函数的极值 ppt课件1
合集下载
《函数极值》课件
三、求函数极值的步骤
y
o
x0
极值点
y
xo
x0
x
极值点
y
y
o
xo
极值点
x0
x
不是极值点
三、求函数极值的步骤
y
y
y
y
o
x0
xo
x0
xo
xo
x0
x
(1)求函数f(x)的定义域
(2) 求导数f/(x),找出f(x)的所有驻点及导数不存在的点;
(3)用驻点及导数不存在的点划分定义域区间成若干子区间
判定导数f/(x)在每个区间的符号及函数在每个区间的单调性;
函数的极值及求法
问题引入:
在连绵群山之中,各个山峰 的顶端,虽然不一定是群山的最 高处,但它却是其附近所有点的 最高点.同样,各个谷底虽然不 一定是群山之中的最低处,但它 却是附近所有点的最低点.
一、函数的极值定义
y
我在这里哦!
ao
()
x0 b x
已知函数y=f(x),设x0是定义域(a,b)内任一点,如果 对x0附近的所有点x(x≠x0),都有
(4)根据定理,判定驻点和导数不存在的点是否为极值点,从而 求出函数的极值。
练习题
函数y=1 +3x-x3有( D ) (A) 极小值-1,极大值1 (B) 极小值-2,极大值3 (C) 极小值-2,极大值2 (D) 极小值-1,极大值3
1.极值的定义: 2.y=f(x)在x0处有极值的判定: 3.求极值的步骤:
函数的极大值与极小值统称为极值, 极大值点与极小值点统称为极值点
思考
极大值一定大于极小值吗?
极值是对某一点附近的小区间而言的 极大值与极小值没有必然关系,极大 值可能比极小值小,如图所示。
《函数的极值和导数》课件
Part
05
导数的计算方法
导数的四则运算规则
01
加法法则
$(uv)' = u'v + uv'$
02
减法法则
$(u-v)' = u'-v'$
03
乘法法则
$(uv)' = u'v + uv'$
04
除法法则
$left(frac{u}{v}right)' = frac{u'v-uv'}{v^2}$
复合函数的导数计算
最小成本问题
总结词
利用极值理论寻找最小成本
详细描述
在生产和经营活动中,也常常需要寻求最小成本。通过建立数学模型,利用函数的极值和 导数,可以找到使得成本最小的生产量、原材料采购量等决策变量。
实例
某公司需要采购原材料,每次采购的成本包括固定成本5万元和变动成本与采购量的比例 系数0.1万元/单位。求该公司的最小总成本。通过建立函数并求导,可以找到使得总成本 最小的采购量。
Part
03
极值在实际问题中的应用
最大利润问题
01
总结词
利用极值理论寻找最大利润
02 03
详细描述
在生产和经营活动中,常常需要寻求最大利润。通过建立数学模型,利 用函数的极值和导数,可以找到使得利润最大的生产量、价格等决策变 量。
实例
某公司生产一种产品,其固定成本为100万元,每生产一个单位的产品 ,成本为2万元,售价为5万元。求该公司的最大利润。通过建立函数并 求导,可以找到使得利润最大的产量。
Part
04
导数的几何意义
导数在平面上的表示
切线斜率
函数的极值-课件
函数的极值-PPT课件
这份PPT课件介绍了函数的极值,包括引言、函数的极值点、函数的极值定理、 函数的极值应用等内容。通过本课件,你将深入了解这一重要数学概念的定 义、分类和应用。
一、引言
函数的极值是指函数在特定范围内的最大值或最小值。本节将讨论函数的极 值的定义以及不同类型的极值。
二、函数的极值点
极大值点和极小值点的定义
极大值点是函数在某个范围内的最大值,极小值点是函数在某个范围内的最小值。
函数求极值的步骤
求函数的极值需要确定函数的驻点和临界点,并通过对函数求导来判断是极大值还是极小值。
三、函数的极值定理
第一极值定理
如果函数在某个区间内连续且可导,那么在这个区 间内一定存在至少一个极值点。
六、参考文献
1 数学分册
数学分册中关于函数和极 值的相关章节提供了更深 入的理论和应用。
2 数学课程
数学课程中有关函数极值 的教材和讲义提供了更详 细的学习材料。
3 数学学习资料
网络上有很多关于函数的 极值的学习资料,可以进 一步加深对这一概念的理 解。
第二极值定理
如果函数在某个区间内可导,并且在驻点处的导数 不等于零,那么这个驻点必定不是极值点。
四、函数的极值应用
数学实际问题中的应 用
函数的极值在物理、经济学等 领域中的实际问题中有着广泛 的应用,如求解最大利润、最 小费用等。
OA题型解析
函数的极值常出现在各类OA题 目中,掌握函数的极值求解方 法有助于解答相关题目。
PSAT、SAT、GRE题 型解析
函数的极值是PSAT、SAT、GRE 等考试中经常出现的题型,熟 悉函数的极值概念和求解方法 对应试有帮助。
五、总结
1 函数的极值常见考点
这份PPT课件介绍了函数的极值,包括引言、函数的极值点、函数的极值定理、 函数的极值应用等内容。通过本课件,你将深入了解这一重要数学概念的定 义、分类和应用。
一、引言
函数的极值是指函数在特定范围内的最大值或最小值。本节将讨论函数的极 值的定义以及不同类型的极值。
二、函数的极值点
极大值点和极小值点的定义
极大值点是函数在某个范围内的最大值,极小值点是函数在某个范围内的最小值。
函数求极值的步骤
求函数的极值需要确定函数的驻点和临界点,并通过对函数求导来判断是极大值还是极小值。
三、函数的极值定理
第一极值定理
如果函数在某个区间内连续且可导,那么在这个区 间内一定存在至少一个极值点。
六、参考文献
1 数学分册
数学分册中关于函数和极 值的相关章节提供了更深 入的理论和应用。
2 数学课程
数学课程中有关函数极值 的教材和讲义提供了更详 细的学习材料。
3 数学学习资料
网络上有很多关于函数的 极值的学习资料,可以进 一步加深对这一概念的理 解。
第二极值定理
如果函数在某个区间内可导,并且在驻点处的导数 不等于零,那么这个驻点必定不是极值点。
四、函数的极值应用
数学实际问题中的应 用
函数的极值在物理、经济学等 领域中的实际问题中有着广泛 的应用,如求解最大利润、最 小费用等。
OA题型解析
函数的极值常出现在各类OA题 目中,掌握函数的极值求解方 法有助于解答相关题目。
PSAT、SAT、GRE题 型解析
函数的极值是PSAT、SAT、GRE 等考试中经常出现的题型,熟 悉函数的极值概念和求解方法 对应试有帮助。
五、总结
1 函数的极值常见考点
函数的极值课件-2022-2023学年高二下学期数学人教A版(2019)选择性必修第二册
解:因为 = − − + , 所以′ = − −
令��′() = ,解得 = − ,或 = .
当变化时,′() , 的变化情况如下表所示 .
x
(−∞, −)
′
+
y
单调递增
-1
(-1,3)
3
(, +∞)
0
-
0
+
单调递减
极小值
y
且 0 = 0 ,可知 d=0 .
∴ f′(x)先为负,再变为正,再变为负.
O
x
又 ′ = 3 2 + 2 +
∴ a<0
且 = 0 是在增区间内,即f ′ 0 > 0,
则c>0,对称轴 −
b
2a
> 0,可知b>0
综上, a<0,b>0,c>0,d=0 .
总结
函数的极值
函数f(x),f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做
(2)如果在 附近的左侧 ′ < ,右侧 ′ > ,那么( )是极小值.
课堂检测
判断正误
(1) 函数的极大值一定比极小值大.(
×)
(2) 对可导函数f(x),f′(x0)=0 是x0为极值点的充要条件.(
×
)
(3) 函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(
′ = ;而且在点 x=a 附近的左侧′ < ,右侧′ > .
把 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值;
y
a
O
令��′() = ,解得 = − ,或 = .
当变化时,′() , 的变化情况如下表所示 .
x
(−∞, −)
′
+
y
单调递增
-1
(-1,3)
3
(, +∞)
0
-
0
+
单调递减
极小值
y
且 0 = 0 ,可知 d=0 .
∴ f′(x)先为负,再变为正,再变为负.
O
x
又 ′ = 3 2 + 2 +
∴ a<0
且 = 0 是在增区间内,即f ′ 0 > 0,
则c>0,对称轴 −
b
2a
> 0,可知b>0
综上, a<0,b>0,c>0,d=0 .
总结
函数的极值
函数f(x),f′(a)=0,而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做
(2)如果在 附近的左侧 ′ < ,右侧 ′ > ,那么( )是极小值.
课堂检测
判断正误
(1) 函数的极大值一定比极小值大.(
×)
(2) 对可导函数f(x),f′(x0)=0 是x0为极值点的充要条件.(
×
)
(3) 函数的最大值不一定是极大值,函数的最小值也不一定是极小值.(
′ = ;而且在点 x=a 附近的左侧′ < ,右侧′ > .
把 a 叫做函数 y=f(x)的极小值点, f(a)叫做函数 y=f(x)的极小值;
y
a
O
《函数极值》课件
详细描述
举例
考虑函数$f(x) = x^3$,其一阶导数 为$f'(x) = 3x^2$,在$x=0$处,一 阶导数由正变负,故函数在$x=0$处 取得极小值。
当一阶导数在某点的左右两侧由正变 负或由负变正时,函数在该点取得极 值。
二阶导数判定法
总结词
通过判断二阶导数的正负来判断 函数在某点的极值。
01
02
03
04
梯度下降法
通过计算目标函数的梯度,沿 着梯度负方向寻找最小值。
牛顿法
通过构造目标函数的Hessian 矩阵,求解方程组得到最优解
。
遗传算法
模拟生物进化过程的自然选择 和遗传机制,通过迭代搜索最
优解。
模拟退火算法
模拟固体退火过程的随机搜索 算法,能够在全局范围内找不同的分类标准,可以将极值分为两类。第一类极值 是相对较小的极值,而第二类极值则是相对较大的极值。
单侧极值和双侧极值
根据定义,单侧极值是指函数在某一点的左侧或右侧存在 单调性改变的极值点;而双侧极值则是指函数在某一点的 两侧都存在单调性改变的极值点。
02
极值的判定
一阶导数判定法
总结词
通过判断一阶导数的正负来判断函数 在某点的极值。
在物理领域的应用
运动轨迹分析
在物理学中,极值原理可以用于分析物体的运动轨迹。例如,在分析行星的运动 轨迹时,可以利用极值原理确定行星在各个时刻的位置和速度。
能量最小化
在力学和电磁学等领域,极值原理可以用于寻找系统能量的最小值。例如,在分 析弹簧振荡器的运动时,可以利用极值原理确定振荡器的平衡位置和能量最小值 。
详细描述
当二阶导数在某点的左右两侧符号 相反时,函数在该点取得极值。
《函数的极值与导数》课件
极大值和极小值是极值的 两种分类,取决于导数的 变化情况。
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
应用示例
求函数的极值
通过求导和分析导数的变化,可以确定函数的极值 点和对应的极值。
求解实际问题
将实际问题转化为数学模型,并通过求导求解极值 来得到最优解。
端点的极值
函数定义域的端点如果存在极值,则称为端点描述函数在某一点处 的变化率,即函数曲线在 该点的切线斜率。
2 导数的意义
导数可以帮助我们分析函 数的变化趋势和特征,以 及确定函数的极值。
3 导数的符号表示
通常用f'(x)、dy/dx或y'来 表示函数f(x)的导数。
2
得到一些常见函数的导数表达式。
利用导数的性质,可以对复杂函数进行
四则运算的求导。
3
导数的链式法则
对复合函数求导时,可以使用链式法则 进行求导。
极值的判定
1 极值的必要条件
函数在极值点处的导数为 零或不存在。
2 极值的充分条件
当函数在极值点的导数发 生变号时,即可判断该点 为极值的充分条件。
3 极值的分类
导数与函数的关系
导数刻画函数的变化 趋势
导数的正负性可以描述函数的 单调性和变化趋势。
导数判断函数的单调 性
函数在导数大于零的区间上单 调递增,在导数小于零的区间 上单调递减。
极值与导数的关系
极值出现的地方,导数为零或 不存在。
导数的计算
1
基本导数公式
根据函数的基本性质和求导法则,可以
导数的四则运算
《函数的极值与导数》 PPT课件
欢迎来到《函数的极值与导数》PPT课件!本课程将带你深入了解函数的极值 和导数的概念,以及它们之间的关系。准备好迎接这趟知识之旅了吗?让我 们开始吧!
新教材高中数学第五章第1课时函数的极值pptx课件新人教A版选择性必修第二册
令 ′ = 0 ,解得 = 2 或 = 2 .
①当 = 1 时, 2 = 2 ,因此 ′ = − 2
2
≥ 0 ,故 在 上单调递增,函数不
存在极值.
角度2.含参数的函数求极值
②当 < 1 时, 2 < 2 ,当 变化时, , ′ 随 的变化情况如下表:
知识点1 函数极值的概念
>
/m
<
名师点睛
1.极值是一个局部概念.由定义知,极值只是某个点的函数值与它附近点的函数值比
较是最大或最小,并不意味着它在函数的整个定义域内最大或最小.
2.函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.
3.若函数在极值点处存在导数,则这点的导数为0,但导数为0的点可能不是函数的极
(1) =
解
2
;
e
函数 的定义域为 , ′ =
2
e
′ = 2 − e−
令 ′ = 0 ,得 2 − ⋅ e− = 0 ,解得 = 0 或 = 2 .
当 变化时, ′ , 的变化情况如下表:
0
2
-
0
0
单调递减
极小值0
个极大值点之间必有一个极小值点,同样,相邻两个极小值点之间必有一个极大值点.一
般地,当函数 在区间 [, ] 上连续且有有限个极值点时,函数 在区间 [, ] 上的
极大值点\,极小值点是交替出现的.
过关自诊
1.函数的极大值一定大于极小值吗?
提示 不一定.如图所示,
极大值 1 小于极小值 2 .
名师点睛
导数等于0的点不一定是极值点;反之,若函数可导,则极值点一定是导数等于0的点,
①当 = 1 时, 2 = 2 ,因此 ′ = − 2
2
≥ 0 ,故 在 上单调递增,函数不
存在极值.
角度2.含参数的函数求极值
②当 < 1 时, 2 < 2 ,当 变化时, , ′ 随 的变化情况如下表:
知识点1 函数极值的概念
>
/m
<
名师点睛
1.极值是一个局部概念.由定义知,极值只是某个点的函数值与它附近点的函数值比
较是最大或最小,并不意味着它在函数的整个定义域内最大或最小.
2.函数的极值点一定出现在区间的内部,区间的端点不能成为极值点.
3.若函数在极值点处存在导数,则这点的导数为0,但导数为0的点可能不是函数的极
(1) =
解
2
;
e
函数 的定义域为 , ′ =
2
e
′ = 2 − e−
令 ′ = 0 ,得 2 − ⋅ e− = 0 ,解得 = 0 或 = 2 .
当 变化时, ′ , 的变化情况如下表:
0
2
-
0
0
单调递减
极小值0
个极大值点之间必有一个极小值点,同样,相邻两个极小值点之间必有一个极大值点.一
般地,当函数 在区间 [, ] 上连续且有有限个极值点时,函数 在区间 [, ] 上的
极大值点\,极小值点是交替出现的.
过关自诊
1.函数的极大值一定大于极小值吗?
提示 不一定.如图所示,
极大值 1 小于极小值 2 .
名师点睛
导数等于0的点不一定是极值点;反之,若函数可导,则极值点一定是导数等于0的点,
函数的极值(第一课时)高二数学课件(人教A版2019选择性必修第二册)
在 = 1处取得极小值,故D正确.
练习
题型二:运用导数解决函数的极值问题
例2.求函数() = 2 − 的极值.
解:函数的定义域为,
’ () = 2 − + 2 − ∙ (−1) = 2 − − 2 − = (2 − ) − .
令 ’ () = 0,得(2 − ) − = 0,解得 = 0或 = 2.
(3)解方程 ’ () = 0得方程的根;
(4)利用方程 ’ () = 0的根将定义域分成若干个小开区间,列表,判定导函数在各
个小开区间的符号;
(5)确定函数的极值,如果 ’ ()的符号在0 处由正(负)变负(正),则()在0 处取
得极大(小)值.
练习
方法技巧:
2.已知函数极值求参数时的注意点:
答案:√,√,×.
辨析2.函数() = + 2
A.0
6
B.
答案:B.
C.
3
2
D.
在[0, ]上的极大值点为(
2
).
例析
1
l l 3
1
= 3
3
例5.求函数() = 3 − 4 + 4的极值.
解:因为()
− 4 + 4,所以
’ () = 2 − 4 = ( − 2)( + 2).
练习
变1.(多选)已知函数 = ’ ()的图象如图所示,则下列说
法正确的是(
).
A.函数()在区间(1, + ∞)上是增函数
B.函数()在区间(−1,1)上无单调性
C.函数()在 =
1
− 处取得极大值
2
D.函数()在 = 1处取极小值
练习
题型二:运用导数解决函数的极值问题
例2.求函数() = 2 − 的极值.
解:函数的定义域为,
’ () = 2 − + 2 − ∙ (−1) = 2 − − 2 − = (2 − ) − .
令 ’ () = 0,得(2 − ) − = 0,解得 = 0或 = 2.
(3)解方程 ’ () = 0得方程的根;
(4)利用方程 ’ () = 0的根将定义域分成若干个小开区间,列表,判定导函数在各
个小开区间的符号;
(5)确定函数的极值,如果 ’ ()的符号在0 处由正(负)变负(正),则()在0 处取
得极大(小)值.
练习
方法技巧:
2.已知函数极值求参数时的注意点:
答案:√,√,×.
辨析2.函数() = + 2
A.0
6
B.
答案:B.
C.
3
2
D.
在[0, ]上的极大值点为(
2
).
例析
1
l l 3
1
= 3
3
例5.求函数() = 3 − 4 + 4的极值.
解:因为()
− 4 + 4,所以
’ () = 2 − 4 = ( − 2)( + 2).
练习
变1.(多选)已知函数 = ’ ()的图象如图所示,则下列说
法正确的是(
).
A.函数()在区间(1, + ∞)上是增函数
B.函数()在区间(−1,1)上无单调性
C.函数()在 =
1
− 处取得极大值
2
D.函数()在 = 1处取极小值
《函数极值与最值》课件
在工程设计中的应用
结构设计
在工程结构设计中,结构的稳定 性、强度和刚度等性能指标需要 通过计算和分析来保证。函数极 值与最值的方法可以用于分析结 构的应力分布、变形等关键参数 ,优化结构设计。
控制系统设计
在控制系统的设计中,系统的稳 定性、响应速度和精度等性能指 标需要经过权衡和优化。函数极 值与最值的方法可以用于分析控 制系统的性能指标,找到最优的 控制策略。
光学设计
在光学设计中,透镜的形状和材料需要经过精密的计算和设计,以达到最佳的光学性能。函数极值与最值的方法可以 用于分析透镜的光路,优化光学系统的性能。
电磁场研究
在电磁场的研究中,电场和磁场的变化可以通过函数极值与最值来描述。例如,在研究电磁波的传播和 散射时,可以利用函数极值与最值的方法分析电磁场的分布和变化规律。
连续函数的性质
如果函数在某区间内连续,则该函数在该区间内 必取得最大值和最小值。
极值的性质
极值点一定是驻点或不可导点,但驻点或不可导 点不一定是极值点。
最值的求法
代数法
通过函数的导数或二阶导数,结合函数的单调性、凹 凸性等性质,求得函数的最大值或最小值。
几何法
通过函数图像,直观地观察函数的最大值或最小值。
航空航天设计
在航空航天领域,飞行器的设计 和性能分析需要经过严密的计算 和分析。函数极值与最值的方法 可以用于分析飞行器的气动性能 、推进系统效率等关键参数,提 高飞行器的性能和安全性。
04
函数极值与最值的求解方法
导数法
总结词
通过求导数判断函数单调性,值和最值的一种常用方法。首先求出函数的导数,然后根据导数的符号变化判断函 数的单调性,从而确定极值点。在极值点处,函数的导数由正变负或由负变正,即一阶导数为零的点 。
5.3.2函数的极值与最值(第1课时)课件(人教版)
课堂小结 这节课,我们学习了什么?请你来说说.
1.极小值、极大值的概念 2.判断函数f (x)极值的方法 3.求可导函数f (x)极值的步骤
注意:
(1)函数的极值是一个局部概念,是仅对某一点的左右两侧附近的点而言的. (2)极值点是函数定义域内的点,而函数定义域的端点绝不是函数的极值点. (3)若f (x)在[a,b]内有极值,那么f (x)在[a,b]内绝不是单调函数,即极值不单调,单 调无极值. (4)极大值与极小值没有必然的大小关系.一个函数在其定义域内可以有许多个极小值 和极大值,在某一点的极小值可能大于另一点的极大值(如图).
+
0
-
1
f (x) 单调递增
e
单调递减
因此,x=e 是函数的极大值点,极大值为 f (e)= 1 ,没有极小值. e
典型例题 例2.已知函数f(x)=x3+3ax2+bx+a2在x=-1时有极值0,求常数a,b的值.
解: 因为 f(x)在 x=-1 时有极值 0,且 f′(x)=3x2+6ax+b,
所以f′ f
-1 -1
=0, =0,
即3--16+a+3ab-=b0+,a2=0,
解得ba==31, 或ba==92., 当 a=1,b=3 时,f′(x)=3x2+6x+3=3(x+1)2≥0,
所以 f(x)在 R 上为增函数,无极值,故舍去.
当a=2,b=9时, f′(x)=3x2+12x+9=3(x+1)(x+3), 当x∈(-∞,-3)时,f′(x)>0,f(x)为增函数; 当x∈(-3,-1)时,f′(x)<0,f(x)为减函数; 当x∈(-1,+∞)时,f′(x)>0,f(x)为增函数; 所以f(x)在x=-1时取得极小值. 所以a=2,b=9.
人教A版选择性必修第二册5-3-2-1函数的极值课件(47张)
3.已知函数 f(x)的导数为 f′(x)=4x3-4x,且 f(x)的图象过点(1,-6),当函数 f(x)取得
极大值-5 时,x 的值应为( D )
A.1
B.0
C.-5
D.5
解析:设 f(x)=x4-2x2+c, 又 f(x)的图象过点(1,-6), 所以 c=-5.故 f(x)=x4-2x2-5. 又当 f′(x)=0 时,x=0 或 1 或-1, 所以当函数 f(x)取得极大值-5, 即 f(x)=-5 时,x=0.
2.极大值点与极大值 函数 y=f(x)在点 x=b 的函数值 f(b)比它在点 x=b 附近其他点的函数值都大,f′(b)= ____0____,而且在点 x=b 附近的左侧__f′_(x_)_>_0__,右侧__f_′(_x_)<_0__,就把____b____叫做函数 y =f(x)的极大值点,___f_(b_)___叫做函数 y=f(x)的极大值. 3.极小值点、极大值点统称为_极__值__点___;极小值、极大值统称为___极__ f′(x0)=0 的关系 一般来说,“f′(x0)=0”是“函数 y=f(x)在点 x0 处取得极值”的必要不充分条件.若 可导函数 y=f(x)在点 x0 处可导,且在点 x0 处取得极值,那么 f′(x0)=0;反之,若 f′(x0)=0, 则点 x0 不一定是函数 y=f(x)的极值点.
强研习·重点难点要突破
研习 1 求函数的极值(点) [典例 1] (1)(多选)已知函数 y=f(x),其导函数 y=f′(x)的图象如图所示,则 y=
f(x)( BCD )
A.在(-∞,0)上单调递减 C.在(4,+∞)上单调递减 (2)求函数 f(x)=x2e-x 的极值.
B.在 x=0 处取极大值 D.在 x=2 处取极小值
第3讲导数与函数的极值最值课件共83张PPT
2.导数与函数的最值 (1)函数 f(x)在[a,b]上有最值的条件 如果在区间[a,b]上函数 y=f(x)的图象是一条 07 ___连__续__不__断___的曲线, 那么它必有最大值和最小值. (2)求 y=f(x)在[a,b]上的最大(小)值的步骤 ①求函数 y=f(x)在(a,b)上的 08 _极__值___. ②将函数 y=f(x)的各极值与 09 __端__点__处__的__函__数__值__f(_a_)_,__f(_b_)_比较,其中 10 __最__大__的一个是最大值, 11 _最__小___的一个是最小值.
即 2x+y-13=0.
解
(2)显然 t≠0,因为 y=f(x)在点(t,12-t2)处的切线方程为 y-(12-t2)=
-2t(x-t),
令
x=0,得
y=t2+12,令
y=0,得
t2+12 x= 2t ,
所以 S(t)=12×(t2+12)·t2+2|t1| 2.
不妨设 t>0(t<0 时,结果一样),
例 1 (2021·南昌摸底考试)设函数 f(x)在 R 上可导,其导函数为 f′(x), 且函数 y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是( )
A.函数 f(x)有极大值 f(2)和极小值 f(1) B.函数 f(x)有极大值 f(-2)和极小值 f(1) C.函数 f(x)有极大值 f(2)和极小值 f(-2) D.函数 f(x)有极大值 f(-2)和极小值 f(2)
单调递减,所以 x=1 是 f(x)的极大值点.②若 a<0,由 f′(x)=0,得 x=1
或 x=-1a.因为 x=1 是 f(x)的极大值点,所以-1a>1,解得-1<a<0.综合①②
函数的极值ppt课件
●
四 、不含参数的函数求极值
变式训练 求下列函数的极值:
(1)f(x)=x²e-×;
[解析](1)函数f(X) 的定义域为R,
f(x)=2xe-×+x²·e-×.(-x)'=2xe-×-x²e-×=x(2-x)e-×.
令f'(x)=0,得x(2-x)e-×=0,解得x=0 或x=2. 当x变化时,f'(x),f(x) 的变化情况如表所示:
2.对极值概念的再理解 (1 )极值是一个局部概念,极值只是某个点的函数值,与它附近点的函数值比较它是 最大值或最小值,但并不意味着它在函数的整个定义域内是最大值或最小值;
(2 ) 一个函数在某区间上或定义域内的极大值或极小值可以不止一个; (3)函数的极大值与极小值之间无确定的大小关系; (4)函数的极值点一定出现在区间的内部,区间的端点不能成为极值点; (5)单调函数一定没有极值.
e
f'(x)
十
0
f(x)
1
e
故当- 时,函数(x)取得极大值,且极大值为
●
(e,+0)
《
3求含参函数的极值
例2 已知函数f(x)=x-aln x(a∈R) ,求函数f(x)的极值.
①当a ≤0时,f(x)>0, 函数f(x)为(0,+0)上的增函数,函数f(x)无极值; ②当a>0 时,令f'(x)=0, 解得x=a,
课堂小结
y
f'(x₀)=0
f'(x)>0
f'(x)<0
y
f'(x <0
f'(x,)=0 f(x)
>0
a Xo b
人教版高中数学 选择性必修二 A版5.3.2(1)《函数的极值》课件PPT
第二部分
新知讲解
导入新课
3
引例:求函数 = +
1 2
2
− 2 + 4 的单调区间.
′
解析: =3 2 + − 2 = 3 − 2 + 1
′
令 < 0 得 −1 < <
′
2
3
2
3
令 > 0 得 > 或 < −1
导入新课
∴ = 的单调递减区间是(−1,
o
x
例如: = 的极大值是 −1 ,极小值是
2
极大值点是-1,极小值点是
3
2
3
,
知识梳理
结论: 函数 = 的极值点为, , … ,
则一定有′()=0 , ′()=0 ,……
反之,若′()=0 ,则 , , … ,不一定是 = 的极值点.
比如: = = 3 在R上单调递增, ′()=3 2 =0 时,
1
′()=4 − =
4 2 −1 2+1 2−1
=
令 ′() > 0 得 >
1
2
令 ′() < 0 得0< <
1
2
课堂互动
∴ 的单调递增区间是
∴ 的极小值为
没有极大值.
1
2
1
, +∞
2
=2 ×
1
4
1
,单调递减区间是(0, )
2
1
−
2
1
解析: 的定义域为 0, +∞
1
函数的极值 课件(第1课时)
知识点 1 极值点与极值 (1)极小值点与极小值 若函数 y=f (x)在点 x=a 的函数值 f (a)比它在点 x=a 附近其他 点的函数值都小,f ′(a)=_0,而且在点 x=a 附近的左侧__f_′(_x_)_<__0___, 右侧__f_′_(x_)_>__0___,就把点 a 叫做函数 y=f (x)的极小值点,f __(_a_) _叫 做函数 y=f (x)的极小值.
A.y=x3 B.y=x2+1 C.y=|x| D.y=2x BC [对于 A,y′=3x2≥0,∴y=x3 单调递增,无极值;对于 B, y′=2x,x>0 时 y′>0,x<0 时 y′<0,∴x=0 为极值点;对于 C,根 据图象,在(0,+∞)上单调递增,在(-∞,0)上单调递减,∴C 符合; 对于 D,y=2x 单调递增,无极值.故选 BC.]
第五章 一元函数的导数及其应用
5.3 导数在研究函数中的应用 5.3.2 函数的极值与最大(小)值
第1课时 函数的极值
学习任务
核心素养
1.了解极大值、极小值的概念.(难 1.通过极值点与极值概念的
点) 学习,培养数学抽象的核心
2.了解函数在某点取得极值的必 素养.
要条件和充分条件.(重点、易混 2.借助函数极值的求法,提
x (-∞,-1) -1 (-1,3) 3 (3,+∞)
y′
+
0
-
0
+
y
↗
极大值 ↘ 极小值
↗
∴当 x=-1 时,函数 y=f (x)有极大值,且 f (-1)=10; 当 x=3 时,函数 y=f (x)有极小值,且 f (3)=-22.
(2)y′=3x2(x-5)2+2x3(x-5) =5x2(x-3)(x-5). 令 y′=0,即 5x2(x-3)(x-5)=0, 解得 x1=0,x2=3,x3=5.当 x 变化时,y′与 y 的变化情况如下 表:
【课件】函数的极值课件-高二下学期数学人教A版(2019)选择性必修第二册
处函数有什么性质呢?
情境
苏轼在《题西林壁》中这
样写道:“横看成岭侧成
峰,远近高低各不同”,
描述的就是庐山的高低起
伏,错落有致。各个山峰
的顶端,虽然不是群山的
最高处,但它却是其附近
的最高点。
那么,在数学上,这种
现象如何来刻画呢?
探 究
• 思考1:从单调性的变化来看,
图中哪些点比较特殊?
极值
• 思考2:这些点处的函数值有
-
f(x)
单调递减
极小值0
单调递增
极大值4e-2
单调递减
因此,当x=0时,f(x)有极小值,并且极小值为f(0)=0;当x=2时,f(x)有极大值,并
4
且极大值为f(2)= e2
.
(2) (-∞,-1)∪(2,+∞) [f ′(x)=3x2+6ax+3(a+2),∵函数f (x)既有
极大值又有极小值,∴方程f ′(x)=0有两个不相等的实根,∴Δ=36a2-36(a
f '( x)
+
0
+
f ( x) 单调递增
y f ( x )
y
单调递增
f ( x6 )既不是极大值也不是极小值.
a x1 O
x2
x3
x4 x5
x6
b
x
问题4 导数值为0的点一定是函数的极值点吗?
那么,极值存在的条件是什么?
若函数有极值点,则在极值点处导数为0,但导数为0的
点可能不是函数的极值点.也就是说,“f'(c)=0”是“f (x)在
=3
当
= 2,
时,f'(x)=3x2+12x+9=3(x+3)(x+1),令 f'(x)>0 得 x<-3 或 x>-1;
情境
苏轼在《题西林壁》中这
样写道:“横看成岭侧成
峰,远近高低各不同”,
描述的就是庐山的高低起
伏,错落有致。各个山峰
的顶端,虽然不是群山的
最高处,但它却是其附近
的最高点。
那么,在数学上,这种
现象如何来刻画呢?
探 究
• 思考1:从单调性的变化来看,
图中哪些点比较特殊?
极值
• 思考2:这些点处的函数值有
-
f(x)
单调递减
极小值0
单调递增
极大值4e-2
单调递减
因此,当x=0时,f(x)有极小值,并且极小值为f(0)=0;当x=2时,f(x)有极大值,并
4
且极大值为f(2)= e2
.
(2) (-∞,-1)∪(2,+∞) [f ′(x)=3x2+6ax+3(a+2),∵函数f (x)既有
极大值又有极小值,∴方程f ′(x)=0有两个不相等的实根,∴Δ=36a2-36(a
f '( x)
+
0
+
f ( x) 单调递增
y f ( x )
y
单调递增
f ( x6 )既不是极大值也不是极小值.
a x1 O
x2
x3
x4 x5
x6
b
x
问题4 导数值为0的点一定是函数的极值点吗?
那么,极值存在的条件是什么?
若函数有极值点,则在极值点处导数为0,但导数为0的
点可能不是函数的极值点.也就是说,“f'(c)=0”是“f (x)在
=3
当
= 2,
时,f'(x)=3x2+12x+9=3(x+3)(x+1),令 f'(x)>0 得 x<-3 或 x>-1;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
易见x=±1不是它的极值点。
例2、求函数
的极值
f ( x) 3x 3x 1
2
分析:首先对函数求导,求得 f '( x) ,再求方程 的根,检查 f '( x) 0
f '( x在方程根左右的值的符号。如果 )
左正右负,那么 f ( x在这个根处取得极大 ) 值;如果左负右正,那么 f ( x )
在这个根处取得极小值。
解: 令 当
f '( x) 9 x2 3 3(3x2 1)
f '( x) 0 ,解得
x 变化时,
3 x1 3
3 x2 3
f '( x)
f ( x)
的变化情况如下表:
x
f ( x)
3 (, ) 3
3 3 3 ( , ) 3 3 3
②如图,观察分析可得出结论:若x=x0 是y=f(x)的一个驻点,且在x=x0两边一 阶导数f'(x)的符号不同,则y=f(x)在 x=x0取得极值(若y'左正右负,取极大值; 若y'左负右正取极小值)。
③求可导函数f(x)的极值的方 法: A.求导数f'(x); B.令f'(x)=0,求出f(x)的驻点; C.检查f'(x)在驻点左右的符号, 判别是否取得极值。
3 3
3 ( , ) 3
f '( x) +
0
2 3 1 3
-
0
2 3 1 3
+
极大值
极小值
因此,当
3 x 3
时,
2 3 1 3
f ( x) 有极大值,并且极大值为
3 当 x 时, 3
f ( x)
2 3 1 3
有极小值,并且极大值为
函数的极值
(1)定义:如果函数y=f(x)在点x0处连 续,并且x0不是其定义区间的端点, 若对x0附近的所有点x(x≠x0)都有f(x) <f(x0)(或f(x)>f(x0)),我们就说函数 f(x)在点x0处取极大值(或极小值),或 说f(x0)是函数f(x)的一个极大值(或极 小值),其中点x0称为f(x)的极大点(或 极小点).极大值与极小值统称极值, 相应的x0也称极值点。
(2)可导函数的极值。使y'=0的点, 是f(x)的驻点;①不难看出可导函 数y=f(x)在极值点处的切线与x轴 平行,即y'=0.所以,极值点一 定是它的驻点,但是可导函数的 驻点是否一定是它的极值点呢?;=3x2=0,知 x=0是它的驻点,但在图形中, 我们可以清楚地看到,x=0并 不是函数的极值点,所以可导 函数的驻点是极值点的必要而 不充分条件。
例1 求函数f(x)=(x2-1)3+1的极值。 解:f'(x)=3(x2-1)2· 2x=6x(x+1)2(x-1)2, ①令f'(x)=0 得x=-1,0,1
∴ 当x=0时,f(0)=0为函数的极小值。 ②若设y=f(x)、可以写成,当x=0,y极小 =0。 在此题中,我们看到x=±1是其驻点,并 不是极值点。我们来看它的图象:
注意:①极值点是函数f(x)定义域中 的内点,因而端点绝不是极值点;② 极值是个局部概念,是讨论f(x)在x0 及其邻域点的函数值的大小情况,所 以连续函数f(x)在其定义域上极值点 可能不止一个,函数的一个极小值也 不见得比它一个极大值小,当然有的 函数也不见得有极值。
如图,函数y=f(x)在[a,b]连续,易 见x1,x2,x3,x4,都是y=f(x)的极值 点,y=f(x)在x=x4取极小值,y=f(x)在 x=x1取极大值,但是f(x4)>f(x1)。