光学多道实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光学多道与氢、氘同位素光谱

武晓忠201211141046

(北京师范大学2012级非师范班)

指导教师:何琛娟

实验时间:2014.9.16

摘要本实验通过光学多道分析仪来研究了H、D的光谱,观察并了解了H、D原子谱线的特征。H和D的光谱非常相似,但是二者的巴尔末系的同一能级的光谱之间仍有波长差,用光电倍增管可以测量出这个差值。通过实验我们也学习了光学多道分析仪的使用和基本光谱学技术

关键词光学多道H、D光谱

1、引言

光谱是不同强度的电磁辐射按照波长的有序排列,而原子光谱是由原子中的电子在能量变化时所发射或吸收的一系列波长的光所组成的光谱。由于氘原子和氢原子核外都只有一个电子,只是里德伯常量有一些差异,因此对应的谱线波长稍有差别。我们可以在实验中通过测出对应的谱线λ和Δλ来得到二者的里德伯常量和电子与质子的质量比。

2、原理

2.1 物理原理

可知原子能量状态为一系列的分立值,有一系列的能级,并且当高能级的原子跃迁到低

能级的时候会发射光子。设光子能量为ε,频率为ν,高能级为E2,低能级为E1,则有:

ε= hν=E2-E1 (1)从而有

ν=E2−E1

(2)

h

由于能量状态的分立,发射光子的频率自然也分立,这些光会在分光仪上表现为分立的

光谱线,也就是“线状光谱”。

根据巴尔末公式,对氢原子有

1λH =R H(

1

n12

- 1

n22

) (3)

R H为氢原子的里德伯常量。当n1=2, n2=3,4,5,····时,光谱是巴尔末系,在可见光区域。

对氘原子,同样有

1λD =R D(

1

n12

- 1

n22

)(4)

R D是氘原子的里德伯常量,当n1=2, n2=3,4,5,····时,光谱是巴尔末系。则

Δλ =λH-λD= (1

R H - 1

R D

) (1

22

- 1

n2

),n=2,3,4, (5)

若忽略质子和中子的细微差别,我们可以得到H、D的里德伯常量关系为:

R H=R∞m p

m p+m e , R D=R∞

2m p

2m p+m e

(6)

又知R∞=109737.31cm−1,它是原子核质量为无穷大时候的里德伯常量则

1 R H =2(m p+m e

2m p+m e

)1

R D

(7)

1 R H - 1

R D

=m e

2m p+m e

1

R D

Δλ=m e

2m p+m e [1

R D

∗1/(1

22

- 1

n2

)]=m e

2m p+m e

λD(8)

由于m e≪m p,则

ΔλλD ≈m e

2m p

(9)

因此只要在实验中测出对应谱线λ和Δλ即可得电子和质子质量比。

2.2 仪器原理

光栅多色仪

其光路图如下图所示:

图1 光栅多色仪光路图

其中,S1—入射狭缝M1—平面反射镜

S2—CCD感光平面M2---凹面镜

S3---观察窗口M3—凹面镜

G—平面衍射光栅M4—平面反射镜

光从狭缝S1入射,经过平面镜M1反射后,被凹面镜M2反射成平行光并且投射到光栅G上。由于光栅具有衍射作用,不同波长的光被反射到不同的方向上(衍射角不相同),再经过凹面镜M3反射,成像在CCD感光平面所在焦面上,还可由可旋入的平面镜M4反射到观察窗S3或者出射狭缝上。可知若在光栅光谱仪的像平面处装上出射狭缝,经过色散系统得到的单色光可从狭缝相继出射,这样的仪器就叫做单色仪。而若在像平面处有系列狭缝或矩形开口,可同时出射多个单色光,这种仪器叫做多色仪。从图中我们可知像平面处是有矩形开口的,因此仪器为多色仪,实验也是光学多道实验。

光栅光谱仪的角色散率为

dθdλ=m

a

(在衍射角θ不大的情况下) (10)

式中a为光栅常数,m为干涉级数。公式表明,光栅常数越小即刻线越密,它的角色散率越大,干涉级数越高。

光栅光谱仪的分辨本领为

R=mN (11)其中N是光栅的总可娴熟。因此,同样光栅常数的光栅,它的划刻面越大,即总刻线条数越多,它的分辨本领越大。

CCD光电探测器

CCD器件具有高灵敏度,低噪声,快速读出等优点。它主要是金属氧化物半导体制成的光电转换二极管,称为感光像元,排成面阵列或线阵列。这些像元可以将信号光子转变成信号电荷并实现电荷的储存、转移和读出。

光电倍增管

光电倍增管是一种将弱光信号转化为电信号的真空电子器件。其基本实验原理为光电效应,当光照到光阴极时,光阴极向真空中激发出光电子,这些光电子按聚集极电场进入倍增系统,并通过进一步的二次发射得到倍增放大,放大后的电子用阳极收集作为信号输出。因为采用了二次发射倍增系统,所以光电倍增管在探测紫外、可见和近红外区的辐射能量的光探测器中具有极高的灵敏度和极低的噪声。故实验中用光电倍增管观察两条距离很近的谱线的分离,更加精确。

3、实验

3.1 实验仪器

实验中主要用到光栅多色仪、CCD光电探测器和光电倍增管。在光栅多色仪中,我们使用的是闪耀光栅。在狭缝S1前放置光源,若将光栅多色仪的观察窗置于CCD处,则光在经过光栅多色仪后出射到CCD光电探测器上,通过光电转化得到氢的光谱。由于实验中采用的是定标的方式,因此实验结果较为准确。而在测量氢氘谱线时,由于氢光谱和氘光谱的波长差较小,我们需要将小信号放大,因此将观察窗置于光电倍增管处。我们在实验中使用的是具有2048个像元的线阵列CCD器件。

3.2实验方法

在实验开始前估算n2分别等于3,4,5时氢光谱的巴尔末系波长(结果如表1所示),接下来用H e (N e)谱线作为已知波长进行波长测量的定标。选择哪种灯根据待测谱线附近哪种原子的谱线较多来确定。在使用CCD来对光谱测定时,只能显示一个22nm的标度,我们并

相关文档
最新文档