线性代数习题册行列式-习题详解.doc

合集下载

线性代数课后习题答案第一章 行列式

线性代数课后习题答案第一章   行列式

第一章 行列式1. 利用对角线法则计算下列三阶行列式:(1)381141102---;解381141102--- =2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4.(2)ba c ac b c b a ; 解ba c a cbc b a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a cb a ; 解222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x(x+y)y+yx(x+y)+(x+y)yx-y3-(x+y)3-x3=3xy(x+y)-y3-3x2y-x3-y3-x3=-2(x3+y3).2.按自然数从小到大为标准次序,求下列各排列的逆序数:(1)1 2 3 4;解逆序数为0(2)4 1 3 2;解逆序数为4:41, 43, 42, 32.(3)3 4 2 1;解逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1.(4)2 4 1 3;解逆序数为3: 2 1, 4 1, 4 3.(5)1 3 ⋅⋅⋅ (2n-1) 2 4 ⋅⋅⋅ (2n);解逆序数为2)1(-nn:3 2 (1个)5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) 3. 写出四阶行列式中含有因子a 11a 23的项. 解 含因子a 11a 23的项的一般形式为(-1)t a 11a 23a 3r a 4s ,其中rs 是2和4构成的排列, 这种排列共有两个, 即24和42. 所以含因子a 11a 23的项 分别是(-1)t a 11a 23a 32a 44=(-1)1a 11a 23a 32a 44=-a 11a 23a 32a 44, (-1)t a 11a 23a 34a 42=(-1)2a 11a 23a 34a 42=a 11a 23a 34a 42. 4. 计算下列各行列式:(1)7110025*******214; 解 7110251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---=143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 265232112131412-26503212213041224--=====cc 041203212213041224--=====rr000003212213041214=--=====r r .(3)efcf bf decd bd ae ac ab ---;解 ef cf bf de cd bd ae ac ab ---e c b ec b e c b ad f ---=a b c d e fa d fbc e 4111111111=---=.(4)dc b a 100110011001---.解dc b a100110011001---dc b a ab ar r 10011001101021---++=====d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cdc ad a ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213ab a b a a b a ab ac c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3. (2)yx z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=yx z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b ba a a a (c 4-c 3, c 3-c 2得) 022122212221222122222=++++=d d c c b ba a .(4)444422221111d c b a d c b a d c b a=(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明444422221111d c b a d c b a d c b a)()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b a d a c a b ---------=)()()(111))()((222a d d a c c a b b dc b ad a c a b +++---=))(())((00111))()((a b d b d d a b c b c c bd b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)1221 1 000 00 1000 01a x a a a a x x x n n n +⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1,则D n 按第一列展开, 有111 00 10 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-x x a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得nnnn a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,11112 n nnn a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ,11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明DD D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以nnn n n n nnnn a a a aa a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a DD n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=.D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算 下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解a a a a a D n 0 0010 000 00 0000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n行展开))1()1(10 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a a n n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1 )1()1(=an-a n -2=a n -2(a 2-1).(2)xa a a x aa a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得ax x a ax x a a x x a aa a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0 ,再将各列都加到第一列上 , 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1.(3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有nnn n n n n n n n a a a n a a a na a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式. ∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112;解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开)nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+.再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=ni i i i i n c b d a D 12)(.(5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |,4321 4 01233 10122 21011 3210)d e t (⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n4321 1 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2. (6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n ≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121n n n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--10 0001 000 100 0100 0100 0011332212132 11113121121110 00011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=n nn a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i nn a a a a a a a a 1111131********0010000 10000 01000 001)11)((121∑=+=ni in a a a a .8. 用克莱姆法则解下列方程组:(1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为14211213513241211111-=----=D , 142112105132412211151-=------=D , 2841120351*******1512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==DD x , 333==D D x , 144-==D D x .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为665510006510006510065100065==D ,15075100165100065100650000611==D , 114551010651000650000601000152-==D ,7035110065000060100051001653==D , 39551000601000051000651010654-==D ,2121105100065100651100655==D ,所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ)=(1-λ)3+2(1-λ)2+λ-3.令D=0,得λ=0,λ=2或λ=3.于是,当λ=0,λ=2或λ=3时,该齐次线性方程组有非零解.。

第一章 行列式答案详解

第一章 行列式答案详解

第一章行列式习题1.1二阶和三阶行列式1.计算下列二阶行列式.()12112-=4(1)5--=()222111x x x x -++22(1)(1)x x x x =-++-321x x =--【分析】考查二阶行列式的计算公式2.计算下列三阶行列式.()1251312204--1301113113123024204===()2a bcb c a c a b 11()1()011b c b ca b c c a a b c c b a ca b a b b c=++=++----333()3c b a c a b c abc a b c a b b c --=++=-----【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式3.当x 取何值时,3140010x x x¹.【解析】31210214040(24)0241010x x x x x x xxxx x且===-【分析】考查三阶行列式的计算公式或者行列式性质计算三阶行列式习题1.2排列1.求下列排列的逆序数,并确定它们的奇偶性.()14132;()41324t =,为偶排列()2542316;()5423169t =,为奇排列()3()()246213521n n -L L .()()()(1)2462135212n n n n t +-=L L ,4142443n k k n k k =++⎧⎨=+⎩或时,为奇排列或时,为偶排列【分析】考查逆序数的计算及奇偶排列的概念*2.设排列12n i i i L 的逆序数为k ,求排列121n n i i i i -L 的逆序数.【解析】考虑第m 个数(m=1,2,...,n-1),它与后面n-m 个数的每一个数都有一个“序”,这个序要么是“顺序”,要么是“逆序”。

这样全部的“序”共有:(n-1)+(n-2)+...+2+1=n(n-1)/2个。

12n i i i L 逆序数是k ,那么排列121n n i i i i -L 的逆序是n(n-1)/2-k 【分析】考查逆序概念习题1.3n 阶行列式1.写出四阶行列式中含有因子1123a a 的项.【解析】1123344211233244;a a a a a a a a +-【分析】行列式的定义2.在5阶行列式中,下列各项应取什么符号?()11523314254a a a a a ;()152********,+a a a a a 取“”t =()22132441355a a a a a ;()21324413552,+a a a a a 取“”t =()34153122435a a a a a .()41531224355,a a a a a 取“-”t =【分析】行列式的定义3.设一个n 阶行列式中等于零的元素的个数大于2n n -,试证明该行列式为零.【解析】N 阶行列式共有2n 个元素,等于零的元素的个数大于2n n -,则非零元素个数小于n 个,即一定出现一个0行,则行列式值为0.【分析】行列式的定义4.用行列式的定义计算下列行列式.()1010000200001000n n -L LM M M LML L (23(1)1)112231,11(1)(1)!n n n n n a a a a n τ----=-=- ()2()()1111121211000n n n n a a a a a a --L L MLM M L(1)((1)21)212(1)112(1)1(1)(1)n n n n n n n n n n a a a a a a τ----=-=- 【分析】行列式的定义和主次对角线行列式的结论5.设()11121314212223243132333441424344x a a a a a x a a a f x a a x a a a a a x a --=--,求()f x 中3x 的系数.【解析】根据行列式的定义,3x 系数只能来自于一项11223344()()()()x a x a x a x a ----,即11223344()a a a a -+++【分析】行列式的定义习题1.4n 阶行列式的性质1.用行列式的性质计算下列行列式.()1a x x x x b x xx x c x+++000000a x x x x x x b x xb x x x b x x a x b xc xx c x x x c x x c +=+++=++++2()()()a b x c x x bcx abc ab ac bc x=++-+=+++【分析】各行或各列元素之和相等的行列式+展开定理+三角化方法()22464273271014543443342721621-1321122331299001003279001003270100327190010044310000116100001169001006210029400294c c r r c c c c r r +----===121000011601003272940000000294r r «=-=-【分析】行列式性质+行列式性质+三角化方法()3ab ac aebd cd debf cf ef---1111111111110020204111020002abcdef abcdef abcdef abcdef---=-==-=-【分析】各行或各列元素之和相等的行列式+行列式性质+三角化方法2.将下列行列式化为上三角形行列式,并计算其值.()1111111111111022281111002211110002-==-----【分析】三角化方法的计算()222401120112011204135413505550111221031233123048304832051205102110211----------=-=-=---------112011201120111011101111010102500047001800180031003100025---------=-=-=-=----------【分析】三角化方法的计算3.计算下列行列式.()111100[(1)][(1)]100x a a aa a a a x a x a x a x n a x n a a a x ax x a-=+-=+--L LL L L L M M L M M M L M M M L M L LL 1[(1)]()n x n a x a -=+--10111011120201600022002200220004----=-=-=-----()33312()02()2()0x y x y y x yx yy x y x x y x y x y x y x y xx yxy x yx++-+=+-=+=-+--+--【分析】各行或各列元素之和相等的行列式的计算4.计算下列行列式()112311110010010na a a a L L LM M M LM L ,其中0,2,3,,.i a i n ¹=L 122123211111000110000nn n n a a a a a a a a a a a ---ç==---ççL L L L L LM M M LML 【分析】箭型行列式计算()212111111111111na a a +++L LM M M LML ,其中0,1,2,,.i a i n ¹=L 111121211212211111111100000100000n n n nna aa a a a a a a a a a a a a a a a a +++++-ç===++++çç-L LL L L L L M M M LMM M M L M L L 【分析】利用性质变换为箭型行列式计算5.证明()33by az bz ax bx ayx y z bx ayby az bz ax a b zx y bz ax bx ay by azyzx++++++=++++.【证明】左边by az bz ax bx ayby bz ax bx ay azbz ax bx aybx ayby az bz ax bx by az bz ax ay by az bz axbz ax bx ay by az bz bx ay by az ax bx ay by az+++++++=+++=++++++++++++y bz ax bx ay zbz ax bx ayb x by az bz ax a y by az bz axzbx ay by azx bx ay by az ++++=+++++++++22y bz ax bx zax bx ay y bz ax x z x bx ay b x by az bz a yazbz ax b x by azz a yz bz ax zbx ay by x ay by az z bx ay y xy by az++++=+++=+++++++()223333y bz x z x ay y z x z x y x y z b x byz a y z ax b xy z a yz x a b zx y z bx y x y az z xyxyzy zx=+=+=+【分析】拆项性质+行列式性质6.证明121211221100001000000001n n n n nn n x x x a x a x a x a xa a a a a -------=++++-L L L L M M M L M M LL .【证明】11c n n nD xD a 展开-=+()22121n n n n n n x xD a a x D a x a ----=++=++()3232123232312312121n n n n n n n n n n n n n nx D a x a x a x D a x a x a x a a x a a x a x a x a ----------=+++==+++=++++=++++L L L L 【分析】展开定理+递推发习题1.5行列式的展开1.求行列式30453221--中元素2和2-的代数余子式.【解析】2的代数余子式:313104(1)003A +=-=;2-的代数余子式:323234(1)2953A +-=-=【分析】余子式、代数余子式的概念2.用降阶法计算下列行列式【分析】拉普拉斯展开定理()211122200000000000000=0000000111111231n n na a a a a a a a a nn ------+L L LL MM M L M M MM M L M M L L LL12(1)(1)n nn a a a =+- 【分析】行列式性质+展开定理3.计算下面行列式222244441111a b c d a b c d a b c d .【解析】4D 中各列元素均缺少3次方幂的元素,在4D 中添加3次方幂的一行元素,则产生5阶范德蒙行列式,再适当添加一列得:22222333334444411111()ab c d x f x a b c d x a b c d x a b c d x =按最后一列展开,得2341525354555()f x A xA x A x A x A =++++,因为()()()()0f a f b f c f d ====,所以,,,a b c d 为()f x 的四个根,则()()()()()f x k x a x b x c x d =----由根与系数关系有4555Aa b c d A +++=-,而4545(1)A D D +=-=-,55()()()()()()A b a c a d a c b d b d c =------,则()()()()()()()D a b c d b a c a d a c b d b d c =+++------.【分析】克莱姆法则+展开定理4.已知四阶行列式D 中第1行的元素分别为1,2,0,4-,第3行的元素的余子式依次为6,,19,2x ,试求x 的值.【解析】313233346,,19,2A A x A A ==-==-,由展开定理得:162()019(4)(2)0x ⨯+⨯-+⨯+-⨯-=,解得7x =【分析】代数余子式、余子式+展开定理求11121314及11213141.【解析】1112131411111111016110500164241313042463524130635A A A A -----+++===----------1201048428(1)(1)46136313+--=-=--=---11213141112131411521110513131413M M M M A A A A ---+++=-+-=----152142412000424812812081291210912-----==-=-=------【分析】代数余子式、余子式+展开定理的逆运用习题1.6克莱姆法则1.用克莱姆法则求解下列方程组的解12341234123412342326223832242328x x x x x x x x x x x x x x x x ì++-=ïïïï---=ïíï+-+=ïïï-++=-ïî.【解析】1234324,324,648,324,648D D D D D ====-=-,则12341,2,1,2x x x x ===-=-【分析】克莱姆法则2.设1a ,2a ,3a 互不相同,证明方程组123112233222112233000x x x a x a x a x a x a x a x ì++=ïïï++=íïï++=ïïî只有零解.【解析】系数行列式时范德蒙行列式,因为1a ,2a ,3a 互不相同,则系数行列式非零;再由克莱姆法则可知,该齐次方程组只有零解.【分析】克莱姆法则3.当l 为何值时,齐次线性方程组123122334000x x x x x x x l l ì++=ïïï-+=íïï+=ïïî()1只有零解;()2有非零解.当11λλ≠≠-且时,只有零解;当=1=1λλ-或时,有非零解【分析】克莱姆法则自测题1.填空题(每小题10分,共20分)()1行列式103100204199200395301300600=___2000____.()2已知11111111111111D x---=---,则D 中x 的系数是___4-____.2.计算下列行列式:(每小题15分,共30分)()11(1)(1)(2)220000(1)(1)000000n n n n c nn n D αβαββααββα---==-+-展开()212312323411341(1)3452145221211121n n n n n D n n n +==--(1)(1)1231111101111111101111(1)(1)2211110111111111111n n n n n n nnn n n n n n n n-⨯------++==----(1)(2)1122(1)(1)100100(1)(1)(1)(1)(1)221001000n n n n n n n nn n n n n n n ------⨯-++=⋅-=⋅-⋅-⋅(1)12(1)(1)2n n n n n n --+=-⋅⋅(本题15分)已知2231122D yx=,且1112133M M M +-=,1112131A A A ++=,其中ij M 是D 中元素ij a 的余子式,(1)i j ij ij A M +=-,试求D 的值.【解析】1112133235M M M x y +-=⇒-=111213114A A A y x ++=⇒=⇒=则行列式的值为14.(本题15分)解线性方程组231234231234231234231234x ax a x a x e x bx b x b x ex cx c x c x e x dx d x d x e⎧+++=⎪+++=⎪⎨+++=⎪⎪+++=⎩,其中,,,a b c d 互异.【解析】系数行列式非零,由克莱姆法则可知1234,0,0,0x e x x x ====5.(本题20分)证明:11000100,010001n n a b ab a b ab a b a b a b a ba b++++-=¹+-+L L L M M M L M M L .【解析】上课做为例题已讲过。

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解

线性代数课后习题答案全)习题详解第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯-=416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ; (6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2 (3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3 (5)逆序数为2)1(-n n : 3 2 1个 5 2,5 4 2个 7 2,7 4,7 6 3个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个(6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… …)12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… …)2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --1002310021214---34)1(142101+-⨯--=143102211014-- 321132c c c c ++141717001099-(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4)4444442222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边)()()222222222222a d d a c c a a d a c ad a c ------ =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xa a ax aa a x D n =; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nnn n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=n n n nd c d c b a b a a 0000111111--展开按第一行0000)11111111112c d c d c b a b a b nn n n n nn ----+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121n n n n a a a a a a a a +------10001001000100100010000114332展开(由下往上)按最后一列1(+n a nn n a a a a a a a ------00000000000000000000000224332 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x 解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=000100210151---= 112035122412111512-----=D 11503120270151------=313911230231115-2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 5101065100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--= 51100650000601000051001653=D 展开按第三列0000105165610050066100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 11051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y ,求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A TB .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635.(2)⎪⎪⎭⎫ ⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗? 解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A ,⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗? 解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y . 解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y ,则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k.解⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k .8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k.解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ,⎪⎪⎭⎫⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫⎝⎛=⋅=545345450050105λλλλλλA A A ,⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=kA kk kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫. 用数学归纳法证明: 当k =2时, 显然成立. 假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以 AB =(AB)T =B T A T =BA . 11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225.(2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A ,所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos .(3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232.(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122.(3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A).另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1. 证明 由A 2-A -2E =O 得A 2-A =2E , 即A(A -E)=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得|A 2-A|=2,即 |A||A -E|=2,故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆.由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|. 解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |1-A =|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16.17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有 |A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以(A*)-1=|A|-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A*, 证明:(1)若|A|=0, 则|A*|=0;(2)|A*|=|A|n -1.证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到 |A||A*|=|A|n .若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立.因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫ ⎝⎛=+=201030102E A B . 21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B .解 由A*BA =2BA -8E 得(A*-2E)BA =-8E ,B =-8(A*-2E)-1A -1=-8[A(A*-2E)]-1=-8(AA*-2A)-1=-8(|A|E -2A)-1=-8(-2E -2A)-1=4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-= =2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫ ⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2.由ABA -1=BA -1+3E 得AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A 11*)2(6*)21(3---=-=A E A E ⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--=-1030060600600006603001010010000161.23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11. 解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001, 故 ⎪⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫ ⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)]=diag(1,1,58)diag(12,0,0)=12diag(1,0,0).ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112 ⎪⎪⎭⎫⎝⎛=1111111114. 25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆. (A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B , 则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠. 解 41001200210100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A , 则 ⎪⎭⎫ ⎝⎛=21A O O A A , 故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A . ⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001.解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~r r r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数(本)习题册行列式-习题详解(修改)(加批注)

线性代数(本)习题册行列式-习题详解(修改)(加批注)

线性代数(本)习题册行列式-习题详解(修改)(加批注)||班级:姓名:学号:成绩:批改日期: ||第 1 页共 18 页行列式的概念一、选择题1.下列选项中错误的是( ) (A)b a dcd c b a -= ; (B)ac bd d c b a =; (C)d c b a d c d b c a =++33; (D)dc b ad c b a -----=. 答案:D2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值().(A)保持不变;(B)可以变成任何值;(C)保持不为零;(D)保持相同的正负号.答案:C二、填空题1.ab ba log 11log = . 解析:0111log log log 11log =-=-=ab abb a ba . 2.6cos3sin6sin3cosππππ= . 解析:02cos 6sin 3sin 6cos 3cos 6 cos 3sin6sin3cos==-=πππππππππ3.函数x x xxx f 121312)(-=中,3x 的系数为; x x xx xx g 21112)(---=中,3x 的系数为 . 答案:-2;-2.||班级:姓名:学号:成绩:批改日期: ||第 2 页共 18 页4.n 阶行列式n D 中的n 最小值是 . 答案:1.5. 三阶行列式113420321-中第2行第1列元素的代数余子式等于 . 答案:5.6.若02182=x,则x = . 答案:2.7.在n 阶行列式ij a D =中,当i<="" =="" a="" i="" ij="" j="" l=",则D" p="" 时,),,2,1,(0n="" 答案:nn="">8.设a ,b 为实数,则当a = ,b = 时,010100=---a b b a . 解析:0)()1(1010022=+-=--=---b a ab ba a bba故0,0==b a .三、解答题1.用行列式的定义计算.(1)1100001001011010;解:原式=100010101)1(1010000011)1(14121++-?+-?||班级:姓名:学号:成绩:批改日期: || 第 3 页共 18 页110010100-=--=(2)000000h g f e d c b a . 原式=000000gf e d b hf e dc a - =00000g f bd hf df e c a +-=bdfg adfh -2. 设行列式λλλ01010101-=D , 3512321132=D ,若21D D =,求λ的值.解:由对角线法则,得()()0,11221=-+=D D λλ若21D D =,则()()0112=-+λλ于是1-=λ或1.四、证明题1.(略)行列式的性质一、选择题1.设行列式x x xD 0101011-=, 1133512322=D ,若21D D =,则x 的取值为 ( ).(A)2,-1; (B)1,-1; (C)0,2; (D)0,1.答案:B2.若3333231232221131211==a a a a a a a a a D ,||班级:姓名:学号:成绩:批改日期: ||第 4 页共 18 页则3332333123222321131213111525252a a a a a a a a a a a a D +++==(). (A)30; (B) -30; (C)6; (D)-6.答案:C二、填空题1.若三阶行列式D 的第一行元素分别是1,2,0,第三行元素的余子式分别是8,x ,19,则x = . 解析:1820190,4x x ?-+?==. 2.2016201420182016 = .解析:4202220162014222016201420182016===.3.行列式cb dc a bcb aD =,则312111A A A ++= . 解析:312111A A A ++0111==cb c acb .4.行列式xx x x x D 31213231232154-=的展开式中,4 x 的系数为;3x 的系数为 .解析:xx x xx x x x x x D 312131232321531213231232154--=-=xx x x 3121312512585103215---= 含4x ,3x 的项仅有主对角线上元素之积项,故4x ,3 x 的||班级:姓名:学号:成绩:批改日期: || 第 5 页共 18 页系数分别为15,-3.三、解答题1.计算下列行列式 .(1)3214214314324321;解:各行加到第一行,得原式=32142143143211111032142143143210101010= =160400004001210111110123012101210111110=---=------.(2)4444333322225432154321543215432111111;解:原式=(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.(3)49362516362516925169416941;原式=02222222297531694113119711975975316941==.||班级:姓名:学号:成绩:批改日期: || 第 6 页共 18 页(4)000000xy y x y x x y ;原式=xy x yx x xyy y xy 0000000-- =22222)(y x xyyx x x y y x y --=-. (5)xy z zx y yz x111;原式=)(0)(01x z y x z x y z x y yzx------ =))()((11))((x z z y y x yzx z x y ---=---.(6)200012000000130012000101--;原式=31012010140131201014200001301201012---=--=-- =2031124=---.(7)43211111111111111111x x x x ++++;||班级:姓名:学号:成绩:批改日期: || 第 7 页共 18 页解:原式=432111110010011x x x x x x x ---+ =43121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.2.设4322321143113151-=D ,计算44434241A A A A +++的值. 其中)4,3,2,1(4=j A j 是D 的代数余子式.解:44434241A A A A +++61111321143113151=-=. 3. 已知1142113110111253------=D ,求41312111M M M M +++.解:41312111M M M M +++=41312111)1(1)1(1M M M M --?+--?=1141113*********-------=0.4.计算下列n 阶行列式.||班级:姓名:学号:成绩:批改日期: ||第 8 页共 18 页(1)2111解:原式=211121111 +++n n n =2 11121111)1( +n=110010111)1(+=+n n .(2)xy yyy x y yy y x yy y y x;解:原式=[]xy y yy x y yy y x yy n x1111)1(-+ =[]yx y x y x y n x ----+ 00000001111)1(=[]1)()1(---+n y x y n x .(3)),,2,1,0(0100101111021n i x x x x i n=≠.||班级:姓名:学号:成绩:批改日期: || 第 9 页共 18 页解:原式=nni ix x x x00000011101211∑=- =)1(121∑=-ni in x x x x .四、证明题1.设a ,b ,c 是互异的实数,证明0111333=c b a c b a的充分必要条件是a+b+c=0.证明:33333333001111a c ab a ac a b a c b ac ba----= =3333a c ab ac ab ----=222211))((a ac c a ab b a c a b ++++--=))()((22ab ac b c a c a b -+--- =))()()((c b a b c a c a b ++---=0,由于a ,b ,c 是互异的实数,故要上式成立,当且仅当a+b+c=0.2.证明4+2324323631063a b c d a a b a b c a b c da a ab a bc a b cd a a b a b c a b c d +++++=++++++++++++ 证明:左边43322102320363a b c d r r a a b a b cr r a a b a b c r r a a b a b c-+++-+++-+++433210002003a b c d r r a a b a b ca ab r r a a b-++++-+4430002000a b c d a a b a b cr r a a a b a+++-=+||班级:姓名:学号:成绩:批改日期: ||第 10 页共 18 页=右边克莱姆法则一、选择题1.方程组=++=++=++1,1,1321321321x x x x x x x x x λλλ, 有唯一解,则( ).(A)1-≠λ且2-≠λ;(B) 1≠λ且2-≠λ;(C) 1≠λ且2≠λ; (D) 1-≠λ且2≠λ.解析:由克莱姆法则,当0)1)(2(1111112≠-+=λλλλλ,即1≠λ且2-≠λ,选B .2.当≠a ()时,方程组??=+-=++=+02,02,0z y ax z ax x z ax 只有零解. (A) -1 ;(B) 0 ;(C) -2 ;(D) 2. 解析:由克莱姆法则,当0)2(212012100121210≠-=--=-a a a a a a 即2≠a ,选D .三、解答题1.用克莱姆法则下列解方程组.(1)??=+-=+-=-+;32,322,22z y x z y x z y x解: 03112221121≠=---=D ,由克莱姆法则知,此方程组有唯一解,132231221=---=D ,||班级:姓名:学号:成绩:批改日期: ||第 11 页共 18 页61322311212=-=D ,93323312213==D ,因此方程组的解为11==D D x ,22==D Dy ,33==DD z .(2)..23342,223,3232,124321432143214321=-++=+++=+-+=-++x x x x x x x x x x x x x x x x 解:043 342123121321121≠=---=D由克莱姆法则知,此方程组有唯一解,833421232213311211=---=D , 233221221213211112-=---=D ,23241231233211213=--=D ,223422231313211214=-=D . 因此方程组的解为211==D D x ,2122-==D D x ,2133==D D x ,2 144==D D x . 2.判断线性方程组=-+=+-=-+0285,042,022321321321x x x x x x x x x 是否有非零解?解:因为系数行列式285122421285421122----=---=D||班级:姓名:学号:成绩:批改日期: || 第 12 页共 18 页=030596042122180960421≠-=--=----, 所以,方程组只有零解.3.已知齐次线性方程组=+-=++=-+02,0,0321321321x x x x x kx x kx x 有非零解,求k 的值.解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即32101101111211112k k k kk k --+--=-- =)21)(1()1(32k k k +++- =0)4)(1(=-+k k 解得,k =-1或k =4.4.当μ取何值时,齐次线性方程组=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解?解:由齐次线性方程组有非零解的条件可知,0111213142=------μμμ,解得3,2,0=μ.第一章综合练习一、判断题1. n 阶行列式n D 中的n 最小为2.( ╳ )2. 在n 阶行列式ij a D =中元素),2,1,(L =j i a ij 均为整数,则D 必为整数.( √ )||班级:姓名:学号:成绩:批改日期: ||第 13 页共 18 页3.413223144433221144413332232214110000000a a a a a a a a a a a a a a a a -=.( ╳ ) 二、选择题1.若11131--+=x x x D ,211122-+=x x D ,则1D 与2D 的大小关系是( ).(A)21D D <; (B)21D D >;(C)21D D =;(D)随x 值变化而变化. 答案:C2.行列式{})2,1,1,,,(-∈d c b a dc ba 的所有可能值中,最大的是( ).(A) 0; (B)2; (C)4; (D)6. 答案:D三、填空题1.?40cos 20sin 40sin 20cos = .解析:-??=?40sin 20sin 40cos 20cos 40cos 20sin 40sin 20cos2160cos ==. 2.若y y x x y x -=-1122,则x+y = . 解析:由y y x x y x -=-1122,得xy y x 222-=+ 即0)(2=+y x ,从而x+y =0. 3.已知111,0112==yx x ,则y = . 解析:由111,0112==yx x ,得x =2,x -y =1,从而y =1||班级:姓名:学号:成绩:批改日期: ||第 14 页共 18 页4. 若222222222642531C c B b A a c b a ++=,则2C 化简后的结果等于 . 解析:242312=-=C . 5.设xx x x x x f 111123111212)(-=,则4x 的系数为;3系数为 .解析:当f (x )的主对角线的4个元素相乘才能得出4x ,系数为2;含3x 的项只能是44332112,,,a a a a 的乘积,系数为-1. 答案:2,-1.6.设0123411222641232211154321=D ,则(1)333231A A A ++= ;(2)3534A A + ;(3)5554535251A A A A A ++++ . 解析:0)(23534333231=++++A A A A A 0)()(23534333231=++++A A A A A 于是0333231=++A A A ,03534=+A A .5554535251A A A A A ++++1111111222641232211154321=||班级:姓名:学号:成绩:批改日期: ||第 15 页共 18 页01111133333641232211154321==. 即0555*******=++++A A A A A .四、解答题1.计算下列行列式.(1)4434433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++;解:原式=14131214141312131413121214131211y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x ---+---+---+---+=000000000014131214131211=------+x x x x x x y y y y y y y x .(2)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++. ||班级:姓名:学号:成绩:批改日期: ||第 16 页共 18 页(3)2007000002006000200500020001000.解:原式=!2006)1(2007220052006?-?=!2007-2.已知123452221127312451112243150D ==, 求(1)434241A A A ++;(2)4544A A +. 解:27)(21114544434241=++?+?+?A A A A A0)()(24544434241=++++A A A A A得9434241-=++A A A ,184544=+A A . 3.计算下列n 阶行列式.(1)nn n n n n n D222333222111=;解:(利用范德蒙行列式计算)1122133321111!--==n n n Tn n n n n D D[])1()2()24)(23)(1()13)(12(!--------=n n n n n !2)!2()!1(! --=n n n .||班级:姓名:学号:成绩:批改日期: ||第 17 页共 18 页(2)211121112 ;解:原式=211121111 +++n n n =2121111)1( +n=110010111)1(+=+n n .(3)mx x x x m x x x x mx D n n n n ---=212121解:将第2列,L ,第n 列分别加到第一列,并提取第一列的公因子,得mx x mx x x x m x m x x x x x m x x x D n n n n n n n --+++--+++-+++=221221221mx x x m x x x m x x x n n n n ---+++=22221111(mm m x x x n ---+++= 0101001)(21121))((---+++=n n m m x x x||班级:姓名:学号:成绩:批改日期: || 第 18 页共 18 页(4)nn n n n a a a a a a b b b b b D 1322113210000000-----=(其中n i a i ,,2,1,0 =≠)解: 122110000000)1(-+----=n nnn a a a a b D122211221000000------+n n n n n a a a a a b b b b a 121-+?=n n nnn D a a b a a a==∑=n i i in a b a a a 121 . 三、证明题1.试证:如果n 次多项式n n x a x a a x f +++= 10)(对n+1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)。

行列式习题解答

行列式习题解答
④ 1 c b c 1 a ba 1
111 (b) c a b(a)(c) (b)1 b 1 (a) a 1 (c) c a2abc abc 0
b c 0
⑥0 1 1 1 0 1 11 2 110 a a2 a3
⑦ b b2 b3 c c2 c3
f ( x) 中旳常数项是(1) 2 31 (1) 3 31 3
x 030 15.已知 0 0 0 2 1, 求 x
0 x00 4 000
x 030

0 0
0 x
0 0
2 0
24 x
1, 所以
x
1 24
4 000
16.用行列式性质证明下列等式
证明 ①
a1 kb1 a2 kb2 a3 kb3
00
解 ②此行列式刚好只有处于不同旳行与不同旳列旳
n个非零元素 a12 , a23 , a(n 1)n , an1 ,故非零项只有一项 a12a23 a(n 1)n an1 ,该项所带旳符号为 (1) 23 n1 (1)n1 , 所以 D (1)n11 2 (n 1) n (1)n1 n!
解 ① (38162754) 2 3 0 4 3 1 1 14
所以 38162754 为偶排列
② (3712456) 2 2 0 1 1 1 7
所以 3712456 为奇排列
③ 246 (2n)135 (2n 1)
n (n 1) 2 1 n(n 1) 2
所以当 n 4k 或 n 4k 3 时为偶排列;当n 4k 1
或 n 4k 2 时为奇排列.
6.选择 i, j, k,使排列 21i36 jk97为偶排列.
解 当 i 4, j 8, k 5 时, (214368597 6), 为 为偶排列,当 i 5, j 4, k 8时, (215364897 6), 为偶排列,当 i 8, j 5, k 4时, (218365497 10),

线性代数习题册行列式-习题详解.doc

线性代数习题册行列式-习题详解.doc

行列式的概念一、选择题1. 下列选项中错误的是 ( )a b c d (B)a b d b (A)da b ; c dc ;caa 3cb 3d a b a ba b (C)cdc ; (D)c dc.dd答案: D2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行列式的值().(A) 保持不变; (B) 可以变成任何值;(C) 保持不为零; (D)保持相同的正负号.答案: C二、填空题1.log a b 1 =.1log b a解析: log ab1 log a b log b a1 1 1 0 .1 log b acos sin2.36=.sincos 3 6cos sin解析:3 6 cos cos sin sin cos0sin cos 3 63 6 23 62x 1 33. 函数 f (x)x x 1 中, x 3 的系数为;21 x2x 1 1g( x)x x x 中, x 3的系数为.12x答案: -2 ; -2.阶行列式 D n中的n最小值是.答案: 1.1 2 35.三阶行列式0 2 4 中第2行第1列元素的代数余子式3 1 1等于.答案: 5.6.若 2x 8 0 ,则x= .1 2答案: 2.7. 在n 阶行列式 D a ij 中,当 i<j 时,aij 0(i, j 1,2, L ,n) ,则D= .答案: a11 a22 a nn.a b 0b a 0 0.1 0 1a b 0( 1ab )解析: b a 0 ( a2 b2 ) 01 0 1b a故 a 0, b 0 .三、解答题1.用行列式的定义计算 .0 1 0 11 0 1 0(1)1 0;0 00 0 1 11 1 0 1 0 1 解:原式 =1 ( 1)1 20 0 0 1 ( 1)1 4 0 1 00 1 0 0 0 18. 设a, b 为实数,则当a=, b=时,0 0 1 0 1解:由对角线法则,得 D 111 2 , D 21 0 0 111 2a b 0 0 若 D 1 D 2 , 则 于是1或 1.0 c d 0(2)四、证明题0 0 e.f1. (略)g h 0行列式的性质c d 0 0 d 0原式 = a 0 efb 0 ef一、选择题h 0 0g 0 0x 0 1 2 3 2e f0 f 0 f1.设行列式 D 10 x 1 0 , D 2 1 5 3 , 若 D 1 D 2 ,10 x3 1 1=a cdbdh g= adfhbdfg则 x 的取值为 ( ).(A)2 ,-1 ; (B)1 , -1 ;(C)0 ,2;(D)0,1.0 1 3 1 1答案: B2. 设行列式 D 10 1 0 ,D 2 2 3 2 , 若 D 1 D 2 ,a 11 a 12 a 1311 5 32.若 Da 21a 22a233 ,求 的值 .a31a32a332a11 5a13 a12 a13则 D1 2a21 5a23 a22 a23=().2a31 5a33 a32 a33(A)30;(B) -30 ;(C)6 ;(D)-6.答案: C二、填空题1.若三阶行列式 D 的第一行元素分别是1,2,0, 第三行元素的余子式分别是8,x,19,则 x =.解析: 1 8 2x 0 19 0, x 4 .2016 2018=.2.201620142016 2018 2 2 2 2 解析:2016 2014 2016 0 4 .2014 2a b c3. 行列式D b a c ,则 A11 A21 A31= .d b c1 b c解析: A11 A21 A31 1 a c 0 .1 b c5x 1 2 34. 行列式D42 1 x 3x x 2的展开式中, x 4的系数31 2 1 3x为; x3 的系数为.5x 1 2 3 5x 1 2 32 1 x3 x x 2 3解析: D 4x 2 3 2 1 x 3x1 2 1 3x 1 2 1 3x5x 1 2 30 x1 8 125 5 52 1 x 31 2 1 3x含 x4, x3的项仅有主对角线上元素之积项,故x 4, x3的系数分别为 15, -3.三、解答题1. 计算下列行列式 .1 2 3 42 3 4 1 (1);3 4 1 2 4 1 2 3解:各行加到第一行,得10 10 10 10 1 1 1 1 2 3 4 1 2 3 4 1 原式 =4 1 2 104 1 2 3 3 41 2 3 4 1 2 31 1 1 1 1 1 1 10 1 2 1 0 1 2 1 = 101 2 1 100 4 160 .0 0 0 03210 041 1 1 1 11 234 52 2 22(2) 12 3 4 5 ;3 3 3 3 1 2 345 4444 1 234 5解:原式 =(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.1 4 9 16 4 9 16 25 ;(3)16 25 3691625 36491 4 9 16 1 4 9 16 3 5 7 9 3 5 7 9 原式 =7 9 11 2 2 2 0 .5 2 7 9 11 132 2 2 20 y 0 xx 0 y 0;(4)x 0 yy 0 x 0x y 0 x 0 y 原式 = y 0 0 y x 0 x 0y x 0 y 0 x= y 2 xy x 2 x y ( x 2 y 2 ) 2 . y x y x1 x yz(5) 1 y zx ;1 z xy1 x yz原式 = 0 y x z( y x)0 z x y( z x)=1 z( y x)( z x) ( x y )( y z )( z) .y x11 0 1 0 00 2 1 0 0(6) 3 1 0 0 0 ;0 0 0 2 10 0 0 0 21 0 1 01 0 1 1 0 10 2 1 04 0 2 1 4 0 2 1原式 = 21 0 033 1 0 0 1 30 0 0 2=2 14 20 .1 31 x1 1 1 11 1 x2 1 1;(7)1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x1解:原式 = 1 x2 0 0 1 0 x3 0 1 0 0 x41x1 x1 x1x1 x1 x1 x1x3x2 x4= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.1 5 1 31 1 3 4,计算 A41 A42 A43 A44的值.2. 设D1 2 312 23 4其中 A4 j ( j 1,2,3,4) 是 D 的代数余子式.1 5 1 3解: A41 A42A431 1 3 4A441 26 .1 31 1 1 13 5 2 13. 已知D1 1 0 1 M11M21M31M41.1 3 1, 求12 4 1 1解: M 11M21M31M41=1 M11( 1)M 21 1 M 31 ( 1)M 411 52 11 1 0 1=3 1=0.1 11 4 1 14. 计算下列n 阶行列式.2 1 1 1 1 1 1 (1) 1 2 1 ;y x y y解:原式 = x (n 1) y y y x y1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x y y yy x y y (2) y y x y ;y y y xy y y x1 1 1 10 x y 0 0= x (n 1) y 0 0 x y 00 0 0 x y= x (n 1) y ( x y) n 1.0 1 1 11 x1 0 0(3) 1 0 x2 0 ( x i 0,i 1,2, ,n) .1 0 0 x nn1111i 1 x i解:原式 =0 x 1 0 0 00 x 2 0x n=x 1 x 2x n (n1) .i 1x i四、证明题11 1= (b a)(c a)112ab a 2c 2ac a 2b= (b a)(c a)(c 2 b 2ac ab)= (b a)(ca)(c b)( a b c) =0,由于 a , b , c 是互异的实数,故要上式成立,当且仅当 a+b+c=0.abcd2. 证明a a+ba b c c a b c da 4a 2ab 3a 2b 4a 3b 2cd a3a b 6a 3b c 10a 6b 3c d1. 设 a , b , c 是互异的实数,证明a b c 0 的充分必要条 a bc da 3b 3c 3r 4r 30 a a ba b c件是 a+b+c=0.证明:左边r 3 r 2a2a b3a2bc11 1 1r 2r 10 a 3a b 6a 3b c证明: ab c a b a c a a bc d a bc da3b 3c 3a 3b 3 a 3c 3 a 3r 3 0 a a b a b c0 a a b a b cr 44r 3 r 21 0 0ar 4r 3a ab ac a2a b 0 2a b =a 3 c 3 a 30 0a3a b0 0ab 3=右边克莱姆法则一、选择题x1 x2 x3 1,1.方程组x1 x2 x3 1, ,有唯一解,则( ).x1 x2 x3 1(A) 1且 2 ;(B) 1 且 2 ;(C) 1且 2 ;(D) 1 且 2 .1 1解析:由克莱姆法则,当 1 1 (2 )( 1) 2 0 ,即1 11且 2 ,选B.ax z 0,2. 当a ()时,方程组2x ax z 0, 只有零解.ax 2 y z 0(A) -1 ;(B) 0 ;(C) -2 ; (D) 2.解析:由克莱姆法则,a 0 1 0 0 1当 2 a 1 2 a a 1 2(a 2) 0a 2 1 0 2 1即a 2 ,选D.三、解答题1.用克莱姆法则下列解方程组 .x 2 y z 2,(1) x 2 y 2z 3,2x y z 3;1 2 1解: D 1 2 2 3 0 ,2 1 1由克莱姆法则知,此方程组有唯一解,22 1D13 2 2 3 ,31 11 2 1 1 2 2D 2 1 3 2 6 , D 3 1 3 3 9 ,2 3 1 2 3 3因此方程组的解为D1 D 22 , z D 33 .x 1, yDD Dx1 2 x2 x3 x4 1,2x1 3x2 x3 2x4 3, (2)3x2 2x3 x4 ..x1 2, 2x1 4x2 3x3 3x4 21 2 1 1解: D 2 3 1 24 01 32 12 43 3由克莱姆法则知,此方程组有唯一解,1 2 1 1 1 1 1 13 3 1 28 , D 22 3 1 2D13 2 1 1 2 22 ,2 12 43 3 2 2 3 31 2 1 1 1 2 1 12 3 3 2D 42 3 1 32 .D33 22 ,1 32 21 12 4 23 24 3 2因此方程组的解为D12 , x2D 2 1 D 3 1 D 4 1x1D, x3D, x4D.D 2 2 22x1 2x2 x3 0,2. 判断线性方程组x1 2x2 4 x3 0, 是否有非零解5x1 8x2 2x3 02 2 1 1 2 4解:因为系数行列式 D 1 2 4 2 2 15 8 2 5 8 21 2 4 1 2 4= 0 6 9 0 6 9 30 0 ,0 18 22 0 0 5所以,方程组只有零解.x1 kx2 x3 0,3. 已知齐次线性方程组kx1 x2 x3 0, 有非零解,求k 的值.2x1 x2 x3 0解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即1 k 1 1 k 1k 1 1 0 1 k 2 1 k2 1 1 0 1 2k 3= 3(1 k 2 ) (1 k)(1 2k)= (1 k)( 4 k ) 0解得, k=-1 或 k=4.2x1 4x2 ( 1) x3 0 4. 当取何值时,齐次线性方程组 ( 3) x1 x2 2x3 0 有非x1 (1 ) x2 x3 0 零解解:由齐次线性方程组有非零解的条件可知,2 4 13 1 2 0 ,解得0,2,3 .1 1 1第一章综合练习一、判断题1. n 阶行列式D n中的 n 最小为2.( ╳ )2. 在 n 阶行列式D a ij 中元素 a ij (i, j 1,2, L) 均为整数,则D必为整数 .( √ )a 11 0a 14a22a23a 14 a 23a 32 a 41 .(╳3.a32a33a 11a22 a 33 a44a410 0a44)二、选择题1. 若 D 13x 1 x 2x 11 1x 1, D 2x,则 D 1 与 D 2 的大12小关系是 ( ).(A) D 1D 2 ; (B) D 1 D 2 ; (C) D 1 D 2 ; (D) 随 x 值变化而变化 . 答案: Ca bcos20 sin 40 =.1.cos40sin 20解析:cos20 sin 40 cos20 cos40sin 20cos401cos60.2 2. 若 x 2y 2 x x , 则 x+y =. 1 1yy解析:由 x2y 2 xx ,得 x 2 y 21 1 y y即 ( xy) 2 0 ,从而 x+y =0.sin 20 sin 402xy2. 行列式 (a,b,c, d 1,1,2 ) 的所有可能值中, 最大 c d的是 ( ).(A) 0 ; (B)2 ; (C)4 ; (D)6.答案: D3. 已知x2 0,x y 1,则 y = .1 1 11x 2 x y 解析:由1 10,1 , 得 x =2, x-y =1, 从而 y =11 1三、填空题13 54.若a2b2c2a2 A2b2 B2c2 C 2,则 C 2化简后的结果24 6等于.解析: C21 32 .2 42x x 1 25. 设f ( x) 1 x 1 14 的系数为; x3的3 2 x,则 x11 1 1 x系数为.解析:当 f ( x)的主对角线的 4 个元素相乘才能得出x 4,系数3为 2;含x的项只能是a12 , a21, a33 , a44的乘积,系数为-1.1 2 3 4 51 1 12 26. 设D 3 2 1 4 6 ,2 2 2 1 14 3 2 10则 (1) A31A32 A33= ; (2)A34A35 ;( 3)A51 A52 A53 A54 A55 .解析: A31A32A33 2( A34 A35 ) 02(A31A32 A33 ) ( A34 A35 ) 0于是A31 A32 A33 0 , A34 A35 0 .1 2 3 4 51 1 12 2A51A52A53A54A55 3 2 1 4 62 2 2 1 11 1 1 1 11 2 3 4 51 1 12 23 2 14 60 .3 3 3 3 31 1 1 1 1即 A51A52A53A54A550 .四、解答题1.计算下列行列式 .x1 y1 x1 y2 x1 y3 x1 y4(1) x2 y1 x2 y2 x2 y3 x2 y4 ;x3 y1 x3 y2 x3 y3 x3 y4x4 y1 x4 y2 x4 y3 x4 y4x1 y1 y2 y1 y3 y1 y4 y1x2 y1 y2 y1 y3 y1 y4 y1 解:原式 =x3 y1 y2 y1 y3 y1 y4 y1x4 y1 y2 y1 y3 y1 y4 y1x1 y1 y2 y1 y3 y1 y4 y1x2 x1 0 0 0 =x1 0 00 .x3 0x4 x1 0 0 01 x1 1 1 11 1 x2 1 1(2) ;1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x11 x2 0 0解:原式 =0 x3 011 0 0 x41x1 x1 x1x1 x1 x1x1x3 x4x2= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.0 0 0 1 0 0 0 2 0 0(3)2005 0 0 .0 02006 0 0 0 00 0 0 0 20072006 2005解:原式 = 2007 ( 1) 2 2006! = 2007!1 2 3 4 52 2 2 1 12. 已知D 3 1 2 4 527 ,1 1 12 24 3 15 0求 (1) A41A42 A43;(2)A44A45.解: 1 A41 1 A42 1 A43 2( A44 A45 ) 272( A41 A42 A43 ) ( A44 A45 ) 0得 A41A42A439 , A44A4518 .3.计算下列 n 阶行列式.1 1 12 2 2 2n(1) D n 3 32 3n;n n 2 n n解:(利用范德蒙行列式计算)1 1 1D n D n T1 2 nn! 3 32 3n1 2n 1 n n 1n!(2 1)(3 1) ( n 1)(3 2)(4 2) (n 2) n ( n 1)n!(n 1)!( n 2)! 2! .2 1 1(2) 1 2 1 ;1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x1 m x2 x nx1 x2 m x n(3) D nx1 x2 x n m解:将第 2 列,L,第n列分别加到第一列,并提取第一列的公因子,得x1 x2 x n m x2 x nD nx1 x2 x n m x2 m x nx1 x2 x n m x2 x n m1 x2 x n( x1 x2 x n1 x2 m x nm)1 x2 x n m1 0 0( x1 x 2 x n1 m 0m)1 0 m( x1 x2 x n m)( m) n1b1 b2 b3 b n 1 b na1 a2 0 0 0 (4) D n 0 a2 a3 0 00 0 0 a n 1 a n(其中 a i 0,i 1,2, , n )a1 a2 0 0 解: D n ( 1)1 n b n0 a2 0 00 0 0 an 1b1 b2 b n 2 b n 1a1 a2 0 0 a n 0 a2 0 00 0 a n 2 an 1a1 a2 a n b nanDn 1a na1 a2 nb i.a na ii 1三、证明题1. 试证:如果n次多项式f ( x) a0 a1 x a n x n对 n+1 个不同的 x 值都是零,则此多项式恒等于零.( 提示:用范德蒙行列式证明)。

线性代数§1.2n阶行列式习题与答案

线性代数§1.2n阶行列式习题与答案

线性代数§1.2n阶行列式习题与答案第一篇:线性代数§1.2 n阶行列式习题与答案第一章行列式——§1.2 n阶行列式§1.2 n阶行列式为了得到更为一般的线性方程组的求解公式,我们需要引入n阶行列式的概念。

为此,先介绍排列的有关知识。

㈠排列与逆序:(课本P4)1、排列的定义:由数码1,2,…,n,组成一个有序数组i1i2Λin,称为一个n级排列。

【例1】1234是一个4级排列,3412也是一个4级排列,而52341是一个5级排列。

(课本P4中例)【例2】由数码1,2,3 组成的所有3级排列为:123,132,213,231,312,321共有3!= 6个。

【例3】数字由小到大的n级排列1234…n 称为自然序排列。

2、逆序的定义:在一个n级排列i1i2Λin中,如果有较大的数it 排在is的前面,则称it与is构成一个逆序。

(课本P4)【例4】在4 级排列3412中,31,32,41,42,各构成一个逆序,在5 级排列34152中,31,32,41,42,52,共构成5个逆序。

3、逆序数的定义:一个n级排列i1i2Λin中逆序的总数,称为这个排列的逆序数,记为N(i1i2Λin)。

(课本P4)【例5】排列3412的逆序数为N(3412)= 4,排列52341的逆序数为N(52341)= 7,自然序排列的逆序数为0。

4、奇、偶排列的定义:如果排列i1i2Λin的逆序数N(i1i2Λin)是奇数,第一章行列式——§1.2 n阶行列式则将i1i2Λin称为奇排列;如果排列i1i2Λin的逆序数N(i1i2Λin)是偶数,则将i1i2Λin称为偶排列。

(课本P4)【例6】由于N(3412)= 4,知排列3412是偶排列,由于N(52341)=7,知排列52341是奇排列,由于N(123…n)= 0,知自然排列123…n是偶排列。

【例7】由数码1,2,3组成的所有3级排列为:123,132,213,231,312,321共有3!= 6个,其中,奇排列有132,213,321三个,偶排列有123,312,231三个。

西南交大线性代数习题参考答案.doc

西南交大线性代数习题参考答案.doc

第一章 行列式§1 行列式的概念1. 填空(1) 排列6427531的逆序数为 ,该排列为 排列。

(2) i = ,j = 时, 排列1274i 56j 9为偶排列。

(3) n 阶行列式由 项的代数和组成,其中每一项为行列式中位于不同行不同列的n 个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n 元排列。

若该排列为奇排列,则该项的符号为 号;若为偶排列,该项的符号为 号。

(4) 在6阶行列式中, 含152332445166a a a a a a 的项的符号为 ,含324314516625a a a a a a 的项的符号为 。

2. 用行列式的定义计算下列行列式的值(1) 1122233233000a a a a a 解: 该行列式的3!项展开式中,有 项不为零,它们分别为 ,所以行列式的值为 。

(2)12,121,21,11,12,1000000n n nn n n n n n n n n nna a a a a a a a a a ------解:该行列式展开式中唯一不可能为0的项是 ,而它的逆序数是 ,故行列式值为 。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax byay bz az bx x y z D ay bzaz bx ax by a b yz x az bx ax byay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n nn n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

(完整版)行列式习题1附答案.doc

(完整版)行列式习题1附答案.doc

⋯⋯_ ⋯_ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯:⋯号⋯学⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ ⋯_ _ 线_ 订_ _ 装_ _ ⋯_ _ ⋯_ _ ⋯_ ⋯:⋯名⋯姓⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯:⋯⋯⋯班⋯⋯⋯《线性代数》第一章练习题⋯⋯一、填空⋯⋯⋯1、(631254) _____________ 8⋯⋯⋯2、要使排列(3729m14n5)偶排列, m =___8____, n =____6_____⋯⋯x 1 13 , x 2 的系数分是⋯3、关于x的多式x x x中含 x -2,4⋯1 2 2x⋯⋯4、 A 3方, A 2, 3A* ____________ 108⋯⋯⋯5、四行列式det( a ij)的次角元素之(即a14a23a32a41)一的符号+⋯⋯1 2 1线1234 2346、求行列式的 (1) =__1000 ;(2)2 4 2 =_0___;封2469 469密10 14 13⋯⋯1 2000 2001 2002⋯0 1 0 2003⋯⋯(3)0 1=___2005____;⋯0 20040 0 0 2005⋯⋯1 2 3⋯中元素 0 的代数余子式的___2____⋯(4) 行列式2 1 0⋯3 4 2⋯⋯1 1 1 1⋯1 5 25⋯ 4 2 3 57、 1 7 49 = 6 ;= 1680⋯16 4 9 25⋯1 8 64⋯64 8 27 125⋯⋯矩方,且,,, A 1 1 。

⋯A 4⋯8、|A|=5 | A*| =__125 | 2A| =__80___ | |=50 1 10 1 2 22 2 2 09、 1 0 1 = 2 。

;3 0121 1 01 01 0 0 0bx ay010、若方程cx az b 有唯一解,abc≠0 cy bz a11、把行列式的某一列的元素乘以同一数后加到另一列的元素上,行列式12、行列式a11a12a13a14a21a22a23a24 的共有4! 24, 在a11a23 a14a42, a34a12a31a32a33a34a41a42a43a44a34a12a43 a21 是行列式的,符号是 + 。

(完整版)线性代数课后习题答案第1——5章习题详解

(完整版)线性代数课后习题答案第1——5章习题详解

第一章 行列式4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢7110025*********4; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae ac ab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a100110011001解(1)7110025102021421434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)2605232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=ec b e c b ec b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -; (2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=y x z x z y z y x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 . 证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--=右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bzay y x by ax x z bxaz z y b +++z y x y x z x z y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a ad a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnn n nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-=同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n T n n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)a aD n 11=,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n n n n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnnnn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 00010000000000001000 =按最后一行展开)1()1(100000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n na aa(再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得 nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) nn nnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D即 ∏=-=ni i i iin D c b da D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=432140123310122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221 展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-=112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510006510065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 51001651000651000650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507=51010651000650000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-= 1145108065-=--=51100650000601000051001653=D 展开按第三列51006500061000516500061000510065+6100510656510650061+= 703114619=⨯+=51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解?解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ 齐次线性方程组有非零解,则0=D得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x ,求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换.解 由已知:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x , 故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y , ⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x , ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z , 所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B . 解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB ⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503, ⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T . 4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134; 解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635. (2)⎪⎪⎭⎫⎝⎛123)321(; 解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛; 解 )21(312-⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876. (5)⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ; 解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x =(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问: (1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B)2=A 2+2AB +B 2吗?解 (A +B)2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148, 但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B)2≠A 2+2AB +B 2.(3)(A +B)(A -B)=A 2-B 2吗?解 (A +B)(A -B)≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A , 而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A , 故(A +B)(A -B)≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵. 证明 因为A T =A , 所以(B T AB)T =B T (B T A)T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA . 证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以(AB)T =(BA)T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB)T =AB , 所以AB =(AB)T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A|=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故*||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A . |A|=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A|=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012.(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组:(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x ,故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x .14. 设A k =O (k 为正整数), 证明(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为 E -A k =(E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A)(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E , 由定理2推论知(E -A)可逆, 且(E -A)-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A)-1(E -A). 另一方面, 由A k =O , 有E =(E -A)+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k ) =(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A),故 (E -A)-1(E -A)=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A), 两端同时右乘(E -A)-1, 就有(E -A)-1(E -A)=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E)-1.证明 由A 2-A -2E =O 得 A 2-A =2E , 即A(A -E)=2E ,或E E A A =-⋅)(21,由定理2推论知A 可逆, 且)(211E A A -=-.由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E)(A -3E)=-4E ,或E A E E A =-⋅+)3(41)2(由定理2推论知(A +2E)可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A|=2,即 |A||A -E|=2, 故 |A|≠0,所以A 可逆, 而A +2E =A 2, |A +2E|=|A 2|=|A|2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A(A -E)=2E⇒A -1A(A -E)=2A -1E ⇒)(211E A A -=-,又由 A 2-A -2E =O ⇒(A +2E)A -3(A +2E)=-4E⇒ (A +2E)(A -3E)=-4 E ,所以 (A +2E)-1(A +2E)(A -3E)=-4(A +2 E)-1,)3(41)2(1A E E A -=+-.16. 设A 为3阶矩阵,21||=A , 求|(2A)-1-5A*|.解 因为*||11A A A =-, 所以|||521||*5)2(|111----=-A A A A A |2521|11---=A A=|-2A -1|=(-2)3|A -1|=-8|A|-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A*也可逆, 且(A*)-1=(A -1)*.证明 由*||11A A A =-, 得A*=|A|A -1, 所以当A 可逆时, 有|A*|=|A|n |A -1|=|A|n -1≠0,从而A*也可逆.因为A*=|A|A -1, 所以 (A*)-1=|A|-1A .又*)(||)*(||1111---==A A A A A , 所以(A*)-1=|A|-1A =|A|-1|A|(A -1)*=(A -1)*. 18. 设n 阶矩阵A 的伴随矩阵为A*, 证明: (1)若|A|=0, 则|A*|=0; (2)|A*|=|A|n -1. 证明(1)用反证法证明. 假设|A*|≠0, 则有A*(A*)-1=E , 由此得 A =A A*(A*)-1=|A|E(A*)-1=O ,所以A*=O , 这与|A*|≠0矛盾,故当|A|=0时, 有|A*|=0.(2)由于*||11A A A =-, 则AA*=|A|E , 取行列式得到|A||A*|=|A|n . 若|A|≠0, 则|A*|=|A|n -1;若|A|=0, 由(1)知|A*|=0, 此时命题也成立. 因此|A*|=|A|n -1.19. 设⎪⎪⎭⎫⎝⎛-=321011330A , AB =A +2B , 求B .解 由AB =A +2E 可得(A -2E)B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330.20. 设⎪⎪⎭⎫⎝⎛=101020101A , 且AB +E =A 2+B , 求B .解 由AB +E =A 2+B 得 (A -E)B =A 2-E ,即 (A -E)B =(A -E)(A +E).因为01001010100||≠-==-E A , 所以(A -E)可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A*BA =2BA -8E , 求B . 解 由A*BA =2BA -8E 得 (A*-2E)BA =-8E , B =-8(A*-2E)-1A -1 =-8[A(A*-2E)]-1 =-8(AA*-2A)-1 =-8(|A|E -2A)-1 =-8(-2E -2A)-1 =4(E +A)-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B .解 由|A*|=|A|3=8, 得|A|=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E)-1A =3[A(E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A=P Λ11P -1.|P|=3,⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001,故⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731.24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511, 求ϕ(A)=A 8(5E -6A +A 2).解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A)=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ ⎪⎪⎭⎫⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B)B -1=B -1+A -1=A -1+B -1,而A -1(A +B)B -1是三个可逆矩阵的乘积, 所以A -1(A +B)B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B)B -1]-1=B(A +B)-1A .26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ,而⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ,⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A ,所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521, 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解4100120021100101002000021010010110100101==--=--=D C B A , 而01111|||||||| ==D C B A , 故|||||||| D C B A D C B A ≠. 28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则⎪⎭⎫⎝⎛=21A O O A A ,故8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A ,1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A . 29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求(1)1-⎪⎭⎫ ⎝⎛O B A O ;解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C O C O C A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A .解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321. 由此得 ⎪⎩⎪⎨⎧=+=+==s n E BD CD O BD CD O AD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4)⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020*********)2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫ ⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫ ⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

线性代数习题册参考解答.docx

线性代数习题册参考解答.docx

第一章行列式1、 求下列排列的逆序数,并确定它们的奇偶性。

(1) 1347265; (2) 〃(〃 —1)・・・321。

【解(1) r(1347265)=0 + 0 + 0 + 0 + 3 + l + 2 = 6,偶排列;(2) "〃(〃_1)...321] = 0 + ] + 2 + ... + (〃_1) = 〃(;1)。

当〃=4奴4女+ 1时,〃(〃;1)=2机4*—1),2机4* + 1)为偶数,即为偶排列;当〃 = 412,413时,丝* = (2*+1)(4*+ 1),(2*+1)(4*+ 3)为奇数,即为奇 排列。

■2、 用行列式定义计算2x x 1 21x1-1 f (X )=-- [3 2x1111%中『和r 的系数,并说明理由。

【解】由行列式定义可知:含b 有的项只能是主对角线元素乘积,故的系数为2; 含有尸的项只能是(1, 2), (2, 1), (3, 3), (4, 4)的元素乘积项,而7(2134) = 0 + 1 + 0 + 0 = 1,故/的系数为一1. ■2-512 --37-14 3、 求 =o45 -9 2 7 4-612【解】三角化法:2-5121-522 1-522 尸2+八1-12 0 6C[0 2-160 113D 4 =- _八3-211 1 0 3 0 113 0 2-16 r 4+r 211 0 60 1160 1161 -52 2 r3~2r 2 0 11 3r4~r 2 00 -3 00 0 31111 rk~r l0 10 0=120= 120o )l=2,3,40 0 100 0 0 1【解】箭形行列式(爪形行列式):利用对角线上元素将第一行(或列)中元素1化为零。

1 x 2q+C2 +•••+&n D"=(,-就1 x 2-mi=l1x21 0 0C k -X L C I 凡 q (»i) k=2,3,---,n1 —m ••- 01 0…-m【解】观察特点: 行和相等。

线性代数习题册(答案)

线性代数习题册(答案)

线性代数习题册答案第一章 行列式练习 一班级 学号 姓名1.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)τ(3421)= 5 ; (2)τ(135642)= 6 ;(3)τ(13…(2n-1)(2n)…42) = 2+4+6+…+(2 n-2)= n (n-1).2.由数字1到9组成的排列1274i56j9为偶排列,则i= 8 、j= 3 .3.在四阶行列式中,项12233441a a a a 的符号为 负 .4.00342215= -24 .5.计算下列行列式:(1)122212221-----= -1+(-8)+(-8)-(-4)-(-4)―(-4)= -5或(2)111111λλλ---= -3λ+1+1-(-λ)-(-λ)―(-λ) = -3λ+3λ+2=2(2)(1)λλ-+练习 二班级 学号 姓名 1.已知3阶行列式det()ij a =1,则行列式det()ij a -= -1 . 3(1)11-⋅=-2. 1112344916= 2 .3.已知D=1012110311101254--,则41424344A A A A +++= —1 .用1,1,1,1替换第4行4. 计算下列行列式: (1)111ab c a b c abc +++= 13233110110011,0110111111r r r r c c a b c bcabcabc-----+-==++++++(2) xy x y y x y x x yxy+++(3)130602121476----(4)1214012110130131-5.计算下列n 阶行列式:(1)n xa a a x a D aax=(每行都加到第一行,并提公因式。

)(2)131111n +(3) 123123123n n n a ba a a a ab a a a a a a b+++练习 三班级 学号 姓名 1.设线性方程组123123123111x x x x x x x x x λλλ--=⎧⎪++=⎨⎪-++=⎩有惟一解,则λ满足的条件是什么?1,0,1λλλ≠-≠≠2. 求解线性方程组12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩3.已知齐次线性方程组123123123000x x x x x x x x x λλλ--=⎧⎪-++=⎨⎪--+=⎩有非零解,求λ的值。

线性代数习题册行列式-习题详解

线性代数习题册行列式-习题详解

行列式的概念一、选择题1. 下列选项中错误的是( ) (A)ba d c dc b a -= ; (B)acb d dc b a =;(C)dc b a dcd b c a =++33; (D)dc b a dc b a -----=.答案:D2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ).(A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C二、填空题1.ab b a log 11log = .解析:0111log log log 11log =-=-=ab abb a ba . 2.6cos3sin6sin3cosππππ= . 解析:02cos 6sin 3sin 6cos 3cos 6cos 3sin6sin3cos==-=πππππππππ3.函数x x xxx f 121312)(-=中,3x 的系数为 ; xx xx x x g 21112)(---=中,3x 的系数为 . 答案:-2;-2.阶行列式n D 中的n 最小值是 . 答案:1.5. 三阶行列式11342321-中第2行第1列元素的代数余子式等于 . 答案:5.6.若02182=x,则x = . 答案:2. 7.在n阶行列式ija D =中,当i<j 时,),,2,1,(0n j i a ij L ==,则D = .答案:nn a a a Λ2211.8.设a ,b 为实数,则当a = ,b = 时,010100=---ab b a .解析:0)()1(1010022=+-=--=---b a ab ba abb a故0,0==b a .三、解答题1.用行列式的定义计算.(1)1100001001011010;解:原式=100010101)1(1010000011)1(14121++-⨯+-⨯110010100-=--=(2)000000hgf e d c b a.原式=00000gf e d b hf e dc a - =00000g f bd hf df e c a +⎪⎪⎭⎫ ⎝⎛-=bdfg adfh -2. 设行列式λλλ01010101-=D , 3512321132=D ,若21D D =,求λ的值.解:由对角线法则,得()()0,11221=-+=D D λλ若21D D =,则()()0112=-+λλ于是1-=λ或1.四、证明题1.(略)行列式的性质一、选择题1.设行列式x x xD 0101011-=, 1133512322=D ,若21D D =,则x 的取值为 ( ).(A)2,-1; (B)1,-1; (C)0,2; (D)0,1.答案:B2.若3333231232221131211==a a a a a a a a a D ,则3332333123222321131213111525252a a a a a a a a a a a a D +++==( ). (A)30; (B) -30; (C)6; (D)-6. 答案:C二、填空题1.若三阶行列式D 的第一行元素分别是1,2,0,第三行元素的余子式分别是8,x ,19,则x = . 解析:1820190,4x x ⨯-+⨯==. 2.2016201420182016 = .解析:4202220162014222016201420182016===.3.行列式cb dc a bcb aD =,则312111A A A ++= . 解析:312111A A A ++0111==cb c acb .4.行列式xx x xx D 31213231232154-=的展开式中,4x 的系数为 ;3x 的系数为 .解析:xxx x x x x x xx D 312131232321531213231232154--=-=xx x x 3121312512585103215---= 含4x ,3x 的项仅有主对角线上元素之积项,故4x ,3x 的系数分别为15,-3.三、解答题1.计算下列行列式 .(1)3214214314324321;解:各行加到第一行,得原式=32142143143211111032142143143210101010==160400400121011111012301211210111110=---=------.(2)4444333322225432154321543215432111111;解:原式=(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.(3)49362516362516925169416941;原式=02222222297531694113119711975975316941==.(4)000000xyy x y x x y ;原式=xy x yx x xyy y xy 00000000-- =22222)(y x xyy x xxyy x y--=-.(5)xy z zx yyzx111; 原式=)(0)(01x z y x z x y z x y yzx------ =))()((11))((x z z y y x yz x z x y ---=---.(6)200012000000130012000101--;原式=31012010140131201014200013012001012---=--=--=2031124=---. (7)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.2.设4322321143113151-=D ,计算44434241A A A A +++的值.其中)4,3,2,1(4=j A j 是D 的代数余子式.解:44434241A A A A +++61111321143113151=-=.3. 已知1142113110111253------=D ,求41312111M M M M +++.解:41312111M M M M +++=41312111)1(1)1(1M M M M --⋅+--⋅=1141113110111251-------=0.4.计算下列n 阶行列式.(1)211121112ΛMM M ΛΛ; 解:原式=211121111ΛM M MΛΛ+++n n n =211121111)1(ΛMMM ΛΛ+n =1100010111)1(+=+n n ΛMM M ΛΛ. (2)xy yyy x y yy y x yy y y x ΛM M M M ΛΛΛ ; 解:原式=[]x y y y y x y yy y x yy n x ΛM M M M ΛΛΛ1111)1(-+ =[]yx y x y x y n x ----+ΛM M M MΛΛΛ0000001111)1(=[]1)()1(---+n y x y n x .(3)),,2,1,0(010011111021n i x x x x i nΛΛM M M M ΛΛΛ=≠.解:原式=nni ix x x x ΛM M M M ΛΛΛ0000000011101211∑=- =)1(121∑=-ni in x x x x Λ.四、证明题1.设a ,b ,c 是互异的实数,证明0111333=c b a c b a的充分必要条件是a+b+c=0.证明:33333333001111a c ab aa c ab acbac b a----==3333a c a b a c a b ----=222211))((a ac c a ab b a c a b ++++--=))()((22ab ac b c a c a b -+--- =))()()((c b a b c a c a b ++---=0,由于a ,b ,c 是互异的实数,故要上式成立,当且仅当a+b+c=0.2.证明4+2324323631063a b c d a a b a b c a b c da a ab a bc a b cd a a b a b c a b c d +++++=++++++++++++证明:左边43322102320363a b c d r r a a b a b cr r a a b a b c r r a a b a b c-+++-+++-+++433210002003a b c d r r a a b a b ca ab r r a a b-++++-+4430002000a b c d a a b a b cr r a a a b a+++-=+=右边克莱姆法则一、选择题1.方程组⎪⎩⎪⎨⎧=++=++=++1,1,1321321321x x x x x x x x x λλλ, 有唯一解,则( ).(A)1-≠λ且2-≠λ; (B) 1≠λ且2-≠λ;(C) 1≠λ且2≠λ; (D) 1-≠λ且2≠λ.解析:由克莱姆法则,当0)1)(2(1111112≠-+=λλλλλ,即1≠λ且2-≠λ,选B.2.当≠a ( )时,方程组⎪⎩⎪⎨⎧=+-=++=+02,02,0z y ax z ax x z ax 只有零解.(A) -1 ;(B) 0 ;(C) -2 ;(D) 2. 解析:由克莱姆法则,当0)2(212012100121210≠-=--=-a aaa aa即2≠a ,选D.三、解答题1.用克莱姆法则下列解方程组.(1)⎪⎩⎪⎨⎧=+-=+-=-+;32,322,22z y x z y x z y x解: 03112221121≠=---=D , 由克莱姆法则知,此方程组有唯一解,31132231221=---=D ,61322311212=-=D ,93323312213==D ,因此方程组的解为11==D D x ,22==D Dy ,33==DD z .(2)..23342,223,3232,124321432143214321⎪⎪⎩⎪⎪⎨⎧=-++=+++=+-+=-++x x x x x x x x x x x x x x x x解:043342123121321121≠=---=D由克莱姆法则知,此方程组有唯一解,833421232213311211=---=D , 233221221213211112-=---=D ,232421231233211213=--=D ,223422231313211214=-=D .因此方程组的解为211==D D x ,2122-==D D x ,2133==D D x ,2144==D D x . 2.判断线性方程组⎪⎩⎪⎨⎧=-+=+-=-+0285,042,022321321321x x x x x x x x x 是否有非零解解:因为系数行列式285122421285421122----=---=D=0305009604212218960421≠-=--=----, 所以,方程组只有零解.3.已知齐次线性方程组⎪⎩⎪⎨⎧=+-=++=-+02,0,0321321321x x x x x kx x kx x 有非零解,求k 的值.解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即32101101111211112k k kk kk --+--=--=)21)(1()1(32k k k +++- =0)4)(1(=-+k k 解得,k =-1或k =4.4.当μ取何值时,齐次线性方程组⎪⎩⎪⎨⎧=--+-=-+-=-++0)1(02)3(0)1(42321321321x x x x x x x x x μμμ有非零解解:由齐次线性方程组有非零解的条件可知,0111213142=------μμμ,解得3,2,0=μ.第一章综合练习一、判断题1. n 阶行列式n D 中的n 最小为2.( ╳ )2. 在n 阶行列式ij a D =中元素),2,1,(L =j i a ij 均为整数,则D 必为整数.( √ )3.413223144433221144413332232214110000000a a a a a a a a a a a a a a a a -=.( ╳)二、选择题1.若11131--+=x x x D ,211122-+=x x D ,则1D 与2D 的大小关系是( ).(A)21D D <; (B)21D D >;(C)21D D =;(D)随x 值变化而变化.答案:C 2.行列式{})2,1,1,,,(-∈d c b a dc b a 的所有可能值中,最大的是( ).(A) 0; (B)2; (C)4; (D)6.答案:D三、填空题1.︒︒︒︒40cos 20sin 40sin 20cos = .解析:︒︒-︒︒=︒︒︒︒40sin 20sin 40cos 20cos 40cos 20sin 40sin 20cos2160cos =︒=. 2.若y y x x y x -=-1122,则x+y = . 解析:由y y x x y x -=-1122,得xy y x 222-=+ 即0)(2=+y x ,从而x+y =0.3.已知111,0112==yx x ,则y = . 解析:由111,0112==yxx ,得x =2,x-y =1,从而y =14. 若222222222642531C c B b A a c b a ++=,则2C 化简后的结果等于 . 解析:242312=-=C .5.设xxx x xx f 111123111212)(-=,则4x 的系数为 ;3x 的系数为 .解析:当f (x )的主对角线的4个元素相乘才能得出4x ,系数为2;含3x 的项只能是44332112,,,a a a a 的乘积,系数为-1. 答案:2,-1.6.设0123411222641232211154321=D ,则(1)333231A A A ++= ; (2)3534A A + ; (3)5554535251A A A A A ++++ . 解析:0)(23534333231=++++A A A A A 0)()(23534333231=++++A A A A A于是0333231=++A A A ,03534=+A A .5554535251A A A A A ++++1111111222641232211154321=01111133333641232211154321==. 即0555*******=++++A A A A A .四、解答题1.计算下列行列式.(1)44342414433323134232221241312111y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x y x ++++++++++++++++;解:原式=14131214141312131413121214131211y y y y y y y x y y y y y y y x y y y y y y y x y y y y y y y x ---+---+---+---+=000000000014131214131211=------+x x x x x x y y y y y y y x .(2)43211111111111111111x x x x ++++;解:原式=432111110010011x x x x x x x ---+=432111413121100000001x x x x x x x x x x x x x ---++++ =3214214314324321x x x x x x x x x x x x x x x x ++++.(3)2007000002006000200500020001000ΛΛΛMM M M M ΛΛ. 解:原式=!2006)1(2007220052006⨯-⋅=!2007-2.已知123452221127312451112243150D ==, 求(1)434241A A A ++;(2)4544A A +. 解:27)(21114544434241=++⋅+⋅+⋅A A A A A0)()(24544434241=++++A A A A A得9434241-=++A A A ,184544=+A A . 3.计算下列n 阶行列式.(1)nn n n n n n D ΛM M M ΛΛΛ222333222111=; 解:(利用范德蒙行列式计算)1122133321111!--==n n n Tn n n n n D D ΛM MMΛΛΛ [])1()2()24)(23)(1()13)(12(!--------=n n n n n ΛΛΛ!2)!2()!1(!Λ--=n n n .(2)211121112ΛMM M ΛΛ; 解:原式=211121111ΛM M MΛΛ+++n n n =211121111)1(ΛMMM ΛΛ+n =1100010111)1(+=+n n ΛMM M ΛΛ.(3)mx x x x m x x x x mx D n n n n ---=ΛM M M ΛΛ212121解:将第2列,L ,第n 列分别加到第一列,并提取第一列的公因子,得m x x mx x x x m x m x x x x x m x x x D n n n n n n n --+++--+++-+++=ΛΛM M MΛΛΛΛ221221221mx x x m x x x m x x x n n n n ---+++=ΛMM M ΛΛΛ22221111)(mm m x x x n ---+++=ΛM M M ΛΛΛ0101001)(21121))((---+++=n n m m x x x Λ(4)nn n n n a a a a a a b b b b b D 1322113210000000-----=ΛM M M M M ΛΛΛ (其中n i a i ,,2,1,0Λ=≠)解: 1221100000000)1(-+----=n nn n a a a a b D ΛM M M M ΛΛ1222112210000000------+n n n n n a a a a a b b b b a ΛM M M M ΛΛΛ 121-+⋅=n n nnn D a a b a a a Λ ⎪⎪⎭⎫⎝⎛==∑=n i i in a b a a a 121ΛΛ. 三、证明题1.试证:如果n 次多项式n n x a x a a x f +++=Λ10)(对n+1个不同的x 值都是零,则此多项式恒等于零.(提示:用范德蒙行列式证明)。

(完整版)第二章行列式习题解答

(完整版)第二章行列式习题解答

第二章行列式习题解答1. 决定以下9级排列的逆序数,从而决定它们的奇偶性:1) 134782695;解•吒13478269为=0 + 4 +0 + 0+ 4 +2 + 0 + 0 = 10 偶排列.2) 217986354;解:吃179 眈54)二1+0 + 4+5+4+3+0+1 = 18 ,偶排列;3) 987654321;解:璋876別艾1) =8 + 7+&+5 + 4+F+2 + 1 = 26 ,偶排歹【」.2. 选择'与上使1)1274巧陆9成偶排列;解:•与上一个为3,另一个为8,而咲1刀43两9) = 2+1+1+1 = 5 是奇排列,由对换的性质因此有H;2 )庇荻4斬成奇排列.解:与七一个为3,另一个为6,而^32564897) = 1 + 2 + 2 = 5是奇排列,因此有心工宀6.3. 写出把排列1羽孑5变成排列25341的那些对换.解:124站卩* )214笳(也)25431 仲)比鈔414. 决定排列巾-—心的逆序数,并讨论它的奇偶性.解:1与其他数构成卫个逆序,2与其他数构成汽_2个逆序,…山-2与其他数构成2个逆序,芒一1与兀构成1个逆序,故巩対住_1)…21)二3_1)十@_2) +…+2+1二^当"毗或"滋+ 1(上为正整数)时,排列为偶排列;当"处+2或n-Ak^3为正整数)时,排列为奇排列.5. 如果排列 w’j 二的逆序数为:,排列厂二的逆序数是多解: 中任意两个数码=:与丁必在而且仅在两个排列°:二'"■或**-1…中之一构成逆序,月个数码中任取两个的不同取法有”2个,因此两个排列的逆序总数为戈,所以排列…F 的陨"1)_总逆序数为Z6.在6级行列式中,心円三j 汽这两项应带有什么符号?严小吟心皿)-(_[严",因此项计吻恥%带正号.7.写出四级行列式中所有带有负号并且包含因子一心的项.解:因为:匚上-',因此所求的项为解:1)该行列式含有的非零项只有m/JAi …叫七%1,带的符号为CU 2 ,值为57』,因此原行列式等于(T 」3创.1)0 0 *-0 1・-2III 11 1 1 1« 11 1 1 fe ■ 0 卫一 1 •… 0 0n 0 ■■* 0 0; 2)010... 0 0 0 2 ...0 ...丹-1n Q 0 ...73)0 …0 0 -200 ■ a «•■即i a « i » i i fe■M -1・■- 0 0 0 0・■- 0 0 «_^1+^23^31^42 -8.按定义计算行列式:少?,因此项 旳尹引龟护屏张务厶带正号;-£l 11LJ 23«32a 44?七护34 迎小2)该行列式含有的非零项只有①曲曲心小卅池,带的符号为值为「2,因此原行列式等于df.3)该行列式含有的非零项只有%”宀"叫%,带的符号为(7丄,值为,因此原行列式等于卜1)2创.9. 由行列式定义证明:证明:行列式的一般项为I = = 二,列指标•「S 1只能在1,2,3,4,5中取不同值,故*「】中至少有一个要取3,4,5中之一,而' 厂恥宀从而每一项中至少包含一个零因子,故每一项的值均为零,因此行列式的值为零.10. 由行列式定义计算2A1 21 x 1 -13 2工11 1 1 工中/与/的系数,并说明理由.解:行列式元素中出现兀的次数都是1次的,因此含屏项每一行都要取含齐的,因此含/项仅有%如宀,其系数为2,符号为正,h的系数为2.类似的含尸项仅有知灼金%,其系数为1,符号为负,代的系数为-1 .11. 由1 ・-• 11 1 ■■■ 1.. .=Q■♦V1 1 ・• 1证明:奇偶排列各半证明:行列式每一项的绝对值为 1行列式的值为零,说明带正号项的个数 等于带负号项的个数•由定义,当项的行指标按自然顺序排列时,项的符号由列1)由行列式定义,说明'「是一个卞―〔次多项式;2)由行列式性质,求'的根.解:1在行列式’〔中只有第一行含有T ,出现T 最高次数为次,由为互不相同的数可得其系数不为零,因此'•是一个・】次多项式2)用■,,,r^--分别代*,均出现了两行相同,因此行列式为 0.即宀为—的全部根13.计算下面的行列式: 246 427 327 10W543 443 八-342 721 621小、1) ; 2)3 11112 3 413 112 3 4 1113 13 4 123) 1113;4) 4 12 39指标排列的奇偶性所确定, 奇排列时带负号,偶排列带正号•因此奇偶排列各半1…x"11N-1 …闻円>)二1s-l…%■ ■ ■!1+ ■ ■« I »■ * II I ■■…a n-l其中•心m.i 为互不相同的数.12.设1+A 1 1 1 (a+2)2(a+3a11-工 1 1 4+1)2 0 +卯@+卯1 11+》 1 W+1尸(亡+卯(心9+1尸(八疔5) 1 11I ; 6)解:1该行列式中每行元素的和为1000的倍数,第2列与第三列相差100,23136)246 427 3271000 427 327 6 71000 100 327 1014 543 4432000 543 44孑 -—2000 100 443 -342721 €211000 721 6211000 100 621327116 二-294x12 2945)显然当二=■'或」时均有两行元素相同,因此行列式为 0.当' 时1H - x 1 11 If1 c 4 - x~\ 'i0 01] -x11七 、厂5〕■-X0 ]c 4 +z 1< i 0 --X0 0 3y11 g 1 P = 123( ) 0 y1 5 -严 :3 00 y11 1i-卅肿y 1-7y Ay -y【口十 3十2尸 ⑺十浙十 1 牝十4 6口十夕(*+D a 辿+2尸 叶卯*22) + 1 4b+4 6b + 9(T尸 (小尸L 32^+14亡+ 4 &+9d 2 3+1尸3 +計 &+卯茲十1 4d +4 阳+9= 10" y工十丁1 yx + y=2(孟+刃 1 Z -F JJ盂xy1 x y1 尹二 2(盂+尹)0 xo —y-y = 2(X +/)[-X :+X X -7)]= ~2(^3 1116 11111111111 13 116 3 11卜13 11 厂宀J 0 2 0 0 113 1J= 2,3,4 6 13 1113 1 i = 2,3,4' 0 0 2 011136 11311130 0 0 22 3 412 3 43 4 113 4 1=104 1 2 14 121 2 3112^ 12 3 41 23<411-30 11-3=10p 2 ・2 -20 0-44|o -1 -1 -10 0 0-41 1 3272 1 4431 1 6211 0 0 1-1 0 y丸+屏处十龙2(x+y)310 1+(710 0 0 = 160i+cc^aa +b2(a 十B 十u )c+a戊+BA.+勺= 2(d| +坷+5)码+歼证明: 為+勺如+S2(角+务+勺)勺+码+ i + cc+a=2口]+妬 + 匕1 百[+(3]巧十毎十勺勺+包15.算出下列行列式的全部代数余子式:12 140-1211 -1 20 0 2 13 21poos; 2)1 4b+亡 c + txa +ba b e右L +百1 号+% 如4玄 =2 旬玄巧-14.证明: 鸟+勺耳+勺巴十坊也®巾加+1 266 _6 -6-1 2 10 2 10 -1 14i = 0 2 1=-6;血=- 0 2 1 =0 ;J 4O = 0 0 1 =00 0 30 0 30 031 42 1=6;0 -1 24+ =- 00 2 =0 ;4J ! =-0 0解: 1)2 0 0 1 4 2 1 0 31 =-12;爲立=0 n-4B == °; ■41 = 1》4盘=-^3 = —5-^34 = Q 斗].=乙 &2 = Q' A B = L ;&4 = 741 =2)= 3^ = --1 21 4a +b的+Nb ca 6 c妬C L =2 a Y 如 5%巾宓5%加十1 2 2^+1 22^+1 2 a 十打+疋=2^} +妬+巧 k +如+巾111 11 卩 02 1 1 -*厂©* 0 1 2 2 5 1 0 43 2 1 | |斗 11112 2-5=1.42) 31213 4 1 3171丄1 5 4 6 4 1 2J2110 n 1 — 2 — — 2 — — —2 -3221 -1 | 4-1 0-111|31 17 11 -132 16 10 13 121° 1 2 -1 41 2 -1 41 2 一]4 2 a 1 2 :2 0 1 2 12-6 1 2 1 一 3 5]2 二一 1 3 51 2 二 -16 5 1 2 33 1 2: 1 3 00 00 0 0 0 2 1 n 3521 0 3 52-5 035-1 1 02 0 -5 1 2 0 -90 3-5237 -11 2-9 -3 =一 0 0 -3 =-483.3 555 -12 5= -36 -3 -5511 2n -1 11 12 -123 2 1 0 二 1-1 0 1 21兀21 3 02 0 -1 0 12 3-1 1 32131 10 14 16 18-7-10 3-16 = 114-1918 0 -7-W17.计算下列乜级行列式:J. 221 2 -2-12 2 13 71 10-1 1 2 16-16 = -12 -19 8 180 -1-10 0 12176 133)&心1 22 22 2223» ■ i• II222112 3 -■垃一1溶ClCI-12o …-24)■ ■ ■I■■ 42 2a■»a■ IIw « ■+ I *Ji75)+ 1■I I *4- i I C I +0 …bl*-11- ra解1)按第一列展开得x F 0t)0X... 00 y00 (00)0 龙y000X... 00 X y0 (00)■ I -K■ * I ■ 4 I»■I- 4 I »■I I 4-冥■ 41» II-■11+I ■ 4■ -K I十(-1严》■ * II- fiE ■ I-■ I «I »■ 4■ 40 0 0* ■ ■■X y00… x y仃00 …y0y0 0¥«l>0X10… o工L-i y00y 也可以按定义计算,非零项只有两项及'—…「八值分别为"和厂,符号分别为+和「,因此原行列式1?,T2)解:当阅i时,行列式等于问■対;当"2时当吃二三时,从第二列起,每一列减去第一列得:1)X y I〕 (00)Q y… o00 0c… K yy ri c 0■ ■■原行列式a】—J】-打口1 —血g —^2cjj tij 0勺一外旳-每a2~\幻一还=S1 - 也)01—爲)1也■■■ 耳]乃… G1心一烧 ■■■ X”'j-m …(S 為一=(壬再-i-L■ 4 B * ■■ 4 I« ■ I-■ * II I- 4# I II 3- I]八• 耳-附0 …-W3=(备-觀)(-计工 1_的冷 …G抵 … 召 1 ■ V亏_朋 …兀■ » 1 1 « ■« ■ »—S x iH■ _枕 1 七—枕 …丹H ■ n ■ ■ ■■ ■ ■… 召一翩鬥一懣勺 …码一规d-1从第二列起,每一列都加到第一列然后提取因子得3)解: 1 2 2 …2122 (2)10 0 ... 0 2 2 2 (2)1 00 0122 (2)223 -2 二 10 1 0二—1 0■ ■ ■• ■ V ■■ ■■ 4 ■ » ■ V ■ ■■ » ■ ■ ■'■ ■■ '■■ * ■« ■ » » ■ ■ 2 22 … •吃]…丹一210 0 (2)两行后化为三角形得: 然后交换解: 4)1,2 从第二行起每一行减去第一行, 123•… 用- 1V-423 …73-11 -1 0 ■- 0.5—1 -10 …0 0 0 2 -2・・・0 =2-2…0 …用—11—料« ■ |>0 ■> 1 10 ■ 1 V■> 1 10 … 1 « ■ N-1■ i V1一冷2列起每一列都加到第 然后按第一列展开得到:列, 1 也可以除第 12 -122行外,3 0 -2「行都减去第2行,然后化为三角形计算.崔一 10 05)解:从第» 1二&連2…吐(附一龙―);j-1康------ (]二 2,3"■,聊 +1)证明:从第2列起,每一列的-倍加到第一列即可得:二 1 用_壬_% 11 (1)11 -1j>l 葩1的 0 ■ 0 01 ■1 巾0 B ■1・・・ 0 二 0 0 禺 ■ ■■ 0 1 0 0・・■|> 0■ 0• ■0 1■-叫 证明:当“°时结论显然成立,当疋八时,第一行的工加到第二行,然后第\_行的工加到第三行,依次类推可得:18. -1 2 0-2耳一 1证明:-1 0■0 X -1甲0…0・・・X ・■-0 0 0a2 ■r0 0 (X)2. 00 ■■--1=F 4-df H _J x a_1+-- +(j 1A + a 0;小+"学…笋+禺)"+%严i w+飾证法二:按最后一列展开即可得.证法三:按第一行展开再结合数学归纳法证明•证法四:从最后一行起,每一行乘以X 加到上一行,然后按第一行展开可得:X0… 0 %A0 0-1 X 0 …hX0 …盘]a -1 X …-1 X 0■ ■ ■ ■ ■二・■ ■* ■1- ■■* * ■« H■ ■ ■ ■■ 1 1 ■ ■■a 0 0 *■'0 0 0 '•*a0 0 …「1Q0 0 …-1兀+J1IJ0 0 … 0 孟"+|2”]乳"1+■■・+(3]工+口0 -1 00 … 0 茂 +务+…的 0 -1 0 … 0 9 —□»—3X ++ …眄H ■ ■ 11 « ■ - *B■ ■ ■■0 D 0 0■■ 9 V ]X0 0 …-10… ■ || -1 ■ b■ ■a 0 0 …0 0 0…叫■ ■ ■>3x 00…0丸 00 -1乳…4H■0 0 0 0 00…T x 十氐」A 0=(—l)w+l(X™ +込_]才】+…+ fif[北+引) -1) 二(-1严*0 + )(-1) "_1 = 十…+硯丸+% 就+ $ afi 0 … 0 0 1 ar+ ap … 0 00 1 口十0… 0 0 ar —Q"■ ■ 1 ■ ■ ■ ■ Hl H ■ ■ ■ in H ■ ■ a- Q ' 0 0 0 … C£-\- jS3) C1 0 0 … 1 少+ fl0 解:原行列式按第一行展开得:'.「+广―-一―’丁,一•因此有 即J是以 ■ 宀-为首项,以二为公比的等比数列.因此有 & _类似有必%二才.当“0时,解得H a-^ . 证法二:按第一行展开找到递推关系,再结合数学归纳法加以证明 1 2cos C& 1 cos a 10 4) 证明:对行列式的级数用第二数学归纳法证明 _ cos a 1 1 2cosa *2 =2 cos 4 一 1 = 2d ,因此结论成立. 假设当级数小于T 时结论成立,对咛级行列式匚按最后一行展开得: D K = 2cos^r - D S _2 = 2 cos a - cos(^-l)a-匕加山 一2)口=2 cosc<>s[(?;- l)dU-iT]=-l)a- sin asinfw- l)dr = cos na由数学归纳法,结论成立• 注意:因为主对角线上第一个元素为 曲口,其它主对角线上元素为 2l:<:;-,本行列式按第一行展开得到的低级数行列式与原行列式形式不同,无 法得到与 *兀 之间的递推关系,而按最后一行可得到递推关系 1 1 -I-心1a 1二甸孔…碍门+卫—)■ i-ia. 证明:从第二行起,再三角化 1 +盘]1 1 …11 + 位1 11 (1)1 1亠①1 …1_口] 叫 0 … 0 1H 1- 1 1 ]+也… 1 ■#1 ■ ■ = _筍 0 ■ ■ ■ … 0 II '■ i11• # I■ 15一口1 00 ■… 仇行减去第一行先化为爪形行列式, 11+&1+ E 竺 z a 2 0=0+^1 + S —)^3-^ "曲他…耳(1十艾丄)2-1 [7^19.用克拉默法则解下列线性方程组:z! J L j —x、十3兀m 2工4 二b” 3ij 一3叼+ 3x?+ 2工斗二5 , 3x{-x2—x5+ 2X4-3t 予冋_花+3也一筍=4;巧 + 2 貫2 + 3xj —2 珥—6,2& -J?3 - 2也一窃=&3%! + J L5-A S+二4,2町-3工2 +2兀§ +筍=_&扎+ 2心-2屁十4兀-x. = -1,2xj- +3X3一4旺 + 2^ = 8 彳弓站+阳-电+ 2^4一心=3,4x:十3x立+4延十2耳十2心=-2f 兀一两一阿+2A4-弓召=-3,解:1)系数行列式= -29 一1 0 =-70,3 1 -1出二弓24同二3纽£ =64&厶二■艾4£= ・6J&322-1 3 2 F3 2 3-33 2 3-1 20 2 ■40 ~ 03 -1 3 -1 3 -1P-1-32-11-311 2-3 21 -1故方程组的解为:5开i + 6勺=1Xj + 5% 4 陆=0© + 5衍-F6A4=也+ 5X4十&屯=0& +%5 - 1 2.优质文档颅=虫 =L 呵=佥 =2,旳=佥 =-1曲=—--2故方程组的解为:d d d &3)d=2A, 口二込 禺=■弓苑 £ =-迥 £ = 1私 ^ = 312?故方程组的解为:& = 4再= -14內=7耳=7f x_5 = 13.2 -二艰-2D 3)二 9(厶-二 27(2 - 2耳)=243r爲=-1145f ^3 =703^4= -395, & = 212?定的数,用克拉默法则证明:存在唯一数域 卩上的多项式/W =护Z 十应丘月+…+q_i使炖)二虬2 1,2严皿j6 0 06 0 0 01 5 6 05 6 0 0] 1 5 61 5 6 00 1 50 1 5 62二3畑,2><艾二血0 0C i = 1507,5 65证明:设畑二占+占+・十“,由/(%)=鸟得4)51ij 00 65 1 00 0 0 6 5口 - 2D* = 243?D - 3D 二 32,W57 . 1145 229 70379 6劭宀—^65 一 133P*1320.设丄宀…: 是数域』 '中互不相同的数,665中任一组给洛鶯…也是数域两二212& =10 100 =20 4001000 18000 =6x1出1系数行列式- 0 03100-0.05400-0.0890030 9Q01 12A =12xl0\391000 -3 1 1sooo= ltf-5 2 4= -5000,27000-8 3 9^ = 1800, £=70 +勺』丹+…+町龙-+叼皿:=b n.把它看成关于''m ■"' --r::的线性方程组,其系数行列式为一范德蒙德行列式, 由互不相同可得系数行列式不为0,由克拉默法则,方程组解唯一,即满足…]的多项式唯一.21.设水银密度;与温度厂的关系式为h二口©十厘]t +僅/2 +殍*由实验测定得以下数据:t0n C icru 20" C30" Ch13.6013.5713.5513.52求'_ ' 1 ' 1时水银密度(准确到小数2位).解:将实验数据代入关系式■■+」得:「%=13.60,術+10^ +100^2 +1000^3 = 13.57,砌 + 20d| + 400码+ 8000^ —13 55a a+ 30<a1+900a2 +27000 碍=13.52整理后得一'以z满足的方程组为:10^+100^+1000^ = -0 03, ;20^jj+400tZj + 8000lOj =—0.05,30^ + 900d2+ 27000^ = -0 08.故陽=1.5x10^,^ 二一3.3x10』2700013.6-4.2x10-^+ 1.5xW"l i;l-3.3xl0V.当心1兀,"1艮阪当“轲c时,"门乖健康文档放心下载放心阅读。

行列式练习题及答案.docx

行列式练习题及答案.docx

一、填空1.自然数从小到大准次序,排列 1 3 ⋯ (2n1) 2 4 ⋯ ( 2n ) 的逆序数,排列 13⋯ ( 2n 1)( 2n ) ( 2n 2) ⋯ 2 的逆序数.2.在 6 行列式中,a23 a42a 31a56 a14a65的符号.3.所有 n 元排列中,奇排列的个数共个.二、00010002001. 由定算行列式= () .n100000000nn(n 1 )(n 1)( n2)( A)n!(B) ( 1)2!(C) ( 1)2n!(D) ( 1)n( n 1)n!nx x102.在函数1x23) .f ( x )3x中, x 3的系数是(22112x(A)1(B)-13.四行列式的展开式中含有因子(A)4;(B)2;( C)2(D)3a 32的,共有((C)6;(D)8.)个 .三、按下列不同要求准确写出n 行列式D det(a ij) 定式:1.各以行准序排列;2.各以列准序排列;3.各行列均以任意序排列.四、若 n 行列式中,等于零的元素个数大于n2n ,此行列式的等于多少?明理由.一、填空题a11a12a134a112a113a12a131.若 D= a21a22a231, 则D14a212a213a22a23_____.a 31a32a334a312a313a32a3311232.方程1 2 x 223的根为 ___________ . 231=052319 x2二、计算题2134a1001.419162.1b10 3015456001c1 11718001da b bb a b3.D nb b ax a1a2 a n11 a1x a2 a n114.a1a2x a n11Dn 1a1a2a3x1a1a2a3 a n1x11x 12x 1nx 21x 22x 2n2) 。

5.计算 n 阶行列式D n(nx n1x n2x n n第 1 章行列式 ( 作业 3)一、填空题0 a12a13a1na 120 a 23 a 2n1.当 n 为奇数时,行列式a13a23a 3n =_________.a 1n a 2na 3 nx y 0 0 0x y2.行列式.0 0 0 x yy0 0x二、选择题1.设 D 是 n 阶行列式 , 则下列各式中正确的是().[A ij 是 D 中 a ij 的代数余子式 ].nn(A)a ij A ij 0 , j1,2,,n;(B)a ij A ijD , j1,2, , n;i 1i 1nn(C)a 1 j A 2 j D ;(D)a ij A ij0 ,i1,2, , n .j 1j12.行列式结果等于 ( b a)( c a)(da)( c b)(db)( d c) 的行列式是( ).11 11( A )ab c d a2b 2c 2d 2a 4b 4c 4d 4三、计算题1 111 1 a a2 a 3100 0;(B ) 0b ac a da;( C )1b b 2b 3 ;(D )1 b a b b 2 0 b cd 1 c c 2c31 c a cc20 b 3c 3d 31 d d2 d 31 d a dd 21 5 1 31.设 11 3 4A ( j1,2,3,4)是 A 中元素 a 4 j 的代A,计算 A 41 A 42 A 43 A 44 , 其中1 2 4 j13 2 2 3 4数余子式 .x10000x1002.000x1a n a n 1a n 2a2x a1a n( a 1)n( a n)na n 1(a 1) n 1(a n )n 1 3.D n 1a a 1 a n111a nb n4.D2 na1b10 0d1c1c nd n第1章行列式(作业4)一、填空题a 1 x1 a 2 x 2a3 x3d11.已知关于变量x i( i 1,3)的线性方程组 b1 x1b2 x 2b3 x3 d 2,由克莱姆法则,当满足c1 x1c2 x 2c3 x3 d 3条件时,方程组有唯一解,且x 3.a 11 x1a12x2a1nxn02.齐次线性方程组a21x1a22x2a2 nxn0的系数行列式为D,那么D0 是该行列式有a n1 x 1a n 2 x 2a nn x n0非零解的条件 .二、求解下列行列式0123n11012n22101n3 1. D n210n4 3n 1n 2n 3n 401 a1111 1 a212.D n,其中 a1a 2 a n0 .11 1 a n(1) x12x 24x 30三、问取何值时,齐次线性方程组2x1(3)x 2x30 有非零解?x1x 2(1) x 30第 1 章行列式 ( 检测题)一、填空题1.若排列 i 1 i 2i n 的逆序数为 k ,则排列 i n i n 1 i 1 的逆序数为 .a 1 a 2 0 0 0 a 3 a 40 0 02. D c 1c 2 2 3 1 .c 3 c 4 0 1 4 c 5c 64 5 0a 1na 2na n 1na nna 1 n 1a2n 2an 1n 13. n 阶行列式= .a 12a 22 0 0a1112 2 2 2 34.11 11 = .1 4 4 24 3 15 5 25 3二、选择题1 a 1 a2 an 11 a 1x 1 a 2a n 11. 设 P(x) 1 a 1a 2 x 2 a n 1 , 其中 a 1 , a 2 , , a n 1 是互不相同得实1 a 1a 2a n 1x n 1数,则方程 P (x ) =0( )。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

4.利用行列式按某一行(列)展开定理计算行列式;
5.利用数学归纳法计算行列式;
6.利用递推公式计算行列式;
7.利用范德蒙行列式的结论计算特殊的行列式;
8.利用加边法计算行列式;
9.综合运用上述方法计算行列式.
1.3 例题分析
例 1.1 排列 14536287 的逆序数为 ( )
(A) 8 (B) 7
因此
(−1Байду номын сангаасt a1n−1a2n−2 Lan−11ann ,其中
t = (n −1)(n − 2) , 2
( 2007 −1)( 2007 − 2 )
D = (−1) 2 2007!= −2007!.
此题也可以按行(列)展开来计算.
例 1.11 计算 n 阶行列式
2 1 1L1
1 2 1L1
Dn = 1 1 2 L 1
⎪⎪a ⎨
21
x1

+
a22 x2 MM
+L+ MM
a2n xn M
=
0
⎪⎩an1 x1 + an2 x2 + L + ann xn = 0
的系数行列式 D ≠ 0 ,则方程组只有唯一零解.若齐次线性方程组有非零解,则其系数行
列式 D = 0 .
1.2.5 一些常用的行列式
1.上、下三角形行列式等于主对角线上的元素的积.
⎧D i = j
jk
=
ai1 Aj1
+ ai2 Aj2
+ ... + ain Ajn
=
⎨ ⎩
0
i≠ j
其中 Ast 是 ast 的代数余子式.
1.2.4 克拉默法则 1.如果线性非齐次方程组

线性代数 第一章 行列式

线性代数 第一章 行列式

第一章 行列式习题答案二、三阶行列式及n 阶行列式的定义部分习题答案1.计算下列二阶行列式(1)23112=; (2)cos sin 1sin cos θθθθ-=;(3)1111121221212222a b a b a b a b ++++1122112211221122a a a b b a b b =+++ 1221122112211221a a a b b a b b ----(4)1112111221222122a ab b a a b b +1122112212211221a a b b a a b b =+--2.计算下列三阶行列式(1)10312126231-=--; (2)11121322233233a a a a a a a 112233112332a a a a a a =-()1122332332a a a a a =- (3)a c bba c cb a3333a b c abc =++- 3.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)3214; (2)614235.123t =+= 112217t =++++=(3)()()()12322524212n n n n ---4.确定,i j ,使6元排列2316i j 为奇排列.解:4,5i j ==,()()23162431655t i j t ==为奇排列. 5.写出4阶行列式中含有1321a a 的项. 解:13213244a a a a ;13213442a a a a -6.按定义计算下列行列式:(1)0001002003004000(4321)(1)2424t =-= (2)000000000000a c db (1342)(1)abcd abcd t =-= 7. 求1230312()123122x xf x x x x-=的展开式中4x 和3x 的系数.4x 的系数为6-;含3x 的项只有(4231)(1)(3)3t x x x -?创,所以3x 的系数为(4231)(1)3(3)119t -?创= 行列式的性质与展开部分习题答案 1.计算下列行列式:(1)200819861964200919871965201019881966;解:32212008198619641110111r r r r D --==(2)123123123111a a a a a a a a a +++; 解:2312323231(1)1111a a D a a a a a a a =+++++各列加到第一列后提取公因式21312312331(1)0101r r r r a a a a a a --=+++123(1)a a a =+++ (3)41232013201116011601110111031023500r r D +--==-- 213314116116(1)111027350818r r r +++--=-=-20=- (4)211201110111611261112112211100100c c D ---==----314110110(1)26126116221223c c -+=-=--=--.(5)00100101D αβαβαβαβαβαβαβ++=++.()401100101D αβαβαβαβαβαβαβαβαβαβαβ+=++-+++ ()()()32212D D D D D a b a b a b a b a b a b 轾=+-=++--臌432234a a b a b ab b =++++2.证明:(1)011=++++=cb adb a dcd a c b d c b a D 11;证明:将D 的各列都加到最后一列再提出公因式有1111(1)01111a b c d a b b c a d b c D a b c d c d a b c d d a b c d a ++==++++=++1111(2)33()ax byay bzaz bx x y z ay bzaz bx ax by a b yz x az bx ax byay bz z xy ++++++=++++.证明:左式12axayaz bybzbx ay bzaz bx ax by ay bzaz bx ax by D D az bx ax by ay bzaz bx ax by ay bz =+++++++=+++++++311r br xyzx y z D a ay bzaz bx ax by a ay bz az bx ax byaz bx ax byay bzazaxay-=+++=++++++23223r br x y z x y z x y z a ay bz az bx ax by a ay az ax a yz x zxyzxyzxy-=+++== 类似有1323322(1)r r r r yz x x y z D b zx y yz x xyzzx y ←−→←−→==-,所以33()ax byay bz az bx x y z ay bzaz bx ax by a b yz x az bx ax byay bzzxy++++++=++++ 3.计算n 阶行列式(1)n D =ab bbb a b bbb a bb b b a ...........................;各行加到第一行后提取公因式有:[]111...1...(1).....................n ba b b D a n b bba bb b b a=+-[]211111 (10)0...0(1)00 0 0...n r br r br a b a n b a b a b---=+---L[]()1(1)n a n b a b -=+--(2)12121212n na n a n D n a ++=+12(0)n a a a ≠ .211212111212121211210012000n n nr r n r r r n r r a a nna naa a n a a a a a a a a a a -----+++++--==--1112221211n n n n i i a na i a a a a a a a a =⎛⎫⎛⎫=++++=+⎪ ⎪⎝⎭⎝⎭∑ 4.利用范德猛行列式计算:1111123414916182764D =.2222333311111234(21)(31)(41)(32)(42)(43)1212341234==------= 克拉默法则部分习题答案1.用克拉默法则解线性方程组(1)122313223(0)0bx ax ab cx bx bc abc cx ax ì-=-ïïï-+= íïï+=ïïî;解:002350b a D cb abc ca-=-=-,212023500ab a D bc c b a bc a --=-= 2220350b ab D bc b ab c ca -==-,220250baab D c bc abc c --=-=-123,,x a x b x c =-==(2)123412341234123432125323348246642x x x x x x x x x x x x x x x x +-+=⎧⎪+-+=⎪⎨-++-=⎪⎪--+=⎩.解:132125321734826164D --==----,1132135323444822164D --==----211212332034826264D --==---,3131125321734426124D ==---,13212533853*******D --==---12342,0,1,5x x x x =-===2.当λ为何值时,齐次线性方程组⎪⎩⎪⎨⎧=+=+-=++0 00433221321x x x x x x x λλλ(1) 仅有零解;(2) 有非零解. 解:3410(1)(3)01D l ll l l=-=--,(1)1l ¹且3l ¹时0D ¹,该齐次线性方程组只有零解。

线性代数习题解答(一)行列式

线性代数习题解答(一)行列式

线性代数习题解答习题一1.计算以下行列式 2223333223(1)(2)53(1)7.15cos sin (2)cos sin 1.sin cos log 1(3)log log 1110.1log 11(4)(1)(1)(1) 1.1113(5)2111123212.120273(6)5415670451201037a a b b b b a a a a a a a a a a a a αααααα-=-⨯-⨯-=---=+==-=-=+=+-+-=+-=-+--=-++-=---=-++-2222456178.0(7)00.01(8)112.1a ba c abc abcbc c b ca abc abc b a +-=--=-+=----=-+++2.解方程(1) 111121.16x x =解 221212281,230,(1)(3)0,1, 3.x x x x x x x x +--=--=+-==-= (2)221220110.12220,20,(2)(1)0.1, 2.x x xx x x x x x x x x -=-++-=+-=+-===- 3.解下面的线性方程组21221222222112123123123131133132(2)()()()(),.().,.235(3)35549521036, 2.424,0,22452x ax a x bx b a b a b x a b a b a b x a b x a a a b ab x ab x a b x x x x x x x x x x x x x x x x x x ⎧+=⎪⎨+=≠⎪⎩-=-=-+=+=-+=-=-⎧⎨=+⎩-+=⎧⎪+-=⎨⎪-+=⎩-=⎧==-==⎨-=⎩=-+解解13123354 1.210x x x x x -=-+=-=⎧⎪=-⎨⎪=⎩12312312320(4)3251324x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩ 解1231231231231233121220 (1) 325 1 (2)32 4 (3)(1)(3)32 4 (4)(4)(2)3219/4 (5)43,3/4.322/4 (6)19/4222/4313/413.327281322/413/28473x x x x x x x x x x x x x x x x x x x x -+=⎧⎪+-=⎨⎪+-=⎩++-=-+=⎧==⎨+=⎩===-==123.281328472834x x x ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩4.求下列个排列的逆序数,并且说明它们的奇偶性: (1)4213 (2)542163(3)134782695 (4)(-1)(-2)21(1)(4213)1+2+1=4,(2)(542163)123039,(3)(134782695)42410,(4)((-1)(-2)21)12(1)(1)/2.4,4142,4n n n n n n n n n n k k n k k ττττ==++++==++==+++-=-=+=+ 解偶排列,3+5.确定i 和j 的值,使得9级排列(1) 1274i 56j 9成偶排列; (2)3972i 15j 4成奇排列.解(1) τ (127435689)=1+2+1+1=5,奇排列, 127485639为偶排列. (2) τ (397261584)=1+3+2+5+3+1+5=20, 397281564为奇排列.6.下列各项,哪些是五阶行列式||ij a 中的一项.若是,试决定该项的符号.132532415431124352244321351254(1)(2);(3)a a a a a a a a a a a a a a a解(1) 1325324154.a a a a a 行号按自然顺序排列,列号排列35214. τ (35214)=2+3+1=6,取正号.(2) 3112435224.a a a a a 列号2重复,不是行列式的项.(3) 43213512541221354354.a a a a a a a a a a =行号按自然序列,列号排列是21534. τ (21534)=1+1+1=3,取符号.7.根据行列式的定义计算下面的行列式:(2(1)1)112(1)2(1)2(1)(1)(1)121(1)/212(1)1010000002000(1)00000100000(1)!(1)!.00000(2)0(1).n n n n n n n n n n n n nn nnn n n n n n n n n a a a a a a a a a a a a a τ-----------=-=-=-((1)(2)1)(1)(2)/2000010000200(3)1000000000(1)!(1)!.n n n n n n nn n τ-----=-=-1111122222331542544455(4)000000.000000a b c d e a b c d e a b a b b a a b a b εε=+= 8.用行列式性质计算下列行列式32153320533205310032053(1)72284721847218410072184320533205310032053132053100721847218410072184172184100(7218432053)4013100.1(2)2()1112()02()0x y x y y x y y x y x x y x yx x yx y x y y x yx x y xy x y x yx+=+=+==-=+++=++++=+-=+--22332()()2().y x yxx y x xy y x y ---=+-+-=-+32222(3)2212()121212()00002().111100111100(4)11110011111111000011011101111()10a b c a b c b c ab ca c a ba b a b c b c ab ac a b a b a b c b c ac a b a b c x x y x x y y yyyyx y y xy y x yy x yxy xy xy xy y xy x y ++++++=++++++=++++++=+++--=+---=----=+=-+=-2.y9。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

a1 ...
∏ a2
...
... ...
an ...
=
(a j − ai ) .
1≤i< j≤n
a1n−1
a
n−1 2
... ann−1
1.2.6 计算行列式的常用方法
1.利用对角线法则计算行列式,它只适用于 2、3 阶行列式;
2.利用 n 阶行列式定义计算行列式;
3.利用行列式的性质化三角形法计算行列式;
(C) 10 (D) 9
解 在排列 14536287 中,1 排在首位,逆序数为 0;4、5、6、8 各数的前面没有比它们
自身大的数,故这四个数的逆序数为 0;3 的前面比它大的数有 2 个(4、5),故逆序数为 2;
2 的前面比它大的数有 4 个(4、5、3、6),故逆序数为 4;7 的前面比它大的数有 1 个(8),
MM MM
M
11 1 1L2
1 −1 −1 −1 L −1
n +1 0 0 0 L 0
11 0 0L0
求和,故共有 n!项. 1.2.2 行列式的性质
1.行列式和它的转置行列式相等; 2.行列式的两行(列)互换,行列式改变符号; 3.行列式中某行(列)的公因子可提到行列式的的外面,或若以一个数乘行列式等于 用该数乘此行列式的任意一行(列);
4.行列式中若有两行(列)成比例,则该行列式为零; 5.若行列式的某一行(列)的元素都是两数之和,则此行列式等于两个行列式之和, 即
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

行列式的概念一、选择题1. 下列选项中错误的是 ( )a b c d (B)a b d b (A)da b ; c dc ;caa 3cb 3d a b a ba b (C)cdc ; (D)c dc.dd答案: D2.行列式 D n 不为零,利用行列式的性质对 D n 进行变换后,行列式的值().(A) 保持不变; (B) 可以变成任何值;(C) 保持不为零; (D)保持相同的正负号.答案: C二、填空题1.log a b 1 =.1log b a解析: log ab1 log a b log b a1 1 1 0 .1 log b acos sin2.36=.sincos 3 6cos sin解析:3 6 cos cos sin sin cos0sin cos 3 63 6 23 62x 1 33. 函数 f (x)x x 1 中, x 3 的系数为;21 x2x 1 1g( x)x x x 中, x 3的系数为.12x答案: -2 ; -2.阶行列式 D n中的n最小值是.答案: 1.1 2 35.三阶行列式0 2 4 中第2行第1列元素的代数余子式3 1 1等于.答案: 5.6.若 2x 8 0 ,则x= .1 2答案: 2.7. 在n 阶行列式 D a ij 中,当 i<j 时,aij 0(i, j 1,2, L ,n) ,则D= .答案: a11 a22 a nn.a b 0b a 0 0.1 0 1a b 0( 1ab )解析: b a 0 ( a2 b2 ) 01 0 1b a故 a 0, b 0 .三、解答题1.用行列式的定义计算 .0 1 0 11 0 1 0(1)1 0;0 00 0 1 11 1 0 1 0 1 解:原式 =1 ( 1)1 20 0 0 1 ( 1)1 4 0 1 00 1 0 0 0 18. 设a, b 为实数,则当a=, b=时,0 0 1 0 1解:由对角线法则,得 D 111 2 , D 21 0 0 111 2a b 0 0 若 D 1 D 2 , 则 于是1或 1.0 c d 0(2)四、证明题0 0 e.f1. (略)g h 0行列式的性质c d 0 0 d 0原式 = a 0 efb 0 ef一、选择题h 0 0g 0 0x 0 1 2 3 2e f0 f 0 f1.设行列式 D 10 x 1 0 , D 2 1 5 3 , 若 D 1 D 2 ,10 x3 1 1=a cdbdh g= adfhbdfg则 x 的取值为 ( ).(A)2 ,-1 ; (B)1 , -1 ;(C)0 ,2;(D)0,1.0 1 3 1 1答案: B2. 设行列式 D 10 1 0 ,D 2 2 3 2 , 若 D 1 D 2 ,a 11 a 12 a 1311 5 32.若 Da 21a 22a233 ,求 的值 .a31a32a332a11 5a13 a12 a13则 D1 2a21 5a23 a22 a23=().2a31 5a33 a32 a33(A)30;(B) -30 ;(C)6 ;(D)-6.答案: C二、填空题1.若三阶行列式 D 的第一行元素分别是1,2,0, 第三行元素的余子式分别是8,x,19,则 x =.解析: 1 8 2x 0 19 0, x 4 .2016 2018=.2.201620142016 2018 2 2 2 2 解析:2016 2014 2016 0 4 .2014 2a b c3. 行列式D b a c ,则 A11 A21 A31= .d b c1 b c解析: A11 A21 A31 1 a c 0 .1 b c5x 1 2 34. 行列式D42 1 x 3x x 2的展开式中, x 4的系数31 2 1 3x为; x3 的系数为.5x 1 2 3 5x 1 2 32 1 x3 x x 2 3解析: D 4x 2 3 2 1 x 3x1 2 1 3x 1 2 1 3x5x 1 2 30 x1 8 125 5 52 1 x 31 2 1 3x含 x4, x3的项仅有主对角线上元素之积项,故x 4, x3的系数分别为 15, -3.三、解答题1. 计算下列行列式 .1 2 3 42 3 4 1 (1);3 4 1 2 4 1 2 3解:各行加到第一行,得10 10 10 10 1 1 1 1 2 3 4 1 2 3 4 1 原式 =4 1 2 104 1 2 3 3 41 2 3 4 1 2 31 1 1 1 1 1 1 10 1 2 1 0 1 2 1 = 101 2 1 100 4 160 .0 0 0 03210 041 1 1 1 11 234 52 2 22(2) 12 3 4 5 ;3 3 3 3 1 2 345 4444 1 234 5解:原式 =(5-4)(5-3)(5-2)(5-1)(4-3)(4-2)(4-1)(3-2)(3-1) =288.1 4 9 16 4 9 16 25 ;(3)16 25 3691625 36491 4 9 16 1 4 9 16 3 5 7 9 3 5 7 9 原式 =7 9 11 2 2 2 0 .5 2 7 9 11 132 2 2 20 y 0 xx 0 y 0;(4)x 0 yy 0 x 0x y 0 x 0 y 原式 = y 0 0 y x 0 x 0y x 0 y 0 x= y 2 xy x 2 x y ( x 2 y 2 ) 2 . y x y x1 x yz(5) 1 y zx ;1 z xy1 x yz原式 = 0 y x z( y x)0 z x y( z x)=1 z( y x)( z x) ( x y )( y z )( z) .y x11 0 1 0 00 2 1 0 0(6) 3 1 0 0 0 ;0 0 0 2 10 0 0 0 21 0 1 01 0 1 1 0 10 2 1 04 0 2 1 4 0 2 1原式 = 21 0 033 1 0 0 1 30 0 0 2=2 14 20 .1 31 x1 1 1 11 1 x2 1 1;(7)1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x1解:原式 = 1 x2 0 0 1 0 x3 0 1 0 0 x41x1 x1 x1x1 x1 x1 x1x3x2 x4= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.1 5 1 31 1 3 4,计算 A41 A42 A43 A44的值.2. 设D1 2 312 23 4其中 A4 j ( j 1,2,3,4) 是 D 的代数余子式.1 5 1 3解: A41 A42A431 1 3 4A441 26 .1 31 1 1 13 5 2 13. 已知D1 1 0 1 M11M21M31M41.1 3 1, 求12 4 1 1解: M 11M21M31M41=1 M11( 1)M 21 1 M 31 ( 1)M 411 52 11 1 0 1=3 1=0.1 11 4 1 14. 计算下列n 阶行列式.2 1 1 1 1 1 1 (1) 1 2 1 ;y x y y解:原式 = x (n 1) y y y x y1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x y y yy x y y (2) y y x y ;y y y xy y y x1 1 1 10 x y 0 0= x (n 1) y 0 0 x y 00 0 0 x y= x (n 1) y ( x y) n 1.0 1 1 11 x1 0 0(3) 1 0 x2 0 ( x i 0,i 1,2, ,n) .1 0 0 x nn1111i 1 x i解:原式 =0 x 1 0 0 00 x 2 0x n=x 1 x 2x n (n1) .i 1x i四、证明题11 1= (b a)(c a)112ab a 2c 2ac a 2b= (b a)(c a)(c 2 b 2ac ab)= (b a)(ca)(c b)( a b c) =0,由于 a , b , c 是互异的实数,故要上式成立,当且仅当 a+b+c=0.abcd2. 证明a a+ba b c c a b c da 4a 2ab 3a 2b 4a 3b 2cd a3a b 6a 3b c 10a 6b 3c d1. 设 a , b , c 是互异的实数,证明a b c 0 的充分必要条 a bc da 3b 3c 3r 4r 30 a a ba b c件是 a+b+c=0.证明:左边r 3 r 2a2a b3a2bc11 1 1r 2r 10 a 3a b 6a 3b c证明: ab c a b a c a a bc d a bc da3b 3c 3a 3b 3 a 3c 3 a 3r 3 0 a a b a b c0 a a b a b cr 44r 3 r 21 0 0ar 4r 3a ab ac a2a b 0 2a b =a 3 c 3 a 30 0a3a b0 0ab 3=右边克莱姆法则一、选择题x1 x2 x3 1,1.方程组x1 x2 x3 1, ,有唯一解,则( ).x1 x2 x3 1(A) 1且 2 ;(B) 1 且 2 ;(C) 1且 2 ;(D) 1 且 2 .1 1解析:由克莱姆法则,当 1 1 (2 )( 1) 2 0 ,即1 11且 2 ,选B.ax z 0,2. 当a ()时,方程组2x ax z 0, 只有零解.ax 2 y z 0(A) -1 ;(B) 0 ;(C) -2 ; (D) 2.解析:由克莱姆法则,a 0 1 0 0 1当 2 a 1 2 a a 1 2(a 2) 0a 2 1 0 2 1即a 2 ,选D.三、解答题1.用克莱姆法则下列解方程组 .x 2 y z 2,(1) x 2 y 2z 3,2x y z 3;1 2 1解: D 1 2 2 3 0 ,2 1 1由克莱姆法则知,此方程组有唯一解,22 1D13 2 2 3 ,31 11 2 1 1 2 2D 2 1 3 2 6 , D 3 1 3 3 9 ,2 3 1 2 3 3因此方程组的解为D1 D 22 , z D 33 .x 1, yDD Dx1 2 x2 x3 x4 1,2x1 3x2 x3 2x4 3, (2)3x2 2x3 x4 ..x1 2, 2x1 4x2 3x3 3x4 21 2 1 1解: D 2 3 1 24 01 32 12 43 3由克莱姆法则知,此方程组有唯一解,1 2 1 1 1 1 1 13 3 1 28 , D 22 3 1 2D13 2 1 1 2 22 ,2 12 43 3 2 2 3 31 2 1 1 1 2 1 12 3 3 2D 42 3 1 32 .D33 22 ,1 32 21 12 4 23 24 3 2因此方程组的解为D12 , x2D 2 1 D 3 1 D 4 1x1D, x3D, x4D.D 2 2 22x1 2x2 x3 0,2. 判断线性方程组x1 2x2 4 x3 0, 是否有非零解5x1 8x2 2x3 02 2 1 1 2 4解:因为系数行列式 D 1 2 4 2 2 15 8 2 5 8 21 2 4 1 2 4= 0 6 9 0 6 9 30 0 ,0 18 22 0 0 5所以,方程组只有零解.x1 kx2 x3 0,3. 已知齐次线性方程组kx1 x2 x3 0, 有非零解,求k 的值.2x1 x2 x3 0解:因为齐次线性方程组有非零解,所以该方程组的系数行列式必为零,即1 k 1 1 k 1k 1 1 0 1 k 2 1 k2 1 1 0 1 2k 3= 3(1 k 2 ) (1 k)(1 2k)= (1 k)( 4 k ) 0解得, k=-1 或 k=4.2x1 4x2 ( 1) x3 0 4. 当取何值时,齐次线性方程组 ( 3) x1 x2 2x3 0 有非x1 (1 ) x2 x3 0 零解解:由齐次线性方程组有非零解的条件可知,2 4 13 1 2 0 ,解得0,2,3 .1 1 1第一章综合练习一、判断题1. n 阶行列式D n中的 n 最小为2.( ╳ )2. 在 n 阶行列式D a ij 中元素 a ij (i, j 1,2, L) 均为整数,则D必为整数 .( √ )a 11 0a 14a22a23a 14 a 23a 32 a 41 .(╳3.a32a33a 11a22 a 33 a44a410 0a44)二、选择题1. 若 D 13x 1 x 2x 11 1x 1, D 2x,则 D 1 与 D 2 的大12小关系是 ( ).(A) D 1D 2 ; (B) D 1 D 2 ; (C) D 1 D 2 ; (D) 随 x 值变化而变化 . 答案: Ca bcos20 sin 40 =.1.cos40sin 20解析:cos20 sin 40 cos20 cos40sin 20cos401cos60.2 2. 若 x 2y 2 x x , 则 x+y =. 1 1yy解析:由 x2y 2 xx ,得 x 2 y 21 1 y y即 ( xy) 2 0 ,从而 x+y =0.sin 20 sin 402xy2. 行列式 (a,b,c, d 1,1,2 ) 的所有可能值中, 最大 c d的是 ( ).(A) 0 ; (B)2 ; (C)4 ; (D)6.答案: D3. 已知x2 0,x y 1,则 y = .1 1 11x 2 x y 解析:由1 10,1 , 得 x =2, x-y =1, 从而 y =11 1三、填空题13 54.若a2b2c2a2 A2b2 B2c2 C 2,则 C 2化简后的结果24 6等于.解析: C21 32 .2 42x x 1 25. 设f ( x) 1 x 1 14 的系数为; x3的3 2 x,则 x11 1 1 x系数为.解析:当 f ( x)的主对角线的 4 个元素相乘才能得出x 4,系数3为 2;含x的项只能是a12 , a21, a33 , a44的乘积,系数为-1.1 2 3 4 51 1 12 26. 设D 3 2 1 4 6 ,2 2 2 1 14 3 2 10则 (1) A31A32 A33= ; (2)A34A35 ;( 3)A51 A52 A53 A54 A55 .解析: A31A32A33 2( A34 A35 ) 02(A31A32 A33 ) ( A34 A35 ) 0于是A31 A32 A33 0 , A34 A35 0 .1 2 3 4 51 1 12 2A51A52A53A54A55 3 2 1 4 62 2 2 1 11 1 1 1 11 2 3 4 51 1 12 23 2 14 60 .3 3 3 3 31 1 1 1 1即 A51A52A53A54A550 .四、解答题1.计算下列行列式 .x1 y1 x1 y2 x1 y3 x1 y4(1) x2 y1 x2 y2 x2 y3 x2 y4 ;x3 y1 x3 y2 x3 y3 x3 y4x4 y1 x4 y2 x4 y3 x4 y4x1 y1 y2 y1 y3 y1 y4 y1x2 y1 y2 y1 y3 y1 y4 y1 解:原式 =x3 y1 y2 y1 y3 y1 y4 y1x4 y1 y2 y1 y3 y1 y4 y1x1 y1 y2 y1 y3 y1 y4 y1x2 x1 0 0 0 =x1 0 00 .x3 0x4 x1 0 0 01 x1 1 1 11 1 x2 1 1(2) ;1 1 1 x3 11 1 1 1 x41 x1 x1 x1 x11 x2 0 0解:原式 =0 x3 011 0 0 x41x1 x1 x1x1 x1 x1x1x3 x4x2= 0 x2 0 00 0 x3 00 0 0 x4= x1 x2 x3 x4 x2 x3 x4 x1 x3 x4 x1 x2 x4 x1 x2 x3.0 0 0 1 0 0 0 2 0 0(3)2005 0 0 .0 02006 0 0 0 00 0 0 0 20072006 2005解:原式 = 2007 ( 1) 2 2006! = 2007!1 2 3 4 52 2 2 1 12. 已知D 3 1 2 4 527 ,1 1 12 24 3 15 0求 (1) A41A42 A43;(2)A44A45.解: 1 A41 1 A42 1 A43 2( A44 A45 ) 272( A41 A42 A43 ) ( A44 A45 ) 0得 A41A42A439 , A44A4518 .3.计算下列 n 阶行列式.1 1 12 2 2 2n(1) D n 3 32 3n;n n 2 n n解:(利用范德蒙行列式计算)1 1 1D n D n T1 2 nn! 3 32 3n1 2n 1 n n 1n!(2 1)(3 1) ( n 1)(3 2)(4 2) (n 2) n ( n 1)n!(n 1)!( n 2)! 2! .2 1 1(2) 1 2 1 ;1 1 2n 1 1 1 1 1 1解:原式n 1 2 1 1 2 1 = = (n 1)n 1 1 2 1 1 21 1 1= (n 1) 0 1 0.n 1 0 0 1x1 m x2 x nx1 x2 m x n(3) D nx1 x2 x n m解:将第 2 列,L,第n列分别加到第一列,并提取第一列的公因子,得x1 x2 x n m x2 x nD nx1 x2 x n m x2 m x nx1 x2 x n m x2 x n m1 x2 x n( x1 x2 x n1 x2 m x nm)1 x2 x n m1 0 0( x1 x 2 x n1 m 0m)1 0 m( x1 x2 x n m)( m) n1b1 b2 b3 b n 1 b na1 a2 0 0 0 (4) D n 0 a2 a3 0 00 0 0 a n 1 a n(其中 a i 0,i 1,2, , n )a1 a2 0 0 解: D n ( 1)1 n b n0 a2 0 00 0 0 an 1b1 b2 b n 2 b n 1a1 a2 0 0 a n 0 a2 0 00 0 a n 2 an 1a1 a2 a n b nanDn 1a na1 a2 nb i.a na ii 1三、证明题1. 试证:如果n次多项式f ( x) a0 a1 x a n x n对 n+1 个不同的 x 值都是零,则此多项式恒等于零.( 提示:用范德蒙行列式证明)。

相关文档
最新文档