<<⎰⎰
2-7 已知一信号()s t 的自相关函数为
()2
k s k R e ττ-=, k 为常数 (1)试求其功率谱密度()s P f 和功率P ;
(2)试画出()s R τ和()s P f 的曲线。
解:(1)
20(2)(2)02
222()()224j f s s k j f k j f P f R e d k k e d e d k k f πτπτπτττττπ∞
--∞∞-+--∞
==
+=+⎰⎰⎰ 2
222
42k P df k f k π∞
-∞=+=⎰ (2)略
2-8 已知一信号()s t 的自相关函数是以2为周期的周期函数: ()1R ττ=-, 11τ-<<
试求功率谱密度()s P f ,并画出其曲线。
解:()R τ的傅立叶变换为, (画图略)
222
21222121()1sin (1)2sin T j f T j f R e d T f e d f
c f
πτπτττπττππ----=-==⎰⎰ 2022()sin ()
sin ()sin ()2P f c f f nf n c f f T n c f f πδπδπδ∞
-∞∞-∞
∞-∞=-=-=-∑∑∑
2-9 已知一信号()s t 的双边功率谱密度为
4210,1010()0
f kHz f kHz P f -⎧-<<=⎨⎩其他
试求其平均功率。
解: 4
41042108
()102103
P P f df f df ∞
-∞--===⨯⎰⎰。