由三角函数的图像求解析式

合集下载

三角函数:三角函数的图像与性质-高三数学二轮复习

三角函数:三角函数的图像与性质-高三数学二轮复习

(4)对称轴:ωx + =________.
(5)对称中心:ωx + =________.
试卷讲评课件
(6)值域:若已知三角函数y = Asin ωx + + B,且x ∈ [m, n]
①若ωx +
π
可以取到
2
+
π
2kπ和−
2
+ 2kπ,则Asin ωx + + B的最大
值为________,最小值为________;
2
2
A.1
B.2
= f x 的图象与直线
C.3
D.4
π
6
试卷讲评课件
例10.( ⋅辽宁·二模)已知函数f x = sin2x + 2 3cos2 x − 3,则下
列说法正确的是(
)
A.函数f x 的最小正周期为π
B.函数f x
π 3π
在区间[ , ]上单调递减
6 4
C.将函数f x
π
的图象向右平移 个单位长度,得到函数y
π
是y
6
π
,0
3
对称
上单调递增
= f x 图象的一条对称轴
)
试卷讲评课件
例12.( ⋅河北沧州·一模)已知函数f x = sin 2x +
且f x = f

3
函数,则(
)
A. =

π
2

− x ,若函数f x 向右平移a a>0 个单位长度后为偶
π

6
B.函数f x 在区间
π
C.a的最小值为
6

由三角函数图像求解析式(适合讲课使用)

由三角函数图像求解析式(适合讲课使用)

图像的变换与对称性
01
平移变换
三角函数图像可以在x轴或y轴方向上平移,而不改变其形状和性质。
例如,正弦函数向右平移a个单位后变为$y=sin(x-a)$。
02
伸缩变换
三角函数图像可以在x轴或y轴方向上伸缩,从而改变其周期和振幅。
例如,正弦函数在x轴方向上伸缩a倍后变为$y=sin(frac{1}{a}x)$。
余弦函数
定义域
全体实数,即$R$。
值域
$[-1,1]$。
周期性
余弦函数具有周期性,最小正 周期为$2pi$。
单调性
在每个周期内,余弦函数在$[0, pi]$上单调递减,在$[pi, 2pi]$
上单调递增。
正切函数
定义域
01
不连续,无周期性。
值域
02
全体实数,即$R$。
单调性
03
正切函数在每一个开区间$(kpi-frac{pi}{2}, kpi+frac{pi}{2})$内
01
1. 绘制直角坐标系
根据解析式的定义域,绘制直角 坐标系。
02
03
2. 确定关键点
3. 绘制图像
根据解析式的值,确定直角坐标 系中的关键点。
根据关键点,绘制三角函数的图 像。
例题三:综合应用题
1. 分析题目
仔细阅读题目,理解题目的要求和条件。
2. 确定解题步骤
根据题目要求,确定解题步骤,包括已知条件的分析、未知条件的推导等。
由三角函数图像求解析式
contents
目录
• 引言 • 三角函数的基本性质 • 三角函数图像的绘制 • 由三角函数图像求解析式的方法 • 实例分析 • 总结与思考

三角函数图像平移变换及图像解析式

三角函数图像平移变换及图像解析式

三角函数图像题(本人精心整理)-------图像求解析式及平移变换一.根据图像求解析式1.图1 是函数的图象上的一段,则( )A. B. C. D. 2.已知函数,(其中 ),其部分图像如图5所示.求函数的解析式;练习1下列函数中,图像的一部分如右图所示的是( )(A )(B ) (C )(D ) 2.已知函数的部分图象如右上图所示,则()A.B.C.D.3.下列函数中,图象的一部分如右图所示的是 A. B. C. D.4、函数的一个周期内的图象如下图, 求y 的解析式。

(其中 ) 5已知函数(, ,)的一段图 象如图所示,求函数的解析式;6.为了得到这个函数的图象,只要将的图象上所有的点( )(A)向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变(B) 向左平移个单位长度,再把所得各点的横坐标伸长到 原来的2倍,纵坐标不变sin()6y x π=+cos(2)6y x π=-cos(4)3y x π=-sin(2)6y x π=-()⎪⎭⎫ ⎝⎛<>+=2,0sin πϕωϕωx y 6,1πϕω==6,1πϕω-==6,2πϕω==6,2πϕω-==3π12(C) 向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍,纵坐标不变 (D) 向左平移个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变二.图像平移变换问题相位变换:① 将图像沿轴向左平移个单位 ② 将图像沿轴向右平移个单位周期变换: ① 将图像上所有点的纵坐标不变,横坐标伸长为原来的倍②将图像上所有点的纵坐标不变,横坐标缩短为原来的倍 振幅变换:①将图像上所有点的横坐标不变,纵坐标缩短为原来的倍 ②将图像上所有点的横坐标不变,纵坐标伸长为原来的倍 【特别提醒】由y =sin x 的图象变换出y =Asin(+)的图象一般有两个途径,只有区别开这两个途径,才能灵活进行图象变换。

利用图象的变换作图象时,提倡先平移后伸缩,但先伸缩后平移也经常出现/wxc/途径一:先平移变换再周期变换(伸缩变换)先将y =sin x 的图象向左(>0)或向右()平移||个单位,再将图象上各点的横坐标变为原来的倍(>0),便得y =sin(ωx +)的图象途径二:先周期变换(伸缩变换)再平移变换先将y =sin x 的图象上各点的横坐标变为原来的倍(>0),再沿x 轴向左(>0)或向右平移个单位,便得y =sin(+)的图象【特别提醒】若由得到的图象,则向左或向右平移应平移个单位1.为了得到函数的图像,只需把函数的图像( ) (A )向左平移个长度单位 (B )向右平移个长度单位 (C )向左平移个长度单位 (D )向右平移个长度单位2.函数f (x )=2sin x cos x 是( )(A)最小正周期为2π的奇函数 (B )最小正周期为2π的偶函数 (C)最小正周期为π的奇函数(D )最小正周期为π的偶函数3.设,函数的图像向右平移个单位后与原图像重合,则的最小值是( )(A ) (B ) (C ) (D ) 3 4.下列函数中,周期为,且在上为减函数的是( )sin y x =w 1sin y x =sin y x =A x ωϕϕϕω1ωϕϕϕsin(2)3y x π=-sin(2)6y x π=+4π4π2π2π振幅 变换 相位 变换 周期 变换y =sin x(A ) (B ) (C ) (D )5.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) (A ) (B ) (C ) (D )6、要得到函数的图象,只需将函数的图象( )(A )向左平移个单位 (B )向右平移个单位 (C )向左平移个单位 (D )向右平移个单位7、将函数y=sin3x 的图象作下列平移可得y=sin(3x+)的图象(A) 向右平移 个单位 (B) 向左平移 个单位(C )向右平移 个单位 (D )向左平移 个单位8.将函数的图象上每点的横坐标缩小为原来的(纵坐标不变),再把所得图象向左平移个单位,得到的函数解析式为( )9、把函数的图象上所有的点的横坐标缩小到原来的一半,纵坐标保持不变,然后把图象向左平移个单位长度,得到新的函数图象,那么这个新函数的解析式为 (A ) (B ) (C ) (D )11.要得到函数的图象,只需将函数的图象上所有的点的( )(A)横坐标缩短到原来的倍(纵坐标不变),再向左平行移动个单位长度(B)横坐标缩短到原来的倍(纵坐标不变),再向右平行移动个单位长度 (C)横坐标伸长到原来的2倍(纵坐标不变),再向左平行移动个单位长度 (D)横坐标伸长到原来的2倍(纵坐标不变),再向右平行移动个单位长度12 将函数的图象上各点的横坐标扩大为原来的2倍(纵坐标不变),再将整个图形沿轴正向平移,得到的新曲线与函数的图象重合,则( ) A. B. C. D.5为了得到函数的图象,可以将函数的图象( ) A .向右平移个单位长度 B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度13.将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( )6π6π218π4π)62sin(π-=x y x y 2cos =6π3π6π3π(A ) (B ) (C ) (D )14.函数f(x)= 的最小正周期为( ) A.B.xC.2D.415.为得到函数的图像,只需将函数的图像( )A .向左平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向右平移个长度单位 17.要得到函数的图象,只需将函数的图象( ) A .向右平移个单位 B .向右平移个单位 C .向左平移个单位 D .向左平移个单位 18.为了得到函数的图象,可以将函数的图象( )(A)向右平移个单位长度 (B)向右平移个单位长度(C)向左平移个单位长度 (D)向左平移个单位长度19.把函数()的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标缩短到原来的倍(纵坐标不变),得到的图象所表示的函数是A ,B ,C ,D ,20.为了得到函数的图像,只需把函数的图像(A )向左平移个长度单位 (B )向右平移个长度单位 (C )向左平移个长度单位 (D )向右平移个长度单位21.已知函数的最小正周期为,为了得到函数 的图象,只要将的图象A 向左平移个单位长度B 向右平移个单位长度C 向左平移个单位长度D 向右平移个单位长度22.函数的图象按向量平移到,的函数解析式为当为奇函数时,向量可以等于B23.将函数y=sinx 的图象向左平移0 <2的单位后,得到函数y=sin 的图象,则等于A .B . C. D.24.若将函数的图像向右平移个单位长度后,与函数的图像重合,则的最小值为D A . B. C. D.25.设函数,将的图像向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于C (A ) (B ) (C ) (D )26.将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( C )A .B .C .D .27.将函数的图象F 按向量平移得到图象,若的一条对称轴是直线,则的一个可能取值是AA. B. C. D.28.将函数y=3sin (x -θ)的图象F 按向量(,3)平移得到图象F ′,若F ′的一条对称轴是直线x=,则θ的一5π126π3πx R ∈x R ∈x R ∈x R ∈4π2πϕϕsin(2)3y x π=+α(,0)12π-α(,0)12π-(,0)6π-(,0)12π(,0)6πF 'π125π125-π1211个可能取值是A. B. C. D. A29.将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )A .B .C .D . C 29为了得到函数的图像,只需把函数的图像上所有的点(A )向左平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变)(B )向右平移个单位长度,再把所得各点的横坐标缩短到原来的倍(纵坐标不变) (C )向左平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (D )向右平移个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)综合1.(2004全国Ⅰ卷文、理)为了得到函数的图象,可以将函数的图象( ) A .向右平移个单位长度 B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度 2(2006四川文、理)下列函数中,图像的一部分如右图所示的是( )(A ) (B ) (C ) (D )二.填空题: (每小题5分,计20分) 3. (2008辽宁理)已知,且在区间有最小值,无最大值,则=__________. 4.(2008陕西理)已知函数.(Ⅰ)求函数的最小正周期及最值;(Ⅱ)令,判断函数的奇偶性,并说明理由. 5.(2008安徽文、理)已知函数 (Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域6.(2005全国Ⅰ文)设函数图像的一条对称轴是直线. (Ⅰ)求; (Ⅱ)求函数的单调增区间;7.(四川卷理)将函数的图像上所有的点向右平行移动个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图像的函数解析式是( ) A. B. C. D.8.(重庆卷理)已知函数的部分图象如右上图所示,则( ) A. B. C. D.9.(天津卷理)已知函数(Ⅰ)求函数的最小正周期及在区间上的最大值和最小值; (Ⅱ)若,求的值。

根据图像求三角函数解析

根据图像求三角函数解析
2 的 图 像 如 上 图 所 示 ,求 该 函 数 的 解 析 式 。
或y3cos(2x-5)
6
练 习 3 .函 数 yA sin ( x ),(A 0 , 0 ,|| )
的 部 分 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。
y2sin(2x) 3
y 2
o 3
5 6
x
-2
例3: 求f(x)=Asin(ωx+φ)+B型的解析式
-2
ππ 42
3π 2
5π 2
7π 2
x
4
例2:如图为y=Asin(ωx+φ)的图象的一段,求其解析式.
练 习 1.函 数 yA sin(x),(A0,0,||)
2 的 图 像 如 图 所 示 ,求 该 函 数 的 解 析 式 。y
3
y3sin(2x) 3
2
3
o
6
x
-3
变 式 .函 数 yA cos(x),(A0,0,||)
巧记·主干知识
突破·重点要点
题型二 由图象求函数y= Asin(ωx+φ)的解析式
例 2 (1)已知函数 f(x)=2sin(ωx+
φ)(其中 ω>0,|φ|<π2)的最小正周期是
π,且 f(0)= 3,则( )
A.ω=12,φ=π6 C.ω=2,φ=π6
B.ω=12,φ=π3 D.ω=2,φ=π3
1.已知函数 f(x)=Asin(ωx+φ)+B(ω>0,
|φ|< )的图象的一部分如图所示: (1)求2f(x)的表达式;
(2)试写出f(x)的对称轴方程.
解 (1)由图象可知,函数的最大值M=3,

y=Asin(wx+φ)+k图像运用题型练习2023学年高一上学期数学人教A版(2019)必修第一册

y=Asin(wx+φ)+k图像运用题型练习2023学年高一上学期数学人教A版(2019)必修第一册

y =A sin (wx +φ)+k 图像运用题型练习一.【图像的伸缩、平移变换】 例:函数1)32sin(5++=πx y 的图像可由x y sin =的图像经过怎样的平移和伸缩变换得到?方法一(先平移后伸缩):方法二(先伸缩后平移):1.为得到函数f (x )=sin2x +cos2x 的图象,只需将函数g (x )=sin2x ﹣cos2x 的图象( ) A .向左平移个单位长度 B .向左平移个单位长度 C .向右平移个单位长度D .向右平移个单位长度2.将函数y =sin (x ﹣)的图象上所有点的横坐标变为原来的2倍(纵坐标不变),再将所得的图象向左平移个单位,则所得图象对应的解析式为 .3.要得到函数f (x )=cos (2x +)的图象,只需将函数g (x )=sin (2x +)的图象( )A .向左平移个单位长度B .向右平移个单位长度 C .向左平移个单位长度 D .向右平移个单位长度4.已知曲线C 1:y =sin (2x ﹣),C 2:y =cos x ,则下面结论正确的是( )A .先将曲线C 2向左平移个单位长度,再把所得的曲线上各点横坐标缩短为原来的倍,纵坐标保持不变,便得到曲线C 1B .先将曲线C 2向右平移个单位长度,再把所得的曲线上各点横坐标伸长为原来的2倍,纵坐标保持不变,便得到曲线C 1C .先将曲线C 2向左平移个单位长度,再把所得的曲线上各点横坐标伸长为原来的2倍,纵坐标保持不变,便得到曲线C 1 D .先将曲线C 2向右平移个单位长度,再把所得的曲线上各点横坐标缩短为原来的倍,纵坐标保持不变,便得到曲线C 15.若函数g(x)的图象是由函数f(x)=cos(x﹣)+cos(x+π)的图象向右平移个单位长度得到的,则函数g(x)的一个单调递增区间为()A.[﹣,]B.[,]C.[,]D.[﹣,]6.将函数f(x)=sin(wx+)(w>0)的图象向左平移个单位长度后,得到的图象关于y轴对称,且函数f(x)在[0,]上单调递增,则函数f(x)的最小正周期为()A.B.πC.D.2π二.【由三角函数图像求其解析式】例:如图所示的是函数y=A sin(wx+φ)(A>0,w>0,|φ|<π)的图像,根据图中条件,写出该函数解析式.①【基础练习】7.已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示,则f(﹣)=.7 8 98.函数f(x)=sin(2x+φ),(|φ|)的部分图象如图所示,则的值为.9.函数f(x)=A sin(ωx+φ)(A>0,ω>0,﹣<φ<)的部分图象如图所示,则f(x)=.②【结合三角函数性质】10.(多选)如图,函数f(x)=2sin(ωx+φ)(ω>0,|φ|<)的图象经过点和,则()A.ω=1B.C.函数f(x)的图象关于直线对称D.若,则sin2α﹣cos2α=11.(多选)已知函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则下列结论正确的是()A.f(x)的解析式可以表示为B.函数y=f(x)的图象关于直线对称C.该图象向右平移个单位可得y=2sin2x的图象D.函数y=f(x)在单调递减11 1212.(多选)函数f(x)=A sin(ωx+φ)(A>0,ω>0,|φ|<)的部分图象如图所示,则下列结论正确的是()A.f(x)的最小正周期为2B.把y=f(x)图象上所有点向右平移个单位长度后得到函数g(x)=2cos2x的图象C.f(x)在区间[,]上单调递减D.(,0)是y=f(x)图象的一个对称中心③【辅助角公式运用】13.若cos(﹣α)=,则cos2α﹣sin2α的值为.14.已知函数f(x)=2sin x cos x﹣2sin2x+1(x∈R).(1)求函数f(x)的最小正周期及在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[,],求cos2x0的值.15.已知函数f(x)=4sin(x﹣)cos x+.(1)求函数f(x)的最小正周期及单调递减区间;(2)若m﹣3<f(x)<m+3,对任意x∈(0,)恒成立,求实数m的取值范围.16.已知f(x)=2sin x cos x+2cos(x﹣)cos(x+).(1)求函数f(x)的单调递减区间:(2)若函数g(x)=f(x)﹣4k﹣2sin2x在区间[]上有唯一零点,求实数k的取值范围.。

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析

高三数学三角函数试题答案及解析1.在中,已知,若分别是角所对的边,则的最大值为.【答案】【解析】由正余弦定理得:,化简得因此即最大值为.【考点】正余弦定理,基本不等式2. sin7°cos37°﹣sin83°cos53°的值为()A.﹣B.C.D.﹣【答案】A【解析】sin7°cos37°﹣sin83°cos53°=cos83°cos37°﹣sin83°sin37°=cos(83°+37°)=cos120°=﹣,故选A.3.三角形ABC是锐角三角形,若角θ终边上一点P的坐标为(sin A-cos B,cos A-sin C),则的值是( )A.1B.-1C.3D.4【答案】B【解析】因为三角形ABC是锐角三角形,所以A+B>90°,即A>90°-B,则sin A>sin(90°-B)=cos B,sin A-cos B>0,同理cos A-sin C<0,所以点P在第四象限,=-1+1-1=-1,故选B.4.已知函数则=【答案】【解析】因为函数由需要求的x都是整数,所以当x为奇数时的解析式为,当x为偶数时的解析式为.所以.所以.【考点】1.分段函数的性质.2.归纳推理的思想.3.三角函数的运算.4.等差数列的求和公式.5.若方程有实根,则实数的取值范围为【答案】【解析】由方程得,,即,因为,所以,若方程有实根,则,解得.【考点】方程的根.6.设,将函数在区间内的全部极值点按从小到大的顺序排成数列.(1)求数列的通项公式;(2)设,数列的前项和为,求.【答案】(1);(2).【解析】(1)先根据三角函数的恒等变换化简,得,再根据三角函数的性质找到极值点,利用等差数列的性质写出数列的通项公式;(2)先根据(1)中的结果写出的通项公式,然后写出的解析式,在构造出,利用错位相减法求,计算量比较大,要细心.试题解析:(1),其极值点为, 2分它在内的全部极值点构成以为首项,为公差的等差数列, 4分所以; 6分(2), 8分所以,,相减,得,所以. 12分【考点】1、三角函数的恒等变换及化简;2、三角函数的性质的应用;3、等差数列的通项公式;4、错位相减法求数列的前项和;5、等比数列的前项和.7.已知函数d的最大值为2,是集合中的任意两个元素,且的最小值为.(1)求函数的解析式及其对称轴;(2)若,求的值.【答案】(1),;(2).【解析】本题主要考查两角和与差的正弦公式、二倍角的余弦公式、诱导公式、三角函数的最小正周期、单调性等基础知识,考查运算能力.第一问,利用倍角公式化简表达式,先利用周期求出,再求最值,通过解方程求出,确定了解析式后求正弦函数的对称轴;第二问,通过角之间的关系转化角,考查诱导公式和倍角公式.试题解析:(1),由题意知:的周期为,由,知 2分由最大值为2,故,又, 4分∴ 5分令,解得的对称轴为 7分(2)由知,即, 8分∴ 10分12分【考点】1.倍角公式;2.两角和与差的三角函数;3.函数的周期;4.函数的对称轴.8.是偶函数,,则 .【答案】【解析】,,所以,因为为偶函数,所以对任意的,都有即成立,又,所以.【考点】三角函数的恒等变换,偶函数.9.已知方程在上有两个不同的解、,则下列结论正确的是()A.B.C.D.【答案】C【解析】由于方程在上有两个不同的解、,即方程在上有两个不同的解、,也就是说,直线与函数在轴右侧的图象有且仅有两个交点,由图象可知,当时,直线与曲线相切,且切点的横坐标为,当时,,则,故,在切点处有,即,,两边同时乘以得,,故选C.【考点】1.函数的零点;2.函数的图象;3.利用导数求切线的斜率10.将函数图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A.B.C.D.【答案】B【解析】将函数的图像按题中要求变换后得到函数的图像,令,则,当时,.【考点】1.三角函数的变换;2.三角函数图象的对称轴.11.函数f(x)=sin+ACos(>0)的图像关于M(,0)对称,且在处函数有最小值,则的一个可能取值是( )A.0B.3C.6D.9【答案】D【解析】根据题意:相邻对称点与最小值之间可以相差也可以是不妨设为:=,可以为9,故选D.【考点】三角函数的最值;正弦函数的对称性.12.已知函数,(1)求的值;(2)若,且,求.【答案】(1);(2).【解析】(1)直接将代入计算即可;(2)用二倍角的正弦、余弦公式化简,再将正弦、余弦合为同一个的三角函数;根据已知条件,求出的值.试题解析:(1)(2)因为,且,所以,所以【考点】1、三角恒等变换;2、三角函数的基本运算.13.已知函数的最小正周期为.(Ⅰ)求的值;(Ⅱ)讨论在区间上的单调性.【答案】(Ⅰ)(Ⅱ)当,即时,单调递增;当,即,单调递减.【解析】(1)由题意,所以由(1)知若,则当,即时,单调递增;当,即,单调递减.第(1)题根据三角函数的和差化简,二倍角公式以及辅助角公式,最后化成的形式,利用确定的值;第(2)题用整体法的思想确定的单调性,再反求出在指定范围内的单调性.本题属简单题.【考点】本题主要考查三角恒等变形、三角函数的图像及性质与三角函数图像的变换.考查逻辑推理和运算求解能力,中等难度.14.已知函数若方程有三个不同的实根,且从小到大依次成等比数列,则m的值为 .【答案】【解析】设三个根由小到大依次为,结合余弦函数图像可知关于直线对称,关于直线对称,代入计算得【考点】三角函数图像及性质点评:题目中主要结合三角函数图像的轴对称性找到三根之间的联系15.已知,则的值为()A.B.C.D.【答案】B【解析】因为,,即,,所以,=,故选B。

4.4 三角函数的图象 解析式Microsoft Word 文档

4.4 三角函数的图象 解析式Microsoft Word 文档

4.4 三角函数的图象 解析式一、明确复习目标1.了解正弦函数、余弦函数、正切函数的图像和性质,2.会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A ω、φ的物理意义3.会由图象求y=Asin(ωx+φ)的解析式.二.建构知识网络1.三角函数线[见课本]利用三角函数线可以:比较三角函数值的大小,求取值范围,证明:“若0<α<2π则 sin α<α<tan α”; 画三角函数y=sinx, y=cosx, y=tanx 的图象;2.y=Asin(ωx+φ)的图象:①用五点法作图:五点取法由ωx +ϕ=0、2π、π、2π3、2π来求相应的x 值及对应的y 值,再描点作图.③A---振幅ϖπ2=T ----周期πω21==Tf ----频率 相位--+ϕωx 初相--ϕ3.图象的对称性①y=sinx 图象的对称中心(k π,0), 对称轴x=k π+2π; y=cosx 呢? ②y=tanx 图象的对称中心(2k π,0), 渐近线x= k π+2π;③ y=Asin(ωx+φ)图象的对称轴是: ωx+φ=k π+2π,即x=? (k ∈Z).由ωx+φ=k π得对称中心为:(ωφπ-k ,0), k ∈Z.4.给出图象确定解析式y=Asin(ωx+φ)的题,一般先找“五点”中的第一零点或第一个最大值点确定ω或φ.三、双基题目练练手1.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是 ( ) A .(4π,2π)∪(π,4π5) B .(4π,π) C .(4π,4π5)D .(4π,π)∪(4π5,2π3)2.函数y =cos (x +3π4)的图象向左平移φ个单位,所得的函数为偶函数,则ϕ的最小值是 ( )A .3π4 B .3π2 C .3π D .3π53. (2006天津)已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是 ( )A .偶函数且它的图象关于点)0,(π对称B .偶函数且它的图象关于点)0,23(π对称C .奇函数且它的图象关于点)0,23(π对称D .奇函数且它的图象关于点)0,(π对称 4.(2005湖北)若∈<<=+απαααα则),20(tan cos sin ( )A .)6,0(πB .)4,6(ππ C .)3,4(ππ D .)2,3(ππ5.将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是______________6.(2005湖南)设函数f (x )的图象与直线x =a ,x =b 及x 轴所围成图形的面积称为函数f (x )在[a ,b]上的面积,已知函数y =sinn x 在[0,nπ]上的面积为n2(n ∈N *),(i )y =sin3x 在[0,32π]上的面积为 ;(ii )y =sin (3x -π)+1在[3π,34π]上的面积为 .✿简答:1-4.CBDC; 1.利用三角函数线; 2.设平移后:y =cos (x +3π4+ϕ),则3π4+ϕ=k π.ϕ=k π-3π4>0.∴k >34.∴k =2.∴ϕ=3π2;3.()),f x x ϕ=-可取35,424πππϕϕ-==-得,∴5())4f x x π=+,3())4f x x x ππ-=-=4.利用图象可得解.5.平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=,答案sin(2)3y x π=+。

三角函数解析式的求法教师版

三角函数解析式的求法教师版

第5页(共17页)
令 f (0) = 50sin + 60 = 10 ,得 sin = −1 ;
又 [− , ] , 所以 = − ;
2 所以函数 y = 50sin( 2 t − ) + 60 .
32 故选: C .
变式 1. 如图, 一个大风车的半径长为 8m , 每12 min 旋转一周, 最低点离地面为 2m . 若风 车翼片从如图所示的点 P0 处按逆时针方向开始旋转,已知点 P0 离地面 6m ,则该翼片的端点 离地面的距离 y(m) 与时间 x(min) 之间的函数关系是
故所得图象对应的函数为 g(x) = sin(2x + ) + 1, 3
则 g(0) = sin(0 + ) +1 = 1 + 3 ,
3
2
故选: A .
变 式 1 . 函 数 f (x) = cos(x + )( 0,| | ) 的 部 分 图 象 如 图 所 示 , 则 函 数 2
A. y = 2sin(1 x + ) 66
B. y = 2sin(1 x − ) 36
第4页(共17页)
C. y = 2cos(1 x + ) 33
【答案】B
D. y = 2cos(1 x − ) 63
【解答】解:由图象可知,得函数的周期T = 4 (3.5 − 2 ) = 6 ,
3
3
故选: D .
变式 3.已知函数 f (x) = Asin(x + )(A 0 , 0 ,| | ) 在一个周期内的简图如图所示, 2
则方程 f (x) = m(m 为常数且1 m 2) 在[0 , ] 内所有解的和为 ( )

利用三角函数图像的变换求解析式及由三角函数图像求解析式

利用三角函数图像的变换求解析式及由三角函数图像求解析式

探究三 如何确定 的值
问题3 .如图是函数
y = 2 sin( 2 x + )(
<
p
)
2
的部分图像 , 求 的值。
y
y
2
7p
2
12
x
o
p o
6
x -2
-2
例题讲解
【例 1】 函数 y=Asin(ωx+φ)的部分图象如图①,则其一个函 数解析式为________.

[思路探索] 可由最高、最低点确定 A,再由周期确定 ω,然后 由图象过三点确定 φ,或由点的坐标代入解析式求解. 解析 (1)法一 由图象知 A=2,T=78π--π8=π. ∴ω=2ππ=2. 又过点-π8,0,令-π8×2+φ=0. 得 φ=π4,∴y=2sin2x+π4.
练习 1.将函数 y=sinx+π3的图象向右平移π6个单位,再 向上平移 2 个单位所得图象对应的函数解析式是 y_=__s_in__x_+__π6__+__2___.
解析 y=sinx+π3向右平移π6个单位得: y=sinx-π6+π3=sinx+π6,再向上平移 2 个单 位得 y=sinx+π6+2.
原来的12,得到函数 y=sin10x-74π的图象.
4.将函数 y=sin x 的图象向左平移 φ(0≤φ<2π)
个单位后,得到函数 y=sinx-π6的图象,
则 φ 等于( D )
π


11π
A.6 B. 6 C. 6 D. 6
解 析 将函 数 y= sin x 的 图 象 向 左平 移
φ(0≤φ<2π)个单位得到函数 y=sin(x+φ),在 A、B、C、D 四项中,只有 φ=161π 时有 y =sinx+161π=sinx-6π.

【高中数学】三角函数中根据图象求解析式的几种方法

【高中数学】三角函数中根据图象求解析式的几种方法

φ<
)图象上的一部分如
2
图 3 所示,则必定有( )
(A) A=-2
π (B)ω=1 (C)φ= 3
(D)K=-2
解:观察图象可知 A=2,k=2. ∴y=2sin(ωx+φ)+2
下面用“解方程组法”求φ与ω的值.
∵ 图象过点(0,2+ 3 )、(- ,2) 6
∴ 2+ 3 =2sinφ+2


(A>0,ω>0,φ∈(0, )),求该函数的解析式.
2
解法一:观察图象易得 A=2,
Y
7π 3π ∴T=2×( 8 - 8 )=π,
2
2π ∴ω= π =2. ∴y=2sin(2x+φ).
2 3π
8 0π
8
下面用“关键点对等法”来求出
图2
1111ππ 1122
x
7π 8
X
3π φ的值,由 2× 8 +φ=π(用“第三点”) 得
∴ Asinφ= 2
(1)
3π Asin(2× 8 +φ)=0 (2)
3
由(2)得 φ=kπ- (k∈Z), 又φ∈(0, ),
4
2
π
∴只有 K=1,得φ= 4 , 代人(1)得 A=2.
π ∴所求函数解析式为 y=2sin(2x+ 4 ).
例 3.已知函数 y=Asin(ωx+φ) (A>0,ω>0,
【高中数学】三角函数中根据图象求解析式的几种方法
已知函数 y=Asin(ωx+φ)+k(A>0,ω>0)的部分图象,求其解析式,与
用“五点法”作函数 y=Asin(ωx+φ)+k的图象有着密切联系,最主要的是看

专题:三角函数及解三角形 第二课时 三角函数的图象与解析式(课件)高三数学二轮复习

专题:三角函数及解三角形 第二课时  三角函数的图象与解析式(课件)高三数学二轮复习
4
(D)y=2sin(2x– )
3
题型突破
题型一 三角函数的图象变换问题
2.(2022·浙江高考)为了得到函数y=2sin 3x的图象,只要把函数 y 2sin3x
5
图象上所有的点 ( D )
A.向左平移 个单位长度
5
B.向右平移 个单位长度
5
C.向左平移 个单位长度
15
D.向右平移 个单位长度
( C)
A. 10π 9
B. 7π 6
C. 4π 3
D. 3π 2
题型突破
题型二 三角函数的图象及应用
7. 如 图 所 示 的 曲 线 为 函 数 f x Acosx A 0, 0, 的 部 分 图 象 , 将
2
y f x 图象上的所有点的横坐标伸长到原来的 3 倍,再将所得曲线向右平移
2
8
个单位长度,得到函数y=g(x)的图象,求 gx =
2sin 2x
达标检测
1.为了得到函数 y 2sin 2x 的图象,可以将函数y=2sin
3
2x的图象(
C)
A.向右平移π 个单位长度 6
B.向右平移π 个单位长度 3
C.向左平移π 个单位长度 6
D.向左平移π 个单位长度 3
达标检测
15Leabharlann 题型突破题型一 三角函数的图象变换问题
3. (2021年全国乙卷)把函数y=f(x)图像上所有点的横坐标缩短到原来的1 2
倍,纵坐标不变,再把所得曲线向右平移 个单位长度,得到函数
3
y=sin(x−
)的图像,则f(x)=(
4
B

A.sin(
2

7)

利用图像求解三角函数解析式-解析版

利用图像求解三角函数解析式-解析版

利用图像求解三角函数解析式第I 卷(选择题)一、单选题1.已知函数()sin()f x x ωϕ=+0,||2πωϕ⎛⎫><⎪⎝⎭的图象如图所示,则( )A .函数()f x 的最小正周期是2πB .函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减 C .函数()f x 在区间34,43ππ⎡⎤⎢⎥⎣⎦上的最小值是1- D .曲线12y f x π⎛⎫=+ ⎪⎝⎭关于直线2x π=-对称 【答案】C 【分析】根据函数图象求出函数解析式,再结合选项一一判断即可; 【详解】解:由函数图象可知541264T πππ=-=,所以T π=,因为2T ππω==,所以最小正周期为π,所以2ω=,故A 错误; 又函数过点5,112π⎛⎫⎪⎝⎭,所以55sin 211212f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,所以52,62k k Z ππϕπ+=+∈,解得2,3k k Z πϕπ=-+∈,因为||2ϕπ<,所以3πϕ=-,所以()sin 23πf x x ⎛⎫=-⎪⎝⎭,当,2x ππ⎛⎫∈ ⎪⎝⎭,所以252,333πππx ⎛⎫-∈ ⎪⎝⎭,因为sin y x =在25,33x ππ⎛⎫∈⎪⎝⎭上不单调,故B 错误; 当34,43πx π∈⎡⎤⎢⎥⎣⎦,所以,267733x πππ⎡⎤⎢⎥⎣∈⎦-,所以sin 23x π⎡⎛⎫-∈-⎢ ⎪⎝⎭⎣⎦,故C 正确;s s 2i in 2112n 236y f x x x ππππ⎛⎫⎡⎤⎛⎫=+=+=⎪⎛⎫- ⎪ ⎝- ⎪⎢⎭⎝⎭⎝⎣⎦⎭⎥,当2x π=-时,116in2s y π=≠±=,故2x π=-不是函数12y f x π⎛⎫=+ ⎪⎝⎭的对称轴,故D 错误故选:C2.函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||)2πϕ<的图象如图所示,为了得到()f x 的图象,只需将()sin g x A x ω=图象( )A .向左平移4π个单位长度 B .向右平移4π个单位长度 C .向左平移12π个单位长度 D .向右平移12π个单位长度【答案】C 【分析】根据图象最值可得1A =,求出周期,即可得出ω,将,04π⎛⎫⎪⎝⎭代入可求得ϕ,即可得出结论. 【详解】根据函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||)2πϕ<的图象,可得1A =,15141246T ππ=-=,即23T =,2323πω∴==.将,04π⎛⎫⎪⎝⎭代入,可得()sin(3)044f ππϕ=⨯+=,则3,4k k Z πϕπ⨯+=∈,3,4k k Z πϕπ∴=-∈, 又||2ϕπ<,4πϕ∴=,故()sin(3)4f x x π=+. 故把()sin3g x x =图象向左平移12π个单位长度,即可得到()sin(3)4f x x π=+的图象.故选:C . 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ. 3.设函数()()cos 06f x x πωω⎛⎫=+> ⎪⎝⎭,在[],ππ-上的图象大致如图,将该图象向右平移()0m m >个单位后所得图象关于直线6x π=对称,则m 的最小值为( )A .4π B .29π C .518π D .3π 【答案】C 【分析】根据五点作图法可构造方程求得ω,得到()f x ;由三角函数平移变换可求得平移后解析式,利用代入检验的方法,根据图象关于6x π=可构造方程求得m ,由此确定最小值.【详解】根据五点法作图知:4962πππω-+=-,解得:32ω=,()3cos 26f x x π⎛⎫∴=+ ⎪⎝⎭;将()f x 向右平移m 个单位得:()33cos 262f x m x m π⎛⎫-=+-⎪⎝⎭,()f x m -图象关于6x π=对称,()332662m k k Z πππ∴⨯+-=∈, 解得:()52183m k k Z ππ=-∈, 由0m >,可令0k =得m 的最小值518π. 故选:C. 【点睛】方法点睛:根据余弦型函数()cos y A x ωϕ=+的对称轴、对称中心和单调区间求解参数值时,通常采用代入检验的方式,即将x 的取值代入x ωϕ+,整体对应cos y x =的对称轴、对称中心和单调区间,由此求得结果. 4.函数f (x )=A sin(ωx +φ)(0,0,||)2A πωϕ>><的部分图象如图所示,为了得到g (x )=sin 3x 的图象,则只要将f (x )的图象( )A .向右平移4π个单位长度B .向右平移12π个单位长度C .向左平移4π个单位长度D .向左平移12π个单位长度【答案】B 【分析】根据函数的图象可以得到函数图象所经过的特殊点,进而可以确定函数的解析式,最后利用正弦型函数的图象变换方法进行求解即可. 【详解】由函数的图象可知:函数的图象过5(,0),(,1)412ππ-这两点, 设函数()f x 的最小正周期为T , 所以有:15241243T T πππ=-⇒=,而23,0,3T πωωωω=⇒=>∴=, 所以()()sin 3f x x ϕ=+,因为函数图象过(,0)4π点,所以32()2()44k k Z k k Z ππϕππϕπ⋅+=+∈⇒=+∈,因为π2ϕ<,所以0k =,即4πϕ=,因此()sin 34f x x π⎛⎫=+⎪⎝⎭,而()sin 3sin 3412f x x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 因此为了得到()sin3g x x =的图象,只需将()f x 的图像向右平移π12个单位长度即可;故选:B5.如图,图象对应的函数解析式可能是( )A .cos sin y x x x =+B .sin cos y x x x =+C .sin y x x =D .cos y x x =【答案】A 【分析】分析各选项中函数的奇偶性、及各函数在2x π=处的函数值,结合排除法可得出合适的选项. 【详解】对于A 选项,设()1cos sin f x x x x =+,该函数的定义域为R ,()()()()()11cos sin cos sin cos sin f x x x x x x x x x x f x -=--+-=--=-+=-,该函数为奇函数,且1cos sin 102222f ππππ⎛⎫=+=> ⎪⎝⎭,满足条件; 对于B 选项,设()2sin cos f x x x x =+,该函数的定义域为R ,()()()()22sin cos sin cos f x x x x x x x f x -=--+-=+=,该函数为偶函数,不满足条件;对于C 选项,设()3sin f x x x =,该函数的定义域为R ,()()()33sin sin f x x x x x f x -=--==,该函数为偶函数,不满足条件;对于D 选项,设()4cos f x x x =,该函数的定义域为R ,()()()44cos cos f x x x x x f x -=--=-=-,该函数为奇函数,4cos 0222f πππ⎛⎫== ⎪⎝⎭,不满足条件.故选:A. 【点睛】思路点睛:函数图象的辨识可从以下方面入手: (1)从函数的定义域,判断图象的左右位置; (2)从函数的值域,判断图象的上下位置. (3)从函数的单调性,判断图象的变化趋势; (4)从函数的奇偶性,判断图象的对称性; (5)函数的特征点,排除不合要求的图象. 6.将函数1()sin(2)123f x x π=++的图象向右平移( )个单位后,再进行周期变换可以得到如图所示的图象.A .12πB .6πC .3π D .4π 【答案】B 【分析】设图象对应的函数为()sin y A x B ωϕ=++,根据图象最值可求得,A B ,根据周期可求得ω,将()0,1代入可求得ϕ,进而得出解析式,判断出结论. 【详解】设图象对应的函数为()sin y A x B ωϕ=++,根据函数的图象可得 1.510.5A =-=,240T πω==-,则2πω=,1.50.512B +==,即1sin 122y x πϕ⎛⎫=++ ⎪⎝⎭,将()0,1代入可得1sin 112ϕ+=,可解得0ϕ=, 故所给的图为1sin 122y x π⎛⎫=+ ⎪⎝⎭的图象, 故将函数1()sin(2)123f x x π=++的图象向右平移6π个单位后,再进行周期变换可以得到如图所示的图象. 故选:B . 【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.7.已知函数()sin()(0,)2f x A x A πωϕϕ=+><的图像如图所示,且()f x 的图像关于点()0,0x 对称,则0x 的最小值为( )A .23πB .6π C .3π D .56π 【答案】B 【分析】先由函数图像求出函数()2sin 6f x x π⎛⎫=+⎪⎝⎭,再根据函数关于()0,0x 对称求出06x k ππ=-,从而当0k =时,0x 取得最小值为6π. 【详解】由题可知4112,2363A T πππ⎛⎫==⨯-= ⎪⎝⎭21Tπω∴== 则()()2sin ,2sin 233f x x f ππϕϕ⎛⎫⎛⎫=+=+=⎪ ⎪⎝⎭⎝⎭232k ππϕπ∴+=+又2πϕ<6πϕ∴=()2sin 6f x x π⎛⎫∴=+ ⎪⎝⎭由()f x 的图像关于点()0,0x 对称,可得0066x k x k ππππ+=∴=-,∴当0k =时,0x 取得最小值为6π故选:B 【点睛】已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.8.已知函数f (x )=Atan (ωx+φ)(ω>1,|φ|<),y=f (x )的部分图象如图,则f()=A .B .C .D .【答案】B 【详解】试题分析:根据函数的图象,求出函数的周期,然后求出ω,根据函数过(0.1),过(),确定φ的值,A 的值,求出函数的解析式,然后求出即可.解:由题意可知T=,所以ω=2,函数的解析式为:f (x )=Atan (2x+φ), 因为函数过(0,1),所以,1=Atanφ…①, 函数过(),0=Atan (+φ)…①,解得:φ=,A=1.①f (x )=tan (2x+).则f ()=tan ()=故选B .考点:由y=Asin (ωx+φ)的部分图象确定其解析式.9.如图,函数sin f x A x ωϕ=+()()(其中00||2A ωϕπ≤>,>,)与坐标轴的三个交点P Q R 、、满足204P PQR M π∠=(,),,为QR 的中点,PM =A 的值为( )A.BC .8D .16【答案】A 【分析】由题意设出(20)0Q a a ,>,用a 表示出R 点坐标以及M 点坐标,根据PM =,利用距离公式求出Q 坐标,通过五点法求出函数的解析式,即可求出A . 【详解】解:设(2,0),0Q a a >,函数()sin(x+)f x A ϖϕ=(其中0,0,||2A πωφ>>≤)与坐标轴的三个交点P Q R 、、满足4PQR π∠=,∴(0,2a)R -,M 为QR 的中点,∴(,)M a a -,PM =,=解得4a =,80Q ∴(,),又20P (,),18262T ∴=-=, 2T 12πω∴==,解得6π=ω.函数经过(20)(08)P R -,,,,∴sin 206 sin 086A A πϕπϕ⎧⎛⎫⨯+= ⎪⎪⎪⎝⎭⎨⎛⎫⎪⨯+=- ⎪⎪⎝⎭⎩,||2πϕ≤,,3πϕ∴=-,解得A =, 故选A . 【点睛】本题考查由sin x y A ωϕ=+()的部分图象确定其解析式,求得Q 点与P 点的坐标是关键,考查识图、运算与求解能力,属于中档题.二、多选题10.函数()()()2sin 0,0f x x ωϕωϕπ=+><<的图象如图,把函数()f x 的图象上所有的点向右平移6π个单位长度,可得到函数()y g x =的图象,下列结论正确的是( )A .3πϕ=B .函数()g x 的最小正周期为πC .函数()g x 在区间,312ππ⎡⎤-⎢⎥⎣⎦上单调递增 D .函数()g x 关于点,03π⎛-⎫⎪⎝⎭中心对称 【答案】BC 【分析】根据图象先分析出ω的取值范围,然后根据()0f =ϕ的可取值,然后分类讨论ϕ的可取值是否成立,由此确定出,ωϕ的取值,则A 可判断;根据图象平移确定出()g x 的解析式,利用最小正周期的计算公式,则B 可判断;先求解出()g x 的单调递增区间,然后根据k 的取值确定出,312ππ⎡⎤-⎢⎥⎣⎦是否为单调递增区间,则C 可判断;根据3g π⎛⎫- ⎪⎝⎭的值是否为0判断D 是否正确. 【详解】由图可知:1112113124T T ππ⎧<⎪⎪⎨⎪>⎪⎩,所以11211129πππω<<,所以18241111ω<<,又因为()02sin f ϕ==0ϕπ<<,所以3πϕ=或23ϕπ=, 又因为11112sin 21212f ππωϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,所以112,122k k Z ππωϕπ+=+∈,又因为113,2122ππωπ⎛⎫∈ ⎪⎝⎭,所以113,3122ππωϕπ⎛⎫⎛⎫+∈ ⎪ ⎪⎝⎭⎝⎭,所以1k =, 当3πϕ=时,1113126πωπ=,解得2611ω=,这与18241111ω<<矛盾,不符合;当23ϕπ=时,1111126πωπ=,解得2ω=,满足条件,所以()22sin 23f x x π⎛⎫=+ ⎪⎝⎭,所以()22sin 22sin 2633g x x x πππ⎛⎫⎛⎫⎛⎫=-+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, A .由上可知A 错误;B .因为()2sin 23g x x π⎛⎫=+ ⎪⎝⎭,所以()g x 的最小正周期为2=2ππ,故B 正确; C .令222,232k x k k Z πππππ-≤+≤+∈,所以5,1212k x k k Z ππππ-≤≤+∈, 令0k =,此时单调递增区间为5,1212ππ⎡⎤-⎢⎥⎣⎦,且5,,3121212ππππ⎡⎤⎡⎤-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,故C 正确; D.因为2sin 20333g πππ⎛⎫⎛⎫⎛⎫-=⨯-+=≠ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,03π⎛-⎫ ⎪⎝⎭不是对称中心,故D 错误; 故选:BC. 【点睛】方法点睛:已知函数()()sin g x A x ωϕ=+()0ω>, 若求函数()g x 的单调递增区间,则令ππ2π2π22k x k ωϕ-<+<+,Z k ∈; 若求函数()g x 的单调递减区间,则令π3π2π2π22k x k ωϕ+<+<+,Z k ∈; 若求函数()g x 图象的对称轴,则令ππ2x k ωϕ+=+,Z k ∈;若求函数()g x 图象的对称中心或零点,则令πx k ωϕ+=,Z k ∈. 11.已知函数()()sin f x A x =+ωϕπ0,0,2A ωϕ⎛⎫>>< ⎪⎝⎭的部分图像如图所示,则下列说法正确的是()A .()f x 的最小正周期的最大值为2πB .当ω最小时,()f x 在π3π,24⎛⎫⎪⎝⎭上单调递减 C .π3ϕ=-D .当ω最小时,直线2π3x =是()f x 图像的一条对称轴 【答案】BC 【分析】由给出的函数图像,求出函数解析式,结合函数性质一一分析即可. 【详解】 由题图得1A =. 因为()30sin 2f ϕ==-,又π2ϕ<,所以π3ϕ=-.由πππsin 0333f ω⎡⎤⎛⎫⎛⎫-=⨯--= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,即ππsin 033ω⎡⎤+=⎢⎥⎣⎦, 得πππ2π33k ω+=+,Z k ∈,即26k ω=+,Z k ∈, 又>0ω,所以min 2ω=,所以()f x 的最小正周期的最大值为π,故A 错误,C 正确;取2ω=,则()πsin 23f x x ⎛⎫=- ⎪⎝⎭,当π3π,24x ⎛⎫∈ ⎪⎝⎭时,令π23t x =-,则2π7π,36t ⎛⎫∈ ⎪⎝⎭,因为sin y t =在2π7π,36⎛⎫⎪⎝⎭上单调递减,所以()f x 在π3π,24⎛⎫⎪⎝⎭上单调递减,故B 正确;2π2ππsin 2sin π0333f ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,所以直线2π3x =不是()f x 图像的一条对称轴,故D 错误. 故选:BC. 【点睛】方法点睛:整体法求一般三角函数单调区间及对称性等相关问题.12.若函数1()sin()(0,0,0)22f x A x A ωϕωϕπ=+>><<在一个周期内的图象如图所示,则( )A .()2sin 23()3f x x π=+B .()f x 的图象的一个对称中心为7(,0)2π- C .()f x 的单调递增区间是5[3,3]44k k πππ-π-,k Z ∈ D .把π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得()f x 的图象 【答案】AB 【分析】根据图像求出()f x 的解析式,借助于正弦函数的性质一一验证: 对于A ,根据图像求出()f x 的解析式进行判断; 对于B ,利用代入法进行判断; 对于C ,求出单增区间进行判断; 对于D ,利用图像变换判断. 【详解】由题图可知2A =,函数()f x 的最小正周期4()34T π=⨯π-=π,故24312T ωωππ===π,解得43ω=,所以2()2sin()3f x x ϕ=+,又函数()f x 的图象经过点(,2)4π,所以()2sin(2)2434f ϕππ=⨯+=,即sin()16πϕ+=,因为02πϕ<<,所以2663ϕπππ<+<,所以62ππϕ+=,解得3πϕ=,所以()2sin 23()3f x x π=+,故A 正确;因为2377()2sin[()]2sin(2)0223f πππ-=⨯-+=-π=,所以()f x 的图象的一个对称中心为7(,0)2π-,故B 正确; 令2222332πππk πx k π-≤+≤+,k Z ∈,解得5ππ3π3π44k x k -≤≤+,k Z ∈,所以()f x 的单调递增区间是5[3,3]44k k πππ-π+,k Z ∈,故C 错误; 把π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得到32sin()23y x π=+的图象,故D 错误.故选:AB . 【点睛】(1)利用图像求三角函数解析式的方法:①求A 通常用最大值或最小值;①求ω通常用周期;①求φ通常利用函数上的点带入即可求解.(2)三角函数问题通常需要先求出系数A 、ω、φ或把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.13.已知函数1π()sin()(0,0,0)22f x A x A ωϕωϕ=+>><<在一个周期内的图象如图所示,则( )A .该函数图象的一个对称中心为(π,0)B .π()2sin()323f x x =+C .该函数的单调递增区间是5ππ[3π,3π],44k k k Z --∈ D .把函数π()2sin()3g x x =+图象上所有点的横坐标变为原来的23,纵坐标不变,可得函数f (x )的图象 【答案】AB 【分析】根据图像求出()f x 的解析式,借助于正弦函数的性质一一验证: 对于A ,由图象可以直接判断;对于B ,根据图像求出()f x 的解析式进行判断; 对于C ,求出单增区间进行判断; 对于D ,利用图像变换判断. 【详解】对于A ,由图象可以看出,该函数图象的一个对称中心为(π,0),故A 正确; 对于B ,由题图可知2A =,函数f (x )的最小正周期为π4(π)3π4⨯-=,故2π4π43π,132T ωωω====,即()2sin(23f x x =)ϕ+,代入最高点π(,2)4,即πππ22sin()sin()134632ϕϕϕ,=⨯+⇒+==,故π()2sin()323f x x =+,故B 正确;对于C ,单调递增区间需满足π2ππ2π2π2332k x k -≤+≤+,解得5ππ[3π,3π],44x k k k Z ∈-+∈,故C 错误; 对于D ,把函数π()2sin()3g x x =+的图象上所有点的横坐标变为原来的23,纵坐标不变,可得到函数3π2sin()23y x =+的图象.故D 错误.故选:AB . 【点睛】(1)利用图像求三角函数解析式的方法:①求A 通常用最大值或最小值;①求ω通常用周期;①求φ通常利用函数上的点带入即可求解.(2)三角函数问题通常需要先求出系数A 、ω、φ或把它化为“一角一名一次”的结构,借助于sin y x =或cos y x =的性质解题.14.已知函数()()cos 2f x A x b ϕ=++(0A >,0ϕπ<<)的部分图像如图所示,则( )A .2A =B .点7,112π⎛⎫⎪⎝⎭是()f x 图像的一个对称中心 C .6π=ϕ D .直线3x π=是()f x 图像的一条对称轴【答案】ABD 【分析】由图知函数最大值为3,最小值为1-,且函数图像与y 轴的交点为()0,2,进而待定系数得()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,再整体换元讨论B,D 选项即可. 【详解】因为0A >,所以31A b A b +=⎧⎨-+=-⎩,解得21A b =⎧⎨=⎩,故A 正确;()02cos 12f ϕ=+=,则1cos 2ϕ=.又0ϕπ<<,所以3πϕ=,故C 错误;()2cos 213f x x π⎛⎫=++ ⎪⎝⎭,令23x k ππ+=,k ∈Z ,解得62πk πx =-+,k ∈Z , 所以()f x 图像的对称轴方程为62πk πx =-+, 令1k =,则3x π=,D 正确;令232x k πππ+=+,k ∈Z ,解得122k x ππ=+,k ∈Z ,令1k =,则712x π=且7112f π⎛⎫= ⎪⎝⎭,故B 正确. 故选:ABD 【点睛】本题考查三角函数图像求解析式,三角函数的对称轴,对称中心等,考查运算求解能力,是中档题.解题的过程中,需要注意形如()()sin 0y A x B A ωϕ=++>,()()cos 0y A x B A ωϕ=++>,max min ,y A B y A B =+=-+,ϕ的求解通常采用待定系数法求解.第II 卷(非选择题)三、填空题15.已知()()4sin sin 0,22f x x x ππωϕωϕωϕ⎛⎫⎛⎫=+++><⎪⎪⎝⎭⎝⎭,如图是()y f x =的部分图象,则ϕ=___________;()f x 在区间[]0,2020π内有___________条对称轴.【答案】6π8080 【分析】先化简,得到函数解析式,根据图像求得函数中的参数值,由此判断在给定区间内的对称轴. 【详解】()()()4sin sin 2sin 222f x x x x πωϕωϕωϕ⎛⎫=+++=+ ⎪⎝⎭,由图可知()0f =()sin 22ϕ=,由于(在单调递增的区间内,故223k πϕπ=+,k ∈Z ,解得6k πϕπ=+,k ∈Z ,根据题意知6π=ϕ; 由图象过点5,012π⎛⎫⎪⎝⎭,则有5263ππωπ+=;解得2ω=.故()2sin 43πf x x ⎛⎫=+⎪⎝⎭,则令432x k πππ+=+,k ∈Z , 解得244k x ππ=+,k ∈Z . 令02020244k πππ≤+≤,即11808066k -≤≤-. ()f x 在[]0,2020π内有8080条对称轴.故答案为:6π;8080. 【点睛】方法点睛:根据函数图像求得参数,从而求得相关性质. 16.已知函数()()sin f x A x =+ωϕ0,0,2A πωϕ⎛⎫>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为____________.【答案】()2sin 26f x x π⎛⎫=+ ⎪⎝⎭【分析】由函数的最值求出A ,由周期求出ω,由图像经过23π⎛⎫⎪⎝⎭,-2及2πϕ<求出ϕ,即可得到()f x 的解析式. 【详解】由最小值为-2知:A=2;由32343124T πππ⎛⎫=--= ⎪⎝⎭得,T π=,所以222T ππωπ===; 由223f π⎛⎫=-⎪⎝⎭得:232=232k ππϕπ⨯++,又2πϕ<, 解得:6π=ϕ. 即()2sin 26f x x π⎛⎫=+⎪⎝⎭. 故答案为:()2sin 26f x x π⎛⎫=+ ⎪⎝⎭【点睛】求三角函数解析式的方法:(1)求A 通常用最大值或最小值; (2)求ω通常用周期;(3)求φ通常利用函数上的点带入即可求解.四、解答题17.已知函数()sin()0,0,22f x M x M ππωϕωϕ⎛⎫=+>>-<<⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)在ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2b ac =,求()f B 的取值范围.【答案】(1)()2sin 23f x x π⎛⎫=- ⎪⎝⎭;(2)(. 【分析】(1)由图得出最大值和周期,由此求出,M T ,代入最高点坐标求出ϕ,由此求出解析式(2)由基本不等式求出cos B 的取值范围,从而求出B 角取值范围,再结合三角函数性质求解()f B 范围即可. 【详解】(1)由图知2M =,115212122T πππ=-=, ①T π=,22Tπω==.522()122k k Z ππϕπ⨯+=+∈, 又22ππϕ-<<,①3πϕ=-,①()2sin 23f x x π⎛⎫=-⎪⎝⎭. (2)①22221cos 222a cb ac ac B ac ac +--=≥=,当且仅当a c =取“=”,①(0,)B π∈, ①0,3B π⎛⎤∈ ⎥⎝⎦,①2,333B πππ⎛⎤-∈- ⎥⎝⎦,①(()2sin 23f B B π⎛⎫=-∈ ⎪⎝⎭. 【点睛】求三角函数的解析式时,由2Tπω=即可求出ω;确定ϕ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标0x ,则令00x ωϕ+=或0x ωϕπ+=),即可求出ϕ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和ϕ,若对,A ω的符号或对ϕ的范围有要求,则可用诱导公式变换使其符合要求. 18.已知函数()()sin (0,0,02)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求函数()f x 的解析式;(2)若()()()()0,g x f x t t π=+∈为偶函数,求t 的值. (3)若()(),0,64h x f x f x x ππ⎛⎫⎡⎤=⋅-∈ ⎪⎢⎥⎝⎭⎣⎦,求()h x 的取值范围.【答案】(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2)12π或712π;(3)90,4⎡⎤⎢⎥⎣⎦【分析】(1)由图可先得出A 和T ,即可求出ω,再利用712f π⎛⎫= ⎪⎝⎭ϕ即可得出解析式;(2)可得()223t x x g π⎛⎫++ ⎪⎝⎭=,令2,32t k k Z πππ+=+∈即可求出;(3)利用三角恒等变换可化简得出()33sin 4264h x x π⎛⎫=-+ ⎪⎝⎭,再根据x 的取值范围即可求出. 【详解】(1)由图可得A =37341264T πππ⎛⎫=--= ⎪⎝⎭,T π∴=, 22πωπ∴==,则()()2f x x ϕ=+,又7721212f ππϕ⎛⎫⎛⎫=⨯+=⎪⎪⎝⎭⎝⎭2,3k k Z πϕπ=+∈,02,3πϕ∴=,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()()223x g t x f x t π⎛⎫++== ⎝+⎪⎭为偶函数,2,32t k k Z πππ∴+=+∈,解得,122k t k Z ππ=+∈, ()0,t π∈,t ∴=12π或712π; (3)()()6h x f x f x π⎛⎫=⋅-⎪⎝⎭22363x x πππ⎡⎤⎛⎫⎛⎫=+-+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦3sin 2sin 23x x π⎛⎫=+ ⎪⎝⎭3sin 2cos cos 2sin sin 233x x x ππ⎛⎫=+ ⎪⎝⎭23sin 22cos 222x x x =+334cos 4444x x =-+ 33sin 4264x π⎛⎫=-+ ⎪⎝⎭, 0,4x π⎡⎤∈⎢⎥⎣⎦,54,666x πππ⎡⎤∴-∈-⎢⎥⎣⎦,则当466x ππ-=-时,()h x 取得最小值为0,当462x ππ-=时,()h x 取得最大值为94, ∴()h x 的取值范围为90,4⎡⎤⎢⎥⎣⎦【点睛】方法点睛:根据三角函数()()sin f x A x =+ωϕ部分图象求解析式的方法: (1)根据图象的最值可求出A ; (2)求出函数的周期,利用2T πω=求出ω;(3)取点代入函数可求得ϕ.19.函数()()cos 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示.(1)求()f x 的最小正周期和单调递增区间; (2)若,312ππα⎡⎤∈--⎢⎥⎣⎦,()35f α=,求6f πα⎛⎫- ⎪⎝⎭的值.【答案】(1)T π=,()5,1212k k k z ππππ⎡⎤-+∈⎢⎥⎣⎦;(2 【分析】(1)由给定的函数()f x 的图象,得到周期T π=,求得2ω=,再结合()112f π=,求得6πϕ=-,得到()cos(2)6f x x π=-,结合三角函数的性质,即可求解.(2)由()35f α=,利用三角函数的基本关系式,求得4sin 265πα⎛⎫-=- ⎪⎝⎭,结合两角和的正弦公式,即可求解. 【详解】(1)根据给定的函数()f x 的图象,可得35346124T πππ=-=,可得最小正周期为T π=由2T πω=,可得2ω=,所以()()cos 2f x x φ=+,又由()cos()1126f ππϕ=+=,可得22,12k k Z πϕπ⨯+=∈, 又因为2πϕ<,所以6πϕ=-,所以()cos(2)6f x x π=-,令222,6k x k k Z ππππ-≤-≤∈,解得5,1212k x k k Z ππππ-<<+∈,所以函数()f x 的单调递增区间为()5,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦. (2)由()3cos 235f παα⎛⎫=+= ⎪⎝⎭, 因为,312ππα⎡⎤∈--⎢⎥⎣⎦,可得52,663πππα⎡⎤-∈--⎢⎥⎣⎦,所以4sin 265πα⎛⎫-=- ⎪⎝⎭, 则()cos 2sin 2sin 26266f ππππαααα⎛⎫⎛⎫⎛⎫-=-==-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭3sin 2cos cos 2sin 666610ππππαα-⎛⎫⎛⎫=-+-= ⎪ ⎪⎝⎭⎝⎭. 【点睛】由三角函数的图象确定三角函数的解析式的策略: (1)A 主要是根据图象的最高点或最低点的纵坐标确定;(2)w 的值主要由周期T 的值确定,而T 的值的确定主要是根据图象的零点与最值点的横坐标确定;(3)ϕ值的确定主要是由图象的特殊点的坐标确定.。

三角函数的图像变换及求解析式

三角函数的图像变换及求解析式

1、把y=cos2x 的图像向左平移4π个单位长度,再把所得图像上所有点的横坐标伸长到原来的2倍,而纵坐标保持不变,则所得的图像解析式为( ) A 、y=-sinx B 、y=sin4x C.y=cos(x+4π) D.y=cos(4x+4π) 2、为了得到函数y=2sin(2x-3π)的图像,只需将函数y=2sin2x 的图像( ) A .向左平移3π个单位 B .向右平移3π个单位C .向左平移6π个单位D .向右平移6π个单位3、(2013四川理函数()2sin()(0,)22f x x ππωϕωϕ=+>-<<的部分图象如图所示,则,ωϕ的值分别是( )(A )2,3π-(B )2,6π-(C )4,6π-(D )4,3π4、函数y=3sin(2x-3π)的图像为C 。

(1)图像C 关于直线x=π1211对称;(2)函数()f x 在区间(-12π,π125)上单调递增;(3)由y=3sin2x 的图像向右平移3π个单位长度可以得图像C ;以上三个论断中,正确的个数是( ) A 、0 B 、1 C 、2 D 、35、(2015湖北)某同学用“五点法”画函数π()sin()(0,||)2f x A x ωϕωϕ=+><在某一个周期内的图象时,列表并填入了部分数据,如下表:(Ⅰ)请将上表数据补充完整,填写在答题卡上相应位置...........,并直接写出函数()f x 的解 析式;(Ⅱ)将()y f x =图象上所有点向左平行移动θ(0)θ>个单位长度,得到()y g x =的图5π(,0) 12,求θ的最小值.象. 若()y g x=图象的一个对称中心为。

高考数学真题09 三角函数的图象与性质问题(教师版)

高考数学真题09 三角函数的图象与性质问题(教师版)
B.把C1上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
C.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向右平移 个单位长度,得到曲线C2
D.把C1上各点的横坐标缩短到原来的 倍,纵坐标不变,再把得到的曲线向左平移 个单位长度,得到曲线C2
8.答案1解析依题意,f(x)=sin2x+ cosx- =-cos2x+ cosx+ =- 2+1,因为x
∈ ,所以cosx∈[0,1],因此当cosx= 时,f(x)max=1.
9.(2013·全国Ⅰ)设当x=θ时,函数f(x)=sinx-2cosx取得最大值,则cosθ=________.
9.答案- 解析f(x)=sinx-2cosx= = sin (x-φ),其中sinφ= ,
则 <ωπ+ ≤3π,解得 <ω≤ ,即ω∈( , ].故选C.
【知识总结】
1.三种三角函数的图象和性质
正弦函数y=sinx
余弦函数y=cosx
正切函数y=tanx
图象
定义域
R
R
{x|x≠ +kπ,k∈Z}
值域
[-1,1] (有界性)
[-1,1] (有界性)
R
零点
{x|x=kπ,k∈Z}
{x|x= +kπ,k∈Z}
专题09三角函数的图象与性质问题
【高考真题】
1.(2022·北京)已知函数f(x)=cos2x-sin2x,则()
A.f(x)在(- ,- )上单调递减B.f(x)在(- , )上单调递增
C.f(x)在(0, )上单调递减D.f(x)在( , )上单调递增
1.答案C解析因为f(x)=cos2x-sin2x=cos2x.对于A选项,当- <x<- 时,-π<2x<- ,则

高考数学专题:三角函数的图象与性质

高考数学专题:三角函数的图象与性质

y t 2 3t 1 4
当t
3 2
时,ymax
1
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
11
[明考情—备考如何学] 高考对此部分内容主要以选择、填空题的形式考查,难度为中等偏下,大多出现在 第 6~12 题或第 14、15 题位置上,命题的热点主要集中在三角函数的定义、图象与性 质,主要考查图象的变换,函数的单调性、奇偶性、周期性、对称性及最值,并常与三 角恒等变换交汇命题.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
18
2.(2019·湖南省五市十校联考)函数 f(x)=Asin(ωx+φ)(A>0,ω>0,0≤φ<2π)的部分图象 如图所示,则 f(2 019)的值为___-_1____.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
19
B.在π4,51π2上单调递减
C.1π2,0是 g(x)图象的一个对称中心
D.直线 x=-π6是 g(x)图象的一条对称轴
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
26
2. (2019·洛阳尖子生第二次联考)已知函数 f(x)=sinωx+π6(ω>0)在区间-π4,23π上单调
(3)基本关系:
sin2x+cos2x=1,
tan
x=csions
x x.
上一页
返回导 航
下一页
第二部分 专题一 三角函数与解三角形
13
[研考点考向·破重点难点]
考点1 三角函数的定义、诱导公式及基本关系

高一数学三角函数的图象与性质试题答案及解析

高一数学三角函数的图象与性质试题答案及解析

高一数学三角函数的图象与性质试题答案及解析1.已知函数的图像关于直线对称,且图像上相邻两个最高点的距离为.(1)求和的值;(2)若,求的值【答案】(1)ω=2,;(2).【解析】(1)由题意可得函数f(x)的最小正周期为π 求得ω=2.再根据图象关于直线对称,结合可得φ 的值.(2)由条件求得再根据的范围求得的值,再根据,利用两角和的正弦公式计算求得结果.试题解析:(1)因为f(x)图像上相邻两个最高点的距离为,所以f(x)的最小正周期,从而,又因f(x)的图象关于直线对称,所以,又因为得,所以.(2)由(1)得所以,又得所以,因此.【考点】三角函数的周期公式,诱导公式,三角函数的图像与性质,角的变换,两角和的正弦公式,同角三角函数的基本关系(平方关系).2.不等式的解集为 .【答案】【解析】本题主要考查三角函数的恒等变换.由得:,故不等式的解集为.【考点】三角函数的恒等变换,三角函数的性质.3.函数的一条对称轴方程是().A.B.C.D.【答案】A【解析】的对称轴方程为,即令,得.【考点】诱导公式、三角函数的图像与性质.4.已知函数,.(1)求的最小正周期;(2)求在闭区间上的最大值和最小值.【答案】(1);(2)最大值为,最小值为.【解析】解题思路:利用两角和与差的三角公式和二倍角公式及其变形化成的形式,再求周期与最值.规律总结:涉及三角函数的周期、最值、单调性、对称性等问题,往往先根据三角函数恒等变形化为的形式,再利用三角函数的图像与性质进行求解.注意点:求在给定区间上的最值问题,要注意结合正弦函数或余弦函数的图像求解.试题解析:(1),故的最小正周期为π.(2)函数在闭区间上的最大值为,最小值为 .【考点】1.三角恒等变形;2.三角函数的图像与性质.5.已知函数是定义在上的偶函数,且在区间上是增函数.令,,,则()A.B.C.D.【答案】A【解析】由于,又,又在区间上是增函数,所以有。

【考点】函数的单调性及三角函数值大小的比较。

方法10:五点法求三角函数解析式

方法10:五点法求三角函数解析式

方法10 五点法求三角函数解析式一、单选题1.函数()()sin 0,0,22f x A x A ωϕωϕππ⎛⎫=+>>-<< ⎪⎝⎭的部分图象如图所示,则()f x =( )A .sin 6x ππ⎛⎫+⎪⎝⎭B .sin 3x ππ⎛⎫+⎪⎝⎭C .sin 6x ππ⎛⎫-⎪⎝⎭D .sin 3x ππ⎛⎫-⎪⎝⎭【答案】C 【分析】由函数的图象的顶点坐标求出A ,由周期求出ω,由五点法作图求出ϕ的值,从而得到函数的解析式. 【解析】解:由图象可得1A =,再根据35134362T =-=,可得2T =, 所以22πωπ==, 再根据五点法作图可得1,6k k Z πϕπ⨯+=∈,求得6πϕ=-, 故函数的解析式为()sin 6f x x ππ⎛⎫=-⎪⎝⎭. 故选:C.2.若16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,则ω=( ) A .3 B .32C .34D .12【答案】B 【分析】 由16x π=,256x π=是函数()sin()f x x ωϕ=+()0ω>两个相邻的极值点,可得52663πππ-=是函数()f x 周期的一半,从而可求出ω的值【解析】解:由题意得,52663πππ-=是函数()f x 周期的一半,则243ππω=,得32ω=. 故选:B3.在一个港口,相邻两次高潮发生的时间相距12 h ,低潮时水深为9 m ,高潮时水深为15 m .每天潮涨潮落时,该港口水的深度y (m )关于时间t (h )的函数图象可以近似地看成函数y =A sin(ωt +φ)+k (A >0,ω>0)的图象,其中0≤t ≤24,且t =3时涨潮到一次高潮,则该函数的解析式可以是( )A .y =3sin6πt +12 B .y =-3sin6πt +12 C .y =3sin12πt +12 D .y =3cos6πt +12 【答案】A 【分析】由两次高潮的时间间隔12h 知12T =,且212(0)T πωω==>得6π=ω,又由最高水深和最低水深得3A =,12k =,将3t = y =15代入解析式解出φ,进而求出该函数的解析式.【解析】由相邻两次高潮的时间间隔为12 h ,知T =12,且T =12=2πω(ω>0),得ω=6π,又由高潮时水深15 m 和低潮时水深9 m ,得A =3,k =12,由题意知当t =3时,y =15.故将t =3,y =15代入解析式y =3sin 6t πϕ⎛⎫+ ⎪⎝⎭+12中,得3sin 36πϕ⎛⎫⨯+⎪⎝⎭+12=15,得6π×3+φ=2π+2kπ(k ∈Z ),解得φ=2kπ(k ∈Z ).所以该函数的解析式可以是y =3sin 26t k ππ⎛⎫+⎪⎝⎭+12=3sin 6πt +12.4.记函数()()sin f x x ωϕ=+(其中0>ω,2πϕ<)的图像为C ,已知C 的部分图像如图所示,为了得到函数()sin g x x ω=,只要把C 上所有的点( )A .向右平行移动6π个单位长度 B .向左平行移动6π个单位长度 C .向右平行移动12π个单位长度 D .向左平行移动12π个单位长度 【答案】A 【分析】根据图象可得周期,求出2ω=,根据图象上最低点求出3πϕ=,再根据平移变换可得结果.【解析】由图象可知周期74()123T πππ=-=,所以222T ππωπ===, 又图象上一个最低点为7(,1)12π-,所以7sin 2112πϕ⎛⎫⨯+=- ⎪⎝⎭, 所以7322122k ππϕπ⨯+=+,k Z ∈,即23k πϕπ=+,k Z ∈, 因为2πϕ<,所以3πϕ=,所以()sin 23f x x π⎛⎫=+⎪⎝⎭sin 26x π⎡⎤⎛⎫=+ ⎪⎢⎥⎝⎭⎣⎦, 所以为了得到函数()sin 2g x x =,只要把C 上所有的点向右平行移动6π个单位长度. 故选:A 【小结】根据图象求出ω和ϕ是解题关键.5.已知函数()cos()f x A x ωϕ=+(其中0A >,0>ω,||2ϕπ<)的部分图象如图所示,则函数的单调递减区间为( )A .32,2()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦B .3,()88k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .52,2()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦D .5,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】D 【分析】先根据图象求出函数()f x 的解析式,再令()22k x k k Z πωϕππ≤+≤+∈,解不等式即可求解. 【解析】由图知:2A =,884Tππ⎛⎫--= ⎪⎝⎭,所以T π=, 又因为2T ππω==,所以2ω=,所以()2cos(2)f x x ϕ=+,由()228k k Z ϕππ⨯+=∈,可得()24k k Z ϕππ=-+∈,因为||2ϕπ<,所以0k =,4πϕ=-, 所以()2cos 24f x x π⎛⎫=-⎪⎝⎭, 令()2224k x k k Z ππππ≤-≤+∈,解得:()588k x k k Z ππππ+≤≤+∈, 所以函数的单调递减区间为5,()88k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故选:D 【小结】本题解题的关键是利用五点法作图的原理求出()f x 的解析式,再利用整体代入法求单调区间.6.已知函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图,则( )A .()2sin 26f x x π⎛⎫=-⎪⎝⎭B .12f π⎛⎫=⎪⎝⎭C .()f x 的图象的对称中心为,0()12k k Z ππ⎛⎫-∈ ⎪⎝⎭D .不等式()1f x ≥的解集为,()3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦【答案】D 【分析】根据图象求出2,6πωϕ==可得()2sin(2)6f x x π=+,可知A 不正确;计算可知B 不正确;利用正弦函数的对称中心求出()f x 的对称中心可知C 不正确;解不等式()1f x ≥可知D 正确.【解析】由图可知54126T ππ=-,所以T π=,所以222T ππωπ===, 由262ππϕ⨯+=,得6π=ϕ,所以()2sin(2)6f x x π=+,故A 不正确;()2sin(2)12126f πππ=⨯+=B 不正确;由26x k ππ+=,k Z ∈,得212k x ππ=-,k Z ∈,所以()f x 的图象的对称中心为,0()212k k Z ππ⎛⎫-∈⎪⎝⎭,故C 不正确;由不等式()1f x ≥得1sin(2)62x π+≥,得5222666k x k πππππ+≤+≤+,k Z ∈, 得3k x k πππ≤≤+,k Z ∈,所以不等式()1f x ≥的解集为,()3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦,故 D 正确. 故选:D 【小结】根据图象求出函数()f x 的解析式是解题关键.7.函数()sin()(0,0)f x A x A ωϕω=+>>的图象如图所示,则(9)f =( )A .1-B .1C .D 【答案】D 【分析】先利用图象分析得到解析式,再计算(9)f 即可.【解析】由图象可知,2A =,1152233T =-=,24,2T T ππω===,53x =时,52,23x k k Z πωϕϕππ+=⨯+=+∈,解得62,x k k Z ππ=+∈,故()2sin 26f x x ππ⎛⎫=+ ⎪⎝⎭,故922sin 2sin 2sin 262)6(39f πππππ⎛⎫⎛⎫+=+==⎪ ⎪⎝⎭⎝⎭= 故选:D. 【小结】根据图象求函数()sin()(0,0)f x A x A ωϕω=+>>解析式:(1)利用最值确定A 值; (2)利用图象求周期T ,根据2Tπω=求ω; (3)利用特殊点整体代入法确定ϕ值.8.如图是函数()cos(2)f x A x =+ϕ(0,0)A ϕπ>≤≤图象的一部分,对不同的12,[,]x x a b ∈,若()()12f x f x =,有()12f x x +=,则( )A .() f x 在区间5,1212ππ⎛⎫-⎪⎝⎭上是增函数 B .() f x 在区间5,1212ππ⎛⎫-⎪⎝⎭上是减函数 C .() f x 在区间2,63ππ⎛⎫⎪⎝⎭上是增函数D .() f x 在区间2,63ππ⎛⎫⎪⎝⎭上是减函数【答案】B 【分析】(1)根据题意可得2A =,且1222x x a b ++=,从而可得a b ϕ+=-,再由()12f x x +=解得6π=ϕ,即()2cos 26f x x π⎛⎫=+⎪⎝⎭,再利用余弦函数的性质即可求解. 【解析】解析:由函数()cos(2)f x A x =+ϕ()0,0A ϕπ>≤≤图象的一部分,可得2A =,函数的图象关于直线1222x x a b x ++==对称, ∴12a b x x +=+.由五点法作图可得22a πϕ+=-,22b πϕ+=,∴a b ϕ+=-.再根据()12()2cos(2)2cos()f x x f a b ϕϕϕ+=+=-+=-=cos ϕ=, ∴6π=ϕ,()2cos 26f x x π⎛⎫=+ ⎪⎝⎭.在5,1212ππ⎛⎫-⎪⎝⎭上,2(0,)6x ππ+∈, 故()f x 在5,1212ππ⎛⎫-⎪⎝⎭上是减函数, 故选:B .9.已知函数()()sin 0,2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象如图所示,则()f x 的解析式为( )A .()2sin 26f x x π⎛⎫=+⎪⎝⎭B .()2sin 26f x x π⎛⎫=-⎪⎝⎭C .()sin 23f x x π⎛⎫=+⎪⎝⎭D .()sin 23πf x x ⎛⎫=-⎪⎝⎭【答案】A 【分析】利用图象可得出()max A f x =,求出函数()f x 的最小正周期,可求得ω的值,再将点,26π⎛⎫⎪⎝⎭代入函数()f x 的解析式,结合ϕ的取值范围,求出ϕ的值,进而可得出函数()f x 的解析式.【解析】由图象可得()max 2A f x ==,函数()f x 的最小正周期为2236T πππ⎛⎫=⨯-=⎪⎝⎭, 22Tπω∴==,()()2sin 2f x x ϕ∴=+, 又2sin 2266f ππϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭,可得sin 13πϕ⎛⎫+= ⎪⎝⎭,22ππϕ-<<,5636πππϕ∴-<+<,32ππϕ∴+=,解得6π=ϕ, 因此,()2sin 26f x x π⎛⎫=+⎪⎝⎭. 故选:A. 【小结】根据三角函数()()sin f x A x b ωϕ=++的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.10.函数()()cos f x A x ωϕ=+(其中0A >,0>ω,2πϕ<)的图象如图所示.为了得到()cos g x A xω=-的图象,只需把()y f x =的图象上所有的点( )A .向右平移12π个单位长度 B .向右平移512π个单位长度 C .向左平移12π个单位长度 D .向左平移512π个单位长度 【答案】B 【分析】先根据图象求出,,A ωϕ的值即可得()f x 和()g x 的解析式,再利用函数图象的平移变换即可得正确选项. 【解析】 由图知:1A =,74123T πππ⎛⎫=-= ⎪⎝⎭,所以22T πω==,()()cos 2f x x φ=+,当712x π=时,()()cos 2f x x φ=+有最小值,所以()72212k k Z πϕππ⨯+=+∈, 所以()26k k Z πϕπ=-+∈,又因为2πϕ<,所以0,6k πϕ==-,所以()cos 26f x x π⎛⎫=- ⎪⎝⎭,()()cos2cos 2g x x x π=-=-,所以只需要把()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上所有的点向右平移512π个单位长度得()()5cos 2cos 2cos 2126x x x g x πππ⎡⎤⎛⎫--=-=-= ⎪⎢⎥⎝⎭⎣⎦,故选:B 【小结】本题的关键点是由函数的部分图象求出,,A ωϕ的值,进而求出()f x 和()g x 的解析式,()()cos2cos 2g x x x π=-=-,由平移变换的规律求解,注意左右平移指一个x 变化多少,此点容易出错,属于中档题.11.函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到g()sin 34x x π⎛⎫=-⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移π6个单位长度 B .向左平移π6个单位长度 C .向右平移π2个单位长度 D .向左平移π2个单位长度 【答案】A 【分析】首先根据函数()f x 的图象得到()sin 34f x x π⎛⎫=+⎪⎝⎭,再根据三角函数的平移变换即可得到答案. 【解析】由题知:541246T πππ=-=,所以223T ππω==,解得3ω=. 3sin 044f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭, 所以324k πϕππ+=+,k Z ∈,解得24k ϕπ=+π,k Z ∈. 又因为2πϕ<,所以4πϕ=,()sin 34f x x π⎛⎫=+⎪⎝⎭. 因为4436πππ--=-,所以只需将()f x 的图象向右平移π6个单位长度.故选:A12.如图,已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图象与坐标轴交于点1,,(,0)2-A B C ,直线BC 交()f x 的图象于另一点D ,O 是ABD △的重心.则ACD △的外接圆的半径为( )A .2BCD .8【答案】B 【分析】首先根据三角函数图象的对称性和重心的性质求得点A 的坐标,根据周期确定ω,再根据点C 的坐标确定ϕ,确定解析式后,确定点,B D 的坐标,结合正弦定理求ACD △外接圆的半径.【解析】根据三角函数的对称性可知点C 是BD 的中点,又O 是ABD ∆的重心,1,02C ⎛⎫- ⎪⎝⎭, ∴21OA OC ==, ∴点A 的坐标为()1,0,∴函数()f x 的最小正周期为3T 232=⨯=, ∴23πω=,∴()2sin 3f x x πϕ⎛⎫=+⎪⎝⎭. 由题意得121sin sin 02323f ππϕϕ⎡⎤⎛⎫⎛⎫⎛⎫-=⨯-+=-+= ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦, 又2πϕ<,∴3πϕ=,∴()2sin 33f x x ππ⎛⎫=+⎪⎝⎭,令0x =得()0sin3f π==, ∴点B的坐标为⎛ ⎝⎭,∴tan BCO ∠=3BCO π∠=,∴23ACD π∠=. 又点1,02C ⎛⎫-⎪⎝⎭是BD 的中点, ∴点D的坐标为1,2⎛⎫-- ⎪ ⎪⎝⎭,∴AD ==设ACD ∆的外接圆的半径为R,则222sin sin 3AD R ACD π∠===∴R =. 故选:B. 【小结】已知图象求()()sin 0,2f x A x πωϕωϕ⎛⎫=+><⎪⎝⎭的步骤为: 1.一般根据函数的最大值和最小值求A ; 2.ω由周期确定,根据公式2T πω=,观察给定的图象,分析出确定的T 值;3.一般求ϕ,可以将图象中的一个点代入求解,或是根据“五点法”,利用图象的最高点或最低点,以及函数的零点,再由已知条件中ϕ的具体范围确定相应的ϕ值.13.函数()()sin 0,π2f x x ϕωϕω⎛⎫=+>< ⎪⎝⎭的图象如图所示,为了得到()5sin 6g x x πω⎛⎫=+ ⎪⎝⎭的图象,则只将()f x 的图象( )A .向左平移4π个单位 B .向右平移4π个单位 C .向左平移12π个单位 D .向右平移12π个单位 【答案】A【分析】根据三角函数的图像求出()sin(2)3f x x π=+,再利用三角函数的平移变换即可求解.【解析】由图像观察可知,741234T πππ=-=, 所以T π=,则2ω=,所以()()sin 2f x x ϕ=+,根据图像过点7,112π⎛⎫-⎪⎝⎭,所以732122ππϕ⨯+=, 则3πϕ=,所以()sin(2)3f x x π=+,函数()5sin(2)6g x x π=+, 因此把()sin(2)3f x x π=+图像向左平移4π个单位即得到()g x 的函数图像, 故选:A.14.已知函数()()cos f x A x ωϕ=+在[]0,π上的图象如图所示,则函数()f x 的解析式是( )A .()2cos 24f x x π⎛⎫=+ ⎪⎝⎭B .()4f x x π⎛⎫=- ⎪⎝⎭C .()3)4f x x π=- D .())4f x x π=-【答案】C 【分析】由函数的图像可求得,A T ,再利用周期公式可求出ω,然后对选项的解析式逐个验证即可【解析】解:由图像可得34884T A πππ==-=, 所以T π=,所以22πωπ==,所以A ,B 不符合题意,对于C ,()30)14f π=-=, 333)884f πππ⎛⎫=⨯-= ⎪⎝⎭对于D ,33)0884f πππ⎛⎫=⨯-=⎪⎝⎭,不符合题意, 故选:C15.已知()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭,其图像相邻两条对称轴之间的距离为2π,且()f x 的图像关于点,012π⎛⎫- ⎪⎝⎭对称,则下列判断错误的是( )A .要得到函数()f x 的图像,只需要现将y x =的图像保持纵坐标不变,横坐标变为原来的一半,再向右平移6π个单位 B .函数()f x 的图像关于直线23x π=对称 C .函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递减D .当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,函数()f x 的最小值为【答案】D 【分析】根据正弦型函数的性质可求得()f x 的解析式;根据三角函数平移变换原则可知A 正确;利用代入检验法可知,B C 正确;利用正弦型函数求值域的方法可确定D 错误. 【解析】()max f x =,0A >,A ∴=()f x 相邻两条对称轴之间距离为2π,()f x ∴最小正周期222T ππω==⨯,2ω∴=,0126f ππϕ⎛⎫⎛⎫-=-+= ⎪ ⎪⎝⎭⎝⎭,()6k k Z πϕπ∴-+=∈,()6k k Z πϕπ∴=+∈,又2πϕ<,6πϕ∴=,()26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,y x =横坐标变为原来一半得到2y x =;再向右平移6π个单位得到23y x π⎛⎫=- ⎪⎝⎭,又cos 2sin 2sin 23236x x x ππππ⎡⎤⎛⎫⎛⎫⎛⎫-=+-=+ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦,可知A 正确;对于B ,当23x π=时,4326362x ππππ+=+=,32x π=是sin y x =的对称轴,23x π∴=是()f x 的对称轴,B 正确; 对于C ,当,63x ππ⎡⎤∈⎢⎥⎣⎦时,52,626x πππ⎡⎤+∈⎢⎥⎣⎦,sin y x =在5,26ππ⎡⎤⎢⎥⎣⎦上单调递减,()f x ∴在,63ππ⎡⎤⎢⎥⎣⎦上单调递减,C 正确;对于D ,当,66x ππ⎡⎤∈-⎢⎥⎣⎦时,2,662x πππ⎡⎤+∈-⎢⎥⎣⎦,()min 62f x π⎛⎫∴=-=- ⎪⎝⎭,D 错误. 故选:D. 【小结】根据三角函数性质求解()sin y A ωx φ=+的方法:(1)max min 2y y A -=;(2)2Tπω=;(3)代入图象上的点,利用整体对应法,结合正弦函数图象构造方程求得ϕ.16.已知函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的图象如图所示,若函数()()1h x f x =+的两个不同零点分别为1x ,2x ,则12x x -的最小值为( )A .23πB .2π C .43π D .π【答案】A 【分析】首先根据图象求得函数的解析式,再求函数的零点,比较相邻零点中12x x -的最小值. 【解析】由图象可知函数的最大值为2,所以2A =,24362T πππ=-=,所以221ππωω=⇒=,当6x π=时,2,6k k Z πϕπ+=∈, 2πϕ<,6πϕ∴=-()2cos 6f x x π⎛⎫∴=- ⎪⎝⎭,即()2cos 16h x x π⎛⎫=-+ ⎪⎝⎭,当()0h x =时,1cos 62x π⎛⎫-=- ⎪⎝⎭, 得22,63x k k Z πππ-=+∈或42,63x k k Z πππ-=+∈, 解得:52,6ππ=+∈x k k Z ,或32,2x k k Z ππ=+∈, 相邻的零点12,x x 中,12x x -的最小值是352263πππ-=. 故选:A 【小结】本题考查根据三角函数的图象求三角函数的解析式,三角函数的零点,属于中档题型.求()sin y A x b ωϕ=++()0,0A ω>>的解析式的求法:在一个周期内,若最大值为M ,最小值为m ,则A b M A b m +=⎧⎨-+=⎩,ω由周期确定,由2T πω=求出,通过观察图象,分析确定T 的值,将图象的一个最高点或最低点,也可以利用零点,再由已知条件中ϕ的具体范围确定相应ϕ值.17.函数()()2sin 0,2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图像如图所示,则下列结论正确的是( )A .3x π=-是()f x 图像的一条对称轴B .()f x 图像的对称中心为22,0,3k k Z ππ⎛⎫+∈⎪⎝⎭ C .()1f x ≥的解集为44,4,3k k k Z πππ⎡⎤+∈⎢⎥⎣⎦D .()f x 的单调递减区间为282,2,33k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】C 【分析】结合五点作图法和函数图像可求得函数解析式,采用代入检验法可依次判断各个选项得到结果. 【解析】()10sin 2f ϕ==且2πϕ<,6πϕ∴=, 又882sin 233f ππωϕ⎛⎫⎛⎫=+=-⎪ ⎪⎝⎭⎝⎭,由五点作图法可得:83362πππω+=,解得:12ω=, ()12sin 26f x x π⎛⎫∴=+ ⎪⎝⎭.对于A ,当3x π=-时,1026x π+=,,03π⎛⎫∴- ⎪⎝⎭是()f x 的对称中心,A 错误;对于B ,当223x k ππ=+时,1262x k πππ+=+,223x k ππ∴=+是()f x 的对称轴,B 错误; 对于C ,由()1f x ≥得:1in 2612s x π⎛⎫⎪⎭≥+⎝,15226266k x k πππππ∴+≤+≤+, 解得:4344k x k πππ≤+≤,C 正确; 对于D ,当282,233x k k ππππ⎡⎤∈++⎢⎥⎣⎦时,13,2622x k k πππππ⎡⎤+∈++⎢⎥⎣⎦, 当1k =时,135,2622x πππ⎡⎤+∈⎢⎥⎣⎦,不是()f x 的单调递减区间,D 错误. 故选:C. 【小结】本题考查正弦型函数()sin y A ωx φ=+的性质的判断,解决此类问题常用的方法有:(1)代入检验法:将所给单调区间、对称轴或对称中心代入x ωϕ+,确定x ωϕ+的值或范围,根据x ωϕ+是否为正弦函数对应的单调区间、对称轴或对称中心来确定正误;(2)整体对应法:根据五点作图法基本原理,将x ωϕ+整体对应正弦函数的单调区间、对称轴或对称中心,从而求得()sin y A ωx φ=+的单调区间、对称轴或对称中心.18.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像如图所示,记关于x 的方程()f x =()21t t -<<-在区间5π0,6⎡⎤⎢⎥⎣⎦上所有解的和为θ,则tan θ=( )A .BC .D .tan 2t【答案】B 【分析】由函数图象得函数()π2sin 23f x x ⎛⎫=+⎪⎝⎭,再根据函数的性质得方程()()()2,1f x t t =∈--在区间5π0,6⎡⎤⎢⎥⎣⎦上所有的解共有2个且这2个解的和等于7π7π2126⨯=,进而得答案. 【解析】解:由图可知,2A =,再把点(代入可得2sin ϕ=所以sin ϕ=π2ϕ<,所以π3ϕ=,由五点作图法原理可得πππ33ω⋅+=,所以2=ω, 故函数()π2sin 23f x x ⎛⎫=+⎪⎝⎭,当5π0,6x ⎡⎤∈⎢⎥⎣⎦时,ππ2,2π33x ⎡⎤+∈⎢⎥⎣⎦, 令π2π233x +=,得7π12x =,由图像可知方程()()()2,1f x t t =∈--在区间5π0,6⎡⎤⎢⎥⎣⎦上所有的解共有2个,且这2个解的和等于7π7π2126⨯=,即7π6θ=,所以7πtan tan6θ==故选:B . 【小结】本题考查利用三角函数图象求解析式,函数的对称性,考查运算能力,是中档题.19.设函数()πsin 4f x x ω⎛⎫=+⎪⎝⎭在[]0,2π上的图像大致如图,则()f x 的最小正周期为( )A .5π6B .6π5C .5π4D .3π2【答案】C 【分析】由图象观察可得最小正周期小于43ππ32T <<,排除A ,D ;再由5π132f ⎛⎫= ⎪⎝⎭,求得ω,即可得到结论.【解析】由图像可得()f x 的最小正周期T 满足:π,3π5π,232T T >⎧⎪⎨<-⎪⎩解得43ππ32T <<, 故排除A ,D ;又由5π5ππsin 132324f ω⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,可得()5πππ2π3242k k ω+=+∈Z ,解得()86455k k ω=+∈Z . 因为π2πT <<,即2ππ2πω<<,所以12ω<<.所以当0k =时,85ω=, 所以2π5π845T ==. 故选:C.二、多选题20.如图是函数()sin()0,||2f x x πωϕωϕ⎛⎫=+><⎪⎝⎭的部分图象,下列选项正确的是( )A .()sin 23f x x π⎛⎫=-⎪⎝⎭B .()sin 43f x x π⎛⎫=-⎪⎝⎭C .06f π⎛⎫=⎪⎝⎭D .213f π⎛⎫-= ⎪⎝⎭【答案】AC 【分析】先由()0f =可求得3πϕ=-,再sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,可得()233k k Z ππωππ--=+∈,解得()46k k Z ω=--∈,再利用23T ππω=>,可得03ω<<,所以2ω=,()sin 23f x x π⎛⎫=- ⎪⎝⎭,即可知A 正确,B 不正确,计算即可判断C 、D ,进而可得正确答案. 【解析】由图知()0sin 2f ϕ==-,因为||2ϕπ<,所以3πϕ=-,所以()sin 3f x x πω⎛⎫=-⎪⎝⎭, 因为sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,所以()233k k Z ππωππ--=+∈,解得:()46k k Z ω=--∈,因为23T ππω=>,所以03ω<<, 所以1k =-时2ω=,可得()sin 23f x x π⎛⎫=- ⎪⎝⎭,故选项A 正确,选项B 不正确,sin 2sin 00663f πππ⎛⎫⎛⎫=⨯-== ⎪ ⎪⎝⎭⎝⎭,故选项C 正确;24sin sin 33332f ππππ⎛⎫⎛⎫-=--== ⎪ ⎪⎝⎭⎝⎭D 不正确, 故选:AC 【小结】本题的关键点是求ω的值,先利用sin 0333f πππω⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭,而且3π-是下降零点可得()233k k Z ππωππ--=+∈,解得()46k k Z ω=--∈,再结合图象可知23T ππω=>得03ω<<,求得2ω=,()sin 23f x x π⎛⎫=-⎪⎝⎭问题即可迎刃而解,属于常考题型. 21.已知函数()()sin f x A x ωϕ=+,()0,0,0A ωϕπ>><<的部分图象如图所示,其中图象最高点和最低点的横坐标分别为12π和712π,图象在y ,给出下列四个结论,其中正确的结论是( )A .()f x 的最小正周期为πB .()f x 的最大值为2C .14f π⎛⎫=⎪⎝⎭D .3f x π⎛⎫+⎪⎝⎭为偶函数 【答案】ABC 【分析】由周期求出ω,由五点法作图求ϕ,根据特殊点的坐标求出A ,可得函数的解析式()2sin(2)3f x x π=+.通过分析得到ABC 正确,()2sin 23f x x π+=-为奇函数,所以D 错误.【解析】根据函数()sin()(0f x A x A ωϕ=+>,0>ω,0)ϕπ<<的部分图象,得12721212πππω=-, 2ω∴=.再根据五点法作图可得2122ππϕ⨯+=,3πϕ∴=.根据函数的图象经过,可得sin sin3A A πϕ=2A =,()2sin(2)3f x x π∴=+.故,A ()f x 的最小正周期为π,所以A 正确;,B ()f x 的最大值为2,所以B 正确;,C 由题得()2sin()1423f πππ=+=,所以C 正确;,D ()2sin 23f x x π+=-为奇函数,所以D 错误.故选:ABC 【小结】求三角函数的解析式一般有三种:(1)待定系数法:一般先设出三角函数的解析式sin()yA wx k ,再求待定系数,,,A w k ,最值确定函数的,A k ,周期确定函数的w ,非平衡位置的点确定函数的φ.(2)图像变换法:一般利用函数图像变换的知识,一步一步地变换得到新的函数的解析式.(3)代入法:一般先在所求的函数的图像上任意取一点(,)P x y ,再求出点P 的对称点((,),(,))P f x y g x y ,再把点((,),(,))P f x y g x y 的坐标代入已知的函数的解析式化简即得所求函数的解析式.本题选择的是待定系数法.要根据已知灵活选择.22.若函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图像,如图所示,则下列说法正确的是( )A .6π=ϕ B .函数()f x 的图像关于6x π=对称C .函数()f x 的图像关于点5,06π⎛⎫-⎪⎝⎭对称 D .,02x ⎡⎤∈-⎢⎥⎣⎦π时,()f x 的值域为[]2,1- 【答案】ABD 【分析】根据三角函数的图像求出函数的解析式,再由三角函数的性质即可得出选项. 【解析】由图像可知2A =,(0)2sin 1f ϕ==,即1sin 2ϕ=, 因为||2ϕπ<,所以6π=ϕ, 332sin 446f πππω⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,()352,463k k Z πππωπ∴+=+∈, ()82,3k k Z ω∴=+∈,周期234T ππω=>,803ω∴<<,即2ω=, ()2sin 26f x x π⎛⎫∴=+ ⎪⎝⎭,对于A ,6π=ϕ,正确; 对于B ,2sin 262f ππ⎛⎫==⎪⎝⎭,故图像关于6x π=对称,正确; 对于C ,532sin 262f ππ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭,错误; 对于D ,,02x ⎡⎤∈-⎢⎥⎣⎦π时,52,666x πππ⎡⎤+∈-⎢⎥⎣⎦,所以()[]2,1f x ∈-,正确; 故选:ABD.23.已知函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则下列说法正确的是( )A .最小正周期为2πB .()f x 在区间5ππ,1212⎡⎤-⎢⎥⎣⎦上单调递增 C .()f x 的图象关于点5π,06⎛⎫⎪⎝⎭对称 D .()f x 的图象可由π2sin 26y x ⎛⎫=+⎪⎝⎭的图象向在平移π6个单位长度得到 【答案】BC 【分析】根据图象确定周期可判断A ,由周期求出ω,利用特殊值求出ϕ得出函数,根据正弦函数的单调性判断B ;根据正弦型函数的对称中心判断C ;由三角函数的图象平移可判断D. 【解析】由图象可知,2A =,ππ2π36T ⎡⎤⎛⎫=--= ⎪⎢⎥⎝⎭⎣⎦,故()f x 的最小正周期为π,故A错误;所以2π2Tω==,得()()2sin 2f x x ϕ=+.又因为当πππ36212x ⎛⎫+- ⎪⎝⎭==时,()2f x =,即ππ2sin 221212f ϕ⎛⎫⎛⎫=⨯+= ⎪ ⎪⎝⎭⎝⎭, 即πsin 16ϕ⎛⎫+=⎪⎝⎭.又因为π2ϕ<,可得ππ62ϕ+=,解得π3ϕ=,所以()π2sin 23f x x ⎛⎫=+⎪⎝⎭.由()πππ2π22π232k x k k -+≤+≤+∈Z , 可得()5ππππ1212k x k k -+≤≤+∈Z ,令0k =,可得()f x 在区间5ππ,1212⎡⎤-⎢⎥⎣⎦上单调递增,故B 正确; 又5π5ππ2sin 0633f ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象关于点5π,06⎛⎫ ⎪⎝⎭对称,故C 正确; π2sin 26y x ⎛⎫=+ ⎪⎝⎭的图象向左平移π6个单位长度得到πππ2sin 22sin 22cos2662y x x x ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故D 错误.故选:BC 【小结】根据三角函数图象求出函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭的解析式,根据正弦型函数的图象与性质即可求出函数的单调区间,对称中心,周期,平移等问题,属于中档题.24.函数()()sin f x A x =+ωϕ,(,,A ωϕ是常数,0A >)的部分图象如图所示,则( )A .()26f x x π⎛⎫=- ⎪⎝⎭B .()23f x x π⎛⎫=+ ⎪⎝⎭C .()f x 的对称轴为,12x k k Z ππ=+∈D .()f x 的递减区间为5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【答案】AB 【分析】由最低点确定A =由周期的四分之一71234πππ-=确定ω,把最低点7,12π⎛⎝代入解析式确定ϕ,再根据正弦函数的对称轴、递减区间求该函数的对称轴和递减区间即可. 【解析】解:显然A =T ,则74123T ππ=-,所以T π=,又2,2ππωω==;所以()()()sin 2f x A x x ωϕϕ=+=+过点7,12π⎛⎝,所以7212πϕ⎛⎫=⋅+ ⎪⎝⎭,()23k k Z πϕπ=+∈,所以()23f x x π⎛⎫=+ ⎪⎝⎭,根据sin cos 2x x π⎛⎫=- ⎪⎝⎭,()2cos 223236f x x x x ππππ⎛⎫⎛⎫⎛⎫=+=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故AB 正确;正弦函数的对称轴为()2x k k Z ππ=+∈,令()()2,32212k x k k Z x k Z πππππ+=+∈=+∈,所以()23f x x π⎛⎫=+ ⎪⎝⎭的对称轴为()212k x k Z ππ=+∈,故C 错误; 正弦函数的递减区间为()2,222k k k π3π⎡⎤π+π+∈⎢⎥⎣⎦Z ,令()37222,2321212k x k k x k k Z πππππππππ+≤+≤++<<+∈,()23f x x π⎛⎫=+ ⎪⎝⎭的递减区间为()7,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦,故D 错误. 故选:AB 【小结】已知三角函数的图像确定解析式,一般根据最高点或最低点确定振幅A ,根据周期确定角速度ω,根据函数图像经过的点确定初相ϕ,再根据正弦函数的性质用换元法确定待求函数的性质即可.25.函数()()cos 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =( )A.1cos223xππ⎛⎫+⎪⎝⎭B.1cos226xππ⎛⎫+⎪⎝⎭C.1sin223xππ⎛⎫-+⎪⎝⎭D.1sin223xππ⎛⎫--⎪⎝⎭【答案】BD 【分析】根据最小值求得A,根据周期求得ω,根据点111,122⎛⎫⎪⎝⎭求得ϕ,由此求得()f x的解析式,结合诱导公式确定正确选项.【解析】由图象可得12A=,3111341264T=-=,解得1T=,所以2ωπ=,所以1()cos(2)2f x xπϕ=+,又()f x的图象过点111,122⎛⎫⎪⎝⎭,则()112212k k Zπϕπ⨯+=∈,解得()1126k k Zπϕπ=-∈,又2πϕ<,所以6π=ϕ,即11()cos2sin226226 f x x xπππππ⎡⎤⎛⎫⎛⎫=+=-+⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦1sin223xππ⎛⎫=-+⎪⎝⎭1sin223xππ⎛--=⎫⎪⎝⎭.故选BD【小结】本小题主要考查根据三角函数图象求三角函数解析式,考查诱导公式,属于中档题.三、填空题26.函数()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>><⎪⎝⎭在一个周期内的图象如图所示,则此函数的解析式()f x =______.【答案】π24y x ⎛⎫=- ⎪⎝⎭【分析】由五点法求得周期,由振幅可求A ,再由最低点可求得φ. 【解析】由振幅得:A =由图象可得:75488T πππ⎛⎫=-=⎪⎝⎭, ∴2Tπω==2,∴y (2x +φ),当78x π=时,y =, ∴73282πϕπ⨯+=,π4ϕ∴=-∴解析式为:π24y x ⎛⎫=- ⎪⎝⎭【小结】本题关键点是利用五点法确定周期与φ.27.函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>><⎪⎝⎭的部分图象如图所示,则()f x =______.【答案】sin 23x π⎛⎫+⎪⎝⎭【分析】由图可得A ,利用周期求出ω,又函数过点7,112π⎛⎫-⎪⎝⎭,解得3πϕ=,进而得出函数的解析式.【解析】由图可得:1A =,37341264T πππ⎛⎫=--= ⎪⎝⎭,解得,2T πω==,()()sin 2f x x ϕ=+ 又函数过点7,112π⎛⎫-⎪⎝⎭,则732122ππϕ⨯+=,解得3πϕ=,()sin 23f x x π⎛⎫=+ ⎪⎝⎭故答案为:sin 23x π⎛⎫+⎪⎝⎭四、解答题28.已知函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示.(1)写出函数()f x 的最小正周期T 及ω、ϕ的值;(2)求函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间. 【答案】(1)T π=,2ω=,3πϕ=;(2),412ππ⎛⎫-⎪⎝⎭ 【分析】(1)由函数sin()y A x ωϕ=+的部分图象求解析式,由周期求出ω,由五点法作图求出ϕ的值,可得函数的解析式.(2)由以上可得,()sin(2)3f x x π=+,再利用正弦函数的性质,求出函数在区间上的单调性.【解析】解:(1)根据函数()sin()(0f x x ωϕω=+>,||)2πϕ<的部分图象,可得32134123πππω=-,解得2ω=,∴最小正周期22T ππ==.所以()sin(2)f x x ϕ=+因为函数过13,112π⎛⎫⎪⎝⎭,所以13sin 2112πϕ⎛⎫⋅+= ⎪⎝⎭,所以()13262k k Z ππϕπ+=+∈,解得()523k k Z πϕπ=-+∈ 因为2πϕ<,所以3πϕ=.所以()sin(2)3f x x π=+(2)由以上可得,()sin(2)3f x x π=+,在区间,44ππ⎡⎤-⎢⎥⎣⎦上,所以2[36x ππ+∈-,5]6π,令2632x πππ-≤+≤,解得412x ππ-≤≤ 即函数()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的单调增区间为,412ππ⎡⎤-⎢⎥⎣⎦【小结】求三角函数的解析式时,由2Tπω=即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ,否则需要代入点的坐标,利用一些已知点的坐标代入解析式,再结合函数的性质解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求.29.已知函数()2sin()0,||2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的图像与直线2y =两相邻交点之间的距离为π,且图像关于12x π=对称.(1)求()y f x =的解析式;(2)令函数g()()1x f x =+,且g()y x =在[0,]a 上恰有10个零点,求a 的取值范围.【答案】(1)2n 2)3(si f x x π⎛⎫=+⎪⎝⎭;(2)1965,412ππ⎡⎫⎪⎢⎣⎭. 【分析】(1)根据题意可得周期T π=,可得2ω=,根据对称轴可得3πϕ=,则可得()y f x =的解析式;(2)依题意由52252636a ππππππ⨯-≤+<⨯++解得结果即可得解.【解析】(1)由已知可得T π=,2ππω=,∴2ω=,又()f x 的图象关于12x x π=对称,所以2122k ππϕπ⨯+=+,k Z ∈∵22ππϕ-<<,∴3πϕ=.所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.(2)令()0g x =,得1sin 232x π⎛⎫+=- ⎪⎝⎭, 要使()y g x =在[0,]a 上恰有10个零点,只需52252636a ππππππ⨯-≤+<⨯++,解得1965412a ππ≤<. 所以a 的取值范围是1965,412ππ⎡⎫⎪⎢⎣⎭. 【小结】利用周期求出ω,利用对称轴求出ϕ是解题关键.30.已知函数()cos()(0,0,0)f x A x A ωϕωϕπ=+>><<的部分图象如图所示.(1)求()f x 的解析式(2)设()()216g x f x x π⎛⎫=+-+ ⎪⎝⎭若关于x 的不等式2()(32)()230g x m g x m -+--≤恒成立,求m 的取值范围.【答案】(1)()2cos(2)3f x x π=+;(2)[11]2-,. 【分析】(1)由图求出A 、T 、ω和ϕ的值,即可写出()f x 的解析式;(2)由(1)可得()g x 的解析式,设()t g x =,问题等价于()0h t 在[3-,5]上恒成立,列出不等式组求出m 的取值范围. 【解析】解:(1)由图可知2A =,35346124T πππ=-=, 解得T π=,所以22Tπω==,所以()2cos(2)f x x ϕ=+; 因为()f x 的图象过点5(6π,2),所以52cos(2)26πϕ⨯+=,解得523k πϕπ=-,k Z ∈;因为0ϕπ<<,所以3πϕ=,所以()2cos(2)3f x x π=+;(2)由(1)可得()2cos(2)3cos(2)136g x x x ππ=++-+2cos(2))133x x ππ=++++4sin(2)136x ππ=+++ 4cos21x =+;设()t g x =,因为1cos21x -,所以3()5g x -;又因为不等式2()(32)()230g x m g x m -+--恒成立,即2()(32)230h t t m t m =-+--在[3-,5]上恒成立,则(3)0(5)0h h -⎧⎨⎩,即93(32)230255(32)230m m m m ++--⎧⎨-+--⎩,解得112m -, 所以m 的取值范围是1,12⎡⎤-⎢⎥⎣⎦.【小结】本题考查了三角函数的图象与性质的应用问题,也考查了不等式恒成立问题,已知f (x )=Asin (ωx +φ)(A >0,ω>0)的部分图象求其解析式时,A 比较容易看图得出,困难的是求待定系数ω和φ,常用如下两种方法: (1)由ω=2Tπ即可求出ω;确定φ时,若能求出离原点最近的右侧图象上升(或下降)的“零点”横坐标x 0,则令ωx 0+φ=0(或ωx 0+φ=π),即可求出φ.(2)代入点的坐标,利用一些已知点(最高点、最低点或“零点”)坐标代入解析式,再结合图形解出ω和φ,若对A ,ω的符号或对φ的范围有要求,则可用诱导公式变换使其符合要求. 31.函数[)()()sin()0,0,0,2f x A x A ωϕωϕπ=+>>∈的图象如图所示:(1)求()f x 的解析式;(2)若[]0,x π∈且()f x ≥x 的取值范围.【答案】(1)()23f x x π⎛⎫=+ ⎪⎝⎭;(2){}0,6ππ⎡⎤⋃⎢⎥⎣⎦.【分析】(1)由图可得:A =,724123T πππω=-=可求ω的值,再令2(21)3k πϕπ⨯+=+()k Z ∈结合[)0,2ϕπ∈可求ϕ的值,进而可求()f x 的解析式;(2232x π⎛⎫+≥ ⎪⎝⎭,可得sin 232x π⎛⎫+≥ ⎪⎝⎭,所以结合正弦函数的图象和[]0,x π∈即可求解. 【解析】(1)由题意知:A =,741234T πππ=-=, 所以2T ππω==即=2ω,所以2(21)3k πϕπ⨯+=+,02ϕπ≤<,所以=3πϕ,所以()23f x x π⎛⎫=+ ⎪⎝⎭,(2232x π⎛⎫+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭, 所以()2222333k x k k Z πππππ+≤+≤+∈, 令0k =可得22333x πππ≤+≤,解得06x π≤≤,令1k =可得2222333x πππππ+≤+≤+,解得:76x ππ≤≤, 因为[]0,x π∈,所以06x π≤≤或x π=,即{}0,6x ππ⎡⎤∈⋃⎢⎥⎣⎦【小结】利用五点法求函数解析式,关键是3x π=是下降零点,所以2(21)3k πϕπ⨯+=+,结合[)0,2ϕπ∈即可求ϕ232x π⎛⎫+≥ ⎪⎝⎭可得 ()2222333k x k k Z πππππ+≤+≤+∈对k 取值,再与[]0,x π∈求交集即可. 32.某同学用“五点法”画函数()()sin (00)2f x A x k A πωφωφ=++>><,,在一个周期内的图象,列表并填入数据得到下表:(1)求函数()f x 的解析式;(2)三角形ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,若()2f B =,4b =,22cos cos 622C Aa c +=,求三角形ABC 的面积.【答案】(1)()2sin 216f x x π⎛⎫=++ ⎪⎝⎭;(2) 【分析】(1)由三角函数的图象与性质逐步计算出A 、k 、ω、φ,即可得解;(2)先计算出3B π=,利用降幂公式结合余弦定理可转化条件得12a b c ++=,再由余弦定理可得16ac =,结合三角形面积公式即可得解. 【解析】(1)由题意可得31A k A k +=⎧⎨-+=-⎩,解得21A k =⎧⎨=⎩,函数()f x 的最小正周期T 满足22362T πππ=-=,所以22T πω==,又2sin 1363f ππφ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭,所以sin 13πφ⎛⎫+= ⎪⎝⎭, 所以2,32k k Z ππφπ+=+∈,即2,6k k Z πφπ=+∈,由2πφ<可得6πφ=,所以()2sin 216f x x π⎛⎫=++ ⎪⎝⎭; (2)由题意,()2sin 2126f B B π⎛⎫=++= ⎪⎝⎭,所以1sin 262B π⎛⎫+= ⎪⎝⎭, 由()0,B π∈可得132,666B πππ⎛⎫+∈ ⎪⎝⎭,所以5266B ππ+=,即3B π=, 又221cos 1cos coscos 62222C A C A a c a c +++=⋅+⋅=, 所以cos cos 12a c a C c A +++=,即2222221222a b c b c a a c a c ab bc+-+-++⋅+⋅=,化简得12a b c ++=, 又4b =,所以8a c +=,由余弦定理得()22222cos 3b a c ac B a c ac =+-=+-,即22483ac =-,所以16ac =,所以11sin 16222ABC S ac B ==⨯⨯=△ 【小结】解决本题的关键是熟练掌握三角函数的图象与性质及三角恒等变换、余弦定理的应用,细心运算即可得解. 33.已知函数π()sin()(0,0,)2f x A x B A ωϕωϕ=++>><的部分图象如图所示:(1)求()f x 的解析式及对称中心坐标; (2)将()f x 的图象向右平移3π个单位,再将横坐标伸长到原来的2倍,纵坐标不变,最后将图象向上平移1个单位,得到函数()g x 的图象,求函数()y g x =在7π0,6x ⎡⎤∈⎢⎥⎣⎦上的单调区间. 【答案】(1)()2sin 213f x x π⎛⎫=+- ⎪⎝⎭;对称中心的坐标为(),126k k ⎛⎫∈ ⎪⎝⎭--ππZ ;(2)单调增区间为50,6π⎡⎤⎢⎥⎣⎦,单调减区间57,66ππ⎡⎤⎢⎥⎣⎦. 【分析】(1)先根据图象得到函数的最大值和最小值,由此列方程组求得,A B 的值,根据周期求得ω的值,根据图象上()112f π=求得ϕ的值,由此求得()f x 的解析式,进而求得()f x 的对称中心;(2)求得图象变换之后的解析式()2sin 3g x x π⎛⎫=-⎪⎝⎭,再整体替换求出()g x 的单调区间. 【解析】(1)由图象可知:13A B A B +=⎧⎨-+=-⎩,可得:2A =,1B =-.又由于7212122T πππ=-=,。

考点07 三角函数的图像与性质(核心考点讲与练)-2023年(新高考专用)(解析版)

考点07  三角函数的图像与性质(核心考点讲与练)-2023年(新高考专用)(解析版)

考点07 三角函数的图像与性质(核心考点讲与练)一、同角三角函数基本关系式与诱导公式 1.同角三角函数的基本关系 (1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan__α.2.三角函数的诱导公式公式 一 二 三 四 五 六 角 2k π+α(k ∈Z )π+α -α π-α π2-α π2+α 正弦 sin α -sin__α -sin__αsin__αcos__αcos__α 余弦 cos α -cos__α cos__α -cos__α sin__α -sin__α正切 tan αtan__α-tan__α -tan__α口诀函数名不变,符号看象限函数名改变,符号看象限二、 三角函数的图象与性质1.用五点法作正弦函数和余弦函数的简图(1)正弦函数y =sin x ,x ∈[0,2π]的图象中,五个关键点是:(0,0),⎝ ⎛⎭⎪⎫π2,1,(π,0),⎝ ⎛⎭⎪⎫3π2,-1,(2π,0).(2)余弦函数y =cos x ,x ∈[0,2π]的图象中,五个关键点是:(0,1),⎝ ⎛⎭⎪⎫π2,0,(π,-1),⎝ ⎛⎭⎪⎫3π2,0,(2π,1).2.正弦、余弦、正切函数的图象与性质(下表中k ∈Z )函数y =sin x y =cos x y =tan x图象定义域 R R {x |x ∈R ,且 x ≠k π+π2}值域 [-1,1] [-1,1] R 周期性 2π 2π π 奇偶性 奇函数偶函数奇函数递增区间 ⎣⎢⎡⎦⎥⎤2k π-π2,2k π+π2 [2k π-π,2k π] ⎝ ⎛⎭⎪⎫k π-π2,k π+π2递减区间 ⎣⎢⎡⎦⎥⎤2k π+π2,2k π+3π2 [2k π,2k π+π] 无对称中心 (k π,0)⎝ ⎛⎭⎪⎫k π+π2,0⎝ ⎛⎭⎪⎫k π2,0对称轴方程x =k π+π2x =k π无三、 函数y =A sin(ωx +φ)的图象与性质1.用五点法画y =A sin(ωx +φ)一个周期内的简图时,要找五个关键点,如下表所示.x -φω-φω+π2ωπ-φω3π2ω-φω 2π-φωωx +φ 0 π2π 3π2 2π y =A sin(ωx +φ)A-A2.函数y =A sin(ωx +φ)的有关概念y =A sin(ωx +φ)(A >0,ω>0),x ∈[0,+∞)表示一个振动量时振幅 周期 频率 相位 初相A T =2πω f =1T =ω2πωx +φ φ3.函数y =sin x 的图象经变换得到y =A sin(ωx +φ)的图象的两种途径4.三角函数应用(1)用正弦函数可以刻画三种周期变化的现象:简谐振动(单摆、弹簧等),声波(音叉发出的纯音),交变电流.(2)三角函数模型应用题的关键是求出函数解析式,可以根据给出的已知条件确定模型f(x)=A sin(ωx+φ)+k中的待定系数.(3)把实际问题翻译为函数f(x)的性质,得出函数性质后,再把函数性质翻译为实际问题的答案.1.求三角函数单调区间的两种方法(1)代换法:就是将比较复杂的三角函数含自变量的代数式整体当作一个角u(或t),利用复合函数的单调性列不等式求解.(2)图象法:画出三角函数的正、余弦曲线,结合图象求它的单调区间.2.确定y=A sin(ωx+φ)+B(A>0,ω>0)的解析式的步骤(1)求A,B,确定函数的最大值M和最小值m,则A=,B=.(2)求ω,确定函数的周期T,则ω=.(3)求φ,常用方法有:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定φ值时,往往以寻找“五点法”中的特殊点作为突破口.具体如下:“第一点”(即图象上升时与x轴的交点)为ωx+φ=0;“第二点”(即图象的“峰点”)为ωx+φ=;“第三点”(即图象下降时与x轴的交点)为ωx+φ=π;“第四点”(即图象的“谷点”)为ωx+φ=;“第五点”(即图象上升时与x轴的交点)为ωx+φ=2π. 3.识别函数图象的方法技巧函数图象的识别可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的周期性,判断图象的循环往复.(5)从函数的特殊点,排除不合要求的图象.4.(1)由y=sin ωx到y=sin(ωx+φ)的变换:向左平移(ω>0,φ>0)个单位长度而非φ个单位长度.(2)平移前后两个三角函数的名称如果不一致,应先利用诱导公式化为同名函数,ω为负时应先变成正值.三角函数图象性质1.(多选题)(2021湖北省新高考高三下2月质检)已知函数()cos sin f x x x =-在[]0,a 上是减函数,则下列表述正确的是( )A.()2min f x =﹣B.()f x 的单调递减区间为32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,C.a 的最大值是34π, D.()f x 的最小正周期为2π 【答案】BCD【分析】由于函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,从而可得4a ππ+≤,进而可求出a 取值范围,函数的周期和最值,从而可判断ACD ,再利用余弦函数的性质求出单调区间,可判断B【详解】解:∵函数()cos sin 2os 4)(f x x x x π=-=+在[]0,a 上是减函数,,444[]x a πππ+∈+, ∴4a ππ+≤,∴304a π<≤, 故()f x 的最小值为2-,a 的最大值是34π,()f x 的最小正周期为2π,故A 错,C 、D 正确; 在32,2()44k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦,[]2,2()4x x k k k Z ππππ++∈+∈,函数()f x 单调递减,所以B 正确故选:BCD.2. 已知函数()π3sin 23f x x ⎛⎫=-⎪⎝⎭,则下列结论正确的是( )A. 导函数为()π3cos 23f x x ⎛⎫=- ⎪⎝⎭' B. 函数()f x 的图象关于直线π2x =对称 C. 函数()f x 在区间π5π,1212⎛⎫-⎪⎝⎭上是增函数 D. 函数()f x 的图象可由函数3sin 2y x =的图象向右平移π3个单位长度得到 【答案】C【分析】利用复合函数的求导法则判定选项A 错误,利用π()2f 不是函数的最值判定选项B 错误,利用π5π1212x -<<得到πππ2232x -<-<,进而判定选项C 正确,利用图象平移判定选项D 错误. 【详解】对于A :因为π()3sin 23f x x ⎛⎫=-⎪⎝⎭, 所以()ππ3cos 226cos 233f x x x ⎛⎫⎛⎫=⨯-⨯=- ⎪' ⎪⎝⎭⎝⎭,即选项A 错误;对于B :因为πππ2π3sin 23sin 32233f ⎛⎫⎛⎫=⨯-==≠±⎪ ⎪⎝⎭⎝⎭, 所以函数()f x 的图象不关于直线π2x =对称, 即选项B 错误;对于C :当π5π1212x -<<时,πππ2232x -<-<, 故()f x 在π5π(,)1212-上是增函数,即选项C 正确;对于D :因为ππ()3sin 23sin[2()]36f x x x ⎛⎫=-=- ⎪⎝⎭, 所以()f x 的图象可由3sin 2y x =的图象向右平移π6个单位长度得到, 即选项D 错误. 故选:C .根据三角函数图象求解析式1.(2022年安徽省亳州市第一中学高三上学期9月检测)已知函数()()sin 0,010,2f x K x K πωϕωϕ⎛⎫=+><<< ⎪⎝⎭的部分图象如图所示,点370,,,1224A B π⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭,则将函数()f x 图象向左平移12π个单位长度,然后横坐标变为原来的2倍、纵坐标不变,得到的图象对应的函数解析式是( )A.5sin 212y x π⎛⎫=+ ⎪⎝⎭ B.5sin 812y x π⎛⎫=+ ⎪⎝⎭ C.2sin 23y x π⎛⎫=+ ⎪⎝⎭ D.2sin 83y x π⎛⎫=+⎪⎝⎭【答案】C【分析】首先根据三角函数的图象求得各个参数,由振幅求得1K =,由定点坐标代入函数解析式求得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭,再通过平移伸缩变化,即可得解. 【详解】因为函数()f x 的部分图象经过点3A ⎛ ⎝⎭,7,124K π⎛⎫- ⎪⎝⎭, 所以()()130sin 077sin 1,2424010,,2K f f ωϕππωϕωπϕ=⎧⎪⎪=⨯+=⎪⎪⎪⎛⎫⎛⎫=⨯+=-⎨ ⎪ ⎪⎝⎭⎝⎭⎪⎪<<⎪⎪<⎪⎩解得43ωπϕ=⎧⎪⎨=⎪⎩,所以()sin 43f x x π⎛⎫=+ ⎪⎝⎭. 将函数()sin 43f x x π⎛⎫=+ ⎪⎝⎭的图象,然后横坐标变为原来的2倍、纵坐标不变, 得到2sin 23y x π⎛⎫=+ ⎪⎝⎭的图象. 故选:C.2 (2020广东省潮州市高三第二次模拟)函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象如图所示.则函数()f x 的单调递增区间为( )A. ,63k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈B. ,33k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈C. ,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈D. ,66k k ππππ⎡⎤-+⎢⎥⎣⎦,k z ∈ 【答案】C【分析】利用图象先求出周期,用周期公式求出ω,利用特殊点求出ϕ,然后根据正弦函数的单调性列不等式求解即可.【详解】根据函数2sin()(0,0)y x ωϕωϕπ=+><<的部分图象, 可得:332113441264T ππππω=⋅=-=, 解得:2ω=,由于点,26π⎛⎫ ⎪⎝⎭在函数图象上,可得:2sin 226πϕ⎛⎫⨯+= ⎪⎝⎭, 可得:2262k ππϕπ⨯+=+,k ∈Z ,解得:26k πϕπ=+,k ∈Z ,由于:0ϕπ<<, 可得:6π=ϕ,即2sin 26y x π⎛⎫=+ ⎪⎝⎭,令222262k x k πππππ-≤+≤+,k ∈Z 解得:36k x k ππππ-≤≤+,k ∈Z ,可得:则函数()f x 的单调递增区间为:,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈Z .故选C .三角函数图象判断1.(2020江西省靖安中学高三上学期第二次月考)已知函数()2cos f x x x =,则函数()f x 的部分图象可以为( )A. B. C. D.【答案】A【分析】由奇偶性可排除BD ,再取特殊值4f π⎛⎫ ⎪⎝⎭可判断AC ,从而得解 【详解】因为()f x 的定义域为R ,且()()()()2cos 2cos f x x x x x f x -=--=-=-,所以()f x 为奇函数, 故BD 错误;当0x >时,令()2cos 0f x x x ==,易得cos 0x =, 解得()2x k k Z ππ=+∈,故易知()f x 的图象在y 轴右侧的第一个交点为,02π⎛⎫ ⎪⎝⎭, 又22cos 04444f ππππ⎛⎫=⨯⨯=>⎪⎝⎭,故C 错误,A 正确; 故选:A2. . (2022广东省深圳市普通中学高三上学期质量评估)函数()4cos x xxf x e e-=+在[],ππ-上的图象大致为( )A. B.C. D.【答案】A【分析】由奇偶性可排除BC ,由x →+∞时,()0f x →可排除D ,由此得到结果.【详解】()()()()4cos 4cos x xx x x xf x f x e ee e------===++,()f x ∴为偶函数,图象关于y 轴对称,可排除BC ; 当x →+∞时,()0f x →,可排除D ,知A 正确. 故选:A.三角函数图象变换1.(2021浙江省金华十校高三模拟)已知奇函数()y g x =的图象由函数()sin(21)f x x =+的图象向左平移(0)m m >个单位后得到,则m 可以是( )A.12π- B.1π- C.12π+ D.1π+ 【答案】A【分析】逐项验证()g x 是否等于()g x --可得答案. 【详解】当12m π-=时,函数()sin(21)f x x =+的图象向左平移12π-个单位后得到()()g()sin 21sin 2sin 212x x x x g x ππ⎡⎤-=⎢⎥⎣⎛⎫=+++=-=-- ⎝⎦⎪⎭,故A 正确;当1m π=-时,函数()sin(21)f x x =+的图象向左平移1π-个单位后得到()()()()sin 21sin 121g x x x g x π⎡⎤-=++-≠⎦-=-⎣,故B 错误;当12m π+=时,函数()sin(21)f x x =+的图象向左平移12π+个单位后得到()()()122()sin 21sin 2sin 22g x x x x g x ππ⎡⎤⎛⎫=+++=-+≠-- ⎪⎝⎭+=+⎢⎥⎣⎦,故C 错误;当1m π=+时,函数()sin(21)f x x =+的图象向左平移1π+个单位后得到()()()()sin 21sin 123g x x x g x π⎡⎤+=+++≠⎦-=-⎣,故D 错误;故选:A.2. (2020安徽省合肥市高三第三次教学质量检测)为了得到函数sin y x =的图像,只需将函数sin 26y x π⎛⎫=+ ⎪⎝⎭的图像A. 横坐标伸长为原来的两倍,纵坐标不变,再向右平移6π个单位 B. 横坐标伸长为原来的两倍,纵坐标不变,再向左平移6π个单位 C. 横坐标缩短为原来的12,纵坐标不变,再向右平移6π个单位D. 横坐标缩短为原来的12,纵坐标不变,再向左平移6π个单位【答案】A【分析】由条件利用()sin y A x ωϕ=+ 的图像变换规律,得到结论. 【详解】把函数sin 26y x π⎛⎫=+⎪⎝⎭的图像上所有点的横坐标伸长为原来的两倍,纵坐标不变得到函数sin 6y x π⎛⎫=+ ⎪⎝⎭,再将函数sin 6y x π⎛⎫=+ ⎪⎝⎭的图像上所有点向右平移6π个单位得到函数sin y x =.故选A1. (2021年全国高考乙卷)函数()sin cos 33x xf x =+的最小正周期和最大值分别是( ) A. 3π2 B. 3π和2C. 6π2D. 6π和2【答案】C【分析】利用辅助角公式化简()f x,结合三角函数周期性和值域求得函数的最小正周期和最大值.【详解】由题,()sin cos3s3323234x x x xf xxπ=+=+⎛+⎫⎪⎝⎭,所以()f x的最小正周期为2613T.故选:C.2. (2021年全国高考乙卷)把函数()y f x=图像上所有点的横坐标缩短到原来的12倍,纵坐标不变,再把所得曲线向右平移3π个单位长度,得到函数sin4y xπ⎛⎫=-⎪⎝⎭的图像,则()f x=()A.7sin212xπ⎛⎫-⎪⎝⎭B. sin212xπ⎛⎫+⎪⎝⎭C.7sin212xπ⎛⎫-⎪⎝⎭D. sin212xπ⎛⎫+⎪⎝⎭【答案】B【分析】解法一:从函数()y f x=的图象出发,按照已知的变换顺序,逐次变换,得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦,即得2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,再利用换元思想求得()y f x=的解析表达式;解法二:从函数sin4y xπ⎛⎫=-⎪⎝⎭出发,逆向实施各步变换,利用平移伸缩变换法则得到()y f x=的解析表达式.【详解】解法一:函数()y f x=图象上所有点的横坐标缩短到原来的12倍,纵坐标不变,得到(2)y f x=的图象,再把所得曲线向右平移3π个单位长度,应当得到23y f xπ⎡⎤⎛⎫=-⎪⎢⎥⎝⎭⎣⎦的图象,根据已知得到了函数sin4y xπ⎛⎫=-⎪⎝⎭的图象,所以2sin34f x xππ⎡⎤⎛⎫⎛⎫-=-⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,令23t xπ⎛⎫=-⎪⎝⎭,则,234212t tx xπππ=+-=+,所以()sin 212t f t π⎛⎫=+⎪⎝⎭,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭; 解法二:由已知的函数sin 4y x π⎛⎫=-⎪⎝⎭逆向变换, 第一步:向左平移3π个单位长度,得到sin sin 3412y x x πππ⎛⎫⎛⎫=+-=+ ⎪ ⎪⎝⎭⎝⎭的图象,第二步:图象上所有点的横坐标伸长到原来的2倍,纵坐标不变,得到sin 212x y π⎛⎫=+⎪⎝⎭的图象, 即为()y f x =的图象,所以()sin 212x f x π⎛⎫=+ ⎪⎝⎭.故选:B.3. (2021年全国新高考Ⅰ卷)下列区间中,函数()7sin 6f x x π⎛⎫=-⎪⎝⎭单调递增的区间是( ) A. 0,2π⎛⎫⎪⎝⎭B. ,2ππ⎛⎫⎪⎝⎭C. 3,2ππ⎛⎫ ⎪⎝⎭D. 3,22ππ⎛⎫ ⎪⎝⎭【答案】A【分析】解不等式()22262k x k k Z πππππ-<-<+∈,利用赋值法可得出结论.【详解】因为函数sin y x =的单调递增区间为()22,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭, 对于函数()7sin 6f x x π⎛⎫=-⎪⎝⎭,由()22262k x k k Z πππππ-<-<+∈,解得()22233k x k k Z ππππ-<<+∈, 取0k =,可得函数()f x 的一个单调递增区间为2,33ππ⎛⎫-⎪⎝⎭, 则20,,233πππ⎛⎫⎛⎫⊆- ⎪ ⎪⎝⎭⎝⎭,2,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭,A 选项满足条件,B 不满足条件; 取1k =,可得函数()f x 的一个单调递增区间为58,33ππ⎛⎫⎪⎝⎭,32,,233ππππ⎛⎫⎛⎫⊄- ⎪ ⎪⎝⎭⎝⎭且358,,233ππππ⎛⎫⎛⎫⊄ ⎪ ⎪⎝⎭⎝⎭,358,2,233ππππ⎛⎫⎛⎫⊄ ⎪⎪⎝⎭⎝⎭,CD 选项均不满足条件. 故选:A.4. (2021年全国高考甲卷)已知函数()2cos()f x x ωϕ=+的部分图像如图所示,则满足条件74()()043f x f f x f ππ⎛⎫⎛⎫⎛⎫⎛⎫---> ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭的最小正整数x 为________.【答案】2【分析】先根据图象求出函数()f x 的解析式,再求出7(),()43f f π4π-的值,然后求解三角不等式可得最小正整数或验证数值可得. 【详解】由图可知313341234T πππ=-=,即2T ππω==,所以2ω=; 由五点法可得232ππϕ⨯+=,即6πϕ=-;所以()2cos 26f x x π⎛⎫=- ⎪⎝⎭.因为7()2cos 143f π11π⎛⎫-=-= ⎪⎝⎭,()2cos 032f 4π5π⎛⎫== ⎪⎝⎭; 所以由74(()())(()())043f x f f x f ππ--->可得()1f x >或()0f x <; 因为()12cos 22cos 1626f πππ⎛⎫⎛⎫=-<-= ⎪ ⎪⎝⎭⎝⎭,所以,方法一:结合图形可知,最小正整数应该满足()0f x <,即cos 206x π⎛⎫-< ⎪⎝⎭, 解得,36k x k k π5ππ+<<π+∈Z ,令0k =,可得536x <<ππ,可得x 的最小正整数为2.方法二:结合图形可知,最小正整数应该满足()0f x <,又(2)2cos 406f π⎛⎫=-< ⎪⎝⎭,符合题意,可得x 的最小正整数为2. 故答案为:2.一、单选题1.(2022·福建·模拟预测)已知α为锐角,且sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,则tan α=( )A 3B .23C 6D 63【答案】B【分析】运用两角和与差的正弦公式和同角的商数关系,计算即可得到所求值【详解】因为sin sin 36ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭,所以1331sin cos 22αααα=-,所以)()31cos 31sin αα=,所以3tan 2331α==-故选:B2.(2022·辽宁锦州·一模)若()sin π1cos 3αα-=,则sin 2cos2αα+的值为( )A .15B .75C .120D .3120【答案】B【分析】先利用诱导公式得到tan α,再将弦化切,代入求解. 【详解】()sin πsin 1tan cos cos 3ααααα-===,从而2222222sin cos cos sin sin 2cos 22sin cos cos sin cos sin αααααααααααα+-+=+-=+222112tan 1tan 73911tan 519ααα+-+-===++ 故选:B3.(2022·江西九江·二模)已知函数()y f x =的部分图像如图所示,则()y f x =的解析式可能是( )A .()sin e e x xxf x -=+B .()sin e e x xxf x -=-C .()cos e e x xxf x -=-D .()cos e e x xxf x -=-【答案】D【分析】根据函数的定义域、奇偶性与函数值的正负即可得到结果 【详解】函数()f x 在0x =处无定义,排除选项A函数()f x 的图像关于原点对称,故()f x 为奇函数,排除选项B 当01x <<时,cos 0x >,e e x x ->,故cos 0e ex xx->-,排除选项C 故选:D.4.(2022·天津市宁河区芦台第一中学模拟预测)已知函数 ()()4cos 03f x x πωω⎛⎫=+> ⎪⎝⎭ 的最小正周期为π,将其图象沿 x 轴向右平移 ()0m m >个单位, 所得函数为奇函数, 则实数m 的最小值为( ) A .12πB .6πC .512π D .4π 【答案】C【分析】根据余弦型函数的最小正周期公式,结合余弦型函数图象的变换性质进行求解即可. 【详解】因为该函数的最小正周期为π,0>ω, 所以22ππωω=⇒=,即()4cos(2)3f x x π=+,将该函数图象沿x 轴向右平移 ()0m m >个单位得到函数的解析式为()()4cos(22)3g x f x m x m π=-=-+,因为函数()g x 为奇函数,所以有12()()32212m k k Z m k k Z πππππ-+=+∈⇒=--∈, 因为0m >,所以当1k =-时,实数m 有最小值512π, 故选:C5.(2022·浙江·模拟预测)已知E ,F 分别是矩形ABCD 边AD ,BC 的中点,沿EF 将矩形ABCD 翻折成大小为α的二面角.在动点P 从点E 沿线段EF 运动到点F 的过程中,记二面角B AP C --的大小为θ,则( ) A .当90α<︒时,sin θ先增大后减小 B .当90α<︒时,sin θ先减小后增大 C .当90α>时,sin θ先增大后减小 D .当90α>时,sin θ先减小后增大 【答案】C【分析】根据二面角的定义通过作辅助线, 找到二面角的平面角,在Rt △1C HC 中表示出tan θ的值,利用tan θ的值的变化来判断sin θ的变化即可.【详解】当90α<︒时,由已知条件得EF ⊥平面FBC ,过点C 作1CC FB ⊥,垂足为1C ,过点1C 作1C H AP ⊥,垂足为H , ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角, 在Rt △1C HC 中,11tan CC C Hθ=, 动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 不断减小,则tan θ不断增大,即sin θ不断增大,则A 、B 错误;当90α>时,由已知条件得EF ⊥平面FBC ,过点C 作1CC BF ⊥,垂足1C 在BF 的延长线上,过点1C 作CH AP ⊥,垂足在AP 延长线上, ∵ 1CC ⊂平面FBC ,∴1EF CC ⊥, ∴1CC ⊥平面ABFE ,又∵AP ⊂平面ABFE ,∴1CC AP ⊥, ∴AP ⊥平面1CC H , ∴AP CH ⊥, 则1C HC ∠为二面角B AP C --的平面角的补角β,即πθβ=-,在Rt △1C HC 中,11tan CC C Hβ=, 如下图所示,动点P 从点E 沿线段EF 运动到点F 的过程中,1C H 先变小后增大,则tan β先变大后变小,sin β先变大后变小,()sin sin πsin θββ=-=,则sin θ也是先变大,后变小, 则C 正确,D 错误; 故选:C .6.(2022·四川达州·二模(理))设()3sin 2cos 22cos 4x x f x x+=,则下列说法正确的是( )A .()f x 值域为33,,22⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭B .()f x 在0,16π⎛⎫⎪⎝⎭上单调递增C .()f x 在,08π⎛⎫- ⎪⎝⎭上单调递减D .()4f x f x π⎛⎫=+ ⎪⎝⎭【答案】B【分析】由题可得2cos 4sin 43y x x -=,()()22213y +-≥,可判断A ,利用三角函数的性质可判断B ,利用导函数可判断C ,由题可得sin 4342cos 4x f x x π-⎛⎫+= ⎪⎝⎭,可判断D.【详解】∵()3sin 2cos 2sin 432cos 42cos 4x x x f x xx++==,由sin 432cos 4x y x+=,可得2cos 4sin 43y x x -=,3,即y ≤y ≥∴函数的值域为(),∞∞-⋃+,故A 错误; ∵()sin 4313tan 42cos 422cos 4x f x x x x+==+,当0,,40,164x x ππ⎛⎫⎛⎫∈∈ ⎪ ⎪⎝⎭⎝⎭时,1tan 42y x =单调递增,2cos 4y x =单调递减,32cos 4y x =单调递增,故()f x 在0,16π⎛⎫⎪⎝⎭上单调递增,故B 正确;∵,0,4,082x x ππ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭,()sin 432cos 4x f x x+=,令sin 3,,02cos 2t y t t π+⎛⎫=∈- ⎪⎝⎭,则()2222cos 2sin sin 313sin 4cos 2cos t t t ty t t+++'==, 由0y '=,可得1sin 3t =-,,02t π⎛⎫∈- ⎪⎝⎭,根据正弦函数在,02π⎛⎫- ⎪⎝⎭上单调递增,可知在,02π⎛⎫- ⎪⎝⎭上存在唯一的实数001,0,sin 23t t π⎛⎫∈-=- ⎪⎝⎭,当0,2t t π⎛⎫∈- ⎪⎝⎭时,0y '<,sin 32cos t y t +=单调递减,当()0,0t t ∈时,0y '>,sin 32cos t y t +=单调递增,所以()f x 在,08π⎛⎫- ⎪⎝⎭上有增有减,故C 错误;由()sin 432cos 4x f x x+=,可得()()()sin 43sin 43sin 4342cos 42cos 42cos 4x x x f x f x x x x πππ++-+-⎛⎫+===≠ ⎪+-⎝⎭,故D 错误.故选:B.7.(2022·宁夏·银川一中二模(理))下列四个函数中,在其定义域上既是奇函数又是增函数的是 ( ) A .x y e = B .tan y x = C .sin y x = D .y x x =【答案】D【分析】A.利用指数函数的性质判断;B.利用正切函数的性质判断;C.利用正弦函数的性质判断;D.利用函数的图象判断.【详解】A. ()()()(),,x xf x e f x e f x f x -=-=-≠-,不是奇函数,故错误;B. tan y x =在,,22k k k Z ππππ⎛⎫-++∈ ⎪⎝⎭上递增,但在定义域|,2x x k k Z ππ⎧⎫≠+∈⎨⎬⎩⎭上不单调,故错误;C. sin y x =在2,2,22k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦上递增,但在定义域R 上不单调,故错误;D. 2,0,0x x y x x x x ⎧≥==⎨-<⎩,其图象如图所示:由图象知:定义域上既是奇函数又是增函数,故正确, 故选:D8.(2022·山西长治·模拟预测(理))若函数()f x 满足(2)()f x f x +=,则()f x 可以是( ) A .2()(1)f x x =- B .()|2|f x x =-C .()sin 2f x x π⎫⎛=⎪⎝⎭D .()tan 2f x x π⎛⎫=⎪⎝⎭【答案】D【分析】根据周期函数的定义,结合特例法进行判断求解即可. 【详解】因为(2)()f x f x +=, 所以函数的周期为2. A :因为(1)0,(3)4f f ==,所以(1)(3)f f ≠,因此函数的周期不可能2,本选项不符合题意; B :因为(2)0,(4)2f f ==,所以(2)(4)f f ≠,因此函数的周期不可能2,本选项不符合题意;C :该函数的最小正周期为:242ππ=,因此函数的周期不可能2,本选项不符合题意;D :该函数的最小正周期为:22ππ=,因此本选项符合题意, 故选:D9.(2022·天津·一模)已知函数()2sin y x ωϕ=+(0>ω,0πϕ<<)的部分图象如图所示,则( )A .2ω=,5π6ϕ= B .12ω=,5π6ϕ=C .2ω=,6π=ϕ D .12ω=,6π=ϕ 【答案】A【分析】根据图象与y 轴的交点纵坐标与振幅的关系,结合所处的区间的单调性,以及后续的单调递增区间上的零点,列出方程组求解即得.【详解】由函数图象与y 轴的交点纵坐标为1,等于振幅2的一半,且此交点处于函数的单调减区间上,同时在同一周期内的后续单调区间上的零点的横坐标为7π12,并结合0>ω,0πϕ<<, 可知()2sin 01π3π0227π212ωϕωϕωϕπ⎧⎪⨯+=⎪⎪<⨯+<⎨⎪⎪⨯+=⎪⎩,解得2ω=,5π6ϕ=,故选:A10.(2022·新疆·模拟预测(理))我国著名数学家华罗庚曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.我们从这个商标中抽象出一个函数的图象如图,其对应的函数解析式可能是( )A .()11f x x =- B .()211f x x =- C .()11tan2f x xπ=-D .()11f x x =- 【答案】D【分析】由定义域判断A ;利用特殊函数值:(0)f 、2()3f 的符号判断B 、C ;利用奇偶性定义及区间单调性判断D.【详解】A :函数的定义域为{|1}x x ≠,不符合;B :由1(0)101f ==--,不符合; C :由2()0313f =<-,不符合; D :11()()|||1||||1|f x f x x x -===---且定义域为{|1}x x ≠±,()f x 为偶函数, 在(0,1)上1()1f x x=-单调递增,(1,)+∞上1()1f x x =-单调递减,结合偶函数的对称性知:(1,0)-上递减,(,1)-∞-上递增,符合. 故选:D11.(2022·江西·临川一中模拟预测(理))己知函数()sin()(0,)R f x x ωϕωϕ=+>∈在区间52,123ππ⎛⎫⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .有下列结论:①02f ⎛⎫= ⎪⎝⎭π;②若4()3π⎛⎫-=⎪⎝⎭f x f x ,则函数()f x 的最小正周期为3π; ③关于x 的方程()1f x =在区间[0,2)π上最多有5个不相等的实数根; ④若函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,则ω的取值范围为12,35⎛⎤ ⎥⎝⎦.其中正确的结论的个数为( ) A .1B .2C .3D .4【答案】B【分析】对于①:利用对称性直接求得; 对于②:直接求出函数的最小正周期,即可判断;对于③:先判断出周期234232T πππ⎛⎫= ⎪⎝≥-⎭,直接解出()1f x =在区间[0,2)π上最多有3个不相等的实数根,即可判断.对于④:由题意分析1352622T T ππ<-≤,建立关于ω的不等式组,求出ω的取值范围. 【详解】函数()()sin f x x ωϕ=+满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f .对于①:因为57121222πππ+=,所以02f ⎛⎫= ⎪⎝⎭π.故①正确;对于②:由于4()3π⎛⎫-= ⎪⎝⎭f x f x ,所以函数()f x 的一条对称轴方程为42323x ππ==.又,02π⎛⎫ ⎪⎝⎭为一个对称中心,由正弦图像和性质可知,所以函数的最小正周期为224323T πππ⎛⎫=-= ⎪⎝⎭.故②错误; 对于③:函数()()sin f x x ωϕ=+在区间52,123ππ⎛⎫ ⎪⎝⎭上单调,且满足571212ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭f f ,可得:02f ⎛⎫= ⎪⎝⎭π,所以周期234232T πππ⎛⎫=⎪⎝≥-⎭.周期越大,()1f x =的根的个数越少. 当23T π=时,()cos3f x x =,所以()1f x =在区间[0,2)π上有3个不相等的实数根:0x =,23x π=或43x π=.故③错误.对于④:函数()f x 在区间13,26ππ⎡⎫⎪⎢⎣⎭上恰有5个零点,所以1352622T T ππ<-≤, 所以213522622ππππωω⋅<-≤⋅,解得:1235ω<≤.且满足234232T πππ⎛⎫= ⎪⎝≥-⎭,即2224323ππππω⎛⎫≥-= ⎪⎝⎭,即3ω≤,故12,35ω⎛⎤∈ ⎥⎝⎦.故④正确.故选:B12.(2022·山西吕梁·模拟预测(文))将函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,得到函数()g x 的图象,则( ) A .2()cos 23g x x π⎛⎫=+ ⎪⎝⎭B .()g x 在,63ππ⎡⎤-⎢⎥⎣⎦上单调递增C .()g x 在(0,)3π上的最小值为1-D .直线4x π=平是()g x 的一条对称轴【答案】D【分析】根据三角函数的图象变换,可判定A 错误;利用函数的图象与性质,可判定B ,C 错误;根据14g π⎛⎫= ⎪⎝⎭,可判定D 正确.【详解】由题意,函数()cos 26f x x π⎛⎫=- ⎪⎝⎭图象上的所有点向左平移56π个单位长度,可得53()cos 2cos 2sin 2662g x x x x πππ⎡⎤⎛⎫⎛⎫=+-=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,故A 错误; 令222()22k x k k Z ππππ-+≤≤+∈,所以()44k x k k Z ππππ-+≤≤+∈,所以()g x 在,44ππ⎡⎤-⎢⎥⎣⎦上单调递增,所以B ,C 错误;因为14g π⎛⎫= ⎪⎝⎭,故直线4x π=为()g x 的一条对称轴,故D 正确.故选:D.13.(2022·内蒙古呼和浩特·一模(理))如图是一大观览车的示意图,已知观览车轮半径为80米,观览车中心O 到地面的距离为82米,观览车每30分钟沿逆时针方向转动1圈.若0P 是从距地面42米时开始计算时间时的初始位置,以观览车的圆心O 为坐标原点,过点O 的水平直线为x 轴建立平面直角坐标系xOy .设从点0P 运动到点P 时所经过的时间为t (单位:分钟),且此时点P 距离地面的高度为h (单位:米),则h 是关于t 的函数.当t R ∈时关于()h t 的图象,下列说法正确的是( )A .对称中心为515,0,2k k Z ⎛⎫+∈ ⎪⎝⎭B .对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭C .对称轴为155,t k k Z =+∈D .对称轴为515,2t k k Z =+∈【答案】B【分析】先由题意得到06xoP π∠=,进而得到min t 后,以ox 为始边,oP 为终边的角156t ππ-,从而得到点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,即P 距地面的高度函数求解.【详解】解:由题意得06xoP π∠=,而6π-是以ox 为始边, 0oP 为终边的角, 由OP 在min t 内转过的角为23015t t ππ=, 可知以ox 为始边,oP 为终边的角为156t ππ-,则点P 的纵坐标为80sin 156t ππ⎛⎫- ⎪⎝⎭,所以P 距地面的高度为80sin 82156h t ππ⎛⎫=-+ ⎪⎝⎭,令,156t k k Z πππ-=∈,得515,2t k k Z =+∈, 所以对称中心为515,82,2k k Z ⎛⎫+∈ ⎪⎝⎭,令,1562t k k Z ππππ-=+∈,得1015,t k k Z =+∈,所以对称轴为1015,t k k Z =+∈, 故选:B14.(2022·河南·模拟预测(理))密位制是度量角的一种方法,把一周角等分为6000份,每一份叫做1密位的角.在角的密位制中,单位可省去不写,采用四个数码表示角的大小,在百位数与十位数之间画一条短线,如7密位写成“0-07”,478密位写成“4-78”.如果一个半径为4的扇形,其圆心角用密位制表示为12-50,则该扇形的面积为( ) A .10π3B .2πC .5π3D .5π6【答案】A【分析】根据题意中给的定义可知该扇形的圆心角为75︒,结合扇形的面积公式计算即可. 【详解】依题意,该扇形的圆心角为1250360756000⨯︒=︒.又5π7512︒=,故所求扇形的面积为 22115π10π422123S r α==⨯⨯=.故选:A. 二、多选题15.(2022·河北·模拟预测)已知角α的终边经过点()8,3cos P α.则( ) A .1sin 3α=B .7cos 29α= C .2tan 4α=±D .22cos 3α=【答案】ABD【分析】根据同终边角的正弦和余弦可知223cos 8sin ,cos 649cos 649cos ααααα==++,然后解出方程并判断sin 0,cos 0αα>>,逐项代入即可.【详解】解:由题意得: 如图所示:()22283cos 649cos OP αα=+=+22sin 649cos 649cos PQ OQ OP OP αααα∴==++ 2sin 649cos 3cos αα∴+=,即()222sin 649cos 9cos ααα+= ()222sin 649(1sin )91sin ααα⎡⎤∴+-=-⎣⎦,即429sin 82sin 90αα-+= 解得:2sin 9α=(舍去)或21sin 9α=cos 0α>sin 0α∴>1sin 3α=,故A 正确; 22cos α∴D 正确;222217cos2cos sin39ααα⎛⎫∴=-=-=⎪⎝⎭⎝⎭,故B正确;1sintancosααα==C错误;故选:ABD16.(2022·重庆八中模拟预测)下列函数的图像中,与曲线sin23y xπ⎛⎫=-⎪⎝⎭有完全相同的对称中心的是()A.sin26y xπ⎛⎫=+⎪⎝⎭B.cos26y xπ⎛⎫=+⎪⎝⎭C.cos23y xπ⎛⎫=-⎪⎝⎭D.tan6y xπ⎛⎫=-⎪⎝⎭【答案】BD【分析】根据正弦、余弦、正切函数的图像,求出各个函数的对称中心,比较即可得出答案.【详解】设k∈Z,对于sin23y xπ⎛⎫=-⎪⎝⎭,由2362kx k xππππ-=⇒=+;对于A:由26122kx k xππππ+=⇒=-+;对于B:由26262kx k xπππππ+=+⇒=+;对于C:由5232122kx k xπππππ-=+⇒=+;对于D:由6262k kx xππππ-=⇒=+;则B和D的函数与题设函数有完全相同的对称中心.故选:BD.17.(2022·江苏·海安高级中学二模)已知0e sin e siny xx y x yπ<<<,=,则()A.sin sinx y<B.cos cosx y>-C.sin cosx y>D.cos sinx y>【答案】ABC【分析】将e sin e siny xx y=变为e sine sinyxyx=结合指数函数的性质,判断A;构造函数e(),(0,)sinxf x xxπ=∈,求导,利用其单调性结合图象判断x,y的范围,利用余弦函数单调性,判断B;利用正弦函数的单调性判断C,结合余弦函数的单调性,判断D.【详解】由题意,0e sin e siny xx y x yπ<<<,=,得0y x->,e sin e sin y x y x=,e 1y x->,∴sin 1sin y x >,∴sin sin y x >,A 对; e e sin sin y x y x =,令e (),(0,)sin xf x x xπ=∈,即有()()f x f y =, 令2e (sin cos )()0,sin 4x x x f x x x π=='-=, ()f x 在0,4π⎛⎫⎪⎝⎭上递减,在,4ππ⎛⎫ ⎪⎝⎭上递增, 因为()()f x f y = ,∴04x y ππ<<<<,作出函数e (),(0,)sin xf x x xπ=∈以及sin ,[0,]y x x π=∈ 大致图象如图:则30sin sin 4y y x ππ<-<>,,∴sin()sin y x π->,结合图象则y x π->, ∴cos()cos y x π-<,∴cos cos x y >-,B 对; 结合以上分析以及图象可得2x y π+>,∴2x y π>-,且,4224y y πππππ<<-<-<,∴sin sin cos 2x y y π⎛⎫>-= ⎪⎝⎭,C 对;由C 的分析可知,224y x πππ-<-<<,在区间[,]24ππ-上,函数cos y x = 不是单调函数,即cos()cos 2y x π-<不成立,即sin cos y x <不成立,故D 错误; 故选:ABC .【点睛】本题综合考查了有条件等式下三角函数值比较大小问题,设计指数函数性质,导数的应用以及三角函数的性质等,难度较大,解答时要注意构造函数,数形结合,综合分析,进行解答. 18.(2022·湖北·一模)已知函数()sincos 22x xf x ( )A .()f x 的图象关于2x π=对称B .()f x 的最小正周期为2π C .()f x 的最小值为1 D .()f x 的最大值为342【答案】ACD【分析】A :验证()f x π-与()f x 是否相等即可;B :验证()f x π+与()f x 相等,从而可知π为f (x )的一个周期,再验证f (x )在(0,π)的单调性即可判断π为最小正周期;C 、D :由B 选项即求f (x )最大值和最小值.【详解】()()f x f x π-==,故选项A 正确;∵()()f x f x π+, 故π为()f x 的一个周期. 当(0,)x π∈时,()f x =此时3322cossin()cos sin 22x x x x f x '⎡⎤⎛⎫⎛⎫⎥==- ⎪⎪⎥⎝⎭⎝⎭⎦,令()0f x '=,得cossin 22x x=,故,242x x ππ==.∵当0,2x π⎛⎫∈ ⎪⎝⎭时,()0f x '>;当,2x ππ⎛⎫∈ ⎪⎝⎭时,()0f x '<,故()f x 在0,2π⎛⎫ ⎪⎝⎭上单调递增,在,2ππ⎛⎫⎪⎝⎭上单调递减,故()f x 的最小正周期为π,选项B 错误;由上可知()f x 在[0,]x π∈上的最小值为()(0)1f f π==,最大值为3422f π⎛⎫= ⎪⎝⎭,由()f x 的周期性可知,选项CD 均正确. 故选:ACD. 三、解答题19.(2022·浙江宁波·二模)已知()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭()R x ∈.(1)求函数()y f x =的最小正周期及单调递增区间; (2)求函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围.【答案】(1)最小正周期π,单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈(2)12⎡-⎢⎣⎦【分析】(1)将()πsin2cos 26f x x x ⎛=++⎫ ⎪⎝⎭化为只含一个三角函数形式,根据正弦函数的性质即可求得答案;(2)将()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭展开化简为12πsin 423y x ⎛⎫=+ ⎪⎝⎭,结合π0,4x ⎡⎤∈⎢⎥⎣⎦,求出2π43x +的范围,即可求得答案.(1)()π1sin 2cos 2sin 22sin 262f x x x x x x ⎛⎫=++=- ⎪⎝⎭1sin 222πsin 23x x x ⎛⎫=+ ⎪⎝⎭=,所以2ππ2T ==; 因为πππ2π22π232k x k -+≤+≤+,Z k ∈,所以5ππππ1212k x k -+≤≤+,Z k ∈, 函数()y f x =的单调递增区间为5,1212k k ππππ⎡⎤-++⎢⎥⎣⎦,Z k ∈; (2)()ππππsin 2sin 24323y f x f x x x ⎛⎫⎛⎫⎛⎫=⋅+=+⋅++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ππ12πsin 2cos 2sin 43323x x x ⎛⎫⎛⎫⎛⎫=+⋅+=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,因为π04x ≤≤,所以2π2π5π4333x ≤+≤,12π1sin 4232y x ⎡⎛⎫=+∈-⎢ ⎪⎝⎭⎣⎦,因此函数()π4y f x f x ⎛⎫=⋅+ ⎪⎝⎭在π0,4x ⎡⎤∈⎢⎥⎣⎦的取值范围为12⎡-⎢⎣⎦.20.(2022·天津三中一模)已知()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(1)若0θπ≤≤,求θ使函数()f x 为偶函数;(2)在(1)成立的条件下,求满足()1f x =,[],x ππ∈-的x 的集合. 【答案】(1)6πθ=(2)55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 【分析】(1)由恒等变换得()2sin 23f x x πθ⎛⎫=++ ⎪⎝⎭,进而根据奇偶性求解即可;(2)由题知1cos 22x =,再根据[],x ππ∈-得23x π=-或523x π=-或23x π=或523x π=,进而解得答案.(1)解:()22sin cos 222f x x x x θθθ⎛⎫⎛⎫⎛⎫=++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()()1cos 2sin 22x x θθ++=++()()sin 222sin 23x x x πθθθ⎛⎫=++=++ ⎪⎝⎭,因为函数()f x 为偶函数, 所以,32k k Z ππθπ+=+∈,即,6k k Z πθπ=+∈,因为0θπ≤≤,所以6πθ=(2)解:在(1)成立的条件下,()2sin 22cos 236f x x x ππ⎛⎫=++= ⎪⎝⎭,所以由()1f x =得1cos 22x =,因为[],x ππ∈-,所以[]22,2x ππ∈-, 所以23x π=-或523x π=-或23x π=或523x π=, 所以6x π=-或65x π=-或6x π=或56x π=, 所以,满足题意的x 的集合为55,,,6666ππππ⎧⎫--⎨⎬⎩⎭ 21.(2022·河北秦皇岛·二模)在锐角ABC ∆中,内角A ,B ,C 的对边分别为a ,b ,c ,且()(sin sin )()sin a b A B c b C +-=-.(1)求A ;(2)求cos cos B C -的取值范围.【答案】(1)3π(2)⎛ ⎝⎭【分析】(1)利用正弦定理角化边,再根据余弦定理可求出1cos 2A =,进而求出A 的大小;(2)依题意可化简cos cos 6B C B π⎛⎫-=+ ⎪⎝⎭,根据B 的范围求出cos cos B C -的取值范围即可.(1)因为()()()sin sin sin a b A B c b C +-=-,所以()()()a b a b c b c +-=-,即222a b c bc =+-.因为2222cos a b c b A =+-,所以1cos 2A =.因为0,2A π⎛⎫∈ ⎪⎝⎭,所以3A π=.(2)由(1)知2cos cos cos cos 3B C B B π⎛⎫-=-- ⎪⎝⎭13cos cos cos 226B B B B B B π⎛⎫=+==+ ⎪⎝⎭. 因为203202B B πππ⎧<-<⎪⎪⎨⎪<<⎪⎩,所以62B ππ<<, 因为2363B πππ<+<,所以11cos ,622B π⎛⎫⎛⎫+∈- ⎪ ⎪⎝⎭⎝⎭,所以cos cos B C ⎛-∈ ⎝⎭,即cos cos B C -的取值范围是⎛ ⎝⎭. 22.(2022·浙江嘉兴·二模)设函数()sin cos f x x x =-(R)x ∈ .(1)求函数()()y f x f x =⋅-的最小正周期及其对称中心;(2)求函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦在,44ππ⎡⎤-⎢⎥⎣⎦上的值域. 【答案】(1)周期π,对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭(2)[2 【分析】(1)利用二倍角公式将()()y f x f x =⋅-的表达式化简,即可求得函数的最小正周期,结合余弦函数的对称中心可求得函数()()y f x f x =⋅-的对称中心;(2)将函数22[()]4y f x f x π⎡⎤⎛⎫=++ ⎪⎢⎥⎝⎭⎣⎦的表达式展开,并化简,根据,44x ππ⎡⎤∈-⎢⎥⎣⎦的范围,结合正弦函数的性质可确定答案.(1)函数22()()cos sin cos 2y f x f x x x x =⋅-=-=,所以最小正周期22T ππ==; 令2(Z)2x k k ππ=+∈,解得(Z)42k x k ππ=+∈, 所以对称中心为,0(Z)42k k ππ⎛⎫+∈ ⎪⎝⎭; (2)函数2222[()]sin cos )[sin()cos()]44(4y f x f x x x x x πππ⎡⎤⎛⎫=++-++-+ ⎪⎢⎭⎣=⎥⎝⎦ 1sin 21sin(2)2x x π=-+-+ 2sin 2cos2x x =--224x π⎛⎫=+ ⎪⎝⎭, 因为,44x ππ⎡⎤∈-⎢⎥⎣⎦,所以32,444x πππ⎡⎤+∈-⎢⎥⎣⎦,故sin 2[4x π⎛⎫+∈ ⎪⎝⎭,故[2y ∈.23.(2022·山东枣庄·一模)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且sinsin 2B C b a B +=.求: (1)A ; (2)a c b-的取值范围. 【答案】(1)3π(2)1(,1)2- 【分析】(1)由正弦定理及正弦的2倍角公式可求解;(21cos 1sin 2B B --的范围,再利用2倍角公式化为122B -即可求解. (1)因为sin sin 2BC b a B +=, 所以sin cos sin sin 2A B A B =, 因为()0,,sin 0B B π∈∴≠,()1cos 2sin cos 0,cos 0,sin =222222A A A A A A π∴=∈∴≠∴,,, 因为0,,22263A A A πππ<<∴=∴=. (2)由正弦定理,2sin sin()sin sin 33sin sin B a c A C b B B ππ----==1sin 222sin B B B-=1cos 1sin 2B B -=-21(12sin )1122222sin cos 22B B B B ---=-, 因为203B π<<,所以023B π<<,所以0tan 2B <<。

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

1、(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=2、(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 3、(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =+在区间,42ππ⎡⎤⎢⎥⎣⎦上的最大值是( )A.1C. 325、(天津卷文6)把函数sin ()y x x =∈R 的图象上所有的点向左平行移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表示的函数是( )A .sin 23y x x π⎛⎫=-∈ ⎪⎝⎭R ,B .sin 26x y x π⎛⎫=+∈ ⎪⎝⎭R ,C .sin 23y x x π⎛⎫=+∈ ⎪⎝⎭R ,D .sin 23y x x 2π⎛⎫=+∈ ⎪⎝⎭R ,6、(全国Ⅰ卷文9)为得到函数πcos 3y x ⎛⎫=+ ⎪⎝⎭的图象,只需将函数sin y x =的图像( )A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ⎛⎫=+ ⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷文8)函数sin(2)3y x π=+图像的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴方程为232x k πππ+=+,即212k x ππ=+,0,12k x π==2.(广东卷文5)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2π的偶函数 【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷文6)2(sin cos )1y x x =--是( ) A .最小正周期为2π的偶函数B .最小正周期为2π的奇函数C .最小正周期为π的偶函数D .最小正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三角函数的化简,主要应用了与的关系,同时还考查了二倍角公式和函数的奇偶性和利用公式法求周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由B x A y ++=)sin(ϕω的图像求解析式
知识点归纳:
1. 利用“五点法”作sin()y A x ωϕ=+图像,设X x ωϕ=+,令X =30,,,
,22
2
π
π
ππ 求出相应的x 值,计算得出五点的坐标,描点后得出图象
特 征
图像上升时与x 轴的交点
图像上的“峰点”
图像下降时与x 轴的交点
图像上的“谷点”
图像上升时与x 轴的交点
x
1x
2x 3x
4x 5x
ϕω+x
0 2π
π 2

π2
sin()A x ωϕ+
A
A -
注: 1x 、2x 、3x 、4x 、5x 分别为所给图像上的五个关键点(第一个点至第五个点),要注意x 和ϕω+x 之间的对应系
2.函数B x A y ++=)sin(ϕω表达式的确定:A (B )由最值确定;ω由周期确定;ϕ由图象上的特殊点(上面的关键点)确定
①由图像观察最高点、最低点,B A y +=max 、B A y +-=min ,解这个关于A 和B 的二元一次方程组即得A 和B ②由图像观察周期,再利用T
π
ω2=
,求得ω 【由图像观察周期时,常见形式有: 1x 与5x 之间是一个周期T ;1x 与3x 、2x 与4x 之间是半个周期
2T ;1x 、2x 、3x 、4x 、5x 中相邻两个之间是四分之一的周期4
T
.】 ③ϕ的确定,一般要用图像的关键点来求,但要注意该关键点是“五点法”中的第几个点,如01=+ϕωx ,2

ϕω=
+x ,πϕω=+3x ,2
34π
ϕω=
+x ,从而根据以上等式,解出
ϕ
考点 确定函数解析式问题
例1.⑴若函数sin()y A x ωϕ=+的图像(部分)如下图所示,则ω和ϕ的取值是( ) A 、1,3
π
ωϕ== B 、1,3
π
ωϕ==-
C 、1,26πωϕ==
D 、1,6
πωϕ==-
⑵已知函数sin(),y A x x R ωϕ=+∈(其中0,0A ω>>)的图像在y 轴右侧的第一个最高点(函数取最大值的点)为()
2,22M ,与x 轴在原点右侧的第一个交点为()6,0N ,则这个函数的解析式是 .
⑶若函数()2sin()f x x ωϕ=+,x ∈R (其中0ω>,2
ϕπ
<
)的最小正周期是π,且(0)3f =,则( )
A .126
ωϕπ
==, B .123
ωϕπ=
=, C .26
ωϕπ
==,
D .23
ωϕπ
==,
例2.⑴某港口水的深度y (米)是时间t (240≤≤t ,单位:时)的函数,记作()y f t =, 下面是某日水深的数据: t/h 0 3 6 9 12 15 18 21 24 y/m
经常期观察,()y f t =的曲线可以近似的看成函数b t A y +=ωsin 的图象,根据以上的数据,可得函数()y f t =的近似表达式为 .
⑵一个大风车的半径为8m ,每12min 旋转一周,最低点离地面2m ,风车翼片的一个端点P 离地面的距离()h m 与时间()min t 之间的函数关系式是()sin h A t B ωϕ=++,0t =时端
点P 在点0P 处,则()h m 与()min t 之间的函数关系式是 .
练习:
1. 函数)0,0)(sin(πϕϕω<<>+=A x A y 的图像的两个相邻零点为)0,6

-

(,0)2
π
,且该函数的最大值为2,最小值为-2,则该函数的解析式为( ) A 、)4
23sin(2π
+=x y B 、)42sin(2π+=x y
C 、)623sin(2π+=x y
D 、)6
2sin(2π
+=x y
2.
()()⎪⎭⎫ ⎝⎛
<>>∈+=200πϕωϕω,
,,A R x x sin A x f 的图象(部分)如图所()x f 的解析式是
A .()()R x x sin x f ∈⎪⎭⎫ ⎝⎛+=62ππ
B.()()R x x sin x f ∈⎪⎭⎫
⎝⎛+=622ππ
C.()()R x x sin x f ∈⎪⎭⎫
⎝⎛+=32ππ
D.()()R x x sin x f ∈⎪⎭⎫

⎛+=322ππ
3. 已知函数()sin(),f x A x x R ωϕ=+∈(其中0,0,02
A π
ωϕ>><<)的图象与x 轴的
交点中,相邻两个交点之间的距离为
2
π
,且图象上一个最低点为2(,2)3M π-.
则()f x 的解析式 . 4. 函数sin()y x ωϕ=+(,0x R ω∈>,
02ϕπ≤<)的部分图象如图,则
.A 4
,2
π
ϕπ
ω=
=
.B 6
,3
π
ϕπ
ω=
=
.C 4,4πϕπω== .D 4
5,4π
ϕπω=
=
5.已知函数sin()y A x ωϕ=+(0,||A ϕπ><) 的一段图象如下图所示.
则()f x 的解析式 .
6. 函数sin()
y A x
ωϕ=+()2
0,,x R πωϕ><∈
的部分图象如图所示,则函数表达式为 .A )4
8
sin(

π
+
-=x y .B )4
8
sin(

π
-
=x y
.C )48sin(4π
π--=x y .D )4
8sin(4ππ+=x y
7. 已知函数2sin()(0)y x ωϕω=+>)在区间
[]02π,
的图像如图所示:那么ω=( ) A .1
B .2
C .
2
1
D .
3
1 8. 已知函数()2sin()f x x ωφ=+的图像如图所示,则712
f π⎛⎫
=
⎪⎝⎭
.
9. 动点),(y x A 在圆12
2
=+y x 上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周.已
知定时t =0时,点A 的坐标是)2
3
,
21(,则当120≤≤t 时,动点A 的纵坐标y 关于t (单位:秒)的函数关系式是()sin y t ωϕ=+,0,02
π
ωϕ><<,则y 关于t 的函数解
析式是 .。

相关文档
最新文档