阿基米德三角形性质与高考题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
阿基米德三角形性质与高
考题
Last revision on 21 December 2020
阿基米德三角形性质与高考题
性质1
即:)2
,2(2
1
21y y p y y Q + 19.(07年江苏卷轴正方向上一点(0)C c ,A B ,两点.一条垂直于x :l y c =-交于点P Q ,.
(1)若2=⋅OB OA ,求c (2)若P 为线段AB 的中点,求证:QA 为此抛物线的切线;(5分) (3)试问(2)的逆命题是否成立说明理由.(4分)
19.本小题主要考查抛物线的基本性质、直线与抛物线的位置关系、向量的数量积、导数的应用、简易逻辑等基础知识和基本运算,考查分析问题、探索问题的能力.满分14分.
解:(1)设直线AB 的方程为y kx c =+, 将该方程代入2y x =得20x kx c --=. 令2
()A a a ,,2
()B b b ,,则ab c =-.
因为22
2
2OA OB ab a b c c =+=-+=,解得2c =, 或1c =-(舍去).故2c =.
(2)由题意知2a b Q c +⎛⎫
-
⎪⎝⎭,,直线AQ 的斜率为22222
AQ a c a ab k a a b a b a +-===+--. 又2y x =的导数为2y x '=,所以点A 处切线的斜率为2a , 因此,AQ 为该抛物线的切线. (3)(2)的逆命题成立,证明如下:
设0()Q x c -,
. 若AQ 为该抛物线的切线,则2AQ k a =, 又直线AQ 的斜率为2200AQ
a c a a
b k a x a x +-==--,所以20
2a ab
a a x -=-,
得202ax a ab =+,因0a ≠,有02
a b
x +=. 故点P 的横坐标为
2
a b
+,即P 点是线段AB 的中点. 性质2:2||||||QF BF AF =⋅
例7.(13广东)已知抛物线C
20=的距离
为
2
.设P 为直线l 上的点,. (Ⅰ) 求抛物线C (Ⅱ) 当点()00,P x y (Ⅲ) 当点P 在直线l 性质3:QFB QFA ∠=∠
22.(05江西02=-y 上运动,过P 作抛物线C B 两点.
(1)求△APB 的重心G (2)证明∠PFA=∠22.解:(1)设切点A 、B ∴切线AP 的方程为:2x 切线BP 的方程为:21x 解得P 点的坐标为:101
0,2
x x y x x x P P =+=
所以△APB 的重心G 的坐标为 P P
G x x x x x =++=
3
10,
所以2
43G G p x y y +-=,由点P 在直线l 上运动,从而得到重心G 的轨迹方程为:
(2)因为).4
1,(),41,2(),41,(2
111010
200-=-+=-=x x FB x x x x FP x x FA 由于P 点在抛物线外,则.0||≠FP
∴||41)1)(1(||||cos 102
010010FP x x x x x x x x FA FP FA FP AFP +
=--+⋅+==∠
同理有||41)1)(1(||||cos 102
110110FP x x x x x x x x FB FP BFP +
=--+⋅+==
∠ ∴∠AFP=∠PFB.
性质4:过焦点的阿基米德三角形面积的最小值为2p
(21)(06年全国卷
F ,A 、B 是热线上的两动点,且
(0).AF FB λλ=>过M 。
(I )证明.FM AB (II )设ABM ∆S 的最小值。